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Abstract The borocarbide intermetallics RNi2B2C (R = Y, Ce-Lu) were dis-

covered in 1994 and attracted a large attention because superconductivity and

magnetic ordering are coexisting in R = Dy, Ho, Er and Tm. Early reports

concluded that these compounds should be considered as anisotropic BCS su-

perconductors with a phonon-mediated moderately strong coupling between the

conduction electrons causing the creation of Cooper pairs. The magnetism is of

the indirect Ruderman-Kittel-Kasuya-Yosida(RKKY) type where the conduction

electrons are polarized by the local magnetic moment of the rare-earth ions and

thereby mediates a coupling between the ions, which orders into a spin density

wave at sufficiently low temperatures. Thus an intricate interplay between the

magnetism and the superconducting state is expected and has indeed been ob-

served.

The compound TmNi2B2C has previously been studied by Small Angle Neutron

Scattering(SANS) with the applied field along the crystalline c-axis and a very

rich phase diagram in terms of flux line lattices(FLL) with different symmetries

have been found. One of the FLL transitions is coincident with a magnetic phase

transition between two spin density waves.

In this thesis additional SANS studies of the FLL phases in TmNi2B2C are

reported and an interpretation of the phase diagram in the paramagnetic region is

presented. It is suggested that the observed square FLL is stable in between two

transition lines determined by two different length scales. The lower transition field

is reached when the distance between the flux lines becomes comparable to the

non-locality radius resulting from non-local electrodynamics, whereas the upper

transition field is determined from the crossover from intermediate to high flux

line density where the vortex cores start to overlap and the superconducting order

parameter is suppressed in between the flux lines.

A detailed examination of the intensity of the neutron diffraction spots caused

by scattering on the flux line lattice in TmNi2B2C is presented and analyzed on

the basis of the form factor of an isolated flux line. This analysis can not provide

a good explanation for the observed scattering and it is suggested that the scat-

tering from the Tm ions must be considered. One can argue that the moments of

the Tm ions are modulated by the flux line lattice, because the RKKY interaction

between the Tm ions might be different inside the vortex cores than outside in the

superconducting phase. A calculation of the neutron scattering cross section of

such a magnetic flux line lattice has been performed and compared to the SANS

data. This offers a qualitative explanation of some of the observations, but future

work is needed to make a more quantitative comparison.

This thesis is submitted in partial fulfilment of the requirements for a Ph. D.

degree at the Danish Technical University(DTU). The work has been carried out

at Risø National Laboratory in the Condensed Matter Physics and Chemistry De-

partment and the Materials Research Department. Niels Hessel Andersen has been

the supervisor at Risø and the supervisors at DTU were Jørn Bindslev Hansen

and Claus Schelde Jacobsen.
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Resumé De intermetalliske borcarbider RNi2B2C (R = Y, Ce-Lu) blev opdaget

i 1994 og tiltrak stor opmærksomhed, fordi superledning og magnetisk orden ek-

sisterer samtidigt i R = Dy, Ho, Er og Tm. Det blev fra tidlige studier konklud-

eret, at disse forbindelser skulle opfattes som anisotrope BCS superledere med

en fonon medieret moderat stærk kopling mellem ledningsb̊and elektronerne, som

giver anledning til dannelsen af Cooper par. Magnetismen er af den indirekte

Ruderman-Kittel-Kasuya-Yosida(RKKY) type, hvor ledningsb̊ands elektronerne

bliver polariseret af det lokale magnetiske moment af de sjældne jordarts ioner og

dermed medierer en kopling mellem de lokale momenter, som ordner i en spin-

tæthedsbølge ved tilstrækkeligt lave temperaturer. Det vil sige, at en kompliceret

vekselvirkning mellem superledning og magnetism forventes og er i højeste grad

ogs̊a observeret.

Forbindelsen TmNi2B2C er tidligere blevet undersøgt med små vinkel neutron

spredning(SANS) med det p̊alagte felt langs den krystallografiske c-akse og et

meget rigt fasediagram af fluksliniegitre med forskellige symmetrier er blevet ob-

serveret. En af fluksliniegitter faseovergangene er sammenfaldende med en mag-

netisk faseovergang mellem to spintæthedsbølger.

I denne afhandling fremlægges yderligere SANS undersøgelser af fluksliniegitter

faserne i TmNi2B2C og en fortolkning af fasediagrammet i den paramagnetiske del

præsenteres. Det foresl̊as at det observerede kvadratiske gitter er stabilt imellem

to overgangslinier, som er bestemt af to forskellige længdeskalaer. Det nedre over-

gangsfelt opn̊as, n̊ar afstanden mellem flukslinierne bliver sammenlignelig med den

ikke-lokale radius foresaget af ikke-lokal elektrodynamik, mens det øvre overgangs-

felt er bestemt af overgangen fra middel til høj flukslinie tæthed, hvor flukslinie

kernerne begynder at overlappe og den superledende ordensparameter imellem

flukslinierne bliver undertrykt.

En detaljeret undersøgelse af intensiteten af neutron diffraktions pletterne fore-

saget af spredning p̊a fluksliniegitteret i TmNi2B2C bliver præsenteret og analy-

seret p̊a basis af formfaktoren for en isoleret flukslinie. Denne analyse giver ikke

en god forklaring p̊a den observerede spredning og det foresl̊as at spredningen fra

Tm ionerne skal overvejes. Man kan argumentere for at momenterne af Tm ion-

erne bliver moduleret at fluksliniegitteret, fordi RKKY vekselvirkningen mellem

Tm ionerne måske er forskellig inde i flukslinie kernen i forhold til ude i den

superledende fase. En beregning af neutron spredningstværsnittet fra et s̊adan

magnetisk fluksliniegitter er blevet foretaget og sammenlignet med SANS dataen.

Denne idé giver en kvalitativ forklaring af nogle af observationerne, men fremtidigt

arbejde er nødvendigt for en mere kvantitativ sammenligning.
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1 Introduction

The borocarbides RNi2B2C have been called the solid state physicist toy box

[1], because all the rare-earth elements R = Ce-Lu can be placed in the body

centered tetragonal I4/mmm crystal structure whereby magnetic ordering in the

form of spin density waves, superconductivity, co-existence between the two and

heavy Fermion behavior can be obtained. The system was identified in 1994 [2, 3]

and offers the possibility to study the interaction between superconductivity and

magnetism in a crystal structure which is simple compared to the Chevrel phases

and Rare earth Rhodium Boride magnetic superconductors studied in the 70’ties

[4].

Superconductivity and magnetism co-exist in the case of R = Dy, Ho, Er and

Tm with critical temperatures in the range Tc = 6 − 11K and magnetic ordering

temperatures between TN = 10.3 − 1.5K. Many methods have been used to ob-

tain information about the two phases, but neutron scattering is superior, because

the charge neutrality of the neutron makes it capable of penetrating large samples

and the magnetic moment of the neutron can interact directly with the modulated

magnetic field structure of either the spin density waves or the flux line lattices in

the borocarbides. Triple axis neutron scattering on large single crystals has pro-

vided information about the structure of the spin density waves and the moment

direction in the different borocarbides [5]. All the superconducting borocarbides

are found to be Type-II and the first flux line lattice was observed in R = Er

using Small Angle Neutron Scattering in 1995 [6]. A lattice of square symmetry

was revealed contradicting the prediction of a hexagonal lattice in introductory

textbooks on superconductivity. In the following years numerous SANS experi-

ments were performed on both the magnetic and non-magnetic superconductors,

but the flux line lattice has only been observed in the R = Er and Tm members of

the magnetic superconductors despite numerous attempts on the others. A very

rich phase diagram of R = Tm has been observed by M.R. Eskildsen et. al. [7, 8]

indicating a strong interaction between superconductivity and magnetism.

This Ph.D. thesis work was initiated on February 1999 at the Condensed Matter

physics department at Risø National Laboratory as a continuation of the SANS

studies of M.R. Eskildsen. The working environment has however changed dra-

matically during the thesis, because the Danish research reactor DR3 situated

at Risø was leaking heavy water in December 1999 and was permanently shut

down in April 2000. Thus a reformulation of the initial project was considered,

but the opportunity for a collaboration with the Paul Scherrer Institute(PSI) in

Switzerland was founded and the SANS studies of the borocarbides was decided

to be continued at PSI. However technical difficulties resulted in a delay of these

experiments and the first was carried out in the summer 2001. Several experiments

were performed, but the focus of this report is additional work on the interaction

between superconductivity and magnetism in R = Tm.

The report is organized in the following sections : 1) An introduction to super-

conductivity in general and to the physics of flux lines in Type-II superconductors.

2) A detailed derivation of the neutron scattering cross section of a flux line lat-

tice. The motivation for this is that textbooks on magnetic neutron scattering is

chopping up the world into small dipoles, but a flux line causes a magnetic field

distribution which is continuous in nature. 3) A description of a Small Angle Neu-

tron Scattering camera. 4) A description of how the SANS diffraction pattern of a

flux line lattice is analyzed. 5+6) A general outline of the properties of the Boro-

carbides and of the physics causing the square flux line lattice. 7) A presentation

of the properties of TmNi2B2C and additional studies and discussions of the flux

line phases observed with SANS. 8) A conclusion of the work is given.

Risø–R–1425(EN) 7



In retrospect this thesis contains a large fraction of introductory sections to dif-

ferent theoretical considerations about superconductivity and magnetism, and it

reflects the process of putting together the puzzle of how to understand the small

angle neutron scattering from the R = Tm compound. This puzzle is in no way

complete and the discussion suffers from the ’experimentalists’ view of the author

on these aspects.

Asger Bech Abrahamsen

Materials Research Department, Risø National Laboratory

August 2002.
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2 Superconductivity

Superconductivity was discovered in 1911 by Kammeling Onnes and ever since it

has been a challenging field within solid state physics. For many years the phe-

nomena was unexplained but several break troughs were achieved in the 1950’s

where the russian physicists Ginzburg and Landau came up with a phenomeno-

logical theory [9] and some years later Bardeen, Cooper and Schriefer(BCS) were

able to formulate a microscopic theory for superconductivity in metals [10, 11].

This work removed most of the mystery of the field, but in 1986 it all came back

with Bednorz and Müller’s discovery of the High temperature superconductors

[12], which are ceramic materials that remain superconducting at temperatures

far above what is expected from the BCS theory.

A discussion of the superconducting ground state will be given here and the

phenomenal Ginzburg-Landau theory is then introduced in order to discuss the

properties of an object called a flux line existing in certain types of superconduc-

tors. Flux lines are tube shaped regions in which the magnetic flux in confined and

quantized. They repel each other and therefore order in a lattice called the flux

line lattice, which will be discussed in details in terms of structure and density.

2.1 Superconducting ground state

Superconductivity is caused by a many body interaction between the electrons in

the conduction band of solids resulting in the creation of electron or hole pairs.

Frölich was the first to suggest that electrons could be paired together through an

indirect interaction with phonons [13]. The idea is that one conduction electron

interacts with the lattice of the solid and creates an excitation in the form of a

phonon. This phonon propagates through the lattice and causes a local change

of the charge density which will attract another electron whereby an indirect

interaction is established. Cooper later showed that one interacting electron pair

at the Fermi surface would have lower energy than two non interacting electrons

and the great success of the BCS theory was to prove that conduction electrons

collectively coupled in Cooper pairs at the Fermi surface did have a lower energy

that the non-coupled electrons. Thus the superconducting ground state of the BCS

theory consist of Cooper pairs ’glued’ together by the indirect phonon interaction.

It should be mentioned that the two electrons in the Cooper pair are moving in

opposite directions (k ↑,−k ↓) and are therefore constantly changing partners.

The spins of the electrons in the Cooper pair are also opposite and the Cooper

pairs therefore behave like a boson quasi-particle since S = 0. In this picture

one can imagine the superconducting state as the condensation of Cooper pairs

into a ground state, where all Cooper pairs are described by the same quantum

mechanical wavefunction.

The energy of the Cooper pairs in the condensate is separated from the energies

of non-paired electrons by an energy gap ∆BCS , which is the energy needed to

break up a Cooper pair into two electrons. From BCS calculation1 it can be shown

that at T = 0

∆BCS(0) = 2h̄ωDe
− 1

N(0)V (1)

where h̄ωD is the energy scale of phonons in solids set by the Debye frequency

ωD, N(0) is the density of states of the conduction electrons at the Fermi level

and V is the BCS coupling constant describing the attraction between electrons

which have energies within ±h̄ωD of the Fermi level.

1Schrieffer [14] p.41
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With increasing temperature the gap is closing smoothly because Cooper pairs

are broken by thermal fluctuations and the presence of these excitations lower the

binding energy of the Cooper pairs remaining in the condensate. Figure (1) shows

the temperature dependence of the gap and how it appear in the density of state of

the normal conduction electrons. The critical temperature Tc of superconductivity

is defined by the temperature where the gap vanishes, which gives2

kBTc = 1.14h̄ωDe
− 1

N(0)V (2)

kB is the Boltzmann constant. By comparing (1) and (2) it is seen that the gap

at T = 0 is closely related to the critical temperature by

∆BCS(0) = 1.76kBTc (3)

Figure 1. Left: Temperature dependence of the energy gap ∆BCS for a supercon-

ductor described by the BCS theory. Right: A consequence of the gap is that the

density of state of the non-paired electrons are pushed away from a region ±∆BCS

around the Fermi level and piled up just below and above the gap region.

From figure 1 it is seen that the electrons in the condensate have an energy

spread of δE = 2∆BCS which is equivalent to a spread in the momentum of

δp = δE
vF

where vF is the Fermi velocity. Now if the correlated electron pairs in

the condensate are imagined as wave packages of a momentum spread δp then the

correlation distance between the electrons can be estimated from the Heisenberg

uncertainty relation δxδp ∼ h̄. This distance is called the BCS coherence length

at T = 0

ξ0 ∼ h̄vf
∆BCS(0)

(4)

Returning to the picture of the condensate as pairs of electrons moving in op-

posite direction it is only when the two electrons are separated by less than the

coherence length that they should be considered as paired together. When the

separation becomes lager they change partners in the condensate.

Two final remarks should be given about the superconducting ground state.

First of all the above description is based on the BCS theory where the phonon

mediated coupling is the ’glue’ between the electrons in the Cooper pairs. One

could however image other indirect coupling mechanisms between electrons and

the puzzle of HTc superconductivity is exactly to figure out the right alternative to

the phonon coupling. The ground state of the HTc materials still consist of coupled

Cooper pairs and the macroscopic physics is quite similar to the conventional

2Schrieffer [14] p.55
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superconductors although many characteristic properties such as Tc and ξ0 are

different.

The second remark is connected to the demand of theories capable of determin-

ing the properties of superconductors with a spatial varying gab and excitation

spectrum. This can be done by reformulating the BCS theory and the main con-

clusion is that the condensate can be described by a macroscopic wave function

with the magnitude proportional to the energy gab |∆| and a common phase Φ

for all the pairs

∆(r) = |∆(r)|eiΦ(r) (5)

In the following sections this wave function is used as an order parameter in the

introduction of the Ginzburg-Landau theory, which can handle spatial variations

of the condensate if these variation are taking place on length scales larger than

the size of the Cooper pairs given by the coherence length ξ0. The advantage of

the Ginburg-landau theory is its simplicity compared to the microscopic models.

2.2 Ginzburg-Landau theory

The Ginzburg-Landau theory for superconductivity is based on the general ideas

of Landau on second order phase transitions in which an order parameter grows

up continuously below a transition temperature Tc
3. This order parameter will

be small close to the transition and the free energy density of the superconductor

can approximately be given as an series expansion

F = Fn +A(T )|∆(r)|2 +
B(T )

2
|∆(r)|4 + ..... (6)

Fn is the free energy density of the normal phase. All terms of odd power of

the order parameter are omitted since the free energy density must be invariant

with respect to a phase change of the complex order parameter. Results from

microscopic theory [15] gives the temperature dependence of the coefficients in

the expansion near Tc

A(T ) = N(0)T−Tc

Tc
B(T ) = 0.3302 N(0)

∆BCS(0)2 (7)

where N(0) is the electronic density of states at the Fermi level and ∆BCS(0) is

the BCS gab at T = 0 from the previous section. By minimizing the free energy it

is seen that the sign change of A(T ) causes an order parameter of finite size below

Tc.

∆0(T )2 =

{

0

−A
B

= 3.028∆BCS(0)2 Tc−T
Tc

T > Tc
T < Tc

(8)

Thus the temperature dependence of the order parameter gab ∆0(T ) follows

the BCS gab on figure 1 as
√
Tc − T , which is a good approximation close to Tc,

but not in the T = 0 limit where ∆0(0)
∆BCS(0) = 1.74.

Figure 2 illustrate the free energy density as function of the complex order

parameter and the symmetry break at the phase transition is seen in the change

of the position of the minimum from |∆0| = 0 to a circle of finite value and in a

negative energy

3See deGennes [15] for details
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F − Fn = −A2

2B

= −N(0)

2

Tc − T

Tc
∆0(T )2

= −3.028

2
N(0)∆BCS(0)2

(

Tc − T

Tc

)2

(9)

This energy difference is often denoted the condensation energy of the super-

conducting state. A simple hand-waving argument for the equation is that the

number of electrons δN coming from the gab region is given by the product of

the density of states at the fermi level N(0) and the temperature dependent gab,

δN = N(0)∆0(T ). However only a fraction of these electrons will enter the con-

densate at high temperatures due to pair breaking by thermal fluctuations. If this

fraction is assumed linear in temperature f = Tc−T
Tc

then the number of electrons

entering the condensate is δNS = N(0)∆0(T )f . The energy of the system is low-

ered by δE = −∆0(T ) per electron in the condensate whereby the total energy

change is δF = δNSδE = −N(0)∆0(T )2f .

Figure 2. Ginzburg-Landau free energy surface F − Fn = A|∆|2 + B
2 |∆|4 for a

complex order parameter ∆ = |∆|eiΦ at T > Tc (left) and T < Tc (right). Above

Tc the order parameter at the energy minimum is zero and therefore invariant with

respect to a rotation of the phase Φ, but this rotational symmetry is broken below

Tc resulting in a finite size of the order parameter at ∆2
0 = −A

B
and a lower free

energy minimum at F −Fn = −A2

2B . The phase Φ is forced to take a specific value,

which reflect that all the Cooper pairs in the condensate are described by the same

wave function and thereby have the same phase. A = ±1.3 and B = 2 has been

used to construct the figure.

The free energy given by (6) does not take into account any spatial changes in

the magnitude of the order parameter, but this can be included by adding gradient

terms to the free energy if the spatial changes are sufficiently slowly compared to

the size of the Cooper pairs. For a cubic crystal symmetry the free energy can be

written

F = Fn +A|∆(r)|2 +
B

2
|∆(r)|4 + C

{

∣

∣

∣

∣

∂∆

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂∆

∂y

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂∆

∂z

∣

∣

∣

∣

2
}

(10)

where the expansion coefficient C is found from BCS calculations [15]
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C ∼ N(0)ξ20 (11)

A similarity to the momentum operator p = −ih̄∇ is seen from the gradient

term and in order to include the interaction with a magnetic field one must replace

p → p− e∗

c
A, where e∗ = 2e because a Cooper pair consist of two electrons 4 and

A is the vector potential related to the magnetic field h = ∇× A. Thus the free

energy takes the form

F = Fn +A|∆(r)|2 +
B

2
|∆(r)|4 + C

∣

∣

∣

∣

(

−i∇− 2eA

h̄c

)

∆(r)

∣

∣

∣

∣

2

+
h2

8π
(12)

where the vacuum energy of the magnetic field has been included as the last

term. The gradient term can now be rewritten into a form looking like the ki-

netic energy operator p2

2m∗ of a particle of mass m∗ by introducing a scaled order

parameter

ψ(r) = G∆(r) =

√
2m∗C

h̄
∆(r) (13)

A fundamental question in this scaling is what the particle mass m∗ is and the

first obvious answer is the mass of the Cooper pair, m∗ = 2me, but the mass of the

conduction electrons depends strongly on the electronic band structure dictated

by the crystalline lattice. Thus m∗ represent the effective mass of the Cooper

pair and is not necessarily isotropic whereby an effective mass tensor must be

introduced.

The coefficients A and B in the free energy expansion (6) must also be scaled

according to (13)

α(T ) = A(T )
G2 β(T ) = B(T )

G4 (14)

and the free energy of the scaled order parameter becomes

F = Fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣

∣

∣

∣

(

−ih̄∇− 2eA

c

)

ψ

∣

∣

∣

∣

2

+
h2

8π
(15)

which is the usual form of the Ginzburg-Landau free energy of a superconductor.

The analysis of the minimum in the free energy for a homogeneous order parameter

is equivalent to the previous and by using the scaling relation of (13) and (14) one

gets

|ψ0|2 = −α
β

= G2∆0(T )2 (16)

F − Fn = −α
2

2β
= −A2

2B
(17)

The meaning of the scaled order parameter ψ can be investigated by expressing

it in microscopic variables using (13),(11), (4) and (8)

|ψ0|2 =
2m∗C

h̄2 ∆0(T )2

∼ N(0)m∗v2
F

∆0(T )2

∆BCS(0)2

∼ N(0)εF
Tc − T

Tc
(18)

4The sign of the electron charge is included in the definition e
∗ = 2e = −2|e|, whereby a

current density in the Maxwell equations becomes J = ne
∗v with n being the particle density

and v the velocity.
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In the last step the Fermi energy εF of the electrons was introduced and it is

now clear that the scaled order parameter is a particle density, since N(0)εF is

approximately the density of all the conduction electrons in the metal. Again we

find a factor of the form f = Tc−T
Tc

, which could be interpreted as the fraction

of the conduction electrons going into the condensate just as stated earlier and

|ψ0|2 is then the density of Cooper pairs in the condensate. Ginzburg and Landau

considered the scaled order parameter as a macroscopic wavefunction describing

the condensate and a natural result of this picture is that the square of the wave-

function reflects the particle density ns in the condensate, |ψ|2 = 1
2ns. However

they did not understand the microscopic origin of ψ when the theory was first

formulated.

Ginzburg-Landau equations

By minimizing the free energy density integrated over the sample volume F̃ =
∫

v
Fdr with respect to the order parameter ψ and the vector potential A one ob-

tain a set of coupled differential equations describing the equilibrium distribution

of the order parameter, vector potential and flow of the condensate.

αψ + β|ψ|2ψ +
1

2m∗

(

−i h̄∇− 2e

c
A

)2

ψ = 0 (19)

j = − ieh̄
m∗ (ψ∗∇ψ − ψ∇ψ∗) − 4e2

m∗c
ψ∗ψA (20)

The first equation describes the order parameter and the second the current

due to gradients in the order parameter and to the presence of a vector potential.

In addition to these equations the Maxwell equations must be fulfilled.

Penetration depth λ

There are two characteristic length scales connected to the Ginzburg-Landau(GL)

equations and the first describing the response to an applied magnetic field is

called the penetration depth λ. It is found in the limit where the magnitude of

the order parameter ψ = |ψ|eiφ is assumed constant in space whereby (20) gives

j =
1

Λ2

(

h̄c

2e
∇φ− A

)

(21)

with

Λ2 =
m∗c

4e2|ψ|2 (22)

Inside a superconductor the macroscopic wave function describing the conden-

sate must be single valued and the phase gradient ∇φ will therefore be zero. By

taking the curl on both sides, applying Maxwell’s equation 4π
c
j = ∇×h and using

the vector relation ∇ × ∇ × h = ∇(∇ · h) − ∇2h a differential equation for the

magnetic field h is obtained and this is called the London equation

∇2h − 1

λ2
h = 0 (23)

A one dimensional solution to the London equation near the surface of a super-

conductor extending in x > 0 and with an applied field hz(0) along the surface

is
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∂2hz(x)

∂x2
− 1

λ2
hz(x) = 0 ⇒ (24)

hz(x) = hz(0) exp (−x
λ

) (25)

which shows that the applied magnetic field is decaying exponentially inside

the superconductor as shown on figure 3 and the characteristic length scale is the

penetration depth λ

λ2 =
c

4π
Λ2 =

m∗c2

16πe2|ψ0|2
(26)

The current flow near the surface is found from the Maxwell equation

j =
c

4π
∇× h =

c

4π

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 0 hz

∣

∣

∣

∣

∣

∣

= − c

4π

hz(0)

λ
exp (−x

λ
)ŷ (27)

From the above it is seen that a superconductor screens out an applied magnetic

field from the interior of the sample by creating supercurrents at the edge in a

region given by the penetration depth. This effect is called the Meissner effect and

the state with B ≡ 0 caused by surface current is called the Meissner state.

Coherence length ξ

In the analysis above one can question the assumption that the order parameter

|ψ0|2 is constant all the way to the surface and the second length scale of the

GL equations is connected to spatial changes in the order parameter, which is

expected at the surface. It is hidden in the first GL equation and is identified by

introducing a reduced order parameter ψ = ψ0f , neglecting the magnetic field and

using |ψ0|2 = −α
β
. In one dimension (19) becomes

h̄2

2m∗|α|
∂2f

∂x2
+ f − f3 = 0 (28)

from which the temperature dependent coherence length ξ(T ) is obtained

ξ(T )2 =
h̄2

2m∗|α| (29)

A solution to (28) describing the order parameter close to the surface in zero

magnetic field can be found by imposing the following boundary conditions to f

f = 0 x = 0

f → 1 x→ ∞ (30)

By multiplying (28) with df
dx

, integrating with respect to x and using the relation
d2f
dx2

df
dx

= 1
2
d
dx

(

( df
dx

)2
)

the differential equation can be rewritten into

ξ2(T )

(

df

dx

)2

+ f2 − 1

2
f4 = Cint (31)

The integration constant Cint is fixed by the boundary condition f → 1 for

x→ ∞ giving Cint = 1
2 and
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ξ2(T )

(

df

dx

)2

=
1

2

(

1 − f2
)2

(32)

with the solution

f = tanh

(

x√
2ξ(T )

)

(33)

Thus the order parameter has reached 61 % of its maximum value in a distance

ξ from the surface as shown on figure 3, which demonstrates that the coherence

length sets the length scale for changes in the order parameter.

Figure 3. Left: The length scale for penetration of an applied field into a supercon-

ductor is given by the penetration depth λ and the field profile shown is obtained

if the order parameter is assumed constant all the way to the surface at x = 0.

Right : The length scale for changes in the order parameter is given by the coher-

ence length ξ and the figure shows how the order parameter will grow up near the

surface in zero applied field as found by solving the GL equations.

Relation to microscopic parameters

The relation of ξ(T ) to the microscopic theory is found from the scaling α(T ) =
A(T )
G2 given by (14) and inserted into (29)

ξ(T )2 = −C
A

⇒

ξ(T ) ∼ ξ0

(

Tc
Tc − T

)
1
2

∼ h̄vF
∆BCS(0)

(

Tc
Tc − T

)
1
2

(34)

Thus ξ(T ) is diverging at the transition temperature Tc and the condition that

changes in the order parameter is taking place on length scales much larger that

the size of the Cooper pairs is fulfilled when T is sufficiently close to Tc.

Also the penetration depth can be related to the microscopic theory using the

scaling in (16)
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λ(T )−2 =
16πe2

m∗c2
|ψ0|2

=
32πe2

h̄2c2
C∆0(T )2 ⇒

λ(T ) ∼ c

e

1
√

N(0)vF

(

Tc
Tc − T

)
1
2

(35)

and it is seen that it diverges in the same manner as the coherence length at

Tc. Thus the ratio between the two is temperature independent and defines the

Ginzburg-Landau parameter

κ =
λ(T )

ξ(T )
(36)

∼ c

h̄e

∆BCS(0)
√

N(0)v2
F

(37)

which can be considered as a material parameter characterizing superconduc-

tivity from the microscopic energy gab ∆BCS(0) and the electronic properties of

the host metal in terms of the density of state at the Fermi level N(0) and the

Fermi velocity vF .

2.3 Type-II superconductors

Superconductors can be divided into two types depending on the Ginzburg-Landau

κ characterizing superconductivity by the ration between the penetration depth

and the coherence length. In the previous section the order parameter change and

the field decay was treated separately, but in this section the interface between

a superconducting region and a normal region caused by a magnetic field will be

analyzed. It is shown that the energy associated with the interface can change

from positive to negative when going from small to large κ and this sign change

separates Type-I and Type-II superconductors.

A thermodynamic critical magnetic field HC can be defined from the GL free

energy density in (15) by setting F − Fn = 0

H2
c

8π
= α|ψ|2 +

β

2
|ψ|4 =

α2

2β
(38)

which shows that superconductivity is suppressed when the magnetic energy

density is equal to the condensation energy density.

Surface energy of NS interface

An interface between a normal region and a superconducting region is illustrated

on figure 4 where a magnetic field h equal to HC has suppressed the order param-

eter to zero on the left hand side and gradually moving to the right it increases

over the coherence length while the magnetic field is screened to zero over the

penetration depth. The free energy density as formulated in (15) is not well suited

for calculation where the magnetic field h is changing and the Gibbs free energy

density G is a better choice

G = F − hH

4π
(39)
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Figure 4. Interface between a normal and a superconducting region caused by an

applied field equal to the thermodynamic field HC for a superconductor with κ <<

1(left) and κ >> 1(right).

giving

G→ Fn +
H2

c

8π − H2
c

4π = Fn − H2
c

8π x→ −∞
G→ Fn + α|ψ|2 + β

2 |ψ|4 = Fn − H2
c

8π x→ ∞
(40)

Since the Gibbs energy density is identical in the normal and the superconduct-

ing phase one can determine the surface energy γ of the interface from the integral

of the difference between G and Gn of the normal phase

γ =

∫ ∞

−∞
(G−Gn)dx

=

∫ ∞

−∞

(

α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣

∣

∣

∣

(

−ih̄∇− 2eA

c

)

ψ

∣

∣

∣

∣

2

+
(h−Hc)

2

8π

)

dx

(41)

By multiplying equation (19) with ψ∗ and integrating by parts it can be shown
5 that

∫ ∞

−∞

(

α|ψ|2 + β|ψ|4 +
1

2m∗

∣

∣

∣

∣

(

−ih̄∇− 2eA

c

)

ψ

∣

∣

∣

∣

2
)

dx = 0 (42)

whereby the surface energy can be rewritten

γ =

∫ ∞

−∞

(

(h−Hc)
2

8π
− β

2
|ψ|4

)

dx (43)

=
H2
c

8π

∫ ∞

−∞

(

(1 − h

Hc

)2 −
(

ψ

ψ0

)4
)

dx (44)

Only the interface region contributes to the integral since the two terms in the

integrant are equal in the superconducting and in the normal region. The first

term will dominate the integral resulting in a positive surface energy when the

penetration depth is short compared to the coherence length, since h → 0 when

ψ << ψ0. In the opposite limit where the penetration depth is large compared to

the coherence length the second term in the integral will dominate and result in

a negative surface energy. A more detailed calculation 1 shows that the crossover

is equivalent to a κ = 1√
2

giving the two types of superconductors

5Tinkham [16] p. 122
1Ex. Landau and Lifshitz [17] p. 188
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Type − I : κ < 1√
2

γ > 0

Type − II : κ > 1√
2

γ < 0
(45)

The consequence of the positive surface energy for type-I superconductors is

that magnetic field is penetrating in large regions in order to minimize the Normal-

Superconductor(N-S) interface volume and superconductivity breaks down when

the applied field reaches the critical field HC . In Type-II superconductors it is en-

ergetically favorable to create the N-S interface and a magnetic field will therefore

penetrate in a lot of small normal regions.

Flux quantization

Now one could ask the question if there is a lower limit to the amount of magnetic

flux in a normal region caused by a penetrating magnetic field. The answer is that

the demand for for the macroscopic wavefunction to be single valued will cause the

magnetic flux in a normal region inside a superconductor to the quantized. This

is easily shown by evaluating the circulation of the supercurrent (21) around the

normal region. If the contour of circulation CN is chosen a distance much longer

than the penetration depth away from the normal region then the supercurrent

will be zero.

∮

CN

j · dl = 0 ⇒ (46)

Φ =
h̄c

2e

∮

∇φ · dl =
h̄c

2e
2πn = Φ0n (47)

Here it has been used that the circulation of the vector potential is equivalent

to the magnetic flux Φ inside the contour due to the Stoke’s relation,
∮

A · dl =
∫

hdS = Φ. The circulation of the phase gradient will be an integer number times

2π since the wavefunction is single valued and the flux quantum Φ0 is

Φ0 =
hc

2|e| = 2.07 · 10−7 Gcm2 (48)

Thus the smallest amount of magnetic flux in a normal region in a Type-II

superconductor is limited by the flux quantization condition.

2.4 Phase diagram

In a small applied fields a Type-II superconductor will be in the Miessner state

where surface currents are preventing the magnetic field from penetrating into

the bulk, but at a certain applied field denoted the lower critical field Hc1 it is

energetically favorable to create a normal region carrying one flux quantum in

the bulk. Such a normal region is called a flux line or a vortex. The criteria for

the first penetration of a flux line is that the Gibbs free energy density integrated

over the sample volume is identical with and without the flux line sitting in the

sample. By introducing the free energy per unit length ε of the flux line the Gibbs

free energy G̃ can be written

G̃ =

∫

GdV = F̃ + Lε−
∫

hH

4π
dV = F̃ + L

(

ε− HΦ0

4π

)

(49)

where the integral of the magnetic field over the sample volume has been set

equal to the flux quantum Φ0 multiplied with the length L of the flux line,
∫

hdV =

LΦ0. The last term in the Gibbs energy vanish when the applied field is equal to
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Hc1 =
4πε

Φ0
(50)

In order to calculate the line energy ε of the flux line one must first determine

the order parameter and the magnetic field distribution of a single flux line.

Isolated flux line solution

The variation of the order parameter at the center of the flux line can be found

by a suitable choice of the vector potential and then solving the Ginzburg-Landau

equations. One could try to insert an order parameter of the form ψ = ψ0f(r)eiθ

and solve for f as was done in section 2.2. Tinkham1 has followed this approach

and got the approximate result that

f ≈ tanh (
νr

ξ
) ν ≈ 1 (51)

Thus the functional form of the order parameter at the flux line center has a

close similarity to the reduction of the order parameter at the sample surface given

by (33). The order parameter is suppressed in a region at the center of the flux

line and increases to its full magnitude when the radial distance is approximately

2ξ. This region is often called the normal core of the flux line.

A considerable simplification in determining the field distribution of a flux line

can be obtained if κ >> 1, because the core of the flux line can be considered as

a singularity ψ = ψ0(1 − δ(r)) compared to the length scale of the magnetic field

decay given by the penetration depth. This means that the supercurrent around

the singularity can be described by equation (21) and a modified London equation

is derived similar to the normal London equation (23), but now the circulation

around the singularity gives a phase change of 2π resulting in a right hand side

equal to a delta function times the flux quantum.

−λ2∇2h + h = +Φ0δ(r)êz (52)

The solution in polar coordinates (êr, êθ, êz) valid for distances far from the

singularity is

h(r) =
Φ0

2πλ2
K0

( r

λ

)

êz r >> ξ (53)

where Kn is the n’th order modified Bessel function of the second kind and here

n = 0. The current distribution around the flux line is found from the Maxwell

equation

4π

c
j = ∇× h =

1

r

∣

∣

∣

∣

∣

∣

êr rêθ êz
∂
∂r

∂
∂θ

∂
∂z

0 0 hz(r)

∣

∣

∣

∣

∣

∣

= −∂hz(r)
∂r

êθ ⇒

j(r) =
c

4πλ

Φ0

2πλ2
K1

( r

λ

)

êθ r >> ξ (54)

Far from the core the approximation Kn(x) ∼ e−x
√

2πx
, x >> 1 show that the

field and current is basically decaying exponentially. Close to the core the two

functions are approximately6 K0(x) ∼ lnx−1 + c c = 0.12 and K1(x) ∼ x−1 for

x << 1, which shows that both the field and current is diverging when the core is

1Tinkham [16] p. 150
6M.R. Spiegel [18] section 24
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approached. This divergence is non-physical and enters because the core is treated

as a singularity. The current will go to zero as the order parameter is suppressed

near the vortex center and the field also saturate at a finite value. Figure 5 show

the field and order parameter distribution around the flux line.

Figure 5. An isolated flux line has a normal core extending a coherence length ξ

from the center and a supercurrent jφ is circulating around the core on a length

scale given by the penetration depth λ causing a confinement of the magnetic field

hz such that the total flux is equal to a flux quantum Φ0. The modified Bessel

functions K0 and K1 plotted in the figure are diverging close to the core, but this

is an artifact of the incomplete description of the core in the London model. As

the order parameter is suppressed at the core jφ will decrease towards zero and the

magnetic field will saturate as marked by the dashed curve.

Line energy

Only the magnetic and the kinetic energy density will contribute to the free energy

in the κ >> 1 limit, because the core can be neglected

F̃ =

∫

FmagdV +

∫

FkindV (55)

=

∫

h2

8π
dV +

∫

1

2
m∗v2

s |ψ0|2dV (56)

By relating the velocity vs of the condensate consisting of particles of mass m∗,
charge e∗ = 2e and particle density |ψ0|2 to the current by js = |ψ0|22evs the

kinetic energy term can be rewritten

F̃ =

∫

h2

8π
dV +

∫

m∗

8e2|ψ0|2
j2sdV (57)

= L

(

Φ0

4πλ2

)2 ∫ ∞

ξ

{

K2
0

( r

λ

)

+K2
1

( r

λ

)}

rdr (58)

Here the length of the flux line L and the distribution of field and current from

(53) and (54) has been introduced. In the usual calculation of the line energy

several approximations are made when evaluating the integral above. First of all

it is seen from figure 5 that the contribution from the magnetic energy density

given by first integral will be small and can be neglected. Secondly only a small
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contribution is coming from the region r > λ, since the current is decaying ex-

ponentially, whereby the upper integration limit can be changed to λ. Using the

approximation K1(x) = x−1 for x << 1 one gets

F̃ = L

(

Φ0

4πλ2

)2 ∫ λ

ξ

K2
1

( r

λ

)

rdr

= L

(

Φ0

4πλ2

)2 ∫ λ

ξ

( r

λ

)−2

rdr

= L

(

Φ0

4πλ

)2

ln

(

λ

ξ

)

(59)

and the line energy is easily identified

ε =

(

Φ0

4πλ

)2

ln

(

λ

ξ

)

(60)

Now the critical field for the first flux line entrance into a Type-II superconduc-

tor can be found from (50)

Hc1 =
Φ0

4πλ2
ln

(

λ

ξ

)

=
Hc√
2κ

lnκ κ >> 1 (61)

Thus the fact that the surface energy is negative lead to a new critical field Hc1,

which is lower that the thermodynamic critical field Hc defined from the conden-

sation energy
H2

c

8π = α2

2β = 1
8π

(

Φ0

4π

√
2

λξ

)2

. If the applied field is increased above the

lower critical field Hc1 more and more flux lines will enter the superconductor and

this state is called the mixed state due to the co-existence of superconducting and

normal regions.

Upper critical field

The mixed state is suppressed at a field Hc2 when the density of flux lines becomes

so high that the normal cores are overlapping. An infinitely small order parameter

is expected at the transition, which can be found by solving a linearized version

of the GL equations. Furthermore the GL equations are decoupled, because the

magnetic field is basically uniform at the transition. The linearized GL equation

is obtained by omitting the 3. order term of (19)

1

2m∗

(

−i h̄∇− 2e

c
A

)2

ψ = |α|ψ (62)

and this equation has the same functional form as the Scrödinger equation

for a particle of mass m∗ and charge e∗ = 2e in a uniform magnetic field and

|α| is equivalent to the energy of the particle. The solution to the Scrödinger

equation result in quantized Landau-levels with the lowest energy E0 = 1
2 h̄ωH

where ωH = 2eH
m∗c

. By analogy it is seen that the solution to the GL equation only

exist if

|α| > E0 =
h̄

2

2eH

m∗c
⇒

H <
Φ0

2πξ2
(63)
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The transition field is called the upper critical field Hc2 and can be related to

the thermodynamic field

Hc2 =
Φ0

2πξ2
=

√
2κHc (64)

Thus the upper critical field is increased above the thermodynamic critical field

for κ >> 1 and it should be noted that Hc2 = Hc is equivalent to κ = 1√
2

which

is the cross over to Type-I superconductivity with positive surface energy.

Figure 6 shows the (H,T) phase diagram of a Type-II superconductor.

Figure 6. A Type-II superconductor is in the Meissner state with B = 0 below

the lower critical field Hc1 and the applied field is expelled by screening currents

flowing at the surface in a region of a thickness given by the penetration depth

λ. The applied field penetrates the bulk when it is increased above Hc1 and the

insert shows how the magnetic field is confined in flux lines each carrying one flux

quantum Φ0 in the mixed state. The mixed state is suppressed at the upper critical

field Hc2, when the normal cores of the flux lines overlap completely.

2.5 Flux line interaction

There will be an overlap between the field and current distributions when two

flux lines are present in a superconductor as shown on figure 7 and the interaction

energy can be found by evaluating the integral of magnetic and kinetic energy in

the κ >> 1 limit. It is convenient to insert 4π
c
js = ∇ × h into (57) whereby the

free energy becomes

F̃ =
1

8π

∫

h2 + λ2(∇× h)2dV (65)

This volume integral can be rewritten into a surface integral using the vector

relation D · (∇× C) = C · (∇× D) + ∇ · (C× D)

F̃ =
1

8π

[∫

h · (h + λ2∇×∇× h)dV + λ2

∫

∇ · (h ×∇× h)dV

]

=
1

8π

[

∫

h · (Φ0

∑

i

δ(ri)êz)dV + λ2

∫

h ×∇× hdS

]

(66)
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The modified London equation (52) has been inserted into the first term and

since the singularity must be omitted from the integral this term is vanishing.

Figure 7 show the surface over which the remaining integral must be calculated and

dS denoted the surface element. The outer boundary can be extended to infinity

and will not contribute, since both field and current are decaying exponentially.

Also the integral over the top and bottom surface will not contribute, because the

integrant h × ∇ × h ∼ h × j is perpendicular to dS. Thus what is left in the

integral is the contribution from the surface Sξ of the core

F̃ =
λ2

8π

[

∫

Sξ

h ×∇× hdS

]

(67)

Figure 7. Integration volume when evaluating the free energy of two flux lines Φ0

in a superconductor. The area element dS of the surface is pointing outwards and

is therefore directed towards the vortex core in the tube of size ξ where the core is

omitted from the integral.

In the limit where the flux line cores do not overlap the superconductor can be

considered as a linear media with the magnetic field given as a vector sum of the

field distribution of each flux line h = h1 + h2. Inserting this gives

F̃ =
λ2

8π

[

∫

Sξ

(h1 + h2) ×∇× (h1 + h2)(dS1 + dS2)

]

(68)

Four of the terms vanish since dS is changing direction around the core tube

resulting in a cancellation when the integrant has the same direction all over the

core tube. Two of the terms only involve the field from the flux line of integration

and this just gives the line energy ε of the flux line of length L , whereas the last

two terms gives the interaction energy F̃ij between the flux lines

F̃ = 2F̃i + F̃ij = 2εL+ F̃ij (69)

The two terms in F12 only depend on the relative position of the flux lines at

r1 and r2 making them identical

F̃12 =
λ2

8π
2

∫

S1

h2 ×∇× h1dS1

=
λ2

c

∫

S1

h2 × j1dS1

= L
Φ0

4π
h2(r2 − r1) = L

Φ2
0

8π2λ2
K0

(

r2 − r1
λ

)

(70)
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Here the field and current distribution of an isolated flux line has been inserted

and the result is therefore only valid for large separations. The force between the

two flux lines is repulsive, since F12 decays exponentially with the separation, and

by taking the derivative of F12 it can be shown that the force f per unit length

on one flux line caused by the current j of the other flux line is

f = J × Φ̂0

c
(71)

where Φ̂0 has a direction given by the field in the flux core.

2.6 Flux line lattice at low densities

An obvious result of the repulsive interaction between the flux lines is that they

tend to order in a regular lattice called the flux line lattice. The structure of the

this lattice is however not obvious and will be the issue of this section.

First of all the Gibbs free energy of many flux lines in a sample can be written

as

G̃ = F̃ − B̄H

4π
LA

= L

(

Nε− B̄HA

4π

)

+
∑

ij

F̃ij

= LAεnL

(

1 − H

Hc1

)

+
∑

ij

F̃ij (72)

where N is the number of flux lines in a sample of thickness L and area A, ε is

the line energy of a single flux line, nL = N
A

is the flux line density, B̄ =
∫

A
hdA

∫

A
dA

is

the average flux density and the interaction term is a sum over all flux lines in the

sample.Hc1 has been introduced in the last line, becauseH = 4πε
B̄A

gives zero Gibbs

free energy when there is only one flux line in the sample N = 1 and Fij = 0. Thus

for H < Hc1 the first term of the Gibbs free energy will be positive and adding a

positive interaction energy will result in a minimum of the energy corresponding

to a flux line density nL = N
A

= 0. This means that the superconductor is in the

Meissner state. However for H > Hc1 the first term becomes negative and adding

a positive interacting energy will result in a flux line density nL > 0 corresponding

to the mixed state.

In order to determine the equilibrium flux line configuration one can define a

general 2D lattice as shown on figure 8 and look for the lattice that gives the

lowest minimum of the Gibbs free energy.

It was shown in the previous section that the interaction energy is decaying

exponentially for flux lines separated by d >> λ and in this limit it is sufficient

to include only the nearest neighbor interactions in the free energy. Instead of

summing the interaction over the entire sample it is then enough to sum it over

the unit cell of the lattice. From the pre-factor of (72) it is clear how to define

a Gibbs free energy per unit cell volume Vu = LAu and normalized by the line

energy ε of a single flux line

g̃ =
G̃

LAuε
= nL



1 − H

Hc1
+
∑

ij∈Au

fij



 (73)

Above the flux line density nL has been defined as one flux line per unit cell,

which is related to the average flux density B̄ in the unit cell
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Figure 8. The flux line lattice consist of flux lines directed along the ẑ-axis and

placed at all points rmn = mâ1 +nâ2 in the x̂ŷ-plane. The unit vectors span a unit

cell with an opening angle βu and an area Au = a1 × a2 = a2 sin (βu). Generally

the lattice will have a 2-fold symmetry, but the hexagonal and square lattice with

βu = 60o or βu = 90o are exceptions resulting in 6- and 4-fold symmetry. Each

unit cell contains one flux quantum Φ0 and the average flux density B̄ is therefore

related to the unit cell area by Φ0 = B̄Au. The density of flux lines is nL = A−1
u =

Φ0

B̄
giving 0.02, 4.8 and 483 µm−2 for B̄ equal to the earth field (0.5 G), 100 G

and 10 kG. The corresponding lattice spacing a =
√

1
nL sin (βu) for the hexagonal

lattice is 7.6 µm, 0.5 µm and 49 nm.

nL =
1

Au
=

B̄

Φ0
(74)

In the scaled Gibbs energy the normalized interaction term becomes

fij(r) =
F̃ij
Lε

=
2

ln (κ)
K0

( r

λ

)

(75)

with r = |ri − rj | being the separation between the flux lines.

The interaction energy gu within the unit cell gu can now be written down

explicitly as the two identical contributions along the unit cell vectors and the

two contributions along the diagonals of the unit cell shown in figure 8

gu =
∑

ij∈Au

fij = 2fij(a) + fij

(

2a sin

(

βu
2

))

+ fij

(

2a cos

(

βu
2

))

(76)

where the length of the unit vector a is connected to the flux line density nL in

the unit cell by

a =

√

Au
sin (βu)

=

√

1

nL sin (βu)
(77)

Figure 9 shows a plot of the normalized Gibbs free energy given by (73) as func-

tion of the flux line density for a flux line lattice of rhombic βu = 30o, hexagonal

βu = 60o and square βu = 90o symmetry. A slightly lower minimum is obtained

for the hexagonal lattice, which will be the equilibrium configuration.

The conditions used for constructing the plot is κ = 10, λ = 0.08µm and that

the applied field is 2 % above the lower critical field giving H
Hc1

= 1.02 in (73).
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Figure 9. Normalized Gibbs free energy g̃ of a flux line lattice of rhombic, hexagonal

and square symmetry as function of the flux line density nL, when the applied

field is 2% higher than the lower critical field Hc1 (equivalent to nL = 28.7µm−2).

The hexagonal lattice result in the lowest minimum and will be the equilibrium

configuration of the flux lines. κ = 10 and λ = 0.08µm has been used to construct

the plot.

From the figure it is seen that the minimum energy correspond to a flux line

density nL ≈ 6µm−2 and it is interesting to compare this with the flux density

equivalent to the lower critical field

nL =
Hc1

Φ0
=

lnκ

4πλ2
= 28.7µm−2 (78)

Thus the average flux density B̄ is smaller than the applied field H , which just

reflect a diamagnetic magnetization for H > Hc1 since B̄ = H + 4πM.

The above analysis was only carried out for one applied field and the stability

of the hexagonal lattice will now be shown for all fields in the limit a >> λ. From

the form of (73) it is seen that the deepest minimum in g̃ is found for the smallest

interaction term of a given flux line density. Figure (10) shows the relative energy

difference between the square and the hexagonal lattice as function of flux line

density. At low densities it diverges, but this is just because the interaction is

infinitely small, and at higher densities it decreases with the interaction energy of

the square lattice being about 5 % higher than the hexagonal lattice at a flux line

density equivalent to Hc1. Thus the equilibrium lattice at low fields is hexagonal.

A qualitative argument for the stability of the hexagonal lattice is that we

seek a packing of circular objects making the separation between the objects as

large as possible since they interact repulsively. This is obtained by the hexagonal

structure, because the lattice spacing is about 7.5 % larger than for the square

lattice at the same flux line density, since a∆

a2

= (sin (60o))−
1
2 = 1.075.

2.7 Flux line lattice at intermediate densities

When the separation between the flux lines becomes comparable with the pene-

tration depth one has to consider more than just the nearest neighbor interaction

when calculating the Gibbs free energy of the flux line lattice. This can be done

in an elegant way by realizing that the field distribution will be identical in every

unit cell and it can therefore be represented by a Fourier series. Thus a Fourier

method can be constructed for intermediate flux line densities ξ << a << λ and

it will be outlined in this chapter.
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Figure 10. Relative difference between the interaction energy gu of a square and

hexagonal lattice as function of flux line density nL for a superconductor with

κ = 10 and λ = 0.08µm. The equilibrium lattice is hexagonal for all applied fields,

since the ratio in the figure is positive for all densities.

Fourier representation of field distribution

The flux line lattice was defined in figure 8 and the field distribution h(r) in every

unit cell must be the same in order to full fill the periodicity of the lattice. A

consequence of this is that h(r) can be written as a Fourier series

h(r) =
∑

q

hq(q)eiq·r (79)

where q = hb̂1 + kb̂2 + lb̂3 are reciprocal lattice vectors with the unit vectors

defined from the real space unit vectors â1, â2, â3

b̂1 = 2π
â2 × â3

â1 · (â2 × â3)
(80)

b̂2 = 2π
â3 × â1

â2 · (â3 × â1)
(81)

b̂3 = 2π
â1 × â2

â3 · (â1 × â2)
(82)

Figure 11 show the connection between the unit cell of the flux line lattice in real

space and the corresponding lattice in reciprocal space. The fourier components

hq(q) of the field are given by

hq(q) =
1

v0

∫

cell

h(r)e−iq·rdr (83)

and reflects the weight of component with different periodicity. v0 is the volume

of the unit cell, v0 = â1 · (â2 × â3).

Free energy based on Fourier representation

The free energy will be the same for every unit cell due to the periodicity of the

lattice and in the high-κ limit it can calculated as the sum of the magnetic and

kinetic energy density
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Figure 11. The real space(left) and reciprocal space(right) unit cell have the same

symmetry but are rotated by 90 degrees. Here the z axis has been chosen as third

unit vector â3 = ẑ and b̂3 = q̂z. The area of the two unit cells are connected by

Aq = q2 sin (βu) = b̂1 × b̂2 = (2π)2

Au
and the lattice spacing q in reciprocal space

is related to the average flux density B̄ by q = 2π
√

1
sin(βu)

B̄
Φ0

giving 9.5 · 10−5,

1.5 · 10−3 and 1.5 · 10−2 Å−1 for B̄ equal to the earth field (0.5 G), 100 G and 10

kG.

F̃ =
1

8π

∫

cell

{

h2 + λ2|∇ × h|2
}

dr (84)

By inserting the Fourier series (79) one gets

F̃ =
1

8π

∑

qq′

{

1 + λ2(qxq
′
x + qyq

′
y)
}

hq(q)hq(q
′)∗
∫

cell

ei(q−q′)·rdr (85)

=
v0
8π

∑

q

h2
q(q)

{

1 + λ2q2
}

(86)

The double sum is reduced to a single sum since
∫

cell
ei(q−q′)·rdr = v0δ(qq′),

and the free energy per unit cell simply is

f̃ =
F̃

v0
=

1

8π

∑

q

h2
q(q)

{

1 + λ2q2
}

(87)

This equation represents the working horse of a calculation scheme for deter-

mining the equilibrium flux line lattice at intermediate flux densities, because it

shows how to determine the free energy from the fourier components of the field

distribution by summing over all reciprocal lattice vectors. Once the free energy

is know one can calculate the Gibbs free energy by g̃ = f̃ − B̄H
4π and look for

the lattice giving the lowest energy minimum. One problem however remains and

that is to determine the fourier components of the field distribution. A model is

needed for this task and several are available such as the modified London model,

the Ginzburg-Landau model or a microscopic model with increasing complexity

of the calculations.
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Fourier solution to London equation

The simplest model of the flux line lattice is the modified London equation of (52)

including the flux lines as a sum of δ functions peaking at the points of the lattice

−λ2∇2h + h = +Φ0

∑

i

δ(ri)êz (88)

This can be solved within the unit cell by inserting the fourier series from (79)

∑

q

(1 + λ2q2)hq(q)eiq·r =
Φ0

Au

∑

q

eiq·r ⇒

hq(q) =
Φ0

Au(1 + λ2q2)
=

B̄

(1 + λ2q2)
(89)

where Au is the unit cell area connected to the average flux density by Φ0 =

B̄Au.

The Fourier solution still suffer from the insufficient description of the core of

size ξ, which is seen by evaluating the field at the core center

h(0) = B̄
∑

q

eiq·0

1 + λ2q2

≈ B̄



1 +
1

λ2

∑

q 6=0

1

q2



 for (λq)2 >> 1

≈ B̄

(

1 +
1

λ2(2π)2nL

∫ ∞

qmin

1

q2
2πqdq

)

≈ B̄

(

1 +
1

λ22πnL
[ln (q)]

∞
qmin

)

(90)

A divergence is found as the reciprocal lattice vector goes to infinity, which

corresponds to small structures in real space and a cut-off at qmax = 2π
ξ

must be

introduced in the summation, because the core is represented as an singularity in

the London model. The approximation (λq)2 >> 1 is valid for κ >> 1 and fields

H >> Hc1. Also the summation has been replaced by an integration to simplify

the evaluation and the density of q-vectors is nq = 1
(2π)2nL

. The lower q limit is

set by the lattice spacing a giving qmin = 2π
a

and by inserting the flux line density

nL = B̄
Φ0

one gets

h(0) ≈ B̄ +
Φ0

2πλ2
[ln (q)]

2π
ξ

2π
a

≈ B̄ +
2Hc1

lnκ
ln
a

ξ
(91)

Thus at low flux line densities where a ≈ λ the field is about two times Hc1

higher at the center of the flux line than the average flux density B̄ in the unit

cell. This modulation of the field in the unit cell is decreasing at higher flux line

densities, because the lattice spacing will approach ξ, where the modulation vanish

h(0) ≈ B̄ +
2Hc1

lnκ
ln

(

1

ξ

√

Φ0

sin (βu)B̄

)

(92)

Following this approach the flux density distribution can be found in the entire

unit cell and also the average flux density B̄ minimizing the Gibbs free energy

at different applied fields H can be determined giving the magnetization curve of

type-II superconductors as shown in figure 12.
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Fourier solution from the Ginzburg-Landau equation

An approximate solution to the Ginzburg-Landua equations has been obtained by

Clem et. al. [19] and in the high-κ limit the fourier components are given by [20]

hz(q) =
Φ0

Au

gK1(g)

1 + λ2q2
g =

√
2ξ(q2 + λ−2)

1
2 (93)

≈ Φ0

Au

1

1 + λ2q2
exp (−

√
2ξq) (94)

where Φ0 is the flux quantum, Au is the area of the unit cell, λ the penetra-

tion depth, ξ the coherence length and K1(x) is the first order modified Bessel

function of the second kind. This equation have a strong similarity to the Lon-

don solution, but the additional exponential factor introduces a suppression of the

fourier components at high q values corresponding to length scales of the size of

the core ξ. The exponential factor has a similar effect as the artificial cut-off at

qmax introduced in the London calculation (90) above.

The Fourier method will be treated later when explaining the observation of a

flux line lattice with square symmetry in the borocarbide superconductors.

Figure 12. Magnetization curve of a type-II superconductor showing the differ-

ence 4πM = B̄ − H between the average flux density B̄ and the applied field

H. The Meissner screening is seen as a diamagnetic response below Hc1 and the

gradual increase of the density of flux lines above Hc1 causes an decrease of the

diamagnetic response as Hc2 is approached. The inserts illustrates the field h(r)

and order parameter ψ(r) distribution of the flux line lattice at intermediate(left)

and high(right) flux line densities nL. At intermediate flux line densities the order

parameter reaches its saturation value (ψ(r) → 1) in between the flux lines and the

modulation of the field h(r) is highly peaked at the position of the flux lines. The

dashed curve shows the field distribution of an isolated flux line and the resulting

field distribution is simply a superposition of these sitting at all lattice positions. A

reduction of the order parameter (ψ(r) < 1) is seen at high flux line densities when

the flux line separation becomes comparable to the coherence length ξ as found by

solving the GL equations. This result in a reduced modulation of the magnetic field

and the superposition of field distributions of an isolated flux line is not valid.

2.8 Flux line lattice at high densities

Historically the stability of the hexagonal flux line lattice was first proved by

A.Abrikosov, who used the linearized GL equation to show that the free energy
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at the upper critical field Hc2 can be given by 7

FA =
1

8π

(

B2 − (Hc2 −B)2

1 + (2κ2 − 1)βA

)

(95)

where the parameter βA = <ψ4>
<ψ2>2 depend on the spatial average <> of a peri-

odic order parameter ψ corresponding to the lattice. βA is independent of the size

of this order parameter, but will only depend on the symmetry of the lattice and

from the free energy above it is seen that the lowest free energy is obtained by the

lattice having the lowest βA. Numerical calculations show that βA2 = 1.18 and

βA4 = 1.16 for the square and hexagonal lattice respectively. Thus the equilibrium

lattice is hexagonal and the free energy difference is about 2%.

One has to solve the full GL equations in order to determine the field and order

parameter distribution when the cores are overlapping in the field region near

Hc2. This has been done by many people8 and the main result is illustrated on

the insert on figure 12 showing that the order parameter is reduced below the

saturation value ψ0 and the magnetic flux density is only varying slightly from

the average magnetic flux density B̄. Still the magnetic flux in every unit cell of

the lattice is one flux quantum Φ0 caused by circulating currents seen as a phase

change of the order parameter around a flux line.

2.9 Anisotropy

The superconducting length scales were assumed isotropic in the previous chap-

ters, but by looking at the microscopic relations (34) and (35) it is seen that they

depend on the Fermi velocity, which can have a large directional dependence in

anisotropic crystals. Thus the ratio between the penetration depth in different

directions reflects the anisotropy of the Fermi velocities and one can define an

anisotropy parameter as

Γ =
λi
λj

=
ξj
ξi

i, j = x, y, z (96)

Note that the coherence length anisotropy is the inverse of the penetration depth

anisotropy.

More generally the relation between current density and vector potential given

by (21) and (22) resulting in the London equation must also be extended to include

the anisotropy of the penetration depth.

4π

c
j =

1

λ2

(

h̄c

2e
∇φ− A

)

(97)

By combining the phase of the condensate and the vector potential into a quan-

tity a

a =
h̄c

2|e|∇φ + A =
Φ0

2π
∇φ+ A (98)

the London relation can be written as

4π

c
ji = − 1

λ2
aj (99)

where a summation over indexes i, j = x, y, z is omitted for clarity. From the

microscopic relation of the penetration depth given by (35) it is seen that the

7deGennes [15] p. 206
8See Review by Brandt [21]

32 Risø–R–1425(EN)



anisotropy of the Fermi surface can be expressed as a directional dependence on

the ”inverse” mass of the particles in the condensate in the Ginzburg-Landau

theory

λ(T )−2 =
16πe2|ψ0|2
m∗c2

∼ e2

c2
N(0)v2

F

(

Tc − T

Tc

)

(100)

An inverse mass tensor with elements of the type < vivj >, where <> denotes

an average over the Fermi surface and vi is the Fermi velocity along direction

i, can be introduced and the normalization of the matrix elements is given by

det(< vivj >)
1
3 (for cubic crystal structure the normalization is simply < v2 > /3)

[22]

m−1
ij =

< vivj >

det(< vivj >)
1
3

(101)

Thus the London relation becomes

4π

c
ji = −

m−1
ij

λ2
aj (102)

with penetration depths along the principal axes given by

λi =
√
miiλ i = a, b, c (103)

and

λ = (λaλbλc)
1
3 (104)

Figure 13 show how the shape of a flux line is changes into an ellipse when it is

sitting in an anisotropic superconductor. It should be noted that the field decay

in the a direction is determined by the current in the b direction and thereby the

penetration depth λb. Similar arguments lead to the conclusion that the flux line

lattice is distorted by the anisotropic overlap between field and current distribu-

tions. This distortion can be found by stating that if the interaction energy (70)

between two flux lines sitting along a or b should be the same then the separation

should be ra and rb respectively

K0(
ra
λb

) = K0(
rb
λa

) ⇒ ra =
λb
λa
rb (105)

2.10 Collective pinning

Flux lines are attracted to points in a superconductor where the order parameter

has been reduced by crystalline defects or impurities, because the condensation

energy is lost in the normal core of the flux line and this lost is reduced if the point

of a suppressed order parameter is included in the core. This effect is called pinning

of flux lines to pinning cites and a flux line lattice therefore tend to deform in order

to take advantage of placing the pinning cites in the cores, but the deformations

are limited by the repulsive interaction between the flux lines. Here the theory of

collective pinning by Larkin and Ovchinnikov is outlined 9.

9[23] or see Tinkham [16] p. 348
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Figure 13. Left: Elliptical shape of the core and field distribution of a flux line in an

anisotropic superconductor with λb

λa
= ξa

ξb
> 1. The field decay in a certain direction

a (or b) is determined by the perpendicular current flow jb (or ja). Right: The flux

line lattice is also distorted by the penetration depth ratio due to the anisotropic

overlap of the flux lines.

Pinning force

In the high-κ limit the condensation energy loss of a flux line core and a pinning

cite can approximately be added to the free energy by

˜Fpin = F̃kin + F̃mag +

∫

ψ(r)

ψ0

H2
c

8π
πξ2dl +

H2
c

8π

4

3
πξ3 (106)

where the first two terms include the kinetic and magnetic energy of the flux

line, the third term is an integral of the lost of condensation energy density
H2

c

8π

along the flux line with a cross sectional area πξ2 and the last term is the lost of

condensation energy density in a sphere of volume 4
3πξ

3 around the pinning cite.

Thus it cost less condensation energy to position the flux line with the pinning

cite included in the core and the pinning cite thereby acts as a energy well of a

depth u approximately given by

u =
H2
c

8π

4

3
πξ3 (107)

giving a force on the flux line of the order

fpin =
δu

δx
≈ u

ξ
(108)

From the form of u it is seen that the pinning force will depend on both field

and temperature, since both the condensation energy and the coherence length

change with these variables.

Larkin-Ovchinnikov theory

Larkin and Ovchinnikov have addressed the problem of taking advantage of having

the pinning sites in the cores of the flux lines in a lattice and the cost of deforming

the lattice elastically [23]. They solved the problem by summing the pinning forces

like a random-walk in a unit volume and then assumed that the flux line lattice

was deformed collectively in the same unit volume due to the interaction between

the flux lines. The size of the correlated unit volume then depends on the balance

between the energy gain of the pinning sites and the increase in elastic deformation.

Figure 14 illustrates the collective volume which is generally cigar shaped with

different extends Lc along and Rc perpendicular to the flux lines. In a simple

box approximation they are related by Vc = R2
cLc. The elastic energy due to

deformation of the flux line lattice is most easily formulated from the tilt st = δx
Lc
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and shear ss = δx
Rc

strain as shown on figure 14 and the elastic constants for tilt

and shear deformation C44 and C66

δFe =
1

2
C44s

2
t +

1

2
C66s

2
s (109)

Figure 14. Flux lines are strait and ordered in the flux line lattice, when no pinning

sites are present in the sample. The flux line lattice will however break up into

smaller well ordered volumes in the presence of pinning sites, as shown in the

central part of the figure. All flux lines in the correlated volume Vc = R2
cLc are

distorted by δx and the corresponding tilt strain is st = δx
Lc

. A distortion of the

flux line positions in the lattice also result and gives a shear strain of ss = δx
Rc

.

The size of the correlated volume is controlled by the balance between the pinning

energy and the elastic energy due to the strain of the flux line lattice.

In a random-walk the extend of the walk is given by the square root of the

number of steps in the walk multiplied with the step length. By analogy the

random pinning energy of the flux line lattice is given by the number of pinning

cites Np and the energy gain upin = ξfpin per cite

δFpin =
√

Npupin ⇒
δFpin
Vc

=
ξfpin

√
np√

Vc
(110)

where the pinning force fpin and density of pinning cites np =
Np

Vc
has been

introduced.

The free energy change due to collective pinning can be written by noticing that

the distortion due to pinning will be of the order δx = ξ

δF =
1

2
C44

(

ξ

Lc

)2

+
1

2
C66

(

ξ

Rc

)2

−
ξfpin

√
np√

Vc
(111)

By minimizing this with respect to Rc and Lc one gets the following relations

between the elastic constants, the pinning strength w = npf
2
pin and the dimensions

of the correlated volume
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Rc
Lc

=

√

1

2

C66

C44
(112)

Rc =

√
2C

1
2
44C

3
2
66ξ

2

w
(113)

Lc =
2C44C66ξ

2

w
(114)

Vc =
4C2

44C
4
66ξ

6

w3
(115)

δF = − w2

8C44C2
66ξ

2
(116)

Thus the correlated volume decreases with an increased pinning strength w and

decreasing elastic modula C44 and C66.

It was show in section 2.5 that a current result in a force acting on a flux line

and the force per unit volume is fJ = JΦ0

c
nL = JB̄

c
. A critical current density Jc

can be defined from this by setting fJ equal to the random walked pinning force

density

fJ =
JcB̄

c
= fpin

√

np
Vc

=
w2

2C44C2
66ξ

3
(117)

This relates the Larkin-Ovchinnikov theory to transport measurements.

2.11 Generic phase diagram

The flux line lattice can be considered as a system of elastic strings coupled to-

gether by elastic forces determine by the elastic modula. Distortions away from

the equilibrium position can be caused by pinning centers as discussed with the

collective pinning model, but thermal fluctuations can cause dynamic distortions

and if the fluctuation becomes sufficiently strong compared to the elastic force the

flux line lattice can melt. Figure 15 show the generic phase diagram for the flux

line phases in type-II superconductors containing randomly distributed pinning

centers. Another melting region is present close to Hc1 where the flux line interac-

tions are very week due to the low flux line density, however this line is not shown

in the figure.
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Figure 15. Phase diagram of flux lines in a superconductor containing pinning

sites. The Bragg glass(BrG) is stable at low field and temperature, where the flux

line lattice is only slightly distorted by pinning sites and the lattice contains no

dislocation as seen by the free energy minimum of dislocation at ρ = 0 on the

insert. Dislocation start to occur in the lattice at higher fields and this phase

is called the amorphous vortex glass(VG). Thermal fluctuation will enhance the

mobility of the dislocations and a vortex liquid(VL) is present below the Hc2 curve.

The figure represent the phase diagram of a high temperature superconductor, but

it is equivalent for a low-Tc superconductor with the difference that the liquid region

is moved much closer to the Hc2 line. Taken from Kierfeld et. al. [24]
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3 Neutron scattering on flux line
lattice

The neutron is a charge neutral elementary particle with a magnetic moment µn
and it is ideal for studying the flux line lattice, since the neutron is sensitive to the

local magnetic field as it passes through a sample and is only weakly absorbed due

to the charge neutrality 10. A neutron can be scattered on the flux line lattice, be-

cause the interaction with the sample will cause perturbations to the wavefunction

of the incident neutron and if the perturbations add up constructively it result in

a finite probability of having a neutron propagating away from the sample into a

new direction. Here the scattering cross section for neutron scattering on magnetic

structures is introduced in a rather detailed way leading to a correlation function

description.

3.1 Partial Differential cross section

The partial differential cross section is defined as the number of neutrons scattered

per second into a solid angle dΩ and with energies in the range E′ to E′ + dE′

divided by the flux of incident neutrons. Integrating this quantity over all neutron

energies gives the differential cross section

dσ

dΩ
=

∫ ∞

−∞

d2σ

dΩdE′ dE
′ (118)

and by further integration over all directions one get the total cross section

which is the number of neutrons scattered per second from the sample normalized

with the incident neutron flux

σtot =

∫

Ω

dσ

dΩ
dΩ (119)

The partial differential cross section can be found from 1. order perturbation

theory and is directly connected to the matrix element for transitions of the total

system consisting of the neutron and the sample. By denoting the state of the

system by the wavefunction |kσλ >, where |kσ >= exp (ik · r)|σ > is a plane

wave description of the neutron with wavevector k and spin-state |σ >, and |λ >
is the state of the sample, one can write 11

d2σ

dΩdE′ =
k′

k

(

m

2πh̄2

)2
∑

λλ′

Pλ
∑

σσ′

Pσ| < k′σ′λ′|V |kσλ > |2δ(Eλ−Eλ′ +E−E′)

(120)

Here the matrix elements gives the probability for a change of the system from

the initial state |kσλ > into |k′σ′λ′ > and the δ - function ensures energy con-

servation where Eλ and E is the energy of the sample state and the neutron.

The summation is over all initial states with probability P and final states. The

pre-factor arise from normalization and the density of final neutron states in dΩ

of the scattered neutron k′. m is the neutron mass and h̄ is Planck’s constant.

A neutron can interact with matter through the potential of the nucleus of

atoms or the dipole potential of the neutron moment in a magnetic field B.

10Large absorption is caused by nuclear reactions in some elements such as Gd, B and Li.
11See Squires [25] section 2.3
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V =
∑

Vnuc + µn · B(r) (121)

In the following the focus will be on the magnetic interaction and by inserting

the plane wave representation of the neutron on gets

d2σ

dΩdE′ =
k′

k

(

m

2πh̄2

)2
∑

λλ′

Pλ
∑

σσ′

Pσ

∣

∣

∣

∣

∫

exp (−ik′ · r) < σ′λ′|µn · B(r)|σλ > exp (ik · r)dr

∣

∣

∣

∣

2

×δ(Eλ − Eλ′ + E − E′) (122)

where the integration is carried out over the neutron coordinate. The neutron

moment µn is given by the product of the gyromagnetic ratio γ = 1.913, the

nuclear magneton µN = eh̄
2m and the Pauli spin operator σ with eigenvalues of ±1.

µn = −γµNσ (123)

By inserting this in the partial differential cross section equation one gets the

following prefactor

(

m

2πh̄2

)2

γ2

(

eh̄

2m

)2

=
(γe

2h

)2

(124)

and

d2σ

dΩdE′ =
(γe

2h

)2 k′

k

∑

λλ′

Pλ
∑

σσ′

Pσ

∣

∣

∣

∣

∫

< σ′λ′|σ · B(r)|σλ > exp (iκ · r)dr

∣

∣

∣

∣

2

×δ(Eλ − Eλ′ + E − E′) (125)

where the momentum transfer vector is given by κ = k− k′. A double integral

can replace the square of the matrix elements

d2σ

dΩdE′ =
(γe

2h

)2 k′

k

∑

λλ′

Pλ
∑

σσ′

Pσ

∫ ∫

< σ′λ′|σ · B(r1)|σλ >∗< σ′λ′|σ · B(r2)|σλ >

× exp {iκ · (r2 − r1)}dr1dr2δ(Eλ − Eλ′ + E − E′) (126)

The δ- function in energy can be represented as a time integral

δ(Eλ − Eλ′ + E − E′) =
1

2πh̄

∫ ∞

−∞
exp

(

i(Eλ′ − Eλ)t

h̄

)

exp (−iωt)dt (127)

where ω is given by the energy difference between the incident and scattered neu-

tron h̄ω = E −E′. Using this relation one can change the operators into the time

depend Heisenberg representation by noting that exp (−iHt
h̄

)|λ >= exp (−iEλt
h̄

)|λ >

d2σ

dΩdE′ =
(γe

2h

)2 1

2πh̄

k′

k

∫ ∫ ∫

∑

λλ′

Pλ
∑

σσ′

Pσ < σλ|σ · B(r1, 0)|σ′λ′ >< σ′λ′|σ · B(r2, t)|σλ >

× exp {iκ · (r2 − r1)} exp (−iωt)dr1dr2dt (128)

Now the summation over the spin states will be carried out for an unpolarized

neutron beam with equal probability for having spin up and spin down, Pu =

Pd = 1
2 . The Pauli operator acting on the field can be split up into the x, y and z

component
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σ · B(r) = σxBx + σyBy + σzBz =
∑

α=x,y,z

σαBα (129)

whereby the summation can be written as

∑

λλ′

Pλ
∑

σσ′

Pσ < σλ|σ · B(r1, 0)|σ′λ′ >< σ′λ′|σ · B(r2, t)|σλ >

=
∑

λλ′

Pλ
∑

σσ′

Pσ < σλ|
∑

α

σαBα(r1, 0)|σ′λ′ >< σ′λ′|
∑

β

σβBβ(r2, t)|σλ′ >

=
∑

α,β

∑

λλ′

Pλ
∑

σσ′

Pσ < σ|σα|σ′ >< σ′|σβ |σ >< λ|Bα(r1, 0)|λ′ >< λ′|Bβ(r2, t)|λ >

=
∑

α,β

{

∑

σσ′

Pσ < σ|σα|σ′ >< σ′|σβ |σ >
}{

∑

λλ′

Pλ < λ|Bα(r1, 0)|λ′ >< λ′|Bβ(r2, t)|λ >
}

=
∑

α,β

{

∑

σ

Pσ < σ|σασβ |σ >
}{

∑

λ

Pλ < λ|Bα(r1, 0)Bβ(r2, t)|λ >
}

=
∑

α,β

{Pu < u|σασβ |u > +Pd < d|σασβ |d >}
{

∑

λ

Pλ < λ|Bα(r1, 0)Bβ(r2, t)|λ >
}

(130)

The properties of the Pauli operators result in the following matrix elements

< u|σασβ |u >= − < d|σασβ |d >= i α 6= β

< u|σ2
α|u >=< d|σ2

α|d >= 1 α = x, y, z
(131)

which shows that all the mixed terms in the sum vanish for the unpolarized

beam with Pu = Pd = 1
2 and

Pu < u|σασβ |u > +Pd < d|σασβ |d >= δαβ (132)

Inserting this gives

∑

α,β

δαβ
∑

λ

Pλ < λ|Bα(r1, 0)Bβ(r2, t)|λ >

=
∑

α

∑

λ

Pλ < λ|Bα(r1, 0)Bα(r2, t)|λ >

=
∑

λ

Pλ < λ|
∑

α

Bα(r1, 0)Bα(r2, t)|λ >

=
∑

λ

Pλ < λ|B(r1, 0) · B(r2, t)|λ >

= < B(r1, 0) · B(r2, t) > (133)

The brackets above <> represents the thermal average of the states |λ > of the

magnetic system in the sample and the probability Pλ is given by

Pλ =
1

Z
exp

(−Eλ
kBT

)

(134)

with Z being the partition function
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Z =
∑

λ

exp

(−Eλ
kBT

)

(135)

In the case of the flux line lattice the thermal average is over all configurations

of the flux lines and the weight of the different configurations Pλ depends on the

energy of the configurations Eλ compared to the thermal energy kBT .

Finally the magnetic partial differential cross section of any sample is

d2σ

dΩdE′ =
(γe

2h

)2 1

2πh̄

k′

k

∫ ∫ ∫

< B(r1, 0) · B(r2, t) > exp {iκ · (r2 − r1)} exp (−iωt)dr1dr2dt

(136)

By introducing a new coordinate given by −r = r2 − r1 one gets

d2σ

dΩdE′ =
(γe

2h

)2 1

2πh̄

k′

k

∫ ∫

G(r, t) exp (−iκ · r − iωt)drdt (137)

where G(r, t) is the correlation function of the magnetic field

G(r, t) =

∫

< B(r1, 0) · B(r1 − r, t) > dr1 (138)

This formulation is completely general and states that the scattering of any

sample with magnetic ordering of spins, free electron orbital motions or flux lines

is given by the Fourier transform in space and time of the magnetic field correlation

function G(r, t).

3.2 Differential Cross section of frozen flux lines

In the following the correlation function formulation above will be applied to

a simple model of a flux line lattice consisting of frozen flux lines. The term

frozen refers to the assumption that the flux lines do not move due to thermal

fluctuations, jumping between pinning sites or the presence of a liquid flux line

phase.

This assumption is somewhat justified by the fact that flux lines dissipate energy

in the normal core when they are moving and thereby behave like over-damped

oscillators with relaxation times of the order 10−12 seconds as shown by H. Suhl

[26]. Thus it is not very likely to have collective oscillations propagating through

the flux line lattice like phonons does in solids. Such excitations has been called

’vortons’ by L.N. Bulaevskii et. al. [27] in the layered HTc materials.

Due to the assumption of frozen flux lines the time dependence of the correlation

function is removed and one can set t = ∞

G(r) = G(r,∞) =

∫

< B(r1, 0)·B(r1−r,∞) > dr1 =

∫

< B(r1)·B(r1−r) > dr1

(139)

The time integration in the partial differential cross section may then be per-

formed

d2σ

dΩdE′ =
(γe

2h

)2 1

2πh̄

k′

k

∫

G(r) exp (−iκ · r)dr

∫

exp (−iωt)dt

=
(γe

2h

)2 1

2πh̄

k′

k

∫

G(r) exp (−iκ · r)dr2πh̄δ(h̄ω)

=
(γe

2h

)2
∫

G(r) exp (−iκ · r)drδ(h̄ω) (140)
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where the energy difference between the incident and scattered neutron is given

by h̄ω = E − E′ and the δ function in energy transfer shows that the frozen

flux line assumption leads to elastic scattering |k| = |k′| where the neutron is not

changing its energy in the scattering process.

The differential cross section of elastic scattering on the frozen flux lines may

now be obtained by integrating over all energies of the scattered neutron and by

noting d(h̄ω) = −dE′

dσ

dΩ
=

∫ ∞

0

d2σ

dΩdE′ dE
′

=

∫ −∞

E

d2σ

dΩdE′ − d(h̄ω)

=

∫ E

−∞

d2σ

dΩdE′ d(h̄ω)

=

∫ E

−∞

(γe

2h

)2
∫

G(r) exp (−iκ · r)drδ(h̄ω)d(h̄ω)

=
(γe

2h

)2
∫

G(r) exp (−iκ · r)dr

=
(γe

2h

)2

F{G(r)} (141)

Thus the elastic differential cross section of frozen flux lines is given by the

Fourier transform F of the time independent field correlation function.

3.3 Flux line configuration

In general the magnetic field distribution of a flux line configuration can be quite

complicated and the superconductor will not act as a linear media at high flux

line densities, because the field from two flux lines is not just the vectorial sum of

the fields from two isolated flux lines due to the reduction of the order parameter

between the two flux lines ( see insert of figure 12). However superposition of the

field from isolated flux lines is valid at intermediate and low flux line densities

where the order parameter reaches its saturation value in between the flux line

cores. Thus a configuration of strait flux lines can be expressed as a convolution

of the field distribution of a single flux line and a set of δ-functions specifying the

position of the flux lines

B(r) = g(z)ẑ

∫

h(rxy − r′
xy)f(r′

xy)dr
′
xy

= g(z)ẑ h ∗ f (142)

where the function g(z) is a step function specifying the thickness of the sample

and thereby the length of the flux lines, ẑ is a unit vector along the field direction,

h(rxy − r′
xy) is the field distribution in the xy-plane of an isolated flux line with

the core positioned at r′
xy and f(r′

xy) is a sum of δ-functions

f(r′
xy) =

∑

i

δ2D(r′
xy − r′

xy,i) (143)

where r′
xy,i specifies the position of i’th flux line.

Now when the field distribution is known the differential cross section can be

calculated. First the correlation function is further reduced by noting that the
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dot product disappear, since the field only has a z-component, and secondly the

thermal average becomes the ground state due to the frozen flux line assumption

G(r) =

∫

B(r1)B(r1 − r)dr1 (144)

The differential cross section is proportional to the Fourier transform of the

correlation function and by applying the convolution theorem (284) of appendix

B one gets

F{G(r)} = F{B∗̃B}

= F{B}F{B}†

= |F{B}|2 (145)

The Fourier transform of the magnetic field given by (142) can be separated

into the z and xy component and decomposed by the convolution theorem (280)

F{(B)} = F{g(z)h ∗ f}

= Fz{g(z)}F2D{h ∗ f}

= Fz{g(z)}F2D{h}F2D{f} (146)

Thus the differential cross section can be written as

dσ

dΩ
=

(γe

2h

)2

|Fz{g(z)}|2|F2D{h}|2|F2D{f}|2 (147)

which shows that the differential cross section can be written as the product

between a factor only depending on the magnetic field distribution of an isolated

flux line and a factor only depending on the position of the flux lines. These two

factors are denoted the flux line lattice form factor and structure factor in analog

to usual scattering theory.

Fourier transform of g(z)

The Fourier transform of the step function g(z) gives

|Fz{g(z)}|2 =

∣

∣

∣

∣

∫ ∞

z=−∞
g(z) exp (−iκzz)dz

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ L
2

z=−L
2

exp (−iκzz)dz
∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

sin (κz

2 L)
κz

2

∣

∣

∣

∣

2

= 2πLδ(κz) (148)

This shows that the reciprocal lattice of the flux line lattice is two dimensional

and scattering can only be obtained when the momentum transfer is zero along

the z-axis, κz = 0. The last step in the calculation is shown in appendix B formula

(288).
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Structure factor

The structure factor can be traced back to be the Fourier transform of a two-

dimensional positional correlation function of the form

Gp(rxy) =

∫

f(r′
xy)f(r′

xy − rxy)dr
′
xy (149)

where f is the sum of δ-functions giving the position of the flux lines as specified

by (144). Often the structure factor is given as the double lattice sum

|F2D{f}|2 =

∣

∣

∣

∣

∣

∑

i

exp (−iκxy · rxy,i)
∣

∣

∣

∣

∣

2

=
∑

ij

exp (iκxy · (rxy,j − rxy,i))

= N
∑

l

exp (iκxy · l)

= N
(2π)2

Au

∑

τ

δ2D(κxy − τ ) (150)

Here N is the number of flux lines in the sample and the last two steps are valid

if the flux lines are ordered in a lattice with a unit cell area Au and reciprocal

lattice vectors τ .

Differential cross section of flux line lattice

The differential cross section of a lattice of frozen strait flux lines finally becomes

dσ

dΩ
=

(γe

2h

)2

|Fz{g(z)}|2|F2D{h}|2|F2D{f}|2

= (2π)3
(

γ

4Φ0

)2
NL

Au

∑

τ

h(κ)2δ(κ − τ ) (151)

where γ is the gyromagnetic ratio, Φ0 = h
2e is the flux quantum, N the number

of flux lines in the sample, L the length of the flux lines which is equivalent to

the sample thickness in the direction of the flux lines, Au the area of the flux line

lattice unit cell, h(κ) is the Fourier transform of the magnetic field distribution of

an isolated flux line, κ is the momentum transfer in 3 dimensions and τ are the

two dimensional reciprocal lattice vectors of the flux line lattice.
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4 Small Angle Neutron Scatter-
ing camera

A small angle neutron scattering(SANS) camera is used to obtain structural infor-

mation about systems with characteristic length scales of the order d = 102−104 Å.

These length scales are large compared to the wavelength of available neutrons

(λ ≈ 4 Å ) and a small scattering angle of the order θ = arcsin( λ2d ) ≈ 0.01 − 1o

result from Bragg’s law. In order to resolve such small angles a typical SANS

camera is between 12-40 meters long and the components are shown on figure 16.

Figure 16. A SANS camera consists of a velocity selector and a collimator section

for defining respectively the wavelength and divergence of the incoming neutron

beam, which is scattered in the sample and then detected by a 2-dimensional(2D)

neutron detector. The collimation is obtained by passing the beam through two

pinholes made of neutron absorbing material.

4.1 Single crystal scattering

The scattering condition for any periodic structure can be formulated in reciprocal

space by

κ = kf − ki = τ (152)

where κ is the momentum transfer, ki the initial wave vector of the incoming

neutron, kf the final wave vector of the scattered neutron and τ denotes a recip-

rocal lattice vector of the periodic structure in the sample. For elastic scattering

with |k| = |kf | = |ki| the scattering condition shows that the momentum transfer

vector κ must be placed on the Ewalds sphere, which is spanned by kf and ki as

illustrated on figure 17. Thus scattering into the direction of kf is obtained when

the momentum transfer matches a reciprocal lattice vector of the sample.

A typical SANS study of the flux line lattice in a superconductor is performed

by placing the superconductor in a cryomagnet at the sample position and collect-

ing the scattered intensity on the detector as the cryomagnet is rotated in small

steps in order obtain the scattering condition. The background scattering from

the sample due to crystallographic defects is often subtracted from the flux line

signal by heating the sample above Tc or applying a field higher than Hc2.

4.2 Neutron production

Neutrons for scattering experiments are either produced by fission processes in a

reactor or by spallation processes in heavy elements which are bombarded by a

high-energy proton beam from an accelerator. The energy of the produced neu-

trons is of the order MeV and they must be moderated before they can be used for
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Figure 17. Illustration of the Ewalds sphere defined by |kf | = |ki|. By placing the

center of the two dimensional reciprocal lattice of the flux line lattice at the end

point of ki the scattering condition κ = kf − ki = τ becomes equivalent to the

condition that the reciprocal lattice points must be on the Ewalds sphere. In order

to obtain this condition the reciprocal lattice must be rotated around the vertical

axis by the angle ω and the scattered neutrons are collected as function of the

rotation angle in a rocking curve. It should be noticed that the lattice vectors τ are

orders of magnitude smaller than the size of the Ewalds sphere of a SANS camera.

small angle scattering. This is often done by letting the neutrons diffuse through

a container of liquid deuterium, which will thermalize the neutrons at the tem-

perature of the D2 due to collisions and thereby cause the neutron velocities to

approach a Maxwell-Boltzmann distribution. By cooling the deuterium TD ≈ 20

K one can obtain low energetic neutrons, which are often called cold and the deu-

terium container is called a cold source. Figure 18 shows the wavelength spectrum

of neutrons from a cold source compared to a room temperature source.

Figure 18. Normalized wavelength spectrum of thermalized neutrons from a source

at T = 25 K and 300 K. The neutron flux is approximately given by φ(λ) ∝
λ−3 exp (− α

λ2 ), where α = h2

2mKBT
depends on Planck’s constant h, the neutron

mass m, the Boltzmann constant KB and the temperature T . Thus the maximum

intensity is found at λ0 = h√
3mKBT

.
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4.3 Velocity selector

The velocity selector is used to extract a certain wavelength range of the neutrons

from the source. This is done by passing the neutrons through tilted blades which

are made of neutron absorbing material and mounted on a rotating cylinder. Only

the neutrons with a velocity vn matching the forward movement of the channels

between the blades will pass and neutrons moving either faster or slower will be

absorbed by the blades.

Figure 19. The neutron absorbing blades of the velocity selector are mounted with

a distance d and are tilted by an angle α with respect to the rotation axis. Length

and radius of the blades are denoted s and R respectively. The incoming neutrons

enter the channels between the blades on the left hand side and are absorbed if they

move to slow or to fast compared to the movement of the blades.

Figure 19 shows the center position between two blades rotating with a velocity

of Rω and tilted by an angle α with respect to the rotation axis. The displacement

l between the entrance and exit opening depends on the time t = s
vn

it takes the

neutrons to travel along the blades and the tilt of the blades.

l = Rωt− s tan (α) (153)

Thus the intensity of neutrons with a wavelength λ = h
mvn

is proportional to

the channel size d with the displacement subtracted

I(λ) α d− |l| (154)

= d− smRω

h
|λ− λ0| (155)

This is a triangular function with a peak intensity at the wavelength

λ0 =
h

mRω
tan (α) (156)

and a relative FWHM value given by

∆λ

λ0
=

d

s tan (α)
(157)

Thus the neutron wavelength is selected by adjusting the rotation speed at

a given tilt angle α, which determines the wavelength spread together with the

velocity selector geometry. The wavelength spread can be changed by tilting the

rotation axis of the velocity selector away from the beam direction by an angle φ,

whereby an effective tilt angle of αe = α+ φ must be used in the equation above,

which is approximately valid for small φ angles.
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4.4 Collimation section

Only the neutrons moving in a direction close to the optical axis of the SANS

camera can pass the pinholes of the collimation section and this determines the

divergence of the neutrons hitting the sample. Often the sample is placed just

after the second pinhole which matches the sample size, in order to maximize the

ratio between the signal scattered from the sample and the background caused

by the direct beam. If the sample is considered to be infinitely small the beam

divergence ∆θi can be estimated simply from the radius r1 of the first pinhole and

the separation L between the two pinholes

∆θi = arctan
(r1
L

)

≈ r1
L

r1 � L (158)

However a more detailed analysis of the intensity as function of the scatter-

ing angle result in a nearly trapezoidal shaped distribution [28]. The intensity is

proportional to the overlap between the solid angles of the two pinholes as seen

from the detector at a scattering angle 2θi. A FWHM value ∆θ is found from the

distribution

∆θi = 2r1
L

for a1 > a2

∆θi = 2r2(
1
L

+ 1
l
) for a1 < a2

(159)

where r1 and r2 are the radii of the pinholes, L is the distance between the

pinholes, l is the distance between pinhole 2 and the detector, and the solid angles

of the pinholes at zero scattering angle are denoted a1 = r1
L+l and a2 = r2

l
. The

trapeziodal distribution becomes nearly a triangular distribution when a1 = a2

and a box function when a1 and a2 are very different.

4.5 Sample environment

The physics of interest is often the sample properties as a function of external

variables such as temperature, pressure, magnetic field, stress ect. and therefore

a sample table is used to support sample environments like a cryostat, furnace,

pressure cell, magnet ect. A typical sample table consist of a XYZ-translation for

positioning the sample on the optical axis of the camera, a ω table and a goniome-

ter for rotating and tilting the sample environment with respect the vertical axis.

The rotation and tilt are used to scan and align the reciprocal lattice of the sample

with respect to the camera as shown on figure 17.

For the flux line lattice studies presented here, different superconducting cryo-

magnets were used as sample environment giving temperatures down to T = 1.5

K and magnetic field up to H = 5 Tesla. All crystals were glued onto a Cd mask

acting as the second pinhole and mounted inside the cryostats. The final pin-hole

of the collimation section was chosen a bit larger than the hole in the Cd mask

in order only to illuminate the sample. Sapphire single crystals were used as en-

trance and exit windows of the cryostats to reduce the small angle background in

the experiments.

4.6 2D neutron detector

Neutrons interact weakly with matter which only makes it possible to detect them

effectively by an absorption process whereby the neutron is transformed into some

detectable particles. Reactions with 3He or 10B in a gas mixture is the most used

methods for neutron detection. The absorption reaction for 3He is

n +3 He → p(0.57MeV) +3 T(0.20MeV) (160)
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whereby the created proton and Tritium atom will ionize the gas mixture. By

placing the gas mixture between an anode and cathode with a high voltage po-

tential difference one can obtain a gas amplification, which will result in a current

pulse proportional to the energy of the proton or Tritium. Thus the pulses caused

by neutron absorption can be distinguished from pulses created by low energy

gamma radiation. However the detected pulse do not carry any information of

the energy of the absorbed neutron and therefore the total number of counted

neutrons represent an integration over all neutron energies.

A position sensitive detection is obtained by measuring the signal on two sets

of wires which are perpendicular to each other. 128 times 128 regions of 5-10 mm

in size is often standard resolution for SANS detectors. Thus the data from the

camera is a matrix holding the intensity of the pixels indexed by their horizontal

and vertical position on the detector.
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5 Data analysis

In this chapter the momentum transfer is determined from the detector intensity

distribution and the resolution of the SANS camera is estimated in momentum

transfer space by assuming that the neutrons are scattered in the sample with-

out any energy exchange. Finally the integrated intensity is calculated from the

differential scattering cross section of a given sample.

5.1 Momentum transfer

Figure 20 shows how the scattering geometry of the SANS camera can be used to

relate a detector pixel to a corresponding momentum transfer vector. The direction

of the incoming neutron ki is assumed to be along the optical axis denoted z and

the scattered neutron kf leaves the sample in a direction given by the angles θf
and φf . By assuming elastic scattering (|ki| = |kf | = k) the momentum transfer

reads

κ = kf − ki (161)

= k





sin θf cosφf − 0

sin θf sinφf − 0

cos θf − 1



 (162)

Figure 20. Scattering geometry of the SANS camera where the incoming neutron

wave vector ki is scattered into kf which is observed in the coordinate (x,y,z) on the

2D detector placed a distance z from the sample which is at origo. The direction

of kf is given by the angles θf and φf , which can be found from the detector

coordinate (x,y,z).

By placing the detector a distance z from the sample one can determine the

direction of the scattered neutron from the position (x, y) where it was absorbed

in the detector

sin θf =

√
x2+y2√

x2+y2+z2
cos θf = z√

x2+y2+z2

sinφf = y√
x2+y2

cosφf = x√
x2+y2

(163)

whereby the momentum transfer is given by the detector coordinates (x, y, z)

and the neutron wavelength k = 2π
λ

as
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κx = k
x

√

x2 + y2 + z2
≈ k

x

z

κy = k
y

√

x2 + y2 + z2
≈ k

y

z

κz = k

(

z
√

x2 + y2 + z2
− 1

)

≈ 0 (164)

The last expressions are approximations valid in the small angle limit with

x, y � z.

5.2 Resolution function

The transformation from detector position into momentum transfer space given

by (164) is based on the assumption that all incoming neutrons are directed along

z and have the same wavelength λ. However the distribution of the wavelength

and the incoming angles caused by the velocity selector and the collimation sec-

tion will make it possible for different incoming neutrons to be scattered into the

same detector position. One should think of the distribution of wave lengths and

direction as resulting in a distribution of Ewalds spheres with different radia and

positions of the centers instead of just one sphere as shown on figure 17. Thus the

measured signal I at (x, y, z) is an integration of the differential scattering cross

section dσ
dΩ of the sample and the resolution function Rκ describing the available

neutrons of the camera

I(< κ >) =

∫

Rκ(κ, < κ >)
dσ

dΩ
(κ)dκ (165)

The nominal momentum transfer < κ > is defined from equation (164) by

inserting the wavelength λ0 of the maximum intensity of the incoming beam.

Thus the resolution function Rκ(κ, < κ >) describes the distribution of neutrons

with a momentum transfer κ which can be scattered into the a detector position

corresponding to the nominal < κ > vector.

Appendix A gives an approximative expression for the SANS resolution function

for scattering into a single detector pixel specified by the angle θf as illustrated

on figure 21. All scattering vectors τ of the sample, which are placed within the

resolution ellipse will contribute to the intensity detected in the pixel, and the

weights of the contributions are determined by the gaussian resolution function

given by

R(κq, < κq >) =
1√

2πσ||σ⊥σφ
exp

{

−1

2

(

(κq||− < κq >)2

σ2
||

+
κ2
q⊥
σ2
⊥

+
κ2
qφ

σ2
φ

)}

(166)

Here the momentum transfer vector κq is described in a local coordinate system

with κq|| directed along the nominal momentum transfer < κ > and perpendic-

ular to this are κq⊥ and κqφ respectively in and out of the scattering plane. The

corresponding widths are in the small angle limit θf ≈ 1o given by
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Figure 21. Gaussian resolution function for scattering into the detector pixel cor-

responding to the nominal momentum transfer < κ > at the center of the dis-

tribution. The shape of the distribution is given by the longitudinal width σ||, the

transverse width σ⊥ and the azimuthal width σφ. τ is a scattering vector of the

sample and will only give scattering in the detector pixel when it is moved inside

the resolution ellipse by changing the angle ω during a rocking curve.

σ2
|| = k2

0

{

(< κq >

2π
σλ

)2

+
(

σ2
θf

+ σ2
θi

)

}

(167)

σ2
⊥ =

< κq >
2

4

(

σ2
θf

+ σ2
θi

)

(168)

σ2
φ = k0

2(σ2
φf

+ σ2
φi

) (169)

and are denoted the longitudinal, transverse and azimuthal width. Here the

neutron wavevector is k0 = 2π
λ0

. The width of the wavelength distribution σλ, the

incoming angles σθi
and scattered angles σθf

are determined by the wavelength

spread ∆λ
λ

of the velocity selector, the collimation ∆θi set by the pin-hole config-

uration and the detector resolution given by the pixel size ∆r and the position of

the detector z.

σλ =
λ0

2
√

2ln2

∆λ

λ0
(170)

σθi
=

1

2
√

2ln2
∆θi (171)

σθf
=

1

2
√

2ln2

∆r

z
(172)

The gaussian approximation derived here is only suited for giving a qualitative

understanding of the resolution function since it is formulated in a local coordinate

system, which is not giving the intensity distribution on the detector directly. For

a single scattering vector τ the intensity distribution on the detector will however

have a close similarity to the resolution ellipse, since ellipses of neighboring detec-

tor pixels overlap. Thus the scattering from τ is expected to result in a gaussian
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intensity distribution on the detector and the width of this distribution on the

detector is approximately given by the expression in (167). It should be noticed

that the transverse resolution σ⊥ is orders of magnitude better that the longitu-

dinal σ|| and azimuthal resolution σφ, since it is proportional with the scattering

vector < κq > instead of the neutron wave vector k0. P. Harris [29] has carried

out a much more detailed analysis of the resolution function of a Laue camera

and her main result is a global gaussian resolution function, which can be used to

convolute a fitting function of the differential cross section. Here the data will be

analyzed by calculating the integrated intensity of the flux line lattice.

5.3 Integrated intensity

The integrated intensity of a single crystal reflection refers to the total number of

neutrons scattered by a reciprocal lattice vector τ as this vector is rocked through

the Ewalds sphere. It is found by first integrating the differential cross section over

all solid angles for a given rocking angle ψ and then integrating the cross section

over the rocking angle of the rocking curve. This calculation has been carried out

in Squires [25] p. 41 and by Eskildsen [8] p. 25 and only the main steps are shown

here.

The first step is written as

σtot(ψ) =

∫

Alldir

dσ

dΩ
dΩ =

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

∫

Alldir

δ3D(κ − τ )dΩ (173)

where the differential cross section is separated into the magnitude
∣

∣

dσ
dΩ

∣

∣ and

the δ - function in reciprocal space, which is related to the rocking angle ψ. The

second step is to integrate the cross section over the rocking angle ψ

P = φ

∫ π

ψ=0

σtot(ψ)dψ (174)

where φ is the neutron flux hitting the sample. The result of the calculation is

that the magnitude of the differential cross section
∣

∣

dσ
dΩ

∣

∣ must be multiplied by a

factor

P =

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

φ

k2τ cos(ητ )
=

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

λ2
nφ

(2π)2τ cos(ητ )
(175)

which depend on the size of the Ewalds sphere set by the neutron wavelength

λn and how fast the reciprocal lattice vector τ is rotated through the Ewalds

sphere, which depend on the length of the reciprocal lattice vector and the angle

ητ between the lattice point and the rotation axis as shown on figure 17. Lattice

points on the rotation axis will not rock and will always be on the Ewalds sphere

whereby the integrated intensity becomes infinite.

The reflectivity R of a scattering vector is defined as the ratio between the total

number of neutrons scattered per second P and the number of neutrons hitting

the sample per second given by the product of the incident neutron flux φ and the

illuminated sample area As

R =
P

φAs
=
scattered neutrons

incident neutrons
(176)

The reflectivity of the flux line lattice can now be found from the differential

cross section given by (151)
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RFLL =
λ2
n

(2π)2τ cos(ητ )As
(2π)3

(

γ

4Φ0

)2
NL

Au
h(τ )2

= 2π

(

γ

4Φ0

)2
L

A2
u

λ2
n

τ cos(ητ )
h(τ )2 (177)

where γ is the gyromagnetic ratio, Φ0 is the flux quantum, L is the sample

thickness or length of the flux lines, Au is the area of the flux line lattice unit cell,

λn is the neutron wavelength, τ is the length of the scattering vector, nτ is the

angle between the scattering vector and the rotation axis as shown on figure 17

and h(τ ) is the form factor of a flux line, which is given by the Fourier transform

of the field distribution of an isolated flux line.

5.4 Experimental determination of reflectivity

Figure 22 shows the diffraction pattern from the flux line lattice in TmNi2B2C

when all the images of a rocking curve with the rotation axis vertical are summed

into one image. The diffraction spots have an elliptical shape as expected from the

resolution function analysis, but the major axis of these ellipses are not pointing

towards the center of the detector, because the illuminated sample area is rectan-

gular (4.5 mm x 6.0 mm) and result in a different beam divergence in the vertical

and horizontal plane of the SANS camera. An estimate of the spot size from the

camera settings is outlined in the figure text.

The rocking curve of the (10) flux line lattice reflection is constructed by in-

tegrating the intensity inside a box surrounding the diffraction spot and plotting

this as function of the rock angle as shown on figure 23. Then the integrated in-

tensity becomes the area under the rocking curve divided by the counting time

in each point, but this is only valid if the neutron flux is constant in time, which

is not fulfilled when the neutron source is fluctuating like a spallation source. In-

stead an almost transparent neutron detector called a monitor is inserted in the

direct beam after the velocity selector and it will detect a small fraction of the

beam hitting the sample, whereby the total monitor count will be proportional to

the total number of neutrons hitting the sample. The scaling can be determined

by inserting an attenuator in the direct beam and removing the beamstop sitting

in front of the center of the detector to protect it from the direct beam. Thus

the monitor scaling fmon is defined as the ratio between the number of neutrons

counted by the monitor and the number of neutrons in the direct beam counted

with the detector when the beamstop is removed.

fmon =
Nmonitor

NDirect beam
(178)

Using this the reflectivity may be rewritten

R =
P

φAs
=

∫

I(ψ)
∆t dψ

Nsample

∆t

=

∫

I(ψ)dψ

Nsample

=
fmon

Nmonitor

∫

I(ψ)dψ (179)

where the integral is the area under the rocking curve and I(ψ) is the number of

neutrons counted at the angle ψ when counting Nmonitor neutrons in the monitor.
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Figure 22. Diffraction pattern of the flux line lattice in TmNi2B2C cooled to

T = 2.3 K in an applied field of H = 2.0 kOe along the crystalline c-axis and with

the crystallographic [110] axis in the horizontal and vertical plane of the SANS

camera. The image shows the summation of a series of images in a rocking curve

obtained by rotating the lattice around the vertical direction. A series of background

images without flux lines at T = 12.3K > Tc = 11.5K has been subtracted from

the data. The settings of the SANS camera was λn = 5 Å, ∆λ
λ

= 0.10, pinhole1

= 5.0 cm × 5.0 cm, pinhole2 = 4.5 mm × 6.0 mm, collimation L = 18 m and

detector distance l = 19.75 m. If the sample pinhole is approximated as circular of

a size 5 mm one gets an estimate of the longitudinal and azimuthal resolution of

σ|| = 1.51·10−3 Å−1 and σ⊥ = 1.49·10−3 Å−1 in some agreement with experimental

values σ||,exp = 8.2 ± 0.2 · 10−4 Å−1 and σ⊥,exp = 1.0 ± 0.02 · 10−3 Å−1 found by

fitting a 2D gaussian to the (10) spots of the flux line lattice.

It should be noticed that Nsample is the number of neutrons which has passed

the sample, whereby the sample absorption has been included in the calculation.

The situation where neutrons are scattered in the front part of the crystal and

damped along the path through the crystal is equivalent to damping the incident

beam through the crystal and scattering near the backside.

There will be a difference in neutron flux on the front side I0 and backside I1
of the sample due to the absorption

I1 = I0 exp (−γt) (180)

where t is the sample thickness and the absorption coefficient γ depend on the

tabulated 12 absorption cross sections σabs of the atoms in the crystalline unit cell

of volume Vuc and the neutron wavelength λn

γ(λn) =

∑

uc σabs
Vuc

λn[Å]

1.8 Å
(181)

By introducing a monitor efficiency as Nmonitor = ξmonI0 it is seen that the

monitor scaling

12See Shirane [30] appendix 1
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fmon =
Nmonitor

NDirect beam
=
ξmonI0
I1

= ξmon exp (γt) (182)

will depend on the sample thickness, the absorption coefficient of the sample

and on the neutron wavelength. Thus the monitor scaling must be determined as

function of wavelengths in each experiment.

Thus the reflectivity provides an absolute scale for comparison of the cross

section of scattering from the flux line lattice as determined from varies models.

Figure 23. Rocking curve of the (10) FLL reflection in TmNi2B2C determined

by integrating the intensity in a box surrounding the diffraction spot on figure 22.

The asymmetric shape of this rocking curve indicate that the sample consists of

several single crystals, which is probably connected to the fact that borocarbides

grow in platelets with the c-axis normal to the plate. A fit by 2 gaussians f(x) =

p exp (− (x−c)2
2w2 ) + y0 describes the observed intensity fairly well and the width of

the peaks are w1 = 0.58o and w2 = 1.42o. An estimate of the transverse resolution

gives σ⊥ = 3.7 · 10−6 Å−1 and the corresponding angular resolution of the rocking

curve will be approximately w = σ⊥

τ
= 0.03o showing that the observed rocking

curve is broad compared to the resolution.

5.5 Optimal sample thickness

There exist an optimal sample thickness in a flux line lattice SANS experiment

since the scattered intensity from the flux lines is proportional to the sample

thickness t, but the absorption depends exponentially on the sample thickness.

The scattered intensity becomes

IFLL(t) ∝ t exp (−γt) (183)

which has a maximum at

tmax =
1

γ
(184)

as shown on figure 24.
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Figure 24. Scattered intensity I ∝ t exp (−γt) from the flux line lattice in a sample

of thickness t and with an absorption coefficient γ, which causes the optimal sample

thickness tmax = 1
γ
. For TmNi2B2C one gets γ = 1.68 cm−1 at λn = 1.8 Å and

tmax = 2.1mm at λn = 5 Å. The average thickness of the sample giving the

scattering in figure 22 is approximately 0.7 mm, which is close to tmax.
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6 Borocarbide superconductors

The borocarbides RNi2B2C (R = Y, rare earth La-Lu) has been studied inten-

sively since the discovery in 1994 [2], because these compounds exhibits super-

conductivity when R = Dy-Tm, Lu, Y and magnetic ordering for R = Pr-Tm.

Superconductivity co-exist with the magnetic ordering in the case of R = Dy-Tm

[1].

6.1 Structure

Figure 25 show the tetragonal crystal structure of RNi2B2C (R-1221) which consist

of Ni2B2 layers separated by RC planes [3]. The site R can be occupied by the

rare-earth atoms ranging from La-Lu, since the gradual filling of the 4f electronic

shell in the series only changes the chemical bonding of the outermost 6s2 electrons

slightly. A linear variation of the lattice parameters is seen as the ionic radius is

changing in the series and typical values for the superconducting compounds are

a = b = 3.46 − 3.53 Å and c = 10.49 − 10.63 Å [5].

Figure 25. Tetragonal unit cell I4/mmm of the borocarbides RNi2B2C where the

rare earth atoms La-Lu and Y can occupy the R site. Typical lattice parameters are

a = b = 3.46 − 3.53Å and c = 10.49 − 10.53 Å, and the tetrahedrally coordination

of Ni in the Ni2B2 layers has been emphazised by solid lines in the top part of the

figure.

6.2 Fermi surface

Band structure calculations have been performed on the borocarbides and the

obtained electronic structures are quite complicated [31, 32, 33]. Several bands

crosses the Fermi level and the resulting Fermi surface separate into 3 sheets

experimentally confirmed by Dugdale et. al. [33] on R = Lu. These sheets have

a 3 dimensional character and the resulting normal state is metallic with almost

isotropic conductivity [34].
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6.3 Superconductivity

Borocarbides are considered as BCS superconductors with phonon mediated cou-

pling of the Cooper pairs and the density of state at the Fermi level is dominated

by the Ni orbitals [31]. All superconducting R-1221 are of the second type with

κ > 1√
2

and critical temperatures and fields are in the range Tc = 6 − 16.1 K and

Hc2 = 5 − 90 kOe as showed on figure 26 and listed in table 1.

Figure 26. Upper critical fields Hc2 for H ||c of the superconducting RNi2B2C boro-

carbides based on [35, 36, 37, 38, 39, 40]. Hc2 extends almost linearly to approxi-

mately 90 kOe for the non-magnetic members R = Y, Lu and the suppression of

both Hc2 and Tc of the magnetic members is caused by Cooper pair-breaking due

to the magnetic moment of the rare earth atoms. Features in the curves for the

magnetic members are connected to onset or changes in the magnetic order. For R

= Tm both the in- and out of plane Hc2 curve is showed illustrating the influence

of the susceptibility of the magnetic atoms.

The relative high Tc value of the non-magnetic members can qualitatively be

understood from the BCS relation (2)

Tc = 1.14ΘDe
− 1

N(0)V (185)

where the Debye temperature kBΘD = h̄ωD of the phonons has been introduced.

Specific heat measurements 13 gives ΘD = 464 K for R = Y whereby the product

N(0)V = 0.28 is found. This shows that the weak coupling limit N(0)V <<

1 of the BCS theory is not well satisfied indicating that the borocarbides are

moderately strong coupled superconductors, which is supported by band structure

calculations [32].

An estimate of the gap in R = Y can be obtained from Tc = 15.5 K giving

∆BCS = 1.76kBTc ∼ 2.4 meV with some agrement to STM measurements giving

∆ = 2.2 meV [42] and ∆ = 1.8 meV [43].

The almost linear temperature dependence of the upper critical field for the

non-magnetic members is deviating from the BCS theory predicting the thermo-

dynamic critical field Hc to be approximately given by 14

13H. Michor et. al. [41]
14Schrieffer [14] p. 56
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Hc(T ) ≈ Hc(0)

[

1 −
(

T

Tc

)2
]

(186)

which is proportional to the upper critical field Hc2 =
√

2κHc in the GL theory

(64).

Several explanations have been suggested in the literature such as coupling

between superconductivity on different Fermi surface sheets (two-band model),

non-local extension of the GL model, an order parameter of d-wave symmetry and

pair breaking by magnetic correlations [36]. Generally the superconducting gap

in the nonmagnetic borocarbides should be considered to have anisotropic s-wave

symmetry, while the anisotropy of the characteristic length scales in table 1 mainly

result from the Fermi velocity distribution on the Fermi surface. It should be noted

that the coherence length is considerable larger than the size of the crystallographic

unit cell indicating a 3 dimensional character of the superconducting state.

R Tc[K] TN[K] ξc,ab [Å] λc,ab [Å] κc,ab qmag µDir Ref.

Y 15.6 - 64, 64 1207, 1207 17,17 - - [35]

Lu 16.1 - 46, 60 1010, 690 16.0, 11.6 - - [36]

Tm 11.0 1.5 124,110 780,850 6.3,7,7 0.093(a∗ + b∗) (001) [44, 5]

Er 10.5 6.0 131,150 1160 8.8 0.55 a∗ (100) [38, 44, 5]

Ho 8.7 6.0 280 0.915 c∗ Spiral [39]

5.5 0.55 a∗ b∗ [45, 46]

5.2 1.0 c∗ (110)

Dy 6.2 10.3 3.0 1.0 c∗ (110) [47, 48, 5]

Table 1. Characteristic parameters of the superconducting borocarbides RNi2B2C

in terms of critical temperature Tc, Magnetic ordering temperature TN , coherence

length ξ, penetration depth λ, Ginzberg-Landau κ, ordering vector qmag of mag-

netic phases and the direction of the magnetic moments.

6.4 Magnetism

Rare earth atoms have a magnetic moment due to the partial filled 4f electronic

shell, but the separation between the rare earth atoms in the borocarbides is

too large to have any effective direct exchange interaction. However the local

magnetic moment will polarize the conduction electrons of the metal and these

electrons can thereby mediate an indirect coupling known as the Ruderman-Kittel-

Kasuya-Yosida(RKKY) interaction. The polarization disturbance created by the

local moment is screened by the conduction electrons resulting in a periodically

changing polarization decaying away from the local moment. This effect is similar

to Friedel oscillations in a free electron gas due to a charge disturbance 15 and is

described by the non-local susceptibility ¯̄χ(r−r′) of the conduction electrons. The

Hamiltonian of the indirect interaction between two local moments J i,j sitting at

Ri,j can be written as 16

Hij ∼
∫ ∫

I(r−Rj)(g−1)J j(Rj)χ(r−r′)I(r′−Ri)(g−1)J i(Ri)drdr
′ (187)

where the function I(r − Rj) describes the overlap between the 4f and the

conduction electrons of the atom at Rj , g is the Landé factor connected to addition

15See Ashcroft/Mermin [49] p. 343
16J. Jensen [50] chap. 1.4
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of orbital L and spin moment S into the total angular moment L+2S = gJ found

from Hund’s rule. When summing over all moments the total Hamiltonian is more

conveniently written as

H ∼ −
∑

q

J (q)J(q)J(−q) (188)

with the Fourier transform of the magnetic structure given by

J(q) =
1

N

∑

i

Jie
−iq·Ri (189)

and the interaction term

J (q) ∼ (g − 1)2|I(q)|2χ(q) (190)

This shows that a magnetic structure with a q value corresponding to the max-

imum of the interaction function J (q) will be favored by the indirect interaction.

The resulting ordering of the rare earth moments is in the form of a spin density

wave, where the time average of the rare earth moments attains a fixed orienta-

tion and a finite value changing periodically in space. Crystal field effects and the

specific electronic band structure has a large influence on direction and periodicity

of the spin density wave.

Thermal fluctuations destroys the magnetic order at the Néel temperature TN
which is proportional to the Hamilton above

TN ∼ J (q)J(J + 1)

KB

∼ |I(q)|2χ(q)

KB

(g − 1)2J(J + 1) (191)

Thus if the pre-factor describing the electronic system is assumed constant in

the borocarbide series it is seen that the magnetic ordering temperature should

scale with the deGennes factor dG = (g − 1)2J(J + 1) describing the magnitude

of the Hund’s rule moment. This explains the increasing TN of the magnetic

borocarbides listed in table 1.

The most common spin density wave observed in the borocarbides is directed

along the crystalline a(or b) axis, have the moment along b (or a) and a periodicity

of q ≈ 0.55a∗ (or q ≈ 0.55b∗), with a∗ being the reciprocal unit vector a∗ = 2π
a

.

Figure 27 illustrates the spin density wave along the crystalline a axes. This wave

is in-commensurate with the atomic lattice, but quite close to simply antiferro-

magnetic ordering which would have q = 0.5a∗ and cause neighboring atoms to

have moments of equal magnitude but alternating direction. Band structures for

R = Lu has been used to evaluate the electronic susceptibility given by[51]

χ(q) =
∑

n,m,k

f [εm(k)]{1 − f [εn(k + q)]}
εn(k + q) − εm(k)

(192)

where f(ε) is the Fermi-Dirac occupation function. Large contributions to the

sum is obtained for pairs of occupied and empty states which are separated by a

wave-vector q and have almost the same energy. This is obtained for states close

to the Fermi surface and the q = 0.55a∗ magnetic phase has been explained from

the existence of parallel parts of the Fermi surface causing nesting and a peak

in the susceptibility [33]. The periodicity and direction of the magnetic moments

observed in the magnetic superconductors are listed in table1.
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Figure 27. Spin density wave of the rare earth moments directed along the b axis

and changing periodically along the a axis with a periodicity q = 0.55a∗. The

moments are modulated as M(x) = M0 sin (qx) with x = na giving the positions

of the rare earth atoms along a indicated by solid dots.

6.5 Interaction between superconductivity and mag-
netism

Both the RKKY magnetism and the superconducting ground state are based on

the many-body interaction of the conduction electrons and one might expect the

two ground states to exclude one another. A hand-waving argument for the co-

existence is that the coherence length is much larger than the period of the spin

density wave, whereby the magnetic field averaged over the coherence length is

practically zero.

In the previous discussion of the upper critical field Hc2 the suppression of the

superconducting order parameter has been cause by the acceleration of the Cooper

pairs, which break up when the kinetic energy exceeds the superconducting gap.

This is called the orbital effect, but a magnetic field can directly break the Cooper

pair, because the zeeman effect will shift the energy of the spin up and spin down

electron in the Cooper pair in opposite directions as pointed out by Clogston [52].

The presence of a localized magnetic moment will cause a similar Zeeman split-

ting of the energy of the spin up and spin down electron and the resulting spin

flipping can break the Cooper pairs and cause a reduction of the superconducting

order parameter. This spin flip breaking of the Cooper pairs will scale with the

magnitude of the localized moment and De Gennes [15, 4] has shown that the criti-

cal temperature Tc will be suppressed by the deGennes factor dG = (g−1)2J(J+1)

introduced in the previous section. Thus the increasing magnetic ordering tem-

perature of the different borocarbides result in a decreasing critical temperature

of the superconducting phase in agreement with the deGennes scaling for the pure

compounds as reported by Canfield et. al. [53]
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7 Flux line lattice in borocarbides

Shortly after the discovery of the borocarbides a square flux line lattice induced by

an applied field along the crystalline c-axis was observed in ErNi2B2C using SANS

[6]. Later experiments revealed a field induced transition from a hexagonal to a

square flux line lattice as the field was increased from low to intermediate fields

[54]. This transition is common for both magnetic and non-magnetic borocarbides

and has been observed for Re = Y, Lu, Er and Tm [55, 56, 7].

Figure 28 shows a Bitter decoration of the flux line lattice in R = Tm revealing

the hexagonal symmetry at an applied field H = 20 Oe and the square lattice at

H = 2 kOe observed with SANS.
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Figure 28. The flux line lattice changes from hexagonal to square symmetry as the

applied along the c-axis is increased from low to intermediate fields as shown in the

case of R = Tm. Left: Decoration of the surface with magnetic particles collecting

at the flux line centers imaged by a scanning electron microscope. Middle: Fourier

transform of the decoration image showing a hexagonal lattice at H ||c = 20 Oe.

Right: Neutron diffraction pattern of the flux line lattice at H ||c = 2 kOe revealing

the square symmetry.

7.1 Hexagonal to square symmetry transition

From the theoretical introduction to Ginzburg Landau theory it was argued that

the inherent structure of the flux line lattice is hexagonal and some extension of

the model is needed to stabilize the square lattice. It should also be noticed that

the anisotropy introduced in section 2.9 result in isotropic properties of the ab-

plane of the borocarbides, since the band structure is identical along the a and

b direction and the effective masses likewise. The extension of the model must

therefore include the four-fold symmetry of the Fermi surface and by minimum

describe the superconducting properties along the high symmetry directions [100]

and [110] of the ab-plane.

This has been done by adding higher order gradient terms of the form

C2

{

∣

∣D2
x∆(r)

∣

∣

2
+
∣

∣D2
y∆(r)

∣

∣

2
}

(193)

to the free energy expansion (15) where

Dα = −i∇α − 2eAα
h̄c

(194)
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The square lattice could thereby be obtained by a suitable choice of the pre-

factor C2 [57]. However the GL theory is only strictly valid at the phase-transition

and the accuracy of the additional terms can be questioned well below the Hc2

line at low and intermediate flux line densities. An alternative is to re-derive the

London equation from microscopic theory and examine corrections caused by the

symmetry of the Fermi-surface. This has been done by Kogan et. al. [58, 22]

offering an explanation for the field induced hex to square symmetry transition.

7.2 Non-local Electrodynamics

One of the major differences between microscopic and Ginzburg-Landau theory

is a non-local relation between current and vector potential reflecting the finite

extent of a Cooper pair given by the coherence length ξ0. Non-local refers to the

fact that the current response j(r) of the condensate at the point r depends on

the vector potential A within a sphere of size ξ. This non-local electrodynamics

was first suggested by Pippard and takes the form

j(r) = C

∫

[A(r′) · R]R

R4
exp

(

−R
ξ

)

d(r′) R = r − r′ (195)

where the effective coherence length ξ is limited by the mean free path l of the

normal electrons

1

ξ
=

1

ξ0
+

1

l
(196)

Thus the presence of impurities tend to decrease the mean free path l and

thereby shrink the integration volume, whereby the Pippard relation reduces to

the local relation in the ”dirty” limit where l << ξ0.

The Pippard expression is written as a convolution between the vector potential

and a function Q(r − r′) called the kernel. In Fourier space this relation becomes

the product between the Fourier transform of the two functions and generally

j(k) = Q(k)A(k) (197)

where the kernel is determined from microscopic theory.

7.3 Nonlocal London theory

Kogan and co-workers [58] have used the Eilenberger formulation of the BCS

theory to derive the kernel in the limit of small currents where the magnitude

of the order parameter is unchanged, which is a good description of the high-

κ superconductors, where the core is considered as a singularity as discussed in

chapter 2.4. By introducing suitable expansions and keeping terms of lowest order

they arrive at the following relation between current ji and generalized vector

potential aj [22]

4π

c
ji = − 1

λ2

(

m−1
ij − λ2nijlmklkm

)

aj (198)

which reduces to the anisotropic London equation introduced in chapter 2.9 if

the second term is neglected, which happens in the limit of k → 0. Small k values

means changes in the vector potential on large length scales, where the London

model works fine. However the second term becomes large when

k2 >
1

λ2nijlm
=

1

ρ2
(199)
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which defines a new length scale denoted the non-locality radius ρ and the

second term in (198) gives the non-local corrections to the London equation.

The four fold symmetry of the Fermi surface and thereby the coupling to the

crystalline lattice is taken into account by the 4 rank tensor nijlm given by

nijlm = C
< vivjvlvm >

< v2 >2
(200)

where <> denoted the average over the Fermi surface, vα (α = x, y, z) are the

Fermi surface velocities and the pre-factor C is

C =
h̄2 < v2 >2 γ

4D∆2
0λ

2
(201)

with D being the normalization of the inverse masses D = (det < vivj >)
1
3 ),

∆0 the zero temperature BCS gap, λ the penetration depth and γ is a function

depending on impurity scattering time τ and temperature. In the clean limit (τ →
∞ ) γ is 2

3 at T = 0, but it is reduced to 0 in the dirty limit (τ → 0) and the

non-local corrections vanish. These expressions boil down to showing that the

non-local radius is of the order of the zero temperature coherence length ξ0.

From the current-vector potential relation the fourier components of the mag-

netic field hz can be determined by imposing the flux quantization condition and

for the applied field along the c-axis they become

hz(k) =
Φ0

1 + λ2
abk

2 + λ4
ab(n2k4 + dk2

xk
2
y)

(202)

with n1 = naaaa, n2 = naabb and the anisotropy of the non-local corrections

in the ab-plane given by d = 2n1 − 6n2. The real space field distribution of an

isolated flux line can be obtained analytically 17 for the isotropic case giving

hz(r) =
Φ0

2πλ2

[

K0

( r

λ

)

−K0

(

r

ρ

)]

(203)

The first term is the usual London expression given by the modified Bessel

function K0, but the divergence at the core is removed by the second term, which

is the non-local correction being large within the non-local radius ρ as shown on

figure 29.

Equilibrium flux line lattice

The fourier components of the field given by (202) is just what is needed to apply

the Fourier method outlined in chapter 2.7 for a determination of the equilibrium

flux line lattice in the borocarbides. However the components for k > 1
ξ0

are still

not correct due to the singular description of the core, but instead of introducing a

cut-off in the summations of the Fourier components Kogan et. al. multiplied them

by an exponential factor of the GL form exp (−ξ2k2), which suppresses the fourier

components at high k. Thus the effective Fourier components of the non-local

model are given by

hz(k) =
Φ0

1 + λ2
abk

2 + λ4
ab(n2k4 + dk2

xk
2
y)

exp (−ξ2k2) (204)

Using bandstructure calculations for LuNi2B2C to obtain the Fermi velocity

averages and thereby estimates of the non-local corrections Kogan et. al. were

17Kogan et. al. [58] Appendix B
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Figure 29. Illustration of the field distribution of an isolated flux line described by

the isotropic non-local London model. The standard London result shown by the

dashed curve is diverging at the core, but the non-local correction shown by the

dotted curve gives a negative contribution within the non-local radius ρ ∼ ξ0 and

removes the divergence in the resulting field distribution shown by the solid curve.

κ = 10 and ρ = 0.1λ has been used to construct the plot.

able to calculate the free energy per flux line lattice unit cell as function of the

opening angle β between the two unit vectors spanning the cell.

Figure 30 shows the free energy as function of opening angle β at two different

fields. A single minimum at β = 90o is found for the high field curve confirming a

square flux line lattice with the diagonal along the a axis, but at lower field the

square minimum splits up into two equivalent minima and the symmetry of the

flux line lattice is rhombic. The two minima reflect the 4-fold symmetry of the

Fermi surface, which makes the energy of the 2-fold symmetric rhombic lattice

equivalent when the diagonal of the unit cell is either along the a or b axes. This

degeneracy will cause the flux line lattice to split up into domains oriented along

the principal axes.

H = 500 G


H = 200 G

Figure 30. Free energy of the flux line lattice induced by a field H ||c as function

of the opening angle β of the unit cell. A rhombic lattice is found at low fields and

the square lattice becomes stable at higher fields. Taken from Kogan et. al. [22].

Figure 31 shows the opening angle β of the equilibrium flux line lattice as
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function of applied field along the c and a axis. For H ||c the square lattice is stable

for applied fields above H2 and the opening angle of a rhombic lattice gradually

decreases towards the hexagonal configuration below H2. However a reorientation

transition where the unit cell rotates 45o is taking place at the field H1.

The story is basically the same for H ||a, where the opening angle is scaled by

the anisotropy of the masses along the a and c axis and the saturation field H2

is higher due to different Fermi surface averages in the ac-plane. However the 45o

degree reorientation transition is absent.

Figure 31. Equilibrium opening angle β and unit cell orientation as function of

applied field along the a and c axis. For H ||c the unit cell starts out as almost

hexagonal and with the diagonal of the cell along the [110] direction. At H = H1

the orientation of the cell rotates 45o and the opening angle of the rhombic cell

gradually increases towards 90o of the square lattice, which is found above H = H2.

The reorientation transition is absent for H ||a and the angle change is scaled by

the mass anisotropy in the ac-plane. Taken from Kogan et. al. [22].

In summary the hexagonal to square flux line lattice transition is driven by the

non-local corrections, which are dominant when the vector potential is changing

on length scales similar to the non-local radius ρ. This happens in two situations

a) close to the vortex core as illustrated on figure 29 and b) when the field dis-

tributions of the flux lines become highly overlapping. The transition field H2 is

therefore expected to occur at a certain flux line overlap when the distance be-

tween the flux lines a =
√

Φ0

B̄
is some factor cNL larger than the non-locality

radius ρ

Φ0 = B̄2a
2 = B̄2(cNLρ)

2 ⇒ B̄2 =
Φ0

(cNLρ)2
(205)

Thus the presence of impurities will move the transition towards higher fields

compared to the ”pure” case, since the non-local radius ρ will shrink when the

mean free path l of the normal electrons decreases below the coherence length ξ0.

The square symmetry of the flux line lattice above H2 is caused by the 4-

fold symmetry of the non-local corrections reflecting the underlying Fermi surface

symmetry. At low fields the corrections are only affecting the field distribution close

to the cores resulting in a 4-fold symmetry, with the field along [110] decaying a bit

faster than along [100]. Far from the core the field distribution of an isolated flux
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line becomes isotropic and the overlap of these nearly isotropic flux lines result

in a lattice of almost hexagonal symmetry, as shown on figure 32a. When the

overlap between the flux lines increases a larger part of the unit cell is influenced

by the non-local corrections favoring a 4-fold symmetric field distribution, which

is obtained for the square lattice as illustrated on figure 32b. Figure 32c shows the

resulting reciprocal lattice of the two rhombic lattices, which smoothly approaches

the same square lattice as the opening angle of the unit cell increases towards

β = 90o when the field is increased.

Figure 32. a) Low field hexagonal lattice formed of flux lines, which are corrected

by non-local electrodynamics close to the cores making the field distribution 4-fold

symmetric(shaded squares) and locks the flux line lattice to the crystalline lattice.

The corrections vanish far from the core and the overlap of nearly isotropic field

distributions result in an almost hexagonal lattice. Arrows indicate the movement

of the flux lines as the field and thereby the opening angle β of the unit cell increases

towards 90o of the square lattice. b) The non-local corrections are effective in a

large part of the unit cell at intermediate fields, whereby a 4-fold symmetric field

distribution is favored and the square lattice result. c) Transition from rhombic to

square symmetric unit cell β ≈ 60 → 90o shown in reciprocal space. There are two

co-existing rhombic lattices at low fields, one lattice with a unit cell equal to a)(∇)

and one which is rotated by 90o (4). The unit vectors form pairs around the [110]

direction and the angular splitting along the arc shown by grey is β′ = 90o − β.

Thus the two rhombic unit cells collapses into the square unit cell at the transition

field H2.

Experimental verification of the Non-local London model

The features of the Kogan model has been studied experimentally and qualitative

agreement has been found with a few minor differences. A systematic SANS study

by Gammel et. al. [56] of the transition field H2 in Lu(Ni2−xCox)B2C confirmed

that a decrease of the mean free path by the introduction of magnetic Co impu-

rities moved the transition towards higher fields. This proved that the non-local

electrodynamics is the physics driving the hexagonal to square symmetry tran-

sition and that direct comparison between transition fields observed in different

samples is difficult due to the difference in the sample specific mean free path.
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The reorientation transition at H1 has been observed with SANS in R = Y by

McPaul et. al. [59] and more convincing by Bitter decoration of annealed sample

by Vinnikov et. al. [60]. For H ||a STM measurements by Sakata et. al. [43] have

shown the transition into a distorted square lattice at high fields H = 1T , but a

90o degree reorientation transition has been observed at lower field in the STM

measurement and with SANS by Eskildsen et. al. [61]. This transition can not

be explained by the Kogan model and Knigavko et. al. [62] have argued that its

origin is an anisotropic gap, which was introduced into a two band model.

Phase boundary of the square flux line lattice

Figure 33 shows the phase boundary H2(T ) of the square flux line lattice in R =

Lu determined by a vanishing angular splitting β′ between the unit vectors of

the rhombic lattices as defined on figure 32c. The splitting was determined from

the SANS diffraction pattern of the reciprocal lattice and the insert shows the

azimuthal intensity distribution along the grey arc on figure 32c. At T = 2K

the peak is resolution limited with an azimuthal width of 13.8o, but at higher

temperature T = 12K the width increases above the resolution and the splitting

of the two rhombic unit vectors was determined by fitting the intensity distribution

with two gaussian peaks of fixed width given by the resolution. The resolution

was kept constant at different fields by adjusting the neutron wavelength. The

procedure above resulted in a ±2o error in the zero split limit and the transition

field H2 was defined somewhat above this value at β′ = 3o as indicated on the

figure.

Figure 33. Contour plot of the angular splitting β′ between the unit vectors of the

two rhombic lattices induced by an applied field along the c-axis of LuNi2B2C. The

insert shows the azimuthal intensity distribution at H = 3.0 kOe and the splitting

of the reciprocal lattice vectors is determined by fitting two gaussian functions to

the curve. The transition field H2 from the square to hexagonal symmetry has

been defined by the criteria that β′ = 3o taking the experimental error margin into

account. Taken from Eskildsen et. al. [63].

Below T = 10K the transition field H2(T) is only increasing slightly with

temperature as expected from the Kogan model. Above T > 10K the non-local

London model breaks down as the upper critical field is approached and the order
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parameter is suppressed between the flux lines. Kogan has argued [63] that, this

suppression causes the free energy to increase, but the larger separation between

the flux lines in the hexagonal lattice will favor this compared to the square

lattice and H2(T ) is bending away from the upper critical field Hc2 line. From this

argument a flux line lattice of a symmetry closer to the hexagonal than square

is expected close to Hc2, which is also argued by Gurevich et. al. [64] from the

influence of thermal fluctuations.
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8 Interaction between magnetism
and superconductivity in TmNi2B2C

The Tm member of the borocarbides orders magnetically while it is superconduct-

ing and a quite intricate composite phase diagram has been observed by Eskildsen

et. al. [7] using small angle neutron scattering. However an understanding of the

interaction between the flux line lattice and the magnetism has remained unclear

since the publication in 1998. Here a series of experiment and a reexamination

of the original data in [7] will be presented and a re-interpretation of the data is

proposed.

8.1 Phase diagram for H‖c
Figure 34 show the composite phase diagram of TmNi2B2C with the applied field

along the crystalline c-axis. Superconductivity is observed below a Tc = 10.8K

and co-existing magnetism in the form of a spin density wave is observed below

a Néel temperature TN = 1.5K. The lattice spacing of the tetragonal unit cell is

a = b = 3.4866 Å and c = 10.5860 Å [5].

Magnetism

The spin density wave in zero magnetic field propagates with an incommensurate

wavevector qmI = [0.094a∗, 0.094b∗, 0], where a∗ and b∗ are reciprocal unit vectors

of the crystallographic ab-plane, and the moment µ = 3.78µB is directed along

the crystalline c-axis [5]. Magnetization measurements [44] and inelastic neutrons

scattering studies [65] in the paramagnetic phase show that the crystal-field(CEF)

splitting causes the system to become almost Ising-like with the c-axis as the easy

axis. As the applied field is increased above H = 2.0 kOe a suppression of the

zero field phase begins while a new spin density wave appears with a propagation

vector rotated by 45 degrees with respect to qmI and with a magnitude qmII =

0.88 qmI = 0.21 Å−1 [7]. A splitting into pairs of reflections separated between

11−15o around the [100] direction can be observed depending on the field history

[66, 8].

Superconductivity

At low fields H = 0−1 kOe the flux line lattice changes from a hexagonal to square

symmetry seen by an increase of the opening angle of the FLL unit from βu ≈
60o → 90o and with the diagonal of the unit cell along the crystallographic â or b̂

direction as shown on figure 28. This transition is common for both the magnetic

and non-magnetic borocarbide superconductors and is caused by corrections to

the flux line interaction by non-local electrodynamics as explained in chapter 6.

However the square FLL changes into two rhombic lattices with the diagonal of

the unit cell still along the crystallographic â or b̂ direction but with the opening

angle decreasing from 90o towards lower values around 70o as the applied field

is increased. At low temperature and high fields a third FLL phase of hexagonal

symmetry is observed, but the diagonal of the unit cell is rotated 45 degrees

compared to the previous phases and is now directed along the crystalline [110]

direction.
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Figure 34. Composite phase diagram of magnetism and superconductivity in

TmNi2B2C when H‖c. Four flux line lattice phases denoted A, B, C and D

with different symmetries are seen below the critical temperature TC = 11.0K of

the superconducting phase and two spin density waves denoted qmI and qmII are

observed below the magnetic ordering temperature TN = 1.5K. The A phase is a

square FLL lattice resulting from non-local electrodynamics imposing the symmetry

of the Fermi surface in the ab-plane into the FLL when the flux lines are suffi-

ciently overlapping. A SANS diffraction pattern of the square FLL at H = 2.0 kOe

and T = 2.3K is shown in the insert A with the crystalline (110) directions hor-

izontal and vertical. As the overlap is reduced at lower fields the symmetry is

changing smoothly towards hexagonal marked as the D phase and the insert shows

the Fourier transform of a magnetic decoration at H = 20Oe and T = 4.2K,

but the orientation of the FLL is arbitrary with respect to the SANS diffraction

patterns. All borocarbides have shown the AD transition and the lower part of the

H2 line in the figure is only a guide to the eye, since it is based on the decoration

at H = 20Oe and the SANS diffraction patterns above H = 1.0 kOe. The B-phase

consist of two rhombic lattices with the unit cell diagonal along the crystallographic

â or b̂ direction and an opening angle of βu ≈ 75o as shown on insert B corre-

sponding to the point at H = 6.5 kOe and T = 1.7K. The C phase is observed at

low temperature and high field and is composed of two hexagonal lattices with the

unit cell diagonal along the crystallographic [110] direction as shown on the insert

for H = 6.0 kOe and T = 1.0K. The AB-phase boundary(red points) has been

found by the author as shown in later sections, while the low temperature phase

diagram (T < 1.7K) has been reproduced from Eskildsen et. al. [7].
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8.2 Determination of AB FLL phase boundary in
the paramagnetic region

The transition from the square A to the rhombic B FLL phase in TmNi2B2C

appears similar to the symmetry transition from the low field hexagonal phase

into the square phase as illustrated on figure 32. Thus the AB phase boundary

can be determined by studying the splitting of the square FLL diffraction spots as

function of applied field, which has been done in the paramagnetic phase in order

to complete the FLL phase diagram on figure 34. All measurement were done at

constant neutron wavelength, because a direct comparison of the FLL reflectivity

at different fields and temperature was preferred over a mode of constant resolution

at the time of the experiment. This give some limitation in the fitting procedure,

since the resolution must be estimated.

Experimental conditions

The 6 m SANS camera in the cold neutron guide hall at the Risø DR3 reactor was

used to study the sample sitting in a 5 tesla Oxford cryomagnet holding a 1K pot

for cooling to 1.5 K. Diffraction patterns from the FLL were obtained by cooling

the sample below Tc in a field along the crystalline ĉ-axis and rotating the cryostat

±4o with the flux lines directed along the neutron beam. The crystalline small

angle neutron scattering background of the sample was determined by cooling

the sample below Tc in zero applied field and this background was subtracted

from the data. All diffraction patterns were taken at the same neutron wavelength

λn = 6.75 Å with a wavelength spread of ∆λ
λ

= 0.18 and the settings of the SANS

camera were : Collimation L = 6.0 m, sample detector distance l = 6.0 m, Pinhole1

circular diameter D1 = 25mm, pinhole2 rectangular 4.5 × 6.0 mm.

Azimuthal intensity distribution

Figure 35 shows how the azimuthal distribution of the scattering is obtained by

integrating the detector intensity in intervals of the azimuthal angle and in a radial

band of momentum transfer in the range κ = τFLL ± ∆κ. Diffraction patterns of

summed rocking curves are shown on the left hand side and the corresponding

azimuthal intensity distribution is shown on the right hand side. Fits by a single

gaussian function are summarized in figure 36 and show the FWHM width as

function of applied field and different temperatures. The curves almost collapse

into one curve at low applied fields with small error bars, but an increase of the

width is seen as the applied field is increased and the error bars increase as the

peaks of the rhombic B phase can be resolved separately. Figure 37 shows the

splitting between the rhombic peaks determined by fitting two gaussian functions

to the azimuthal intensity. A splitting of zero has been inserted when the fit

effectively reduced to one gauss function and the error bar of the peak position

has been assigned. The two peak fits for T = 4K has been shown without setting

the splitting to zero to illustrated the unsuccessful fitting at low applied fields.

Discussion

An estimate of the FWHM angular resolution can be obtained from the azimuthal

resolution in reciprocal space
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Figure 35. Left : Diffraction patterns of FLL scattering across the transition from

the B(top) to the A(bottom) FLL phase at T = 1.7K. The transition from the A

to the B phase causes the vertical and horizontal peaks to split apart due to the

rhombic symmetry of the B phase. Top figure was obtained at a neutron wave-

length λn = 9 Å to resolve the rhombic FLL better and λn = 6.75 Å for all other

figures. Right : Azimuthal intensity distribution found by integrating the intensity

in angular slices between the two circles inclosing the FLL diffraction spots ob-

tained at λn = 6.75 Å. The azimuthal intensity of the B phase can be fitted by two

gaussian functions giving a FWHM width of 16.1 ± 1.0o, which should be consid-

ered as the resolution and an angular splitting between the peaks of 21.5o. A fit by

a single gaussian function is shown by the dotted line giving a FWHM width of

31.4 ± 3.9o with large error bars due to the bad fit. The splitting decreases across

the transition from the B to the A phase and the azimuthal intensity distribution

is best described by a single gaussian at H = 2.0 kOe giving a width of 24.6±0.2o.

∆φ = 2
√

2 ln 2
σφ
τ

=
2π

λnτ
∆φi

=

√
Φ0 sinβu

λn
√
B

D1

L
(206)
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Figure 36. Full width half maximum width of gauss function fitted to the azimuthal

intensity distribution. The curves almost collapse into one curve with a negative

slope at low field, but an increase of the width is seen as the applied field is increased

and large error bars appear when the two peaks of the rhombic B phase are resolved.

The dashed line shows a rough estimate of the resolution fixed by the value 16.1o

obtained from fitting the separated peaks of the B-phase at H = 6.5 kOe and T =

1.7K. This indicate that the width of the peaks at low field are resolution limited.

Figure 37. Split between two gauss peaks fitted to the azimuthal intensity distribu-

tion. These fits were only possible in the B phase and a splitting of zero was assign

when the two peak fit reduced to one peak. The large error bars for T = 4 K and

at low field illustrates a failed fitting.
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where the reciprocal lattice vector τ depending on the field B and the unit cell

opening angle βu

τ =
2π√
sinβu

√

B

Φ0
(207)

has been inserted together with the beam divergence

∆φi =
2r1
L

=
D1

L
(208)

Thus it is seen that the angular resolution is expected to scale as 1√
B

and the

dashed line on figure 36 has been constructed from this functional form and by

fixing the resolution to the width obtained in the two gauss peak fit atH = 6.5 kOe

and T = 1.7K. The estimated resolution is in qualitative agreement with the

measured width at low fields, where the diffraction spots are resolution limited.

The transition from the A to the B phase can now be defined as the field where

the slope of the gauss width curve changes from negative to positive indicating

that the width of the diffraction spot is increasing above the resolution limit and

the red points on figure 34 has been constructed from this criteria by assigning

an error bar of ±0.5 kOe to each point. The red line through the points is only a

guide to the eye.

It is interesting to note the similarity between the AB phase boundary and the

Hc2 curve indicating that these are closely related. Kogan has argued that the

square FLL is destabilized when the cores of the flux lines start to overlap due to

the loss of condensation energy and the hexagonal symmetry is thereby favored

because the separation between the flux lines is larger compared to the square

lattice (see section 7.3). Thus the physics driving the AB transition seems to be

the crossover from intermediate flux line density to high flux line density and the

transition field can be determined by the criteria that the flux line spacing a is

some factor cIH larger than the core size given by the coherence length ξ whereby

a = cIHξ and

Φ0 = BABa
2 = BABc

2
IHξ

2 ⇒ BAB =
Φ0

c2IHξ
2

(209)

The upper critical field is given by Bc2 = Φ0

2πξ2 and the AB transition field can

thereby be written as

BAB
Bc2

=
2π

c2IH
(210)

From figure 34 the above ratio can be determined giving BAB

Bc2
= 0.40 − 0.53

between T = 1.7 − 5.0K and the corresponding scaling factor becomes cIH =

3.96 − 3.45.

D. McK. Paul and co-workers 18 have reported similar studies on TmNi2B2C

with H ||c and found that the FLL only approaches the square symmetry with a

maximum opening angle of βu = 78.5o at an applied field of H = 3 kOe as shown

on figure 38. A plot of the maximum opening angle in the HT phase diagram is

shown in figure 39 and is very similar to the AB phase boundary described in

this report and shown on figure 34. The fact that D. McPaul et. al. never sees

a square lattice is probably connected to a higher impurity concentration in the

sample, whereby the transition line H2 between the A and D FLL phases is moved

towards higher fields as discussed in section 7.3 and the square FLL phase might

18K.-H. Müller and V. Narozhnyi [67], page 323-332
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disappear. However the transition into the high flux line density region will still

take place and will be the same, since the Bc2 lines are qualitatively identical for

the two samples. Thus the largest opening angle of the flux line lattice will be

found on the AB transition line, when the non-local corrections are to weak to

drive the FLL all the way into the square symmetry.

The data of D.McPaul are interesting since they shows that the flux line lattice

is driven towards the hexagonal symmetry at high temperatures, which supports

the idea that the AB-phase boundary will follow the Bc2 line in a similar way to

what was found for LuNi2B2C and shown on figure 33.

Based on the observations above it is suggested that the transition line H2 = Φ0

r2

consist of two branches which are determined from different length scales r. The

AD transition line is caused by the non-local electrodynamics and the length scale

involved is the non-locality radius ρ of the Kogan model r = cNLρ (see equation

205), whereby a lower H2 field is given by

H2l ≈
Φ0

(cNLρ)2
(211)

The AB transition line is determined by the crossover from intermediate to high

flux line density set by the length scale r = cIHξ and the corresponding upper H2

field is given by

H2u ≈ Φ0

(cIHξ)2
(212)

with the coherence length ξ being the length scale connected to the upper critical

field Hc2 of the superconducting state by r =
√

2πξ.

The qualitative trend of the composite H2 curve is marked by the dashed line

in the phase diagram shown on figure 34. This indicates that the vortex physics

in the paramagnetic phase does not seem directly connected to the magnetism,

but only indirectly because the presence of the Tm ions reduces the upper critical

field Hc2 and thereby defines the temperature dependence of the coherence length

ξ(T ).

One could speculate that the AB transition in the magnetic ordered phase

T < TN = 1.5K is also a crossover from the intermediate- to high flux line den-

sity, whereby the magnetic phase transition between qmI and qmII is driven by

the symmetry change of the flux line lattice and the faster reduction of the super-

conducting order parameter as the field is increased. This argument is supported

by the observation of hysteresis in the splitting of the magnetic diffraction spots

of the qmII phase depending on the field history of the sample as reported by

Eskildsen et. al. [66]. The qmII spots are split when the field is increased after

cooling the sample to T = 100mK in zero field, but the split is first observed

when H ≤ 3 kOe as the applied field is decreased below Hc2 at T = 100mK.

The flux line lattice transition from the rhombic B to the hexagonal C phase

is of first order since the unit cell is rotating 45 as shown by the inserts of figure

34. However the origin of this transition is still unclear, but might be related to

the reduction of the superconducting order parameter whereby the influence of

the magnetism increases.

In conclusion the vortex physics in the paramagnetic region is only indirectly

influenced by the magnetism, which determines the features in the temperature

dependence of the coherence length ξ(T ). The square flux line lattice is suggested

to exists in between two transition lines Ht = Φ0

r2
defined from two new length

scales : the non-locality radius ρ caused by non-local electrodynamics of clean

superconductors and the flux line cores size ξ which start to overlap when the flux

line separation becomes r = cIHξ. Thus the length scales involved are
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Figure 38. Opening angle of the FLL unit cell in TmNi2B2C induced by an applied

field of H‖c = 3.0 kOe as reported by D. McPaul et. al. [67] p. 330
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π
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
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




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Hc2

H2u

H2l

Hc1

(213)

resulting in the upper critical field Hc2, the upper- and lower transition field of

the square flux line lattice and the lower critical field Hc1 of the superconducting

state. Finally the observed phase boundaries demonstrates that the idea of Kogan

that the overlap of the vortex cores will drive the FLL away from the square

symmetry is qualitatively correct.

8.3 Reflectivity analysis at H‖c = 2.0 kOe

Besides the many changes seen in the symmetry of the flux line lattice as the

magnetic phases are entered a large increase of the scattering is also observed

as shown on figure 40. Again the interaction between superconductivity and mag-

netism is obvious and the change of the reflectivity indicates that the properties of

the superconductor is changing dramatically across the magnetic phase transition.

Here a quantitative analysis of the FLL reflectivity is performed in an attempt to

determine how the superconducting length scales given by the penetration depth

λ and the coherence length ξ are changing across the transition.
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Figure 39. Position of maximum opening angle of the FLL unit cell in the HT

phase diagram of TmNi2B2C as found by D. McPaul et. al. [67] p. 330
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Figure 40. The reflectivity of the (10) FLL diffraction spot is showing large changes

as the magnetic phases are entered below the Néel temperature TN = 1.5K. The

insert shows how the reflectivity is peaking when the phase boundary between the

two magnetic phases qmI and qmII is crossed at constant temperature. Taken from

Eskildsen et. al. [7].

Restricting the parameter space

From a theoretical point of view the description of the reflectivity of the flux line

lattice in the borocarbides is quite limited, since one of the best suggestions in the

form of the Kogan model outlined in section 7.3 is only valid for intermediate flux
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line densities. A comparison between the Kogan model and the data is therefore

restricted to the square or low field hexagonal flux line lattice. In the section about

the neutron scattering from the flux line lattice at intermediate flux line densities

it was argued that the neutron cross section can be separated into a form factor of

an isolated flux line and a structure factor depending of the spatial configuration

of the flux lines. Thus by making the reflectivity analysis at a constant field and

in the square flux line lattice phase is equivalent to fixing the structure factor and

all changes in the reflectivity should come from changes in the form factor of the

isolated flux line. From the composite phase diagram in figure 34 it is seen that

H = 2.0 kOe is inside the square phase A when the magnetic transition is crossed

and this field was chosen for the analysis.

8.4 Extracting the superconducting length scales
from the SANS reflectivity

Small angle neutron scattering has been used extensively to study the flux line lat-

tice of superconductors and one of the main activities in the 70’ties was to compare

newly developed descriptions of the flux line form factor with the experimental

neutron scattering data on Niobium [68, 69, 70, 71]. The main approach was to

examine how the reflectivity of the different diffraction spots decay in reciprocal

space.

From the definition (177) of the reflectivity

RFLL = 2π

(

γ

4Φ0

)2
L

A2
u

λ2
n

τ cos(ητ )
h(τ )2 (214)

it is seen that it is proportional with the the square of the form factor h(τ) of

an isolated flux line, which in the Kogan model takes the form

hz(κ) =
Φ0

1 + λ2
abκ

2 + λ4
ab(n2κ4 + dκ2

xκ
2
y)

exp (−ξ2κ2) (215)

depending on both the penetration depth λ appearing in the denominator of the

first factor describing the non-local London model and on the coherence length ξ

in the exponential cut-off caused by the insufficient description of the flux line core

in the London model. Thus the intensity of the diffraction spots will decrease the

further out in reciprocal space the spots are positioned. Here it should be noted

that the unit of the form factor h(τ) is [field × area], because it is the Fourier

transform of the magnetic field distribution, but this also shows that one can

introduce a normalized form factor by normalizing with either the flux quantum

Φ0 or with the area of the FLL unit cell Au. In the first case used by Schelten et.

al. [69] the normalized form factor becomes unit less and in the second case used

by Forgan [72] it takes the unit of the magnetic field

F (τ) =
h(τ)

Au
=

B̄

Φ0
h(τ)

=
B̄

1 + λ2
abτ

2 + λ4
ab(n2τ4 + dτ2

xτ
2
y )

exp (−ξ2τ2) (216)

which is in the same form as the solution obtained to the London equation in

section 2.7 by expressing the field distribution as a Fourier series and using the flux

quantization condition Φ0 = B̄Au. In the last case the reflectivity then becomes

RFLL = 2π

(

γ

4Φ0

)2
Lλ2

n

τ cos(ητ )
F (τ )2 (217)
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The superconducting length scales of several of the borocarbides have been

determined from the SANS reflectivity of the (10) diffraction spot as the position

of the diffraction spot in reciprocal space was changed by increasing the applied

magnetic field [73, 74]. τ10 is related to the average field B̄ in the FLL unit cell by

the flux quantization condition Φ0 = B̄Au = B̄( 2π
τ10

)2 whereby the flux line form

factor F (τ10) can be rewritten

F (τ10) =
B̄

1 + (2πλab)2

Φ0
B̄ +

(

n2 + d
4

) (2πλab)4

Φ2
0

B̄2
exp

(

−cξ(2πξ)
2

Φ0
B̄

)

(218)

The factor cξ = 1
4 − 2 is introduced because the gaussian exponential cut-

off is only an approximative description of the influence by the flux line core as

suggested by Yaouanc et. al. [20]. By plotting the logarithm of the squared form

factor an almost linear curve as function of the average field B̄ is obtained due to

the exponential cut-off

lnF 2
τ10

(B̄) = ln
B̄2

(

1 + (2πλab)2

Φ0
B̄ +

(

n2 + d
4

) (2πλab)4

Φ2
0

B̄2
)2 − 2cξ(2πξ)

2

Φ0
B̄ (219)

Figure 41 shows a linear fit to ln|Fτ10 |2 for LuNi2B2C on data reported by Es-

kildsen et. al. [73, 8] and the obtained fitting parameters are in close agrement with

original parameters by Eskildsen et. al. [8]. The coherence length is determined

from the slope of the linear fit, which is given by

α = −2cξ(2πξ)
2

Φ0
(220)

and the penetration depth is determined from the intersection with the axis,

which can be approximated by neglecting the first and last term in the denomi-

nator of expression (219)

β = ln

(

Φ2
0

(2πλ)4

)

(221)

One thereby obtains the values λ = 1061 ± 37 Å and ξ = 82.0 ± 2.3 Å, which

is deviating from recent transport measurements quite a bit with λ = 690 Å and

ξ = 60 Å [36]. A choice of cξ = 0.90 would give the coherence length equal to

the one determined from the transport measurement and it is still within the

boundaries suggested by Yaouanc.

A fit by the full Kogan model given by (219) is also shown on figure 41 and the

deviation from a straight line can be explained by the presence of the non-local

corrections specified by the third term in the denominator. The following fitting

parameters were obtained

p1 =
(2πλ)2

Φ0
= (1.56 ± 0.11) · 10−2G−1 (222)

p2 = n2 +
d

4
= (8.15 ± 2.2) · 10−3 (223)

p3 =
2cξ(2πξ)

2

Φ0
= (4.01 ± 0.7) · 10−5G−1 (224)

giving λ = 903± 32 Å and ξ = 46± 4 Å. Here the penetration depth is closer to

the transport data, but the coherence length becomes smaller than the transport

estimate and cξ = 0.29 is needed to make correspondence between the two.
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The interesting detail of the fit with the full Kogan model is that it gives an

estimate of the magnitude of the non-local corrections parameterized by p2. In the

original model calculation by Kogan et. al. [22] the non-local corrections were es-

timated by evaluating Fermi velocity averages of the Fermi surface of LuNi2B2C

determined from bandstructure calculations. The following parameters were re-

ported

n2 = 0.0705c

d = 0.675c

c = 0.221− 0.365 (225)

which should give

p2 = n2 +
d

4
= 5.3 · 10−2 − 8.7 · 10−2 (226)

This estimate is about a factor of 10 larger than the value obtained in the fit, but

the non-local corrections depend on the impurity concentration of the sample and

will vanish in the dirty limit. Thus fitting values smaller than the above estimate

are quite likely.

When turning to TmNi2B2C the method outlined in this section is breaking

down completely as illustrated on figure 42. A slight increase of ln|Fτ10 |2 is seen

for H < 3 kOe followed by a non-linear decrease. It is interesting to compare this

field dependence with the composite phase diagram shown in figure 34, which

indicates that the decrease of the form factor above H = 3 kOe is co-incident with

the transition from the intermediate- to high flux line density.

Thus the method of analyzing the intensity of the most intense diffraction spot

as the position in reciprocal space is increased by increasing the applied field is

not applicable to TmNi2B2C and an alternative is needed.

8.5 Reflectivity ratio

One way to compare the scattered intensity from the flux line lattice with any

model without changing the applied field or temperature is to evaluated the ratio

between the reflectivity of the different diffraction spots and the (10) peak. The

advantage of this method is that many of the pre-factors entering the reflectivity

equation (177) will drop out of the calculation giving

R(τ)

R(τ10)
=
τ10 cos(η10)

τ cos(ητ )

(

h(τ)

h(τ10)

)2

(227)

By introducing the indexes na and nb of the square flux line lattice with a

horizontal and b vertical in figure 17 then the reciprocal lattice vectors are given

by τ =
√

n2
a + n2

bτ10 and the geometric factor cos(ητ ) = na√
n2

a+n2
b

. The first factor

in the reflectivity ratio then only depends on the index na of the FLL reflection in

the horizontal plane, because this determines how fast the lattice point is rocked

through the Ewalds sphere

τ10 cos(η10)

τ cos(ητ )
=

1

na
(228)

Thus the reflectivity ratio is directly connected to the flux line form factor given

by the Kogan model equation (215) as described in the previous section.

82 Risø–R–1425(EN)



Figure 41. Logarithm of the squared form factor ln|Fτ10 |2 of LuNi2B2C at T =

1.9K plotted as function of the applied field. The data has been reproduced from

Eskildsen [8] and the linear fit to the data giving α = (−1.24 ± 0.07) · 10−4 and

β = 7.68±0.14 is in close agreement with the original fit. A penetration depth λ =√
Φ0 exp (− β

4 )

2π = 1061± 37 Å and a coherence length ξ = 1
2π

√

Φ0(−α)
2cξ

= 82.0± 2.3 Å

is obtained from the linear fit using cξ = 1
2 . The data is slightly deviating from a

straight line, which is caused by the non-local corrections of the Kogan model. A fit

based on the full Kogan model in the form ln |Fτ10 |2 = ln B2

(1+p1B̄+p2(p1B̄)2)
2 − p3B̄

gives a somewhat better fit reproducing the slight curvature and the parameters

p1 = (2πλ)2

Φ0
= (1.56± 0.11) · 10−2G−1, p2 = n2 + d

4 = (8.15± 2.2) · 10−3 and p3 =
2cξ(2πξ)2

Φ0
= (4.01 ± 0.7) · 10−5G−1. These parameters correspond to a penetration

depth λ = 903 ± 32 Å and a coherence length ξ = 46 ± 4 Å again using cξ = 1
2 .

Reexamination of low temperature data

The SANS data published by Eskildsen et. al. [7] was reexamined in the temper-

ature interval T = 0.5 − 1.6K at H = 2.0 kOe and figure 43 show the diffraction

pattern at T = 0.5K together with the integrated intensity of the (10), (11), (20)

and (12) diffraction spots as function of temperature. Numerical integration of the

rocking curve as described in section 5.4 was used to obtain the integrated intensi-

ties and these were normalized to a monitor count of Nmonitor = 105, which is the

monitor counting for the T = 0.5K diffraction pattern. An increase of the scatter-

ing by a factor of almost 2 is seen by lowering the temperature from T = 1.6K to

T = 0.5K in agreement with the trend seen on figure 40. This trend is also seen

in the diffractions spots with higher indices and the reflectivity ratio as defined

in (227) has been determined from the integrated intensity and is shown in figure

44.

Model comparison

The parameters n2 and d of the Kogan model depends on averages of the Fermi

velocities on the Fermi surface, but neither band structure calculation nor mea-
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Figure 42. Logarithm of the squared form factor ln|Fτ10 |2 of TmNi2B2C at

T = 1.9K plotted as function of the applied field. This plot illustrates that the

method for extracting the superconducting length scales from the almost linear

field dependence is not working. An attempt to fit a straight line to the data is

shown with the corresponding fitting parameters suggesting λ = 613 ± 58 Å and

ξ = 132 ± 21 Å. Taken from Eskildsen [8].

Figure 43. Left: Diffraction pattern from FLL in TmNi2B2C obtained by cooling

the sample to T = 0.5K in an applied field H = 2 kOe and rocking it with respect

to the vertical axis. The FLL unit vectors a and b are directed along the [110]

and [11̄0] crystalline directions, whereby the lattice points can be index by τ =

naa+nbb and τ =
√

n2
a + n2

bτ10. Right: Integrated intensity of the (10),(11), (12)

and (20) diffraction spots normalized to a monitor count of Nmonitor = 105 as the

magnetic transition at TN = 1.5K is approached. The integrated intensity of the

(10) reflection is decreasing by almost a factor of 2 close to the phase transition and

reflections with indices higher that (11) becomes very weak. Arrows indicate the

temperature history starting with the cooling. Figure 40 showing the (10) intensity

was first reported by Eskildsen et. al. [7] and this figure is based on the same data

set.
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Figure 44. Reflectivity ratio between diffraction spots with index (nanb) and the

horizontal unit vector spot with index (10). This ratio depend on the FLL form

factor and comparison with the Kogan model can be performed.

surements of the Fermi surface of TmNi2B2C are available. In lack of better it

is often assumed that the Fermi surface averages are approximately the same for

all the borocarbides and one can thereby try to use values obtained from band

structure calculations on LuNi2B2C as listed in (225).

Figure 45 shows the reflectivity ratio between the (11) and (10) diffraction spots

determined from the Kogan model based on the non-local parameters listed in the

previous section and for different values of the superconducting length scales given

by the penetration depth λ and the coherence length ξ. The open circle marks the

reflectivity ratio R11

R10
= 0.13 expected from the superconducting length scales

determined from magnetization measurements by Cho et. al. [44], but the SANS

measurement gives a ratio of about 0.42 at T = 1.6K, which is hard to obtain

from the model unless the superconducting length scales are changed quite a bit.

The measured value can be obtained by setting the coherence length equal to

zero as shown by the top curve, and the change of the measured reflectivity ratio

from R11

R10
= 0.42 → 0.57 as the temperature is lowered should then be interpreted

as an increase of the penetration depth from λ ≈ 780 Å to about λ ≈ 1550 Å.

However the reflectivity is inversely proportional to λ4 and an increase of λ by

a factor of two should result in a decrease of the scattered intensity by a factor
1
24 = 1

16 , which is contrary to the observed increase of the scattered intensity. The

other possibility is to interpret the reflectivity ratio as a dramatic decrease of the

penetration depth, which will cause an increased scattered intensity, but this limit

seems quite unlikely because it suggest that the superconductor is driven all the

way to the border of being a type-II superconductor with κ = λ
ξ
> 1√

2
. This limit

also means that the vortex cores are overlapping and the superconductor is not

in the intermediate flux line density state, whereby the London approach of the

Kogan model is breaking down.

It can be concluded that the reflectivity ratio analysis does not provide a good

explanation for the data and the model interpretation resulted in contradicting

trends or to a breakdown of the non-local London model.

8.6 Examination of higher order FLL reflections

Finally a SANS experiment at the Paul Scherrer Institute(PSI) was conducted in

order to make a comparison between the Kogan model and the intensity of all the
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Figure 45. Reflectivity ratio between the (11) and (10) diffraction spots calculated

from the Kogan model for different superconducting length scales at a field of H =

2.0 kOe. The open circle indicates the superconducting length scales λ = 780 Å

and ξ = 124 Å obtained from magnetization measurement by Cho et. al. [44] and

the corresponding reflectivity ratio is 0.13. The constant cξ = 1 has been used in

the exponential cut off of the form factor. The choice of the parameters n2 and

d are taken from the bandstructure estimates. In the limit of vanishing non-local

corrections (n2 = d = 0) the increase of the reflectivity ratio at high penetration

depths is absent with R11

R10
→ 1

4 for λ→ ∞ and ξ = 0.

diffraction spots from the FLL observed in the paramagnetic phase atH = 2.0 kOe

and T = 1.7− 2.3K. The data was obtained on the same crystal and in the same

cryostat used for the AB phase boundary study, since the Risø reactor meanwhile

had been shut down permanently and the cryogenics had been moved to PSI.

The diffraction pattern of the FLL was collected at the 18 m SANS at the cold

neutron beam guide ”1RNR16” of the SINQ spallation neutron source and figure

22 in section 5.4 shows the summed rocking curve obtained in a counting time of

about 10 hours. This relatively long counting time ensured that the (22) reflections

could be seen with a statistics sufficient to evaluate the reflectivity. The reflectivity

of the different diffraction spots were determined by fitting a 2D gaussian function

to the diffraction spots of the summed rocking curves and calculating the volume

under the peak. This procedure gave equivalent result to the method based on

integration of the rocking curves as described previously. An advantage of the

peak fitting method is that the position in reciprocal space is determined as well.

Figure 46 show the FLL reflectivity of the different diffraction spots as function of

the position in reciprocal space at different temperatures for the low temperature

data obtained by Eskildsen [8] and the PSI data as well. The flux line form factor

can then be calculated and figure 47 shows a comparison with the Kogan model at

T = 2.3K. It should be noted that the wavelength in the Risø experiment has been

corrected by 11.5 % due to a misalignment of the velocity selector with respect to

the neutron beam. This explains the difference in the determined reciprocal lattice

vectors of the Risø and the PSI data.

The calculated values of the Kogan model shown in figure 47 supports the

previous conclusion that the superconducting length scales are unusual even in

the paramagnetic phase with λ = 340 Å indicating that the flux lines are more

narrow than expected from magnetization measurements giving λ = 780 Å. Figure

48 show a comparison of the low temperature Risø data and the PSI data at
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Figure 46. Reflectivity of flux line lattice diffractions spots at H = 2.0 kOe and

different temperatures plotted as function of the magnitude of the reciprocal lattice

vectors with the indices shown above the upper axis. The Risø data was obtained

at a neutron wavelength λn = 11.1 Å and temperatures T = 0.5K(4) and T =

1.6K(♦), whereas the PSI data was obtained at λn = 5.0 Å and temperatures T =

1.7K(×) and T = 2.3K(+). The difference in reflectivity of identical diffraction

spots like (10) and (01) is caused be different velocity the lattice vectors are rocked

through the Ewalds sphere, and the offset between the Risø and the PSI data comes

from the different wavelengths used in the experiments.

T = 2.3K in the paramagnetic phase. First of all an increase of the form factor is

observed at low temperature, but the decay of the reflectivity in reciprocal space

is also slower giving a penetration depth of λ = 290 Å.

Discussion

The above results are obtained deep down in the superconducting phase and one

could question if the extrapolated length scales from the magnetization measure-

ments are appropriate for a comparison. An estimate of the coherence length as

function of temperature can be obtained directly from the upper critical field curve

ξ(T ) =
1√
2π

√

Φ0

Hc2(T )
(229)

and figure 49 shows the coherence length determined from the transport data

by Naugle et. al. [37]. The coherence length is diverging near Tc as expected from

the Ginzburg-Landau theory and saturates below T ≈ 8K at ξ ≈ 200 Å with

small features of the order δξ ≈ 20 Å caused by the magnetism. Thus a coherence

length at H = 2.0 kOe and T = 2.3K is probably closer to ξ ≈ 200 Å than the

value from the magnetization measurement, because the superconductor is in the

intermediate flux line density state where the vortex cores are not overlapping and

is approximately equal to the value found at Hc2.

An independent estimate of the penetration depth λ is a bit more tricky and

a careful measurement of the lower critical field Hc1 = Φ0

4πλ2 lnκ would be valu-

able. However if the two fluid model 19 is assumed more or less valid then the
19Schrieffer [14] p. 12
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Figure 47. Flux line form factor obtained from diffraction spots with index (na, nb)

of the H = 2.0 kOe and T = 2.3K data from PSI (×) and corresponding values

calculated from the Kogan model with superconducting length scales determined

from magnetization measurements (4) and length scales adjusted by hand to match

the data (♦). The parameters are (4) : λ = 780 Å, ξ = 124 Å, n2 = 0.0705c,

d = 0.675c, c = 0.363. (♦) : λ = 340 Å, ξ = 0 Å, n2 = 0.0705c, d = 0.675c,

c = 0.221. The form factor at κ = 0 Å−1 is equal to the average field B̄ in the flux

line lattice unit cell, which has been calculated from the reciprocal unit vectors of

the diffraction pattern, B̄ = Φ0

(2π)2 τ
2
10.

(01)


(10)


(11)
 (02)


(20)


(12)


(21)


(22)


TmNi2B2C


H||c = 2.0 kOe

Figure 48. Comparison between experimental flux line form factor in the paramag-

netic phase at T = 2.3K(×) and in the magnetic ordered phase at T = 0.5K(+)

both for an applied field of H = 2.0 kOe. The corresponding calculated values of

the Kogan model found by adjusting the parameters by hand give (♦) : λ = 340 Å,

ξ = 0 Å, n2 = 0.0705c, d = 0.675c, c = 0.221 and (4) : λ = 290 Å, ξ = 0 Å,

n2 = d = 0.
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Figure 49. Coherence length ξ(T ) of TmNi2B2C calculated from the upper critical

field curve Hc2(T ) = Φ0

2πξ(T )2 measured by Naugle et. al. [37]. The insert shows

the low temperature part of the curves with a clear feature at the Néel temperature

TN = 1.5K.

temperature dependence of the penetration depth should be

λ(T ) =
λ(0)

√

1 −
(

T
Tc

)4
(230)

and λ(T )
λ(0) < 1.17 for T < 8K.

A relevant question is how the penetration depth is changed by the susceptibility

χ of the Tm ions and a naive answer can be obtained by re-deriving the London

equation using the constitutive relation B = H +4πM = (1+4πχ)H . The basic

London equation gives the relation between supercurrent and vector potential

j = − 1

Λ2
A (231)

By taking the curl of this and substitute the constitutive equation for B one

gets

∇× j = − 1

Λ2
∇× A = − 1

Λ2
B = − 1

Λ2
(1 + 4πχ)H (232)

From the Maxwell equation 4π
c

j = ∇× H a differential equation expressed for

the field is obtained

∇×∇× H = ∇(∇ · H) −∇2H = − 4π

cΛ2
(1 + 4πχ)H (233)

Here the factor on the right hand side is defining a length scale

λe =
λ√

1 + 4πχ
(234)

which is proportional to the usual penetration depth λ2 = cΛ2

4π , but re-normalized

by the susceptibility. An interpretation of the above is the that it takes less

supercurrent to make a quantum of flux due to the field enhancement by the
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Tm ions and the length scale of the field decay given by the penetration depth

thereby becomes smaller. There is just a problem with the derivation above,

because the term ∇(∇ · H) is only zero in absence of the susceptibility since

∇·H = ∇·B − 4π∇·M = −4π∇·M = −4π∇·χH . Thus the London equation

must be replaced by a more complicated expression.

A full blown analysis of the penetration depth re-normalization in magnetic

superconductors has been given by Bulaevskii et. al. by starting from microscopic

equations and including both the RKKY exchange- and dipole-dipole interaction

between localized moments [75]. They determine a scaling factor p which must be

multiplied onto the penetration depth λe = λ
√
p with

p = 1 − Θem

Θem + Θex + µ̃2

µ2χm

(235)

Here Θex is the RKKY contribution to the Néel temperature and depends on the

electronic susceptibility χe and the magnitude of the exchange field h0 by Θex =

χe(0)h2
0. The contribution to the ordering temperature from the dipole-dipole

interaction is characterized by Θem = 2πnµ2, with n being the concentration of

local moments (Tm-ions) and µ = gµB < Jz >T=0 is the average size of the

moments. The susceptibility is given by a Curie-Weiss form

χm =
µ̃2

T − Θ
(236)

with the Curie constant µ̃2 and Weiss temperature Θ.

Thus when the temperature is far above the Weiss temperature T � Θ the

penetration depth is unchanged p → 1, but as the magnetic transition is ap-

proached the penetration depth will decrease. Kulic et. al. [76] has evaluated the

magnetization data on TmNi2B2C by Cho et. al. [44] and the exchange coupling

is dominating with the energy scale of the coupling given by h0 = 60K and the

contribution to the ordering temperature Θex ≈ 1K, which is of the same order

as the electromagnetic contribution Θem ≈ 2K. The susceptibility of TmNi2B2C

reaches the maximum at the magnetic ordering temperature Θ = −TN ≈ −1.5K

and by inserting these values in the equation for p one gets

√
p =

√

1 − 2K

2K + 1K + 1.5K − (−1.5K)
= 0.82 (237)

In the extreme limit one could assumed that TmNi2B2C would order ferro-

magnetically whereby the susceptibility would diverge at the ordering temperature

and

√
p =

√

1 − 2K

2K + 1K
= 0.58 (238)

Thus from the penetration depth λ = 903 Å of the non-magnetic LuNi2B2C

one gets λe = 521 − 737 Å. Kulic et. al. reaches the conclusion that ξ0 = 250 Å

and λ = 500 Å by stating that the sample used by Cho et. al. was in the dirty

limit with a mean free path of l = 50 Å.

It can now be concluded that a decrease of the penetration depth is expected

as the magnetic transition is approached due to the presence of the Tm ions,

but the measured penetration depth still seems to be too small compared to the

estimates made above. Also the susceptibility should decrease considerably as soon

as the antiferromagnetic ordering is building up below the Néel temperature 20

20Yosida [77] chapter 6
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and a decrease of the neutron intensity would be expected, which is not what is

observed in figure 43.

All in all the number of neutrons scattered from the sample in the paramagnetic

phase seems to be to large to be coming from flux lines and only one length scale

somewhat larger than the core size is involved. However the periodicity of the

structure giving the scattering is dictated by the square flux line lattice. In the

catalog of objects able to scatter neutron there are two options left : the magnetic

moments of the Tm-ions or the nucleus in the sample.

The flux line lattice result in a modulated magnetic flux density inside the

sample and the magnetization of the Tm ions will follow this, but the length scale

for the modulation should be the penetration depth, which is again too large to

explain the observed data.

The second option that extra scattering is coming from the nucleus could in

principle be explained by some magneto-elastic effect, causing the crystallographic

lattice constants to change slightly at the flux line center due to a higher magnetic

field compared to the average magnetic flux density in the sample. However this

explanation seems a bit unrealistic, but could be checked in a high resolution

synchrotron experiment.

A third explanation can be offered by considering the interaction between the

RKKY coupling mechanism and superconductivity in more detail. The basic idea

is that superconductivity changes the RKKY interaction between the Tm-ions and

one could therefore imagine that the coupling between the ions is different inside

the vortex cores compared to outside in the superconducting phase with a full

orderparameter. Thus a different type of magnetism is suggested to exist inside

the vortex cores and will be outlined in the following section.

8.7 Magnetism in vortex cores

Anderson and Suhl were the first to address the question of how the superconduct-

ing phase would influence the RKKY interaction in a magnetic superconductor

[78]. Their conclusion was that the opening of the superconducting gap would

remove the contributions to the electronic susceptibility χe at long wavelengths

smaller than the inverse of the coherence length, q < 1
ξ0

. From equation (192) of

the electronic susceptibility

χ(q) =
∑

n,m,k

f [εm(k)]{1 − f [εn(k + q)]}
εn(k + q) − εm(k)

(239)

this result can be understood qualitatively since the large contribution from

states around the Fermi level comes from the denominator going towards zero,

which is prevented in the superconding state by the gap. Figure 50 shows a plot of

the susceptibility in the normal and superconducting state as derived by Anderson

and Suhl.

This Anderson Suhl mechanism has been suggested by Kulic et. al. [76] to sta-

bilize the long wavelength antiferromagnetic phase below TN and the wavevector

qmI = [0.094, 0.094, 0]a∗ should correspond to the maximum of the electronic sus-

ceptibility in figure 50. A consequence of this assumption is that TmNi2B2C

should order ferromagnetically if superconductivity was suppressed by applying

a field along the a-axis perpendicular to the Tm moment. This was however not

observed and a new spin density wave with qA = [0.48, 0, 0]a∗ close to an ordinary

anti-ferromagnetic ordering was found for H‖a > 1Tesla by Nørgaard et. al. [79]

presenting the idea that a total energy balance between the RKKY magnetism and

the condensation energy of the superconducting state must be considered. Buzdin

has subsequently presented similar arguments suggesting that qA is connected to
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a local maximum in the susceptibility caused by Fermi surface nesting, which is

suppressed by the superconducting phase [67] p. 303.

Figure 50. Difference between the electronic susceptibility of a RKKY coupled mag-

netic superconductor in the normal and superconducting state. The superconduct-

ing gap suppresses the susceptibility at small wavelengths q < 1
ξ0

and a spin density

wave with a wavevector corresponding to the maximum of the susceptibility should

appear in the superconducting phase. Taken from Anderson et. al. [78].

The Anderson Suhl calculation is based on the assumption that the system is

homogeneous and the modulation due to the flux line lattice is neglected. The idea

of having a different RKKY coupling represented by the normal curve of figure 50

inside the vortex cores compared to the superconducting curve outside the vortex

core has been investigated theoretically in the case of TmNi2B2C by Thorsten

Hansen [80]. The main conclusion by Hansen is a suggestion that the vortex cores

might expand, because the Tm ions in the cores are easier polarized by the applied

field compared to Tm ions outside of the cores and a corresponding minimization

of the total energy of the system results from the expanded cores.

Neutron scattering from Tm moments modulated by the FLL period-

icity

In order to examine the idea of magnetism in the vortex cores the neutrons scat-

tering cross section of such a structure will be calculated and compared with the

SANS data. The first case to study is the paramagnetic superconducting phase

and the scattering cross section of a paramagnet consisting of uncoupled moments

can be taken from any textbook on neutron scattering. Here an expression for

the elastic scattering cross section of a paramagnet in an applied field along the

z-direction is adopted from Squires [25] chapter 7.6

dσ

dΩ
= (γr0)

2N

{

1

2
gF (κ)

}2

exp (−2W )

[

(1 − κ̂2
z)

(2π)3

v0
< Sz >2

∑

τ

δ(κ − τ )

+κ̂2
z

{

1

2
S(S + 1) − 3

2
< (Sz)2 > + < Sz >2

}

+
1

2
S(S + 1) +

1

2
< (Sz)2 > − < Sz >2

]

(240)

with
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• (γr0)
2 : The product of the gyromagnetic ratio γ = 1.913 and the classical

electron radius r0 = µ0

4π
e2

me
= 2.815 · 10−15m setting the magnitude of the

scattering cross section (γr0)
2 = 0.29 barn.

• N : The number of moment in the scattering system.

•
{

1
2gF (κ)

}2
: The Landé splitting factor g when the ions have both spin

and orbital angular momentum. F (κ) is the magnetic form factor which is

basically the Fourier transform of the density of unpaired electrons around

the ion.

• exp (−2W ) : The Debye-Waller factor connected to the average square dis-

placement < u2 > of the ions due to thermal fluctuations, 2W ≈ 1
3 < u2 > κ2.

• (1− κ̂2
z) : A geometric factor depending on the unit vector along the momen-

tum transfer κ̂ = (κ̂x, κ̂y, κ̂z). Thus if the momentum transfer is along the

z-axis the scattering will vanish.

• v0 : Volume of the unit cell.

• < Sz > : Thermal average of the z-component of the total angular mo-

mentum operator which is given by the Brillouin-function < Sz >= (S +
1
2 ) coth (S + 1

2 )u − 1
2 coth (1

2u) with u = gµBB
kBT

being the the ratio between

the dipole interaction energy and the thermal energy.

• < (Sz)2 > : Thermal average of squared z-component of the total angular

momentum operator.

• ∑τ δ(κ − τ ) : Sum over the reciprocal lattice vectors of the crystalline unit

cell of the magnetic ions.

What is learned from the above is that a magnetic field will cause the moments

to precess with respect to the field direction and the thermal average < Sz > will

attain a finite value if the temperature is sufficiently small. This will cause extra

scattering on the crystalline Bragg reflection due to the sum over the δ-function of

the reciprocal lattice vectors. The lower line of equation (240) describes scattering

which is spread out in reciprocal space and will cause a diffuse background.

In the equation above it was assumed that all the moments attain the same

magnitude and what is needed is an expression in which the moments can be

modulated. This can be done by introducing a large unit cell defined from the flux

line lattice unit cell with one flux line sitting in each corner and a lot of Tm ions

inside as illustrated on figure 51. The sharp parenthesis of equation (240) must be

replaced by a more general expression 21

dσ

dΩ
= (γr0)

2

{

1

2
gF (κ)

}2

exp (−2W )
∑

αβ

(δαβ − κ̂ακ̂β)
∑

ll′

exp (iκ · (l − l′)) < Sαl >< Sβ
l′
>

(241)

where α, β = x, y, z are axis indices of the momentum transfer vector and the

sum over l includes all lattice positions of the moment with < Sαl >. By assuming

that the moments all align along the field direction z then

< Sαl >< Sβ
l′
>= δαz < Szl > δβz < Szl′ > (242)

and the sum over axis indices reduces to

21Squires [25] p. 153

Risø–R–1425(EN) 93



Figure 51. Magnetic flux line lattice of TmNi2B2C with the Tm moments illus-

trated by arrows, which are directed along the crystalline c-axis and the applied

field. The magnitude of the moments are larger inside the vortex cores of a size

given by the coherence length ξ and the area of the unit cell is identical to the area

of the flux line lattice Au = a2
FLL = Φ0

B̄
. The two edges of the unit cell correspond

to the crystalline (110) direction and every second Tm moment is positioned at

the body center (1
2

1
2

1
2 ) of the crystalline unit cell, but for scattering vectors in

the ab-plane the z coordinate has no influence on the scattering. A separation of

aTm = a√
2

= 2.47 Å between the Tm ions can be compared to the length scales

involved : ξ
aT m

= 200 Å
aT m

= 81, λ
aT m

= 600 Å
aT m

= 243 and aF LL

aT m
= 1017 Å

aT m
= 412.

Thus a large number of Tm ions are present in the unit cell at H = 2.0 kOe. The

volume of the unit cell is given by the product of the flux line lattice unit cell and

the height of the crystalline unit cell, vu = Auc

∑

αβ

(δαβ−κ̂ακ̂β)
∑

ll′

exp (iκ · (l − l′)) < Sαl >< Sβ
l′
>= (1−κ̂2

z)
∑

ll′

exp (iκ · (l − l′)) < Szl >< Szl′ >

(243)

Now the sum over all the lattice positions is split up into a sum over the moments

at d inside each flux line lattice unit cell and a sum over all the flux line lattice

unit cells with lattice vectors r whereby l = r + d

(1 − κ̂2
z)
∑

rr′

dd′

exp (iκ · (r + d − r′ − d′)) < Szr+d >< Szr′+d′ >

= (1 − κ̂2
z)
∑

rr′

exp (iκ · (r − r′))
∑

dd′

< Szd >< Szd′ > exp (iκ · (d − d′))

= (1 − κ̂2
z)
∑

rr′

exp (iκ · (r − r′))

∣

∣

∣

∣

∣

∑

d

< Szd > exp (iκ · d)

∣

∣

∣

∣

∣

2

= (1 − κ̂2
z)Nu

(2π)3

vu

∑

τu

FmagFLL(κ)2δ(κ − τu) (244)

Here Nu is the number of magnetic flux line lattice unit cells with a volume

given by the product of the area of the flux line lattice unit cell Au = Φ0

B̄
and the

crystalline c-axis, vu = Auc. FmagFLL is the magnetic structure factor of the large

unit cell

94 Risø–R–1425(EN)



FmagFLL(κ) =
∑

d

< Szd > exp (iκ · d) (245)

and determines the interference of the scattering coming from each magnetic

flux line unit cell at momentum transfer vectors equal to the reciprocal lattice

vectors of the magnetic flux line lattice τu. The sum is over all moments < Szd >

at the positions d in the large unit cell.

Thus the scattering cross section of the magnetic flux line lattice becomes

dσ

dΩ
= (γr0)

2

{

1

2
gF (κ)

}2

exp (−2W )(1 − κ̂2
z)V

(2π)3

v2
u

∑

τu

FmagFLL(κ)2δ(κ − τu)

(246)

where the volume of the sample has been introduced V = Nuvu.

Once an equation for the cross section is established the reflectivity can be

calculated in a way similar to what was done for the flux line lattice as outlined

in section 5.3

R =
P

φAs

=
λ2
n

(2π)2τ cos (ητ )
(γr0)

2

{

1

2
gF (κ)

}2

exp (−2W )(1 − κ̂2
z)V

(2π)3

v2
u

FmagFLL(τu)2

(247)

There are still some parameters in the equation above which remain to be

defined and several can be neglected. Both the magnetic formfactor of the Tm

ions F (κ) and the Debye-Waller factors will be close to unity in the small angle

range of the momentum transfer (κ � a∗) and for scattering vectors in the ab-

plane the factor 1− κ̂2
z = 1. The Landé splitting factor can be found from Hund’s

rules giving g = 7
6 while the modulated moment < Sz > in Bohr magnetons can

be considered as a fitting parameter.

Comparison with SANS data

Figure 52 shows the square of the magnetic flux line lattice structure factor deter-

mined from the measured reflectivity of the diffraction spots from TmNi2B2C at

H = 2.0 kOe and T = 2.3K and calculated values by assuming that the moment

modulation can be described by a gaussian function positioned at each flux line

< Sz > (r) = A1 exp (− (r − ri)
2

2σ2
) +A0 (248)

It is only the modulation A1 and σ which result in small angle neutron scat-

tering, because the cross section of scattering on magnetic structures is given by

the Fourier transform of the magnetic correlation function, whereas A0 has no

influence. The parameters used in the model calculations were adjusted by hand

to match the data and a gaussian width σ = 150 Å was found. As shown in ap-

pendix C this width correspond to a coherence length of ξ =
√

3 ln 2σ = 216 Å,

which is in good agreement with the coherence length found from the Hc2 curve

and shown in figure 49. The magnitude of the moment modulation is found to

be A1 = 0.11µB and the corresponding field modulation can be calculated by

δB = 4πnµ = 4π 1.55 · 1022 cm−3 0.11µB = 199Oe where n is the density of Tm
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ions. Thus the modulation is of about 10% of the applied field. One can calculate

the magnetic flux associated with the modulation of the Tm ions by determining

the volume Vg under the gaussian peak given by Vg = 2πσ2A1. By substituting

A1 with the field modulation δB gives the magnetic flux Φ

Φ = 2πσ2δB = 2π(150·10−10m)21.99·10−2 T = 2.81·10−17 Tm2 = 1.36·10−2Φ0

(249)

which is 1.36 % of a flux quantum.

Figure 52. Comparison of structure factor of magnetic flux line lattice determined

from the SANS reflectivity (×) of TmNi2B2C at H ||c = 2.0 kOe, T = 2.3K and a

model calculation (♦) based on a gaussian description of the moment modulation

< Sz > (r) = A1 exp (− r2

2σ2 )+A0 with the parameters : A0 = 1.0µB, A1 = 0.11µB
and σ = 150 Å corresponding to a coherence length ξ =

√
3 ln 2σ = 216 Å as

described in appendix c. It should be noted that the average magnetic flux density

in the sample is B̄ = 1.8 kOe, which is smaller than the applied field and is probably

caused by the diamagnetic response of a Type-II superconductor.

Figure 53 shows the analysis of the magnetic flux line lattice structure factor

at H = 2.0 kOe and T = 0.5K in the magnetically ordered phase. The obtained

estimate of the magnetic core size is ξ = 158 Å, which is somewhat expected

because the upper critical field is increasing as the temperature is decreased below

TN . More than a doubling of the moment modulation is found with A1 = 0.23µB,

but the previous picture of the moment modulation in the paramagnetic phase

might not be appropriate. However one could argue that the spin density wave

is also modulated by the flux line lattice and the alternating direction of the Tm

moments basically gives a doubling of the modulation amplitude as illustrated on

figure 54. This would offer an qualitative explanation for the increased small angle
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scattering as the temperature is lowered below the Néel temperature as shown on

figure 43.

Figure 53. Structure factor of magnetic flux line lattice determined from the SANS

reflectivity (×) of TmNi2B2C at H ||c = 2.0 kOe below the Néel temperature at

T = 0.5K and a the gaussian model calculation (♦) with the parameters : A0 =

1.0µB, A1 = 0.23µB and σ = 110 Å corresponding to a coherence length ξ =√
3 ln 2σ = 158 Å.

A qualitative argument for the peak in the scattered intensity as function of field

in the antiferromagnetic phase, as shown on figure 40, can be given by assuming

that the core volume is constant at low and intermediate flux line densities when

the temperature is constant. The scattered intensity per unit cell will then be

proportional to the ratio between the area of the core and the area of the flux line

lattice unit cell

I ∼ ξ2

a2
FLL

=
ξ2

Φ0
B̄ (250)

which shows that the intensity should scale linearly with the average magnetic

flux density B̄ at low applied fields. However at the crossover from the interme-

diate to the high flux line density phase the vortex cores start to overlap and the

magnetic modulation will be suppressed causing the scattered intensity to decrease

again as shown on the insert of figure 40.

This crossover from intermediate to high flux line density can also explain the

fast decrease to the reflectivity at high applied field in the paramagnetic phase as

shown on figure 42.

Finally is it interesting to ask how the scattering from the modulated flux line

lattice should change if the magnetic field is applied in the ab-plane. Due to the

Ising like character of the magnetic system with the easy axis of the Tm-ions being

along the crystalline c-axis no large change of the magnetic ordering is expected in
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Figure 54. Qualitative picture of the paramagnetic phase (T > TN) and the spin

density wave (T < TN) modulated by the flux line lattice due to the difference in

the RKKY interaction inside and outside the vortex core.

this geometry. Indeed this is also what has been observed by Nørgaard et. al. [79]

where the field induced magnetic phase with ordering vector qA = [0.48, 0, 0]a∗

still have the moment along the crystalline c-axis. The geometric factor 1− κ̂2
z can

now become zero if the momentum transfer vector is parallel with the direction

of the moments and the scattering should vanish for certain reflections. In the

following section an experiment with the applied field in the ab-plane is described.

8.8 Flux line lattice for H‖[110]

A study of the flux line lattice induced by an applied field along the crystalline

(110) direction was conducted at Risø in order to study the interaction of the field

induced magnetic qA phase observed by Nørgaard et. al. [79]. At the time of the

experiment many of the observations were hard to understand, but a reinterpre-

tation in the light of the idea of magnetism in the vortex cores is appropriate.

Figure 55 show the composite sample consisting of 6 bars cut from the same

TmNi2B2C single crystal and mounted on a cadmium plate with the crystalline

c-axis perpendicular to the incoming neutron beam and in the horizontal plane of

the SANS camera. The reason for mounting several crystals was to get a higher

signal, but this excludes the possibility to obtain the reflectivity on an absolute

scale because some of the direct beam is passing through the pinhole without

hitting the sample bars.

The sample was cooled to temperatures between T = 1.7 − 4K in applied

fields between H = 2− 15 kOe along the crystalline (110) direction and along the

neutron beam of the SANS camera in the cold neutron guide hall of the Risø DR3

reactor. The settings of the SANS were : λn = 6.75 Å, ∆λ
λ

= 0.18, pinhole1 =

2.5 cm diameter, pinhole2 = 8 mm × 5.0 mm, collimation L = 6 m and detector

distance l = 6 m.

A large number of difficulties were encountered during this experiment and the

first was to find the flux line lattice by rocking the sample around the vertical
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Figure 55. Composite TmNi2B2C sample consisting of 6 bars mounted with the

crystalline c-axis perpendicular to the neutron beam and in the horizontal plane

of the SANS camera. An x-ray Laue camera was used to align the crystallographic

axis of the different bars within 1o. The pinhole of the cadmium plate behind the

bars is approximately 5mm x 8mm.

axis. Two strong reflections on the vertical axis were easily seen, but the remain-

ing reflections had very broad and ill defined rocking curves. A hexagonal flux

line lattice was found by rotating the cryostat approximately 3.5o away from the

neutron beam. Due to this large off-set it was decided to make the rocking curves

by tilting the cryostat and figure 56 shows the observed flux line lattice. Again

the two diffraction spots on the vertical axis were strong with well defined rocking

curves even though the reciprocal lattice was rocked around the horizontal axis.

Figure 56. Hexagonal flux line lattice found in composite TmNi2B2C sample in-

duced by an applied field along the crystalline (110) direction H‖(110) = 2.0 kOe

and at T = 1.7K
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A hexagonal flux line lattice was observed in all of the examined phase space

and figure 57 shows a plot of the logarithm of the squared form factor of the

diffraction spots on the vertical axis determined by integrating the tilt rocking

curves. Note that the scale is arbitrary. At low temperatures close to the magnetic

phase transition at TN = 1.5K the curves show a trend similar to what was

observed when H‖c. At low fields the curves are almost constant and then the

intensity is decreasing fast for applied fields larger thanH ≈ 1T . For temperatures

above T = 3K the curves become somewhat more linear as expected from a

normal flux line lattice.

Figure 57. Logarithm of the flux line lattice reflectivity of the vertical strong diffrac-

tion spots induced by an applied field along the crystalline (110) direction of

TmNi2B2C. The bump in the reflectivity at low temperature is quite similar to

what was observed when the field was applied along the crystalline c-axis and it is

probably also connected to a modulation of the Tm ions by the flux line lattice.

It is interesting to note that the intensity of the diffraction spots on the vertical

axis are stronger than the rest of the diffraction spots at H = 8.0 kOe and T =

1.5K as shown on figure 58, which corresponds to the peak in figure 57.

Discussion

From the experimental estimate of the coherence length shown on figure 49 one

can calculate the expected transition from intermediate to high flux line density

with the applied field in the ab-plane

HIH =
Φ0

(cIHξ)2
=

2.07 · 10−15 Tm2

(3.9 · 110 · 10−10m)2
= 1.1T (251)

which is in some agrement with the fast decay of the form factor shown on figure

57.

The origin of the bump in the logarithm of the squared form factor is probably

also coming from the Tm ions which are modulated by the flux line lattice as

described for H‖c in the previous sections. However there will be a difference be-

tween a paramagnetic modulated structure, which should cause diffraction spots

of equal intensity and a modulated spin density wave with the moment directed

along the crystalline c-axis, which would cause the scattering to vanish when the

lattice vector is along the moment direction due to the geometric factor 1 − k2
z .
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Figure 58. Diffraction pattern of TmNi2B2C at H‖(110) = 8.0 kOe and T = 1.5K

showing strong peaks on the vertical axis, while the remaining peaks are weak even

though the rocking curve is made by rotating around the horizontal axis.

Figure 58 shows that the diffraction spots perpendicular to the moment direction

and along the vertical axis does become stronger than the remaining spots. How-

ever the ratio between the intensity of the different diffraction spots caused by the

geometric factor 1−k2
z should be field independent, which is not the case. Caution

should also be take, because only the rocking curves of the vertical spots are well

defined whereby a complete integration of the remaining spots is questionable.

It is recommended that this experiment is repeated with only one sample bar

placed on a cadmium plate screening out the direct beam, whereby the intensity

can be determined on an absolute scale. By doing the experiment in a dilution

refrigerator it would also be possible to follow the intensity of the qmI spin density

wave.

9 Conclusion

The aspects of symmetry and intensity of the small angle neutron scattering

diffraction patterns observed from the flux line lattice in TmNi2B2C have been

analyzed in detail, since both are deviating from the general picture found for the

non-magnetic borocarbide superconductors.

A study of the symmetry changes of the flux line lattice in the paramagnetic

phase with the applied field along the crystallographic c-axis resulted in an iden-

tification of three different phase : A low field hexagonal lattice, which smoothly

changes into a square lattice around H = 2.0 kOe and this is changing back into

a rhombic lattice as the applied field is further increased. The two transitions are

suggested to be connected to two different length scales given by the non-locality

radius of the non-local electrodynamics of the Kogan model and the crossover from

intermediate to high flux line density, when the vortex cores start to overlap re-

sulting in a reduction of the superconducting order parameter in between the flux

lines. This leads to the conclusion that the flux line phases in the paramagnetic

state are only indirectly connected to the magnetism, which only defines the tem-

perature dependence of the coherence length ξ(T ). Following these arguments it
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also seems plausibly that the crossover from intermediate to high flux line density

is driving the magnetic phase transition between the two spin density waves qmI
and qmII at low temperatures. The first order transition into the hexagonal flux

line lattice phase at low temperature and high fields is however still unexplained.

The intensity of the diffraction spots from the flux line lattice in TmNi2B2C

with H‖c are not in accordance with the expected behavior and it has been ana-

lyzed in several ways in this thesis. Previous analysis methods has been based on

the change of the flux line form factor as the diffraction spot is moved in recip-

rocal space by changing the applied magnetic field. However this method is not

applicable for TmNi2B2C, because the superconducting length scales are chang-

ing more dramatically with the applied field and temperature. A method where

the ratio between the intensity of higher order diffraction spots are compared was

introduced, but this did lead to conflicting conclusions. A second method where

all diffraction spots were compared to a model for the flux line form factor on an

absolute scale was introduced, but this also resulted in conclusions which indi-

cated that the penetration depth was much smaller than expected from estimates

based on magnetization and transport measurements. Finally a new interpreta-

tion of the diffraction pattern as being caused by scattering from the moments

of the Tm-ions, which are modulated by the periodicity of the flux line lattice

was introduced. The argument for this modulation is that the Tm moments are

interacting indirectly by the RKKY coupling, which is changed by the presence of

the superconducting gap, whereby the interaction is difference inside a vortex core

and outside in the superconducting phase. A model calculation of the small angle

neutron scattering cross section of this magnetic flux line lattice was performed

and compared to the measured data. Finally an experiment with the field in the

ab-plane have shown similar trends in the scattered intensity as in the case with

H‖c and the diffraction pattern might indicate that the diffraction spots coming

from reciprocal lattice vectors which are perpendicular to the magnetic moment

are stronger than the rest, but a disordering phenomena can not be rules out since

the rocking curves are quite il defined. It is recommended to repeat the experiment

with the field in the ab-plane in a dilution refrigerator on only one sample piece,

where by the correlation to the spin density wave can be established. Also a low

temperature study of the lower critical field and thereby a determination of the

penetration depth would be valuable for a consistency check of the length scales

obtained from the SANS measurements.
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Appendix A: Resolution function

In the following an approximation for the resolution function of the SANS cam-

era is obtained by assuming that the triangular wavelength and the trapeziodal

beam divergence distributions can be described by gaussian distributions. Here the

beam divergence will be assumed isotropic whereby the resolution function can be

treated separately in the scattering plane and perpendicular to this. Furthermore

the expression is only valid for scattering of neutrons without any energy transfer

to the sample. The derivation is based on J.S. Pedersen et. al. [28], but extended

to obtain the 3-dimensional resolution function.

Resolution function in the scattering plane

The momentum transfer κ of a neutron is given by the change of the wavevector

k from the initial(i) to the final(f) state during a scattering process and it can be

written in a complex form for the scattering plane shown on figure 59

κ = kf − ki

=
2π

λ

(

eiθf − eiθi
)

(252)

where λ is the neutron wavelength related to the wavevector by |k| = 2π
λ

and

the real and imaginary part of κ is along the z axis and in the detector plane

respectively. The assumption of scattering without energy transfer to the sample

result in the condition |ki| = |kf |.
In the following the resolution function is formulated as the number of available

neutrons at different momentum transfer vectors, which can be scattered into the

same detector pixel specified by the angle θf as illustrated on figure 59.

The incoming beam is approximated by a gaussian distribution of the form

I(λ, θi) ∈ N(λ0, θi0, σλ
2, σθi

2) (253)

which is centered around the wavelength λ0 of the velocity selector setting and

the direction θi = 0 of the z-axis of the camera. These values correspond to the

nominal momentum transfer < κ > as marked by the black dots on figure 59.

Now we allow the incoming and scattered neutron direction to deviate from the

nominal values < θi >= 0 and < θf >= θf0 and want to find the corresponding

momentum transfer vector κ and the number of neutrons at that κ.

From the scattering angle θ =
θf−θi

2 the direction of the momentum transfer θκ
is

θκ = θi + θ +
π

2

=
θf + θi

2
+
π

2
(254)

and the nominal direction is < θκ >=
θf0

2 + π
2 . Thus a more convenient de-

scription of κ can be obtained by rotating the laboratory system into a coordinate

system with the imaginary and real axis respectively along and perpendicular to

the nominal < κ >.

κq = κ · e−i
θf0
2

=
2π

λ

(

ei(θf−
θf0
2 ) − ei(θi−

θf0
2 )

)

(255)
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Figure 59. Neutrons with different incoming angles θi and wavevector size |k| = 2π
λ

can be scattered into the same detector pixel at r0 by different momentum transfer

vectors κ = kf − ki. Blue and red arcs indicate changes of the direction of the

incoming neutron at a short and long wavelength and the dots show the momentum

transfer when the beam divergence is absent θi = 0. The scattering plane is spanned

by the z axis and a radial detector direction given by φ in figure 20. θf and θκ are

the angles of the scattered neutron and the momentum transfer vector κ.

We now have a transformation from a given wavelength and incoming neutron

direction to the corresponding κq vector which can cause scattering into the de-

tector position determined by θf . The number of neutrons at κq = f(λ, θi, θf )

is given by the two dimensional gaussian intensity distribution as function of the

wavelength λ and the angles θi and θf . However we seek the neutron distribution

as function of κq and an approximation for this can be obtained by making a

Taylor expansion of (255).

Taylor expansion of momentum transfer

The momentum transfer vector κq can be written as a first order Tailor expansion

around the nominal < κq > with respect to the neutron wavelength deviation and

the angle deviation of the incoming and scattered neutron wavevector giving

κq ≈ < κq > +
∂κq
∂λ

∣

∣

∣

∣

0

(λ− λ0) +
∂κq
∂θi

∣

∣

∣

∣

0

(θi − θi0) +
∂κq
∂θf

∣

∣

∣

∣

0

(θf − θf0) ⇒

κq− < κq > ≈ − 2π

λ0
2

(

ei
θf0
2 − e−i

θf0
2

)

(λ− λ0)

−i2π
λ0
e−i

θf0
2 (θi − θi0)

+i
2π

λ0
ei

θf0
2 (θf − θf0)

≈ ik0

[

−< κq >

2π
(λ − λ0) + cos

(

θf0

2

)

{(θf − θf0) − (θi − θi0)}
]

−< κq >

2
{(θf − θf0) + (θi − θi0)} (256)

where k0 = 2π
λ0

. The advantage of the Tailor expansion is that the approxi-

mate momentum transfer vector is given by a sum of normal distributed vari-

ables, whereby the distribution of κq also will be normal distributed according to

the convolution theorem : If a stochastic variable is given by Z =
∑

i aiXi with

Xi ∈ N(µi, σi
2) being independent and normal distributed having a mean µi and

variance σ2
i then
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Z ∈ N

(

∑

i

(aiµi),
∑

i

(aiσi)
2

)

(257)

Thus we can immediately write down the variance of the momentum transfer

distribution from (256)

σ2
|| = k2

0

{

(< κq >

2π
σλ

)2

+ cos2
(

θf0

2

)

(

σ2
θf

+ σ2
θi

)

}

σ2
⊥ =

< κq >
2

4

(

σ2
θf

+ σ2
θi

)

(258)

and the distribution is given by

R(κq, < κq >) =
1√

2πσ||σ⊥
exp

{

−1

2

(

(κq||− < κq|| >)2

σ2
||

+
κ2
q⊥
σ2
⊥

)}

(259)

where the pre-factor ensured the area of the resolution function to be normal-

ized.

What we learn from the distribution above is how the instrumental settings

of the SANS camera will influence the number of available neutron at κq causing

scattering into < κq >. The three contributions to the width σ2
|| along the momen-

tum transfer is determined by the wavelength spread σλ of the velocity selector,

the beam divergence σθi
controlled by the collimation section, and the detector

resolution σθf
related to the pixel size of the detector. For the width perpendicular

to the momentum transfer σ2
⊥ the beam divergence term and detector resolution

are found again, but the dependence on the wavelength spread does not appear.

This is because a change in λ will only cause a change in the length of κq, but no

rotation since all derivatives with respect to λ have no real part, Re
(

∂nκq

∂λn

)

= 0.

Thus the effect of the wavelength spread only enters in the cross terms of the

Tailor expansion

∂2κq
∂λ∂θi

∣

∣

∣

∣

0

(λ− λ0)(θi − θi0) = ik0 cos (
θf0

2
)(θi − θi0)

(λ− λ0)

λ0
(260)

+
< κ >

2
(θi − θi0)

(λ− λ0)

λ0
(261)

These cross terms are not easy to include in the widths, since the convolution

theorem is only valid for independent variables. An estimate of the effect of these

terms can be made if the wavelength spread (λ−λ0)
λ0

is assumed to be a constant,

whereby it is seen that an extra term similar to the beam divergence must be

added to σ2
⊥

σ2
⊥ =< κ >2 (

σi
2

)2(1 +
(λ− λ0)

λ0
)2 (262)

However the σ2
⊥ will be dominated by the beam divergence since (λ−λ0)

λ0
=

0.1 − 0.2 in most cases.

Detector resolution

The detector consists of pixels of a finite size ∆r and neutrons scattered in a small

angular range around θf will be detected in the same pixel at r0 as shown on figure
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59. By representing the pixel as a gaussian distribution centered at r0 and with a

width

σr =
1

2
√

2ln2
∆r (263)

the corresponding width of the angle θf is found by Taylor expanding θf =

arctan ( r
z
). In the small angle limit r << z one gets

σθf
=
σr
z

(264)

The relation between standard deviation σ and Full Width Half Maximum

∆FWHM of a gaussian has been used above

∆FWHM = 2
√

2ln2σ (265)

Resolution function perpendicular to the scattering plane

In order to include the resolution perpendicular to the scattering plane we need a 3

dimensional transformation from wavelength, in- and out of plane beam divergence

into the momentum transfer. Figure (60) show the projection of the incoming and

scattered neutron onto the scattering plane spanned by the z axis and the radial

direction eR of the detector plane. When the nominal values of the angles are

inserted the nominal momentum transfer plane is obtained.

< θi >= 0 < φi >= 0

< θf >= θf0 < φf >= 0
(266)

Figure 60. The momentum transfer can be decomposed into components in the

scattering plane described by (kip,kfp) and an out-of-plane component depending

on the angles (φi, φf ) that the incoming and scattered neutron are tilted with respect

to the scattering plane.

The 3-dimensional momentum transfer is decomposed into the scattering plane

and a direction eφ perpendicular to the scattering plane

κ = κp + κφeφ

= kfp − kip + (kfφ − kiφ)eφ

= |kf | cos (φf )e
iθf − |ki| cos (φi)e

iθi

+ {|kf | sin (φf ) − |ki| sin (φi)} eφ

=
2π

λ

{

cos (φf )e
iθf − cos (φi)e

iθi
}

+
2π

λ
{sin (φf ) − sin (φi)} eφ (267)
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The in-plane component has been written in the complex notation used in the

previous section and the rotation from the laboratory coordinate system into a

system following the nominal momentum transfer can be done again.

κq = κe−i
θf0
2

=
2π

λ

{

cos (φf )e
i(θf−

θf0
2 ) − cos (φi)e

i(θi−
θf0
2 )

}

+
2π

λ
{sin (φf ) − sin (φi)} eφ (268)

Once again the Tailor expansion can be made to obtain an approximation for

the κq distribution, but it is easily seen that the out-of-plane angles are decoupled

from the in-plane momentum transfer whereby the in-plane distribution of the

previous section is found again. The out-of-plane component however gives

κφ ≈ < κφ > +
∂κφ
∂λ

∣

∣

∣

∣

0

(λ − λ0) +
∂κφ
∂φi

∣

∣

∣

∣

0

(φi − φi0) +
∂κφ
∂φf

∣

∣

∣

∣

0

(φf − φf0)

≈ 2π

λ0
((φf − φf0) − (φi − φi0)) (269)

and the out-of-plane width σ2
φ is

σ2
φ = k0

2(σ2
φf

+ σ2
φi

) (270)

where the two terms show the influence of the out-of-plane beam divergence

and the out-of-plane detector resolution respectively.

Combined resolution function

The combined resolution function is then given by

R(κq, < κq >) =
1√

2πσ||σ⊥σφ
exp

{

−1

2

(

(κq||− < κq >)2

σ2
||

+
(κq⊥)2

σ2
⊥

+
(κqφ)

2

σ2
φ

)}

(271)

where the width σ|| along the momentum transfer vector is denoted the longitu-

dinal resolution, σ⊥ in the plane is called the transverse resolution and the out-of

plane width σφ is denoted the azimuthal resolution related to the azimuthal angle

φ.

σ2
|| = k2

0

{

(< κq >

2π
σλ

)2

+ cos2
(

θf0

2

)

(

σ2
θf

+ σ2
θi

)

}

(272)

σ2
⊥ =

< κq >
2

4

(

σ2
θf

+ σ2
θi

)

(273)

σ2
φ = k0

2(σ2
φf

+ σ2
φi

) (274)

The widths may now be expressed from the instrument settings derived in sec-

tion 4 and 264
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σλ =
λ0

2
√

2ln2

∆λ

λ0
(275)

σθi
=

1

2
√

2ln2
∆θi (276)

σθf
=

1

2
√

2ln2

∆r

z
(277)

Figure (61) show the combined resolution function for scattering into a detector

pixel corresponding to the nominel< κ > at the center of the cigar shaped gaussian

distribution. Thus the resolution function gives the intensity scattered into the

pixel as a reciprocal lattice vector τ is moved around in space by changing the

angle ω.

Figure 61. Gaussian resolution function for scattering into the detector pixel cor-

responding to the nominal momentum transfer < κ > at the center of the dis-

tribution. The shape of the distribution is given by the longitudinal width σ||, the

transverse width σ⊥ and the azimuthal width σφ.
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Appendix B: Definition of mathe-
matical functions

Fourier Transform

The definition of the Fourier transform used is

F{f(r)} = F (k) =

∫

f(r) exp (−ik · r)dr (278)

and the inverse transformation is

f(r) =
1

(2π)3

∫

F (k) exp (ik · r)dk (279)

Fourier convolution theorem

The Fourier convolution theorem states that the Fourier transform of the convo-

lution of two functions f and g is identical to the product of the Fourier transform

of each of the two function

F{f ∗ g} = F{f}F{g} (280)

Proof

First the convolution f*g is rewritten by expressing the two functions from their

transforms F and G

f ∗ g(r) =

∫

u

f(u)g(r − u)du

=
1

(2π)6

∫

u

∫

F (k) exp (ik · u)dk

∫

G(k′) exp (ik′ · (r − u))dk′du

=
1

(2π)6

∫ ∫

F (k)G(k′) exp (ik′ · r)

∫

u

exp (i(k − k′) · u)dudk′dk

=
1

(2π)6

∫ ∫

F (k)G(k′) exp (ik′ · r)(2π)3δ(k − k′)dk′dk

=
1

(2π)3

∫

F (k)G(k) exp (ik · r)dk (281)

and the Fourier transform of this is

F{f ∗ g} =

∫

f ∗ g exp (−ik′ · r)dr

=

∫

1

(2π)3

∫

F (k)G(k) exp (ik · r)dk exp (−ik′ · r)dr

=
1

(2π)3

∫

F (k)G(k)

∫

exp (i(k − k′) · r)drdk

=
1

(2π)3

∫

F (k)G(k)(2π)3δ(k − k′)dk

= F (k)G(k)

= F{f}F{g} (282)
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It should be noted that if the convolution is defined by

f ∗̃g(r) =

∫

u

f(u)g(u − r)du (283)

then the convolution theorem is slightly change

F{f ∗̃g} =

∫

f ∗ g exp (−ik′ · r)dr

= F (k)G(−k)

= F (k)G(k)† (284)

The last step is valid when the function G is real, G = G†.

Representation of a periodic function

A periodic function can be represented as a Fourier series

f(r) =
∑

τ

F (τ ) exp (iτ · r) (285)

where the vectors τ are the lattice points in reciprocal space defined from the

real space unit cell of the periodic function. The coefficients in the series are found

by multiplying f(r) with exp (−ik · r) and integrating over the real space unit cell

of volume v0

∫

cell

f(r) exp (−ik · r)dr =

∫

cell

∑

τ

F (τ ) exp (i(τ − k) · r)dr

=
∑

τ

F (τ )v0δ(τ − k)

= v0F (τ ) (286)

Thus

F (τ ) =
1

v0

∫

cell

f(r) exp (−ik · r)dr (287)

δ function representation

The Sinc2 function

sin 2(κ2L)

(κ2 )2
= cδ(κ) (288)

can be represented as a δ-function since it is highly peaked at κ = 0 and the

normalization constant c is found by integrating the above equation over all κ.

∫ ∞

κ=−∞

sin 2(κ2L)

(κ2 )2
dκ = 8

∫ ∞

κ=0

sin 2(κ2L)

κ2
dκ = 8

π

2

L

2
= c ⇒

c = 2πL (289)
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Appendix C: Vortex core size of the
Ginzburg-Landau model

In this appendix the description of the core of a flux line in the Ginzburg-Landau(GL)

model is examined in more detail in order to determine the Half Width Half Max-

imum(HWHM) core size which can be compared to other models such as the

gaussian description of the moment distribution of the magnetic flux line lattice.

The best description of an isolated flux line in the high-κ limit has been obtained

by Clem et. al. from a variation minimization of the free energy of the GL equations

[19]. In this model the order parameter of the core is described by

f(r) =
r

√

r2 + 2ξ2
(290)

where r is the radial distance from the flux line center and ξ is the GL coherence

length connected to the upper critical field Hc2 = Φ0

2πξ2 . The HWHM width of the

core is found by solving

f(r 1
2
) =

1

2
⇒

r 1
2

=

√

2

3
ξ = 0.82 ξ (291)

The corresponding gaussian description of the core is given by

g(r) = 1 − exp

(

− r2

2σ2

)

(292)

and the HWHM is found by solving

g(r 1
2
) =

1

2
⇒

r 1
2

=
√

2 ln 2σ (293)

By equating the HWHM of the two models a relation between the gaussian

width and the GL coherence length is established

√

2

3
ξ =

√
2 ln 2σ ⇒

ξ =
√

3 ln 2σ (294)

Figure 62 show the shape of the superconducting order parameter at the vortex

cores as described by the Clem solution, which is identical to the Tinkham solution

given by equation (51) with ν = 1√
2

close to the core. The gaussian approximation

with a HWHM identical to the Clem solution is also shown in the figure.
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