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Numerical solution of the classical problem of relative equilibria for identical point vortices on the

unbounded plane reveals configurations that are very close to the analytically known, centered,

symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are

found for 3nþ 1 vortices, where n¼ 2, 3, ..., 30. A sufficient, although apparently not necessary,

condition for this phenomenon of close solutions is that the “core” of the configuration is

marginally stable, as occurs for a central vortex surrounded by an equilateral triangle. The open,

regular heptagon also has this property, and new relative equilibria close to the nested,

symmetrically arranged, regular heptagons have been found. The centered regular nonagon is also

marginally stable. Again, a new family of close relative equilibria has been found. The closest

relative equilibrium pairs occur, however, for symmetrically nested equilateral triangles. VC 2011
American Institute of Physics. [doi:10.1063/1.3590740]

The problem of relative equilibria of identical point vor-

tices goes back to work by Mayer, W. Thomson (the later

Lord Kelvin), and J. J. Thomson in the 1870s.1 This problem,

and closely related problems, arise in a variety of contexts.2

The equations to be solved are as follows: Let the vortex

positions be given as N points in the complex plane, z1, ..., zN.

To find all solutions of the system1

�za ¼
XN

b¼1

0 1

za � zb
; a ¼ 1;…;N: (1)

The overbar on the left signifies complex conjugation, the

prime on the summation sign that b 6¼ a.

Several numerical explorations have been undertaken,

the most comprehensive being the Los Alamos Catalog com-

piled in the late 1970s, henceforth referred to simply as the

Catalog.3 It was unfortunately never published in the archival

literature although many of the results may be found in a

companion paper.4 The Catalog was inspired by the first vis-

ualizations5 of relative equilibria in He II, and so emphasized

linearly stable configurations. When one expands the search

to all relative equilibria, a large number of unstable configu-

rations are found. Thus, for N¼ 4, there is just one entry in

the Catalog, a square of vortices. Two additional configura-

tions are known: the marginally stable, centered, equilateral

triangle, and an unstable, collinear configuration with the

vortex positions at the roots of the Hermite polynomial H4.

A configuration close to the centered equilateral triangle,

known for the 4-body problem of celestial mechanics,6

appears not to arise for point vortices. For N¼ 5, both the

regular pentagon and the centered square are linearly sta-

ble (and in the Catalog), but there are three additional

unstable relative equilibria. For N¼ 6, eight relative equi-

libria are known of which six are unstable. The regular

hexagon and the centered, regular pentagon are the only

two stable configurations – and the only two reported in

the Catalog.

For N¼ 7, we know 11 relative equilibria, although just

one of these, the centered, regular hexagon is linearly stable.

Here, we report an additional configuration, found numeri-

cally, the smallest of a family of relative equilibria that are

extremely close to the analytically known centered, symmet-

ric, nested equilateral triangle configurations. All 12 relative

equilibria are shown in Fig. 1 arranged by decreasing values of

h ¼ 2

NðN � 1Þ
XN

a;b¼1

0 log jza � zbj: (2)

(The kinetic energy of interaction of the vortices is propor-

tional to �h.) Some of these configurations are known ana-

lytically, such as the centered hexagon, Fig. 1(a), and the

marginally stable, regular heptagon, Fig. 1(b), both included

in the Catalog. Of the remaining configurations, the centered,

triple digon,7 Fig. 1(g), the centered, symmetric double-

ring,8 Fig. 1(j), and the collinear configuration with vortices

at the zeros of H7, Fig. 1(l), are known analytically.

We have computed these states using MATLAB to solve

Eq. (1) in double precision (of which ten digits are given in

the results reported). Once a solution is obtained, we check

that it verifies the convergence criterion

1

N

XN

a¼1

�za �
XN

b¼1

0 1

za � zb

�����

����� < e; (3)

where e is a convergence parameter that we typically set to

10�13. For N¼ 7, the computations revealed a new configu-

ration, Fig. 1(i). To the naked eye, this new configuration is

identical to the centered, symmetric double-ring, Fig. 1(j),

with vortex positions
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1:2251565538; �0:6125782769 6 1:0610166992i;
2:3449928398; �1:1724964199 6 2:0308233710i;

and 0. These coordinates are just R1;R1e6i2p=3, and R2;
R2e6i2p=3 (and 0), where R1 and R2 satisfy7,8

R2
1 þ R2

2 ¼ 7; R5
1 þ R5

2 ¼ 5ðR3
1 þ R3

2Þ: (4)

The value of h, Eq. (2), for this configuration is 1:6035139510…

in agreement with analysis.9 For the new solution, Fig. 1(i), the

computed vortex positions are

1:2350850139 �0:6172513235 6 1:0524323669i;
2:3511504807 �1:1891361698 6 2:0175029435i;
0:0265394920:

The value of h, Eq. (2), is 1:6035146448… In a numerical

exploration where the existence of relative equilibria differ-

ent from those seen previously is assessed visually from a

plot of vortex positions, or even from a calculation of an

energy measure equivalent to h in Eq. (2) but only to accu-

racy 10�6, one could easily mistake the new configuration

for the known, centered double-ring.

Initially, we were suspicious that the new configuration

was a numerical artifact even though the stringent check (3)

had been applied. Hence, we also checked the calculations to

accuracy 10�300 using Maple and found both solutions to be

present. These checks confirm the existence of two very

close relative equilibria.

Another argument in favor of the existence of the new

configuration is that a similar pair occurs close to the cen-

tered, symmetric triple-ring configuration 1-3-3-3, which is

again known analytically.7 The configuration consists of a

central vortex and three concentric, symmetrically placed,

equilateral triangles of vortices. The vortex coordinates in

this relative equilibrium are

1:1257068936; �0:5628534468 6 0:9748907671i;
2:0668001012; �1:0334000506 6 1:7899013922i;
3:0758935826; �1:5379467913 6 2:6638019818i;

and 0. These coordinates are Rpei2pa=3, p ¼ 1; 2; 3;
and a ¼ 1; 2; 3, where R1, R2, and R3 satisfy the equations7

R2
1 þ R2

2 þ R2
3 ¼ 15;

R5
1 þ R5

2 þ R5
3 ¼ 8ðR3

1 þ R3
2 þ R3

3Þ;
R2

1 � 2

R3
1

þ R2
2 � 2

R3
2

þ R2
3 � 2

R3
3

¼ 0: (5)

The value of h, Eq. (2), is 1:8554011511… The coordi-

nates in the new relative equilibrium are

1:1430054923; �0:5635151208 6 0:9642351902i;
2:0782582001; �1:0475637987 6 1:7748721082i;
3:0842676267; �1:5635635748 6 2:6439155247i;
0:0437536693:

For this configuration, we find h ¼ 1:8554026277…

We found other instances of close relative equilibria for

ten vortices, although none as close as the pair just given.

The two similar configuration pairs in Figs. 2(a)–2(d) can be

distinguished by careful visual inspection. Relative

FIG. 1. Numerically determined relative equilibria of seven vortices. Centers

of rotation indicated by small crosses (when not coincident with a vortex).

FIG. 2. Two examples, (a), (b) and (c), (d), of pairs of close relative equili-

bria for ten vortices.
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differences in individual coordinates are larger than in the

previous examples. The values of h for the two configura-

tions in each pair in Fig. 2 agree to accuracy 10�3. The pair

in Figs. 2(c) and 2(d) is the most interesting for the present

discussion since Fig. 2(c) is a centered, staggered configura-

tion of nested equilateral triangles in the nomenclature of

Ref. 7.

There appear to be centered, symmetric configurations

of arbitrarily many nested, similar, regular polygons. For n
nested regular s-gons, we find the following system of equa-

tions for the radii R1, ..., Rn:

2R2
p � s� 1

Rs
p

¼ 2s
Xn

q¼1

0 1

Rs
p � Rs

q

; p ¼ 1;…; n: (6)

The prime on the summation sign means q 6¼ p. The

vortex positions in such a relative equilibrium are Rpei2pa=s,

p¼ 1, ..., n, a ¼ 1;…; s, and 0. Equations (4) and (5) are

reduced versions of Eqs. (6) for s¼ 3 and n¼ 2 and 3,

respectively. For s¼ 2, Eqs. (6) are satisfied by the zeros of

the Hermite polynomial of degree 2nþ 1. We shall not pause

to derive Eqs. (6) here. A derivation can be based on the gen-

erating polynomial approach explained in Ref. 11, in particu-

lar, Eq. (2.6).

For s¼ 3, we have found solutions to Eq. (6) for n up to

30 numerically. We assume there are solutions for all natural

numbers n. These describe configurations of 3nþ 1 vortices

arranged on n symmetrically nested, equilateral triangles

with a vortex at the center. Based on the results for n¼ 2, 3,

we expect that close to each of these symmetric relative

equilibria there is a second relative equilibrium with lower

symmetry. We have checked this conjecture for n¼ 4, ..., 30.

In each case, we find a new, close relative equilibrium that is

indistinguishable from the symmetric configuration to the

naked eye. The left panel of Fig. 3 provides an example for

n¼ 10. The vortices in the analytically known configuration

are shown as black dots centered on the vortex positions.

The new, close configuration is shown by superimposed

white dots centered on the new vortex positions. All dots of

the new configuration are seen to fall inside the black dots

representing the analytically known configuration.

With the new seven-vortex configuration added to the

list, the number of known relative equilibria of seven identi-

cal vortices stands at 12. There are 19 known eight-vortex

relative equilibria. The total could also be stated as 20 since

for N¼ 8, we encounter the smallest asymmetric relative

equilibrium.10 A reflection of this configuration in a line

through its centroid is again a relative equilibrium and not

one that can be obtained by rotation from the original

configuration.

For nine vortices, we found a total of 35 relative equili-

bria. Four of these are asymmetric so one could count each

of them as two different configurations for a total of 39. For

ten vortices, we found 59 relative equilibria of which 13 are

asymmetric. We have not yet done a systematic count for

larger values of N. For N¼ 13, where we were interested in

whether there was another relative equilibrium close to the

symmetric 1-3-3-3-3 configuration, we found at least 275

relative equilibria. The total number of relative equilibria

appears to grow rapidly with N, and the number of asymmet-

ric configurations among them also grows.

Let z
ð0Þ
a and za be two close relative equilibria. To linear

order in dza ¼ za � z
ð0Þ
a , we have

dza ¼
XN

b¼1

Aabdzb; (7a)

where the matrix Aab is the matrix that arises in the linear

stability theory for the configuration z
ð0Þ
a

Aab ¼
XN

c¼1

0 dab

ðzð0Þa � z
ð0Þ
c Þ

2
� 1� dab

ðzð0Þa � z
ð0Þ
b Þ

2
: (7b)

We write Eq. (7a) in an easily understood vector-matrix

notation

dz ¼ Adz; dz ¼ AAdz: (8)

Since A is symmetric, AA is Hermitian. Furthermore,

because of the form of this matrix, all its eigenvalues are

non-negative. The existence of a close relative equilibrium

suggests that the matrix AA must have an eigenvector with

eigenvalue 1. Now, z(0) is always a “trivial” eigenvector of

AA with eigenvalue 1 (cf. Ref. 12 where the analogous result

for N¼ 3 and arbitrary vortex strengths is given). Thus, we

expect that a close pair of relative equilibria will manifest

itself by the matrix AA having a close degeneracy of the

eigenvalue 1.

We have computed the eigenvalues of AA for each of

the configurations found. The eigenvalue spectra for close

configurations are, of course, also close. For example, in the

case of Figs. 1(i) and 1(j), the eigenvalue spectrum of the

analytically known configuration is 0.0000, 1.0000, 1.0456

(multiplicity 2), 5.5157 (multiplicity 2), and 6.1539. The

eigenvalues of the new configuration are 0.0000, 0.9555,

1.0000, 1.1396, 5.3727, 5.6504, and 6.1674. (The eigenvalue

0 is also always present, cf. Ref. 12.) The pattern of the less

symmetrical configuration having a stable mode with eigen-

value less than but somewhat close to 1 recurs for the other

close pairs.

FIG. 3. Close relative equilibria for 31 (left) and 14 (right) vortices. The an-

alytical, symmetrically-nested, regular-polygon solution is shown as black

dots, the close, new, numerically determined solution is shown as superim-

posed white dots. These results have been checked to accuracy 10�300 using

Maple.
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A related observation is that the eigenvalue spectrum of

the centered, equilateral triangle is 0, 1 (with multiplicity 3).

This suggests a very “flat” energy surface around this state.

As further equilateral triangles are added, this degeneracy in

the stability matrix for the “core” of the configuration may

be the main feature that allows a close relative equilibrium

to exist.

Among the open and centered regular polygons, the

open heptagon and centered nonagon are both marginally

stable in linear theory, i.e., the eigenvalue 1 of AA is the

largest and is degenerate. Hence, one suspects that close to

the heptagon double-ring, there would be another close rela-

tive equilibrium of lower symmetry. We have checked this

conjecture and, indeed, such a configuration is found numeri-

cally. It is shown in the right panel in Fig. 3, where the ana-

lytically known double ring7,8 is plotted using black dots, the

new numerically determined, close, 14-vortex relative equi-

librium using superimposed white dots. The two configura-

tions are obviously very close, although not quite as close as

in the case of the nested equilateral triangles. Further, close

relative equilibrium pairs exist as more heptagonal rings are

added. The ring radii in the analytical solutions satisfy equa-

tions similar to Eq. (6) but with –sþ 1 in the numerator

instead of –s – 1 (and for heptagons s¼ 7). Similarly, for the

centered, regular nonagons we have found relative equilibria

that are close to the centered double- and triple-rings but,

again, not as close as in the case of the equilateral triangles.

The centered equilateral triangle is unique in that all infini-

tesimal perturbations with fixed centroid have eigenvalue 1.

The open regular heptagon and centered regular nonagon

also have linearly stable modes.

We do not have a full understanding of why the phe-

nomenon of close pairs of solutions to Eq. (1) arises. The

closest solutions appear in the vicinity of the centered, sym-

metric, nested equilateral triangle configurations. Close solu-

tions also occur in other cases when the “core” of the

configuration is marginally stable and the eigenvalue 1 has

multiplicity larger than 1. However, quite close solutions,

such as Figs. 2(a) and 2(b), arise in cases where this mecha-

nism of a marginally stable “core” does not seem to be appli-

cable. The phenomenon of close relative equilibria was a

surprise to us. We have since learned of similar situations in

other problems of this kind.6,13,14 For relative equilibria with

vortices of both positive and negative circulations examples

of continua of solutions are known, e.g., for the stationary

relative equilibria15 and for a certain five-vortex example.16

However, the expectation is that when all vortices are of one

sign, in particular, for identical vortices, “finiteness” of solu-

tions prevails. Implicit in this expectation was that the differ-

ent relative equilibria would be easily distinguishable.
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the Technical University of Denmark sponsored by the Dan-
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