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All the models are false, but some are useful...
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Abstract

This thesis describes the physics and applications of quantum dot semiconductor op-

tical ampli�ers through numerical simulations. As nano-structured materials with

zero-dimensional quantum con�nement, semiconductor quantum dot material pro-

vides a number of unique physical properties compared with other semiconductor

materials. The understanding of such properties is important in order to improve

the performance of existing devices and to trigger the development of new semicon-

ductor devices for di�erent optical signal processing functionalities in the future.

We present a detailed quantum dot semiconductor optical ampli�er model incor-

porating a carrier dynamics rate equation model for quantum dots with inhomoge-

neous broadening as well as equations describing propagation. A phenomenological

description has been used to model the intradot electron scattering between discrete

quantum dot states and the continuum. Additional to the conventional time-domain

modeling scheme, a small-signal perturbation analysis has been used to assist the

investigation of harmonic modulation properties.

The static properties of quantum dot devices, for example high saturation power,

have been quantitatively analyzed. Additional to the static linear ampli�cation

properties, we focus on exploring the gain dynamics on the time scale ranging

from sub-picosecond to nanosecond. In terms of optical signals that have been in-

vestigated, one is the simple sinusoidally modulated optical carrier with a typical

modulation frequency range of 1-100 gigahertz. Our simulations reveal the role of

ultrafast intradot carrier dynamics in enhancing modulation bandwidth of quantum

dot semiconductor optical ampli�ers. Moreover, the corresponding coherent gain

response also provides rich dispersion contents over a broad bandwidth. One impor-

tant implementation is recently boosted by the research in slow light. The idea is
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to migrate such dynamical gain knowledge for the investigation of microwave phase

shifter based on semiconductor optical waveguide. Our study reveals that phase

shifting based on the conventional semiconductor optical ampli�er is fundamentally

limited over a narrow bandwidth determined by the slow carrier density pulsation

processes. In contrast, we predict that using quantum dots as the active material

instead can provide bandwidth enhancement even beyond 100 gigahertz due to its

unique extra ultrafast carrier dynamics.

We also investigate the gain dynamics in the presence of pulsed signals, in par-

ticular the steady gain response to a periodic pulse trains with various time peri-

ods. Additional to the analysis of high speed patterning free ampli�cation up to

150-200 Gb/s in quantum dot semiconductor optical ampli�ers, we discuss the pos-

sibility to realize a compact high-speed all-optical regenerator by incorporating a

quantum dot absorption section in an ampli�er structure.
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Resumé

Denne afhandling beskriver, gennem numeriske simuleringer, fysikken bag og anven-

delserne af kvantepunkts-optiske forstærkere. Kvantepunkter er nanostrukturerede

halvledermaterialer der, i sammenligning med andre halvledermaterialer, besidder

en række unikke fysiske egenskaber. Forståelsen af disse egenskaber er vigtig for at

forbedre e�ektiviteten af eksisterende udstyr og for at muliggøre udviklingen af nye

halvlederkomponenter til optisk signalbehandling i fremtiden.

Vi præsenterer en detaljeret model af en halvleder kvantepunkts-optisk forstærker

med indbygget ladningsbærerdynamik baseret på rate ligninger for kvantepunkter

med inhomogen forbredning og ligninger til at beskrive lysudbredelse. En fænome-

nologisk beskrivelse benyttes til at simulere intrapunkts elektronspredning mellem

diskrete kvantepunktstilstande og kontinuummet. Udover konventionel tidsdomæne-

modellering benyttes en perturbations analyse for små signaler til at analysere

forstærkning af signaler med harmonisk modulation.

De statiske egenskaber af kvantepunkts-komponenter, f.eks høj mætningse�ekt,

er blevet kvantitativt analyseret. Udover forstærkeregenskaber i det lineære regime,

udforsker vi forstærkerdynamik på tidsskalaer der strækker sig fra sub-picosekunder

til nanosekunder. Blandt de optiske signaler der undersøges er simple sinusformer

med typiske modulationsfrekvenser i området 1-100 gigahertz. Vores simulationer

afslører at ultrahurtig intrapunkts-ladningsbærerdynamik kan være medvirkende

til en øget modulationsbåndbredde. Det tilhørende kohærente forstærkerrespons

resulterer desuden i en kompleks dispersion over en stor båndbredde. En vigtig

anvendelse er for nyligt blevet promoveret gennem forskning i langsomt lys. Idéen

er her at overføre viden om dynamisk forstærkning til brug i faseskiftere i halvleder-

optiske bølgeledere designet til mikrobølgeområdet. Vores undersøgelse viser, at
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faseskift baseret på konventionelle optiske halvlederforstærkere er grundlæggende

begrænset til en relativt smal båndbredde, der bestemmes af langsomme pulserende

processer i ladningsbærertætheden. I modsætning hertil forudsiger vi at brugen af

kvantepunkter som det aktive materiale kan lede til en forøget båndbredde på 100

gigahertz eller mere på grund af den unikke hurtige ladningsbærerdynamik.

Vi undersøger endvidere forstærkerdynamik ved pulsede signaler specielt forstærk-

errespons ved konstant forstærkning af et periodisk puls-tog med variabel peri-

ode. Udover analysen af mønsterfri højhastighedsforstærkning op til 150-200 Gb/s

i kvantepunkts-optiske forstærkere diskuterer vi mulighederne for at realisere kom-

pakte højhastigheds regeneratorer ved at inkludere sektioner med absorption i en

forstærkerstruktur baseret på halvleder kvantepunkter.
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Chapter 1

Introduction

In the recent decade, research in a wide range of optical signal processing technolo-

gies have gone through a signi�cant growth for potential industrial applications.

For applications in modern communication and computing systems, one of the im-

portant driving forces is the rapid advance in speed. In �ber-optic network, the

bit rate of a single channel optical link is migrating from 10 Gb/s to 40 Gb/s or

even higher. Limited available bandwidth is also pushing wireless communication

systems into the millimeter (mm) wave region of 30-100 gigahertz. Although great

advances in high-speed electronic devices operating at frequencies greater than tens

of gigahertz [1] have been able to cover most of the current high-speed demand

(large number of slower electronics that operate in parallel), the high-speed electri-

cal signal processing at higher operation frequency is su�ering more and more risk

of circuit performance degradation with huge device cost and power dissipation [2].

It is natural to migrate at least some of the bandwidth demanding signal processing

functions from the electrical domain to the optical domain [3], where the restrain

on bandwidth is greatly released. In the �eld of �ber-optic telecommunication, it

has received great attention to build up optical packet switched telecommunication

networks. The key issues are to reduce optical-electrical-optical conversion and re-

place the corresponding intermediate electrical signal processing functions realized

by large electronic packet routers. One of the important functions is the realiza-

tion of all-optical signal regeneration (preferably at the bit rate much greater than

40 Gb/s), which is developed to remedy the optical signal degradation (typically due
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Figure 1.1: Quantum dots. (left) Schematic atomic view, (middle) electronic band

diagram and (right) gain spectrum of a quantum dot.

to noise) within compact and inexpensive photonic devices instead of bulky opto-

electronic regenerators. Another new area is microwave photonics [4, 5], which is a

uni�cation of microwave and photonic techniques for applications such as �bre de-

livery of millimeter waves (in-�bre radio) or using optical signal processing units to

change the millimeter wave signals (optically-fed microwave phase shifter). These

new ideas for implementation of optical signal processing not only rely on continu-

ously exploring the limitations of commercially available photonic devices at higher

operation frequencies, but also stimulate the demand for new materials as well as

devices.

Among the important photonic material candidates, nano-structured semicon-

ductor materials have been of increasing interests for decades in both physics stud-

ies and device fabrications like lasers or optical ampli�ers. One of the most topical

nano-structures is semiconductor quantum dots (QDs) [6, 7], which are very small

three-dimensional systems with size ranging from nanometers to tens of nanometers

as shown in Figure 1.1. Consisting of only a few hundred to a few hundred thou-

sand atoms, QDs bridge the gap between solid state and single atoms and exhibit

a mixture of solid-state and atomic properties. As a result of quantum con�nement

along all three dimensions, the energy states for carriers and corresponding photon

transitions are composed of atomic-like discrete series instead of continuous bands

for a bulk material. The three-dimensional freedom in engineering the quantum dot

size makes such arti�cial nano-structure attractive for photonics applications. Dif-

ferent techniques have been used in fabrication of QD semiconductor materials with

di�erent compositions, which provide a large variety of corresponding electrical and
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optical properties [8, 9]. For example, ultra-fast carrier dynamics in QD materials

might make QD-based active semiconductor waveguide promising for various kinds

of high-speed optical signal processing applications like linear ampli�cation, signal

regeneration and four-wave mixing (FWM) [10, 11].

Novel physical properties are expected to emerge and will give rise to new semi-

conductor devices as well as to drastically improved device performance. One of

the novel phenomena is slow light e�ect enlightened by the classical experimental

demonstration of slowing light to bicycle speeds in atomic gasses [12] and subse-

quently even completely stopping light. This also leads to a large category of in-

vestigations in physics and applications of the slow and fast light in semiconductor

waveguide, in particular, coherent population oscillations (CPO) e�ect [13].

This thesis focuses on the implementation of a comprehensive device model for an

active semiconductor waveguide incorporating quantum dots, typically functioning

as a semiconductor optical ampli�er (SOA). This model tackles some fundamental

issues such as gain saturation, recovery and modulation response for quantum dot

materials. Detailed numerical investigations have been used to demonstrate the

potential of QD semiconductor waveguides for di�erent optical signal processing

functions.

The organization of the thesis is as follows: Chapter 2 presents some background

knowledges of QD SOAs and the potential optical signal processing applications,

in particular, the vision of optically fed microwave phase shifter based on slow and

fast light e�ects and optical pulsed signal regeneration. Chapter 3 describes the

basis to model light matter interaction in semiconductor. The aim is to clarify the

assumptions and limitations of carrier rate equations. The QD SOAs model used

in this work are given in Chapter 4.

The main results of the thesis are presented in chapter 5 to 8. Chapter 5 includes

the basic properties of QD SOAs without propagation e�ects in terms of linear gain,

linewidth enhancement factor, gain saturation and harmonic oscillation responses.

Chapter 6 presents a theoretical investigation of coherent population oscillations

(CPO) as well as microwave phase shifting based on a general wave-mixing model

in SOA and an optical �ltering scheme. The microwave phase shifting realized in

QD SOAs based on CPO and cross gain modulation (XGM) e�ects are discussed in

chapter 7. In chapter 8 the optical pulse regeneration capabilities in a simple QDs

3



Chapter 1. Introduction

waveguide device are predicted and discussed. Finally, conclusions of the work are

provided in chapter 9.
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Chapter 2

Background

In this chapter, we will brie�y go through the background knowledge of the semi-

conductor quantum dots and devices. The visions of optical signal processing ap-

plications, that motivate the work in the thesis, are presented. One is related to the

investigation of slow and fast light e�ects in semiconductor waveguides. Namely, the

possibility of controlling the speed of light through a device may lead to applications

in microwave photonics, in particular microwave phase shifting technique. Another

is all-optical signal regeneration to remedy optical signal degradation within com-

pact and inexpensive semiconductor devices.

2.1 Quantum Dot Semiconductor Optical Ampli-

�ers (QD SOAs)

♯1 GaAs (001) substrate

♯2 InAs Wetting Layer

♯3 Islanding

♯4 Quantum Qot

♯5 Buried QD

♯6 InAs
GaAs

Figure 2.1: Schematic growth steps for self-assembled quantum dots.
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Chapter 2. Background

Since the introduction of quantum dot with ideal three-dimensional con�nement

[6, 7], di�erent fabrication methods have been used to realize realistic high quality

dots [8, 9]. The quantum dots, that we focus on here, are self-assembled or self-

organized dots shown in Figure 2.1. Such islands are realized by Stranski-Krastanow

(SK) growth [14] on a semiconductor substrate. For example, growing InAs on a

GaAs substrate layer by layer, a thin strained layer is formed due to the lattice

mismatch. Under the right growth conditions (temperature, growth rate and etc.)

and a critical thickness of epitaxial InAs layer, the accumulated strain in the de-

posited layers leads to sign reversal in chemical potential and thus switch growth

mechenism [15]. Islands, three-dimensional quantum dots, start to form on top of

a thin wetting layer (WL) with a few-monolayer thickness. These islands can be

completely embedded with the material of the same kind as the substrate and be

easily repeated to stack more layers of QDs.

Figure 2.2: STM image of InAs QDs on GaAs (001). The number density of the

QDs is 1.9× 1011 cm−2. Histogram of QD size from the STM image [16].

Due to the nature of self-assembling, size of quantum dots is inhomogeneously

distributed. Figure 2.2 shows a scanning tunneling Microscope (STM) image of InAs

QDs on GaAs. Normally a large number of quantum dots are randomly located on

the wetting layer, see the histogram size distribution of QDs in Figure 2.2(b) as an

example [16]. The crystal orientation of substrate, material composition, fabrication

process, etc., have di�erent impact on the shape. The unexpected size �uctuation

degrades the overall uniformity feature of QDs. On the other hand, the controllable

inhomogeneous distribution gives freedom for di�erent device applications.
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Quantum Dot Semiconductor Optical Ampli�ers (QD SOAs)

Figure 2.3: Calculated electron energy spectrum and the probability density iso-

surfaces for the carriers in several states for InAs/GaAs quantum dot shape as a

squared truncated pyramid. The vertical arrows mark the most strong interband

optical transitions. The calculation is based on eight-band k · p model [17].

In general, a quantum dot is a three-dimensional potential system con�ning the

carriers inside. An accurate determination of the electronic properties requires a de-

tailed numerical calculation of eigenstates, which in turn requires knowledge of the

precise shape, size, material composition and strains of the dot. Signi�cant research

e�ort has been devoted to the determination of such material parameters. Due to

the nature of the self-assembled quantum dots, the measurement of geometry and

composition have failed to provide details to a similar level of accuracy to which the

electronic structure has been determined. As a result, the size of the dots were often

used as adjustable parameters in models to �t experimental spectra. The accuracy

and complexity of detailed models, such as multi-band k · p methods [18, 19], have

been widely investigated and discussed. It is also found that the conventional k · p
methods applied in the framework of applied speci�cally in the framework of the

Luttinger-Kohn model [20] and the Kane model [21] sometimes can signi�cantly

misrepresent the fully converged results even when the shape, size and composition

were given. In Williamson's work [22], a more complex model including atomistic

interaction and many body e�ects is used. However, such calculations are very

complex and time consuming, besides, they also depend on a number of parame-

7



Chapter 2. Background

ter values that are hardly known. Figure 2.3 shows an example of the calculated

electronic energy spectrum based on eight-band k · p method [17]. Truncated pyra-

midal QDs with a particular size have been chosen in calculation to agree with the

experimental data. The main interband optical transitions correspond to the two

lowest QDs discrete states in the conduction and valence band. The upper states

are forming a subband of continuum states. The probability density isosurfaces of

wave functions provide a general idea of the three-dimensional con�nement for the

carriers in several discrete states.

QD

Carriers

Optical 

Signal

 G
ai

n 
(a

.u
.)

 

 

Homogeneous
Broadening

Inhomogeneous 
Broadening

 Photon Energy (a.u.)

  

 

Figure 2.4: Illustration of optical ampli�cation in en ensemble of quantum dots.

The scope of this thesis is focusing on the optical properties of an ensemble of

QDs with their unique carrier dynamical processes rather than the fundamental

electronic properties of an individual quantum dot. This leads to the investigation

of the quantum dots as active medium, typically used in a semiconductor optical

ampli�er (SOA).

Figure 2.4 shows the general idea of optical ampli�cation in an ensemble of QDs.

When an optical signal is incident on an ensemble of QDs in full inversion. The

optical signal will be ampli�ed by stimulated emission in the QDs with interband

transition energies (of discrete QD states) close to the photon energy. The carriers

in the corresponding QD discrete states will be depleted and recovered by surround-

ing carriers through di�erent carrier dynamical processes. Suggested mechanisms

for the carrier relaxation include carrier-carrier scattering [23, 24, 25] and carrier-

phonon scattering [26, 27, 28, 29]. Such interaction processes in QDs take place

on timescales ranging from sub-picosecond to hundreds of picoseconds, which is

8



Quantum Dot Semiconductor Optical Ampli�ers (QD SOAs)

Figure 2.5: Structure of a quantum dot semiconductor optical ampli�ers fabricated

on an InP substrate. [10].

di�erent from the conventional semiconductors.

Due to the di�erent carrier masses and con�nement energies of the conduction

and valence band, electron and hole relaxation are expected to take place at di�erent

rates. The larger hole mass leads to a smaller mobility, resulting in a slow spatial

transport. On the other hand, the larger hole mass also leads to a smaller energy

spacing between hole states, resulting in a faster hole relaxation. Thus in most cases,

the QDs dynamic properties are limited by the relatively slow electron dynamics

[30, 31]. The corresponding scattering rates can be included in rate equation models

that describe the carrier dynamics in quantum dot structures in terms of carrier

densities or occupation probabilities. For highly uniformed QDs, the spectral gain

has a narrow bandwidth with the appearance of homogeneous broadening. It is close

to an ideal QD device with high material gain. On the other hand, the stimulated

emission does not happen in all the QDs. In reality, the dispersion of dot size

(inhomogeneous broadening) leads to the change of the interband transition energies

for the discrete QD states. The spectral gain determined by the inhomogeneous

broadening has a much broader bandwidth.

Figure 2.5 shows one of the reported high-performance QD SOAs [10]. Sev-

eral layers of quantum dots with required emission wavelengths are embedded in

a current-con�ned structure for a high current density. Anti-re�ection designs in-

cluding anti-re�ective coating, tilted waveguide and window regions are often used

9



Chapter 2. Background

to suppress lasing action. Limited by the maximum density and inhomogeneous

broadening of QDs, the waveguide is typically several millimeters long to realize a

reasonable gain.

Such devices have been intensively studied due to their performance improve-

ment over bulk or quantum-well SOAs in terms of ultrafast gain recovery [32, 33,

34, 35, 36, 37], high four-wave mixing e�ciency [38, 39], high-speed operation at

40 Gb/s and beyond [10, 40], high saturation power and broad gain bandwidth [41].

Meanwhile, di�erent versions of QD device theory [30, 31, 42, 43, 44, 45, 46, 47, 48]

have been developed to bridge the gap between the measured device performance

and the knowledge on QD carrier dynamics. The simulation helps to reveal the

physical origins behind the bene�ts. The understanding of such properties also

triggers the development of new semiconductor devices for di�erent optical signal

processing functionality.

10
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2.2 Applications in Optical Signal Processing

2.2.1 Controlling the speed of light

The basic concept in controlling the speed of light is the control of group velocity.

A continuous wave (CW) light beam propagating in a medium with refractive index

n has a phase velocity v = c/n, where c is the velocity of light in vacuum. This

corresponds to the speed at which a peak of the rapidly oscillating electrical �eld

propagates through the medium. If the intensity of the signal varies in time, i.e.

the spectrum of the signal has a �nite width, the propagation speed of the intensity

modulation is instead given by the group velocity vg,

vg =
c

ng
, ng = n+

dn

dω
ω (2.1)

where ng denotes the group index and ω is the optical frequency. The group velocity

thus di�ers from the phase velocity in media at frequencies, where the refractive

index has a non-zero �rst-order derivative with frequency. In particular, the group

index change arose from the material dispersion change, the latter term of Eq. (2.1)

is of interest. Fig. 2.6(left) shows in dashed black lines the calculated imaginary and

real parts of the complex susceptibility of a two-level medium, corresponding to the

absorption and change in relative dielectric constant of the medium. As a general

consequence of the Kramers-Kronig relations, the absorption resonance implies a

�nite frequency dependent contribution to the refractive index. It is seen that an

absorption resonance leads to group refractive index which is smaller, at resonance,

than the (phase) refractive index, thus corresponding to fast light. From Eq. (2.1)

it is clear that in order to achieve a larger change in the group refractive index, the

slope of the index with respect to frequency needs to be increased, which translates

into the requirement of a sharper resonance with a smaller spectral width. This

can be achieved by decreasing the dephasing time associated with the resonance,

in many cases obtainable by e.g. lowering the temperature. However, since the

maximum change in the group index occurs exactly at the absorption resonance,

the increased change of the light speed comes at the prize of a larger absorption

and may thus not be of any interest, since practically no light may be transmitted

through the structure. Thus, a way of controlling the light speed, i.e. externally

changing the group index, is needed.
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Figure 2.6: Level diagrams and typical examples of susceptibilities for electromag-

netically induced transparency (EIT, left column) and coherent population oscil-

lations (CPO, right column) versus detuning frequency. The level schemes (upper

row) illustrate the choice of control and probe photon energies, ~ωco and ~Ωpr , for

the two schemes of excitation. Below, the imaginary and real parts of the suscepti-

bilities are depicted, with dashed lines showing the susceptibilities for zero control

signal. The probe frequency is normalized with respect to the 2-1 dephasing time

for EIT and with respect to the carrier lifetime for CPO. [49]

The classical experimental demonstrations of slowing light to bicycle speeds in

atomic gasses [12] and subsequently even completely stopping light have led to a

signi�cant interest in exploring the physics and applications of this phenomenon.

Today, light slow-down has been demonstrated in a number of di�erent physical

media; in addition to atomic gasses, solid-state crystals [13], semiconductors [50,

51, 52], optical �bers [53, 54, 55], and photonic crystals [56, 57] have been used.

12
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Also, a number of di�erent physical e�ects have been explored to realize control

of the propagation speed in the various media, i.e., electromagnetically induced

transparency (EIT) [58], coherent population oscillations (CPO) [13] waveguide

dispersion [56, 57], parametric e�ects, and others.

This progress of controlling the group velocity of an optical signal propagating

in a solid state device has attracted increasing attention due to the possibilities

of realizing compact devices for signal processing, such as all-optical bu�ering [59]

and phase shifters for microwave photonics [60]. Semiconductor based devices, with

their well-developed fabrication technology and the possibilities for integration with

other functionalities, are important candidates for practical applications.

The phenomenon of electromagnetically induced transparency (EIT), used in

the cold atoms experiments by Hau et al [12], o�ers a way to change the dispersion

of refractive index without being limited by absorption. Semiconductor quantum

dots (QD) seem a natural choice to pursue light-slow down in semiconductor media

with their discrete electronic levels [61]. In Fig. 2.6(left) we have illustrated the case

of a three-level con�guration known as a ladder scheme. We consider a probe signal

which is resonant, or nearly resonant, with the 1-2 transition. However, in this

case we have an additional pump beam which is resonant with the 2-3 transition.

When the intensity of the pump beam is increased, the levels 2 and 3 split up due

to Rabi oscillations and the absorption line of the 1-2 transition is split in two. The

absorption of the probe is seen to be strongly reduced, as seen in solid red curves

in Fig. 2.6(left). The corresponding change of the dispersion of the refractive

index implies a positive group index at the 1-2 transition frequency, simultaneously

with the strongly reduced absorption. However, since EIT relies on a quantum

mechanical coherence among levels and dephasing times in semiconductors are short

and, at the same time, present-day technology leads to quantum dots with large

size dispersion, there are signi�cant challenges to overcome for realizing practical

light-speed control in semiconductors based on EIT [61, 62].

Instead, the e�ect of coherent population oscillations (CPO) [13] may provide

a realistic alternative in semiconductors. In this case the interference of a pump

and probe signal exciting a continuum of transitions, see Fig. 2.6 (right), leads to

coherent oscillations of the populations in the continuum at the pump-probe beat

frequency. This, in turn, changes the refractive index dispersion seen by the probe

13
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Figure 2.7: Illustration of coherent population oscillations (CPO) as wave mix-

ing between a pump and a probe signal in a semiconductor waveguide, leading to

the generation of a conjugate signal as well as the modi�cation of the amplitude

and phase of the probe. In the time domain, it corresponds to the modulation of

gain/absorption as well as index (optical phase).

due to wave mixing e�ects. The corresponding real and imaginary parts of the

susceptibility are shown in Fig. 2.6 (right). In contrast to EIT, CPO relies on the

direct interference between pump and probe beams, which leads to oscillations of

the populations at the beat frequency and subsequent modi�cation of the e�ective

absorption and index experienced by the probe signal. For the CPO e�ect the

coherence is thus assured by the interference of the external laser beams at room

temperature.

Figure 2.7 illustrates this e�ect in both time and frequency domain. When

applying a signal that is intensity modulated in time, e.g. by the beating of two

CW signals, a strong pump and a weaker probe, the rate of stimulated emission or
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absorption is also modulated in time. This, in turn, implies a modulation of the

excited carrier density of the structure. Since the gain or absorption of the structure

and the refractive index depend on this carrier density, these quantities are modu-

lated as well. It is also referred to as the temporal saturation e�ect of gain dynamics

[63]. In frequency domain, the gain or absorption and index modulation correspond

to temporal gratings that scatter the strong pump signal to sidebands displaced

from the pump carrier frequency by the modulation frequency. One component is

scattered to the mirror frequency and leads to the build-up of a so-called conjugate

signal as is well-known from wave mixing in nonlinear optics in general and in semi-

conductor waveguides in particular, see [64]. Another component is scattered to

the original probe frequency and leads to a change of both the intensity and phase

of the probe �eld, depending on the phase relation between the original probe �eld

and the scattered component. This e�ect is also referred to as the Bogatov e�ect

[65]. From the point of view of light-speed control, referring back to Eq. (2.1), the

desired e�ect of the wave mixing is to achieve a large and controllable dispersion of

the refractive index.

The basic set-up for characterizing slow and fast light e�ects in photonic (semi-

conductor) devices based on a sinusoidally modulated input signal, also generally

implemented as a microwave phase shifter, are shown in Figure 2.8. A laser beam is

intensity modulated at a microwave frequency of Ω, passed through the device under

test (optical signal processor) and sent into a network analyzer, which by compar-

ison with the original signal extracts the microwave phase ϕ and the microwave

amplitude. The change in group velocity is related to the phase via

∆ng =
c

L
∆t =

c

L

∆ϕ

Ω
(2.2)

Here, ∆t is the change in propagation time, L is the length of the device and

∆ϕ is the change of the microwave phase relative to a �xed reference point, i.e.,

at a speci�c input power level and bias condition. The light speed or microwave

phase shift can be controlled by changing the input optical power to the device,

accomplished via a variable optical attenuator, or by changing the bias conditions

for the device.

For several applications in microwave photonics, the achievement of a phase

shifting of 360 degree is important in order to realize the full functionality. However,

the experimental demonstration in a single element, including bulk, quantum well
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Figure 2.8: Schematic diagram of a microwave phase shifter based on optical signal

processing.

(QW) or QD semiconductor optical ampli�ers [51, 66, 67, 68], or an electro absorber

(EA) [52], shows phase shift of a few tens of degrees. The maximum phase shift

and bandwidth will be limited by di�erent e�ects [59]. In both SOAs and EAs

the slow carrier density pulsation process sets an important limit [52, 66]. For

absorbing media the residual loss further limits the achievable delay [66]. The

ampli�ed spontaneous emission (ASE) limits the available SOA gain, and hence the

phase change, in long ampli�ers [69].

A number of proposals have been investigated to increase the phase shift. One

idea is to switch between the regimes of gain and absorption leading to a phase

shift larger than 180 degrees [70]. However, the results are limited by the operation

frequency of SOA (around 1 GHz) and large changes in net transmissions. Another

idea is to cascade the single elements together, i.e. the concatenation of alternating

gain and absorber sections, to achieve a larger phase shift tuning range as compared

to a single element. A monolithic four section device (2 SOA-EA pair) has been

reported to realize a large phase shift 110 degrees at 5 GHz [71, 72]. Such devices

can be further designed to provide net zero gain and 360 degree phase shifts with

more cascades. Still, the overall phase shift and bandwidth are inherently limited

in the single element stage.

One of our proposals is to use optical �ltering to explore the refractive index

dynamics indicated in Figure 2.7 and further enhance the phase shifting [73, 74].
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Details will be discussed in Chapter 6. For the QD SOAs, we theoretically inves-

tigate the gain dynamics in QD SOAs and suggest two types of microwave phase

shifters. Details will be discussed in Chapter 7. All of our proposals are aiming

at providing promising methods for increasing the achievable phase change and

bandwidth.

2.2.2 Optical signal regeneration

In �ber-optic communication system, semiconductor optical ampli�er attracts the

attention mostly for linear inline ampli�cation [75] and fast nonlinear all-optical

signal processing [76], e.g., regeneration, wavelength conversion and switching. On

developing optical regenerators, much e�ort has been spent to ful�ll the require-

ments of long-haul systems as well as networks with �exibility and scalability. As

the bit rate of a single channel optical link is migrating from 10 Gb/s to 40 Gb/s or

even higher, it is becoming more challenging to realize a high-speed optical regen-

erator that has a simple structure. Many optical regenerators based on SOAs have

been proposed [77, 78, 79, 80, 81, 82].

One of them is the simple pass-through semiconductor device with regeneration

properties [81, 82, 83] illustrated in Figure 2.9. As the optical signals pass through

a semiconductor optical ampli�er (SOA), the output signal is partially restored.

Both the signals and the background noise are ampli�ed. However, due to gain

saturation, output power of signals reaches a constant �at level above a certain

limit of input power, referred to as limiting ampli�cation. When the optical signals

are passing through an electro absorber (EA), the noise is attenuated while the

optical signals are less a�ected due to saturable absorption. It is possible to have

an S-shaped input-output relation (or a "bandpass"-like transfer function) by a

combination of saturable gain and absorption. This can be used as 2R-regeneration

(re-ampli�cation and reshaping). Such a 2R-regenerator acts like an optical decision

circuit, which separates the signal and noise levels (increases of extinction ratio) and

reduces the intensity �uctuations. In practice, monolithic components with SOA-

EA pairs have been realized using bulk [84] and QW semiconductor materials [85].

So far, experimentally the 2R regeneration based on such devices only reaches the

operation at 10 Gb/s [86]. In comparison, the other schemes, i.e. using cross phase

modulation (XPM) and elaborate interferometer setup [77, 78, 79, 80], have superior
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Figure 2.9: Schematic optical signal regeneration based on active semiconductor

devices. SOA: semiconductor optical ampli�er. EA: Electro-absorber.

performances >40 Gb/s even based on the conventional SOA.

Here, one of the limiting issues for the bulk or QW SOAs is the patterning

e�ects as shown in Figure 2.10. Namely, the ampli�cation of signals, especially in

the gain saturation regime, depends on the input data pattern. This e�ect is due

to the carrier depletion during the change of the signal power levels. The slow full

gain recovery time (around a few hundreds of picoseconds) limits the maximum

operation speed. It is of practical interest to investigate the patterning e�ects

regarding the operation limit. In the performance evaluation of devices, a pseudo

random binary sequence (PRBS) is favored to approximate the real data pattern in

the transmission system [75]. In general, a long sequence length, typically 231 − 1,

is necessary to obtain satisfactory statistics. But a long PRBS is often prohibited

in experiments by the temporal multiplexing techniques to generate the signal and

needs excessive computation times in simulations. On the contrary, the use of a

short PRBS length, e.g. 27 − 1, is also not giving a full measure of the problem,

especially at increasingly high bit rates [87].
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Figure 2.10: Illustration of patterning e�ects in semiconductor optical ampli�ers.

Identical input pulsed signals with di�erent data patterns are incident into the

devices. PRBS: pseudo random binary sequence.

Instead, another systematic approach using periodic pulse trains has been pro-

posed to predict patterning-e�ect-free QD SOAs [88]. Such periodic method is

equivalent to consistently investigate gain response of SOA to the most heavily-

loaded data streams with various time spacing. From this point of view, patterning

e�ects in the ampli�cation of a random data stream are the transients at the output

of the SOAs, when switching among periodic pulse trains with repetition frequencies

from zero to B0 incident into the device. If the steady gain for the periodic pulse

train at a repetition frequency up to B0 has a negligible deviation from a single

pulse, the patterning e�ects for the random data stream at the corresponding bit

rate are expected to be small.

One of our intentions is to theoretically investigate the simple pass-through QD

devices with regeneration properties for high bit rates based on the periodic method.

Details will be discussed in Chapter 8.
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Chapter 3

Fundamentals of Light

Matter Interaction in

Semiconductors

In semiconductor optical devices, the laser �eld and the semiconductor gain medium

are coupled by the gain and the refractive index, or equivalently by the induced

complex susceptibility. This chapter describes the fundamental elements that we

have used to model the dynamics of carriers and induced complex susceptibility to

applied electromagnetic �elds (laser �eld) in a semiconductor medium.

There are several di�erent model equations to quantify the physics of gain

medium and describe the dynamics of stimulated emission and absorption. The

optical Bloch equations, which are a set of coupled time di�erential equations for

population inversion and the induced electric polarization, form the basis of the

semiclassical two-level model [89, 90, 91]. A semiconductor medium can be in-

terpreted as the sum of two-level systems with di�erent transition frequencies as

determined by the electronic band structure and with separated carrier inversions.

Hereby, the induced susceptibility is a superposition of contributions of the vari-

ous transitions. A more microscopic approach by semiconductor Bloch equations

[90, 91] can include Many-body Coulomb e�ects, where a separate treatment of

screened Hartree-Fock approximation and collisional e�ects is often used [92]. Sup-

plemented with appropriated treatment of the scattering processes, semiconductor
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Bloch equations have been used as a theoretical framework for various optical prop-

erties of semiconductors and semiconductor microstructures [91].

In parallel, a simpli�ed framework as semiclassical density matrix equations [93,

94, 64, 95] has been derived from the semiconductor Bloch equations. By neglecting

the many-body e�ects and treating the carrier scattering with phenomenological

relaxation rates, the numerical demands have been signi�cantly reduced.

In this chapter, we will start with the basics of semiclassical density matrix

equations for the classical two-level systems. Regardless of the superposition for a

semiconductor medium, two rate equation approximations that eliminate the di�er-

ential equations for polarizations will be discussed. The di�erent sets of equations

will be compared by analysis of impulse response. A general approach will be for-

mulated for the corresponding small-signal harmonic analysis. A brief description

of the modeling of propagation e�ects in semiconductor waveguide is included in

Appendix A.

3.1 Semiclassical Density Matrix Equations (DME)
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Figure 3.1: Illustration of Light-matter interaction in the classical two-level system

for a semiconductor medium.

This section is based on the basics of density matrix equations presented in

[90, 91, 95].

The light-mater interaction in the classical two-level system, with upper and

lower levels referring to the conduction and the valence band for a semiconductor
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medium are illustrated in Figure 3.1. Egap denotes the bandgap energy of semi-

conductor medium. Ek
c and Ek

v denote the energy levels in the conduction (c) and

valence (v) band for state k respectively. The corresponding interband transition

energy is ~ωk = Ek
c + Ek

v + Egap. nk
c (t) and nk

v(t) denote the corresponding time-

variant electron and hole occupation probabilities. t is the time coordinate. For the

applied electric �eld E(t):

E(t) = A(t) exp(−iω0t) + c.c. (3.1)

Here A(t) is the corresponding slow varying complex envelope with the carrier

frequency ω0.1 The material response is de�ned as the induced interband dielectric

polarization (atomic dielectric polarization) pk(t):

pk(t) = pkcv(t) exp(−iω0t) (3.2)

Here pkcv(t) is the corresponding slowly varying complex envelope with the carrier

frequency ω0.

The corresponding Bloch equations are given by [90, 91] as following:

∂tn
k
c (t) = ∂tn

k
c (t)

∣∣∣∣∣
rel

− i

~

[
d∗kp

k(t)− dkp
k∗(t)

]
E(t) (3.3)

∂tn
k
v(t) = ∂tn

k
v(t)

∣∣∣∣∣
rel

− i

~

[
d∗kp

k(t)− dkp
k∗(t)

]
E(t) (3.4)

∂tp
k(t) =

[
−iωk − γk

2

]
pk(t)− idk

~
[
nk
c (t) + nk

v(t)− 1
]
E(t) (3.5)

where dk is the dipole moment of the transition for state k. ∂t denotes the time

derivative operator. The �rst terms on the right hand side (RHS) of Eq. (3.3) and

(3.4) denotes the carrier relaxation/scattering processes. When a phenomenological

model is applied for the relaxation, the Bloch equations can be simpli�ed as density

matrix equations [95]. The second terms on the RHS of Eq. (3.3) and (3.4) de-

note the occupation probability change induced by stimulated emission/absorption.

Eq. (3.5) describes the damped oscillation properties of atomic dielectric polariza-

tion. γk
2 is the corresponding dephasing rate for the dielectric polarization that

1An unambiguous de�nition of the envelope from [96] has the form A(t) exp(−iω0t+iΨ). where

ω0 =
∫∞
0 ω|Ẽ(ω)|2dω/

∫∞
0 |Ẽ(ω)|2dω, Ẽ(ω) is the Fourier transform of E(t) and ψ is de�ned such

that the imaginary part of the complex envelope A(t) is zero at t=0. The envelope A(t) is assumed

to remain invariant under a change of ψ.
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describes the nonresonant part. The frequency detuning between atomic dielectric

polarization and electric �eld contributes to the resonant part.

The corresponding macroscopic dielectric polarization density P(t) as the sum

over the momentum vector k is:

P(t) =
1

V

∑
k

(
d∗kp

k + dkp
k∗
)

(3.6)

where V is the active region volume.

With the assumption of overall charge neutrality, the corresponding superposi-

tion form of total carrier density is:

N(t) =
1

V

∑
k

nk
α(t) (α = c, v) (3.7)

By substituting Eq. (3.1) and (3.2) into density matrix equations, we obtain the

set of equations for the envelope:

∂tn
k
α(t) = ∂tn

k
α(t)

∣∣∣∣∣
rel

−Rk
stim(t) (α = c, v) (3.8)

∂tp
k
cv(t) =

[
−i(ωk − ω0)− γk

2

]
pkcv(t)−

idk
~
[
nk
c (t) + nk

v(t)− 1
]
A(t) (3.9)

where Rk
stim(t) is the generation (occupation probability change) rate of electron-

hole pairs induced by the stimulated emission/absorption, which can be expressed

as:

Rk
stim(t) =

i

~

[
d∗kp

k
cv(t)A

∗(t)− dkp
k
cv

∗
(t)A(t)

]
= 2Im

{
dk
~
pkcv

∗
(t)A(t)

}
(3.10)

By de�ning the Fourier transform pair for the envelopes as:

ỹ(Ω) =

∫ ∞

−∞
y(t)eiΩtdt (3.11)

y(t) =
1

2π

∫ ∞

−∞
ỹ(Ω)e−iΩtdΩ (3.12)

We can further integrate Eq. (3.9) to �nd a temporal solution for pkcv(t) as:

pkcv(t) = −dk
~

∫ t

−∞
dt′e−[i(ωk−ω0)+γk

2 ](t−t′) [nk
c (t

′) + nk
v(t

′)− 1
]
A(t′) (3.13)
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or equivalently using Fourier transform to get a spectral solution for p̃kcv(Ω) as:

p̃kcv(Ω) =
dk
~
Lk(ω0 +Ω)

{[
ñk
c (Ω) + ñk

v(Ω)
]
⊗ Ã(Ω)− Ã(Ω)

}
(3.14)

where

Lk(ω) =
1

ω − ωk + iγk
2

is the Lorentzian factor. ⊗ denotes the convolution operator.

The appearance of the time integral on the RHS of Eq. (3.13) shows that the

polarization depends on the values of occupation probabilities and electric �eld at

earlier times t′ ≤ t. Thus the generation rate determined by Eq. (3.10) is a process

with such a memory structure, as so called non-Markovian process [91].

3.1.1 Descriptions of phenomenological carrier relaxations

Here we will brie�y discuss two types of phenomenological carrier relaxation models

with their own physics perspectives.

A simple phenomenological description of the carrier relaxation process is based

on the exponential relaxation model. A non-equilibrium distribution nk
α, for in-

stance, generated by an optical pulse, are driven by collision towards a quasi-

equilibrium Fermi-Dirac distribution nk,eq
α with one relaxation time τα, (α = c, v):

∂tn
k
α(t)

∣∣∣∣∣
rel

= −nk
α(t)− nk,eq

α

τα

= −γk
α

[
nk
α(t)− nk,eq

α

]
(α = c, v) (3.15)

here γk
c and γk

v are the corresponding phenomenological relaxation rates for equilib-

rium of state k in the conduction and valence band. Solving Eq. (3.8) and (3.9) with

relaxation contributions given by Eq. (3.15) requires knowing the Fermi-Dirac distri-

butions at each time step. For a continuum of states, the overall quasi-equilibrium

Fermi-Dirac distribution is determined by assuming total carrier conservation in

carrier-carrier collisions: ∑
k

nk,eq
α =

∑
k

nk
α(t) (3.16)

where the quasi-equilibrium Fermi-Dirac distribution description can be further

de�ned as a local equilibrium nk,eq
α (t), which depends on a slowly varying quasi-
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fermi energy Ef,α(t), temperature T and the corresponding energy level Ek
α:

nk,eq
α (t) =

1

1 + exp
(

Ek
α−Ef,α(t)

kBT

) (3.17)

Here kB is the Boltzmann constant.

Another phenomenological description of carrier relaxation process is based on a

balanced scattering model determined by Fermi's golden rule [30, 97]. It is similar to

the simplest version of the quantum Boltzmann integral for carrier-carrier collisions

[91, 92]. Such model treats the carrier relaxation as one pair of non-equilibrium

capture and escape transitions, with a pair of capture and escape time (τcap and

τesc), between a lower state k and a upper state k′:

∂tn
k
α(t)

∣∣∣∣∣
rel

=
nk′

α (t)[1− nk
α(t)]

τcap
− nk

α(t)[1− nk′

α (t)]

τesc
, (α = c, v) (3.18)

As the non-equilibrium occupation probability approaches thermal equilibrium sta-

tus, we have:

nk′

α (t)[1− nk
α(t)]

τcap
=

nk
α(t)[1− nk′

α (t)]

τesc
(3.19)

By substituting Boltzmann distribution for the occupation probabilities, which is an

approximation of Fermi-Dirac distribution in the limit of non-degenerate statistics,

we have the ratio between the escape and capture time under the condition of

detailed balance:
τesc
τcap

= exp

(
Ek′

α − Ek
α

kBT

)
(3.20)

where Ek′

α −Ek
α is the energy level di�erence between the corresponding upper and

lower state.

The phenomenological treatments for the non-equilibrium carrier relaxation here

are based on Markov approximations. Both of the exponential relaxation and bal-

anced scattering models, depend only on the occupation probabilities at time t and

not the values at earlier times. It is important to realize that even when the non-

equilibrium occupation probabilities are su�ciently close to the equilibrium status,

the balance condition in the balanced scattering model does not imply the absence

of scattering events in contrast to the exponential relaxation model. The individual

terms in Eq. (3.18) are nonzero and rather large.
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3.2 Carrier Rate Equations (CRE)

Very often, the semiclassical density matrix equations are further simpli�ed to the

carrier rate equations by eliminating the di�erential equations for atomic polariza-

tions with di�erent slowly-varying approximations . While all the slowly-varying

approximations will provide static solutions identical to those of the density matrix

equations, the dynamic responses will vary from each other.

3.2.1 Adiabatic approximation (CRE I)

Assuming the spectral width of the electric �eld to be much small than γk
2 as well as

|ω0−ωk| << γk
2 , the polarization follows both the �eld and occupation probability

changes adiabatically. By eliminating the time di�erential term in Eq. (3.9), we

obtain the approximated polarization p̄kcv(t):

p̄kcv(t) =
ω0 − ωk − iγk

2

(ω0 − ωk)2 + (γk
2 )

2

dk
~
[
nk
c (t) + nk

v(t)− 1
]
A(t)

= Lk(ω0)
dk
~
[
nk
c (t) + nk

v(t)− 1
]
A(t) (3.21)

which is equivalent to set the lorentzian factor in Eq.(3.14) as a constant Lk(ω0)

for the carrier frequency and then transfer back to time domain.

Thus we have the adiabatic carrier density equations in the form:

∂tn
k
α(t) = ∂tn

k
α(t)

∣∣∣∣∣
rel

− R̄k
stim(t) (α = c, v) (3.22)

where the corresponding generation rate R̄k
stim(t) is:

R̄k
stim(t) = i

|dk|2

~2
[Lk(ω0)− L∗

k(ω0)]
[
nk
c (t) + nk

v(t)− 1
]
|A(t)|2

= 2
|dk|2

~2
Im {L∗

k(ω0)}
[
nk
c (t) + nk

v(t)− 1
]
|A(t)|2 (3.23)

where

Im {L∗
k(ω0)} =

γk
2

(ω0 − ωk)2 + (γk
2 )

2

In this way, the generation rate is linearly proportional to the product of oc-

cupation probabilities and the optical power (∝ |A(t)|2) at time t. Such process

has no memory dependence on the values at earlier times. This approximation is
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a popular version in semiconductor laser physics [90, 98], especially regarding CW

performance or modulation response with modulation frequency much smaller than

γk
2 .

3.2.2 Semi-adiabatic approximation (CRE II)

Alternatively, assuming the di�erence between optical carrier and optical transition

to be comparable to the dephasing rate |ω0−ωk| ∼ γ2, the polarization only follows

the occupation probability changes adiabatically [42]. The polarization p̂kcv(t) can

be approximated by extracting the occupation probability terms out of the temporal

integral on the RHS of Eq. (3.13) as:

p̂kcv(t) = −dk
~
[
nk
c (t) + nk

v(t)− 1
] ∫ t

−∞
dt′e−[i(ωk−ω0)+γk

2 ](t−t′)A(t′) (3.24)

which is equivalent to keeping the multiplication of the Lorentzian function and

spectral electric �eld together for the spectral convolution with occupation proba-

bilities in Eq. (3.14).

Thus we have the semi-adiabatic carrier density equations in the form:

∂tn
k
α(t) = ∂tn

k
α(t)

∣∣∣∣∣
rel

− R̂k
stim(t) (α = c, v) (3.25)

where the corresponding generation rate R̂k
stim(t) is:

R̂k
stim(t) = i

|dk|2

~2
[
nk
c (t) + nk

v(t)− 1
]

×
{[∫ t

−∞
dt′e−[i(ω0−ωk)+γk

2 ](t−t′)A∗(t′)

]
A(t)

−
[∫ t

−∞
dt′e−[i(ωk−ω0)+γk

2 ](t−t′)A(t′)

]
A∗(t)

}
= 2

|dk|2

~2
[
nk
c (t) + nk

v(t)− 1
]

×Im

{
−
[∫ t

−∞
dt′e−[i(ω0−ωk)+γk

2 ](t−t′)A∗(t′)

]
A(t)

}
(3.26)

Although this approximation is still not strictly equivalent to the exact convo-

lution in the presence of time-varying occupation probabilities, it still provides us

with a di�erent perspective about the memory e�ect of light-matter interactions. In

this way, the generation rate is on longer linearly proportional to the optical power

(∝ |A(t)|2) at time t.
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3.3 Impulse Response

In this section, we will brie�y discuss and illustrate how the di�erent treatments of

stimulated emission described in the previous sections in a simple two-level system

in�uence the corresponding impulse response.

For simplicity, we use a simple exponential relaxation expression:

∂tn
k
α(t)

∣∣∣∣∣
rel

= −γk
α

[
nk
α(t)− nk,eq

α

]
(α = c, v) (3.27)

where γk
α and nk,eq

α are the corresponding relaxation rates and �nal equilibrium

occupation probabilities, which satisfy:

γk
c = γk

v , nk,eq
c = nk,eq

v , nk
c (t) ≡ nk

v(t)

Assuming an input unchirped Gaussian shape electric �eld as:

A(t) =
~γk

2

2dk
·A0 exp

(
−1 + iC

2

t2

T 2
0

)
where A0 is the normalized amplitude, T0 is the half-width of 1/e intensity, C = 0

indicates no frequency chirp of pulse. dk is assumed to be a real value. For zero

frequency detuning between optical carrier and interband transition, ω0 − ωk =

0, the slowly varying envelope of the atomic polarization only has the non-zero

imaginary part.

Figure 3.2 shows the calculated impulse responses from the corresponding den-

sity matrix equations Eq. (3.8) and (3.9). We �rst de�ne a "short" pulse with pulse

width comparable to the inverse of dephasing rate (T0 = 2
γk
2
). As shown in Fig-

ure 3.2(a), the occupation probability is rapidly depleted to the transparency point

2nk
α = 1 by increasing the input pulse amplitude and slowly recovers back to the

equilibrium value nk,eq
α = 1. As the amplitude of pulse becomes strong enough,

the occupation probability shows several cycles of damped oscillations around the

transparency point. The atomic polarization as well as generation rate induced by

stimulated emission/absorption shows that the corresponding oscillation is damped

out on the scale of the inverse of dephasing rate and comparable to the whole

pulse period. The damped oscillations re�ect the properties of the non-Markovian

light-matter interactions. In contrast, for a "long" pulse (T0 = 10
γk
2
), such transient
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Figure 3.2: Impulse responses calculated from density matrix equations for a sin-

gle unchirped Gaussian pulse. Results include (left) occupation probabilities nk
α,

(middle) imaginary part of atomic polarization envelope Im{pkcv} and (right) stimu-
lated emission Rk

stim. Gaussian pulses have di�erent pulse amplitudes A0 and pulse

widths: (a) T0 = 2
γk
2
(b) T0 = 10

γk
2
. The other relevant parameters are: γk

2 = 1,

γk
α = 0.05, neq,k

α = 1 and ω0 − ωk = 0.

damped oscillation starts within a small fraction of the leading edge of the pulse. As

the pulse becomes much longer than the inverse of the dephasing rate, the oscillation

becomes less signi�cant.

We keep the same parameters for the carrier rate equations with two di�erent

slowly-varying envelope approximations. Figure 3.3 shows the calculated impulse

responses from the carrier rate equations with the adiabatic approximation (CRE

I). No damped oscillations is observed even with large pulse amplitude. The de-
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Figure 3.3: Impulse responses calculated from adiabatic carrier rate equations (CRE

I) for a single unchirped Gaussian pulse. Results include (left) occupation proba-

bilities nk
α, (middle) imaginary part of atomic polarization envelope Im{pkcv} and

(right) stimulated emission Rk
stim. Gaussian pulses have di�erent amplitudes A0

and pulse widths: (a) T0 = 2
γk
2
(b) T0 = 10

γk
2
. The adiabatic results (solid lines) are

in comparison with the density matrix equations results (dashed lines). The other

relevant parameters are γk
2 = 1, γk

α = 0.05, neq,k
α = 1 and ω0 − ωk = 0.

pletion of occupation probability is clamped at the transparency point. As this

adiabatic approximation has no memory dependence on the values at earlier times,

the density matrix equations results are temporally retarded in comparison with the

corresponding envelopes. The temporal di�erence is proportional to the dephasing

times. For pulses with long pulse width, the deviation is negligible.

Figure 3.4 shows the calculated impulse responses from the carrier rate equations

with the semi-adiabatic approximation (CRE II). In comparison to the density
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Figure 3.4: Impulse responses calculated from semi-adiabatic carrier rate equations

(CRE II) for a single unchirped Gaussian pulse. Results include (left) occupation

probabilities nk
α, (middle) imaginary part of atomic polarization envelope Im{pkcv}

and (right) Stimulated emission Rk
stim. Gaussian pulses have di�erent amplitudes

A0 and pulse widths: (a) T0 = 2
γk
2
(b) T0 = 10

γk
2
. The semi-adiabatic results (solid

lines) are in comparison with the Density matrix equations results (dashed lines).

The other relevant parameters are: γk
2 = 1, γk

α = 0.05, neq,k
α = 1 and ω0 − ωk = 0.

matrix equation results, the corresponding envelopes shows a similar retardation

e�ect. As pulse amplitude increases, this approximation works at the expense of

a reduction of magnitude especially for the atomic polarization during the leading

edge of pulse. This approximation is capable to reproduce the results when the

occupation probabilities are weakly depleted with small pulse amplitudes. For pulses

with long pulse width, the deviation is also negligible.

For a better understanding of damped oscillation properties, the discussion can
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be extended to the case of non-zero frequency detuning between optical carrier

and interband transition. Moreover, investigations of chirped pulse response might

reveal signi�cant contributions from frequency chirping as well as amplitude of the

optical signal.

Notice that similar nonlinear coherent resonance behaviors have been widely

discussed in atomic-like system based on Bloch equations [99, 100, 101, 102], where

proper restrictive conditions need to be ful�lled to observe such strong oscillations.

However, these coherent resonance behaviors are highly unlikely to appear in ac-

tive semiconductor structures at room temperature and for high carrier density

[103, 104]. Thus di�erent decoherence e�ects like strong dephasing mechanisms,

renormalization, homogenous and inhomogeneous broadening need to be consid-

ered.
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3.4 Small-signal Harmonic Analysis

This section will discuss general approaches in small-signal harmonic analysis of

the semiclassical two-level system for light matter interaction in a semiconductor

medium. Namely, we will determine the sinusoidal steady state response of density

matrix equations as well as approximations for these. For simplicity, we still use

the simple exponential relaxation expression Eq. (3.15) as in the previous section.
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Figure 3.5: The small-signal response of polarization as computed by harmonic

analysis in a two-level system. The input electric �eld is sinusoidally modulated at

an arbitrary modulation frequency.

The basic idea of harmonic analysis is to compute the steady state responses,

e.g., the one of polarization p̃k(ω), to an sinusoidally driven electric �eld pertur-

bation E(t) =
~γk

2

2dk

(
A0 +A1e

−i∆Ωt
)
e−iω0t + c.c. at an arbitrary single modulation

frequency ∆Ω as illustrated in Figure 3.5. A0 and A1 are the corresponding pump

and probe electric �eld envelope normalized by ~γk
2

2dk
. For simplicity, A0 and A1 are

kept as real values.

Based on the perturbative principle of small-signal analysis, the starting point

of the small signal analysis is a static situation with a CW electric �eld input.

By simply keeping the time di�erential terms of density matrix equation as zero,

a static solution can be solved for. Then the response to a perturbation can be

obtained by performing Taylor expansion around the DC static solution. All the
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harmonic terms can be rearranged in the general form as:

A0 +A1e
−i∆Ωt ⇒

M∑
m=−M

pkcv,me−im∆Ωt (3.28)

A0 +A1e
−i∆Ωt ⇒

M∑
m=−M

nk
α,me−im∆Ωt (3.29)

In general, the density matrix equations for a time-varying two-level system, Eq. (3.8)

and (3.9), have responses at harmonics with di�erent orders. The response will

be determined by the modulation frequency ∆Ω, pump intensity |A0|2 as well as

frequency detuning between the interband transition and optical carrier ωk − ω0.

Detailed derivations of the general formalism for harmonic analysis can be found in

Appendix B.1.
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Figure 3.6: Harmonic responses of a two-level system regarding occupation prob-

ability nk
α,m with di�erent orders m based on di�erent models. (left) the static

population inversion with m = 0. The real and imaginary part of the �rst-order

harmonic responses m = +1 with two di�erent pump �eld amplitudes: (middle)

A0 = 0.1 and (right) A0 = 0.4. A0 and A1 are the corresponding electric �eld am-

plitude of pump and probe. The models include density matrix equations (DME,

solid lines), carrier rate equations with the adiabatic (CRE I, dash-dotted lines)

and semi-adiabatic approximation (CRE II, dotted lines). The other relevant pa-

rameters are: γk
2 = 1/τk2 = 1, γk

α = 0.01, neq,k
α = 1 and ω0 − ωk = 0.

We start by discussing the case of zero frequency detuning between the interband

transition and optical carrier ωk − ω0 = 0. Figure 3.6 shows a calculated harmonic

response regarding occupation probability nα,m based on density matrix equations
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model (DME) and two types of carrier rate equations with the adiabatic and semi-

adiabatic approximation (CRE I and II).

Figure 3.6(left) shows the depletion of population inversion 2nα,0−1 as the pump

electric �eld amplitude A0 (pump intensity ∝ |A0|2) increases. For this static term,
the conditions for adiabatic and semi-adiabatic approximation are automatically

satis�ed. So all three models provide exactly the same static solution regarding

occupation probabilities. The harmonic terms of occupation probabilities, which

can also be called population pulsation terms ful�lls: nk
α,m = nk

α,−m
∗
.

Figure 3.6(middle) and (right) show the �rst-order harmonic term of population

inversion 2nk
α,m, (m = ±1) as a function of normalized modulation frequency∆Ωτk2 ,

which re�ects the oscillations of the corresponding carriers. For a relatively small

pump �eld amplitude A0 = 0.1 (even through the static population inversion is

close to complete depletion), all three models show similar carrier oscillations prop-

erties. In this case, the carrier relaxations rates γk
α determine the appearance as a

Lorentzian oscillator. For larger pump �eld amplitude A0 = 0.4 (which pushes the

population inversion to deeper depletion), the situation becomes complex. Firstly,

the magnitude of the harmonic amplitudes decreases as most of the carrier pop-

ulations are depleted and not available for the oscillation. Secondly, while the

adiabatic-approximated carrier rate equations still lead to a Lorentzian-oscillator

appearance with a much wider bandwidth γ >> γk
α, the other two models pro-

vide richer oscillation details, in particular at modulation frequencies higher than

γk
α. It is a natural outcome as these three models have di�erent validity and treat-

ments regarding the modulation frequency and frequency detuning. Fortunately,

the calculated results within the narrow bandwidth ∼ γk
α are still fairly close to

each other.

By expanding Eq. (3.14) into the form of (3.28), we have the general expression

of atomic polarization for density matrix equations:

pkcv,m =
γk
2

2
Lk(ω0 +m∆Ω)×

{∑
m1

2nk
α,m1

Am−m1 −Am

}
(3.30)

where Lk(ω0 + m∆Ω) is a Lorentzian function that depends on the modulation

frequency and its corresponding orders. For the adiabatic approximation, the

Lorentzian function has been approximated as a constant determined by the fre-

quency optical carrier Lk(ω0). The semi-adiabatic approximation has another ex-
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Figure 3.7: Harmonic responses of a two-level system regarding atomic polarization

pkcv,m based on di�erent models for two di�erent pump amplitudes (a) A0 = 0.1 and

(b) A0 = 0.4. Two harmonic orders have been considered: (left) m=+1 (left) and

(right) m=-1. A0 and A1 are the corresponding electric �eld amplitude of pump

and probe. The equation models include density matrix equations (DME, solid

lines), carrier rate equations with the adiabatic (CRE I, dash-dotted lines) and semi-

adiabatic approximation (CRE II, dotted lines). The other relevant parameters are:

γk
2 = 1/τk2 = 1, γk

α = 0.01, neq,k
α = 1 and ω0 − ωk = 0.

pression as,

pkcv,m =
γk
2

2

∑
m1

2Lk(ω0+(m−m1)∆Ω)nk
α,mAm−m1 −

γk
2

2
Lk(ω0+m∆Ω)Am (3.31)

Figure 3.7 shows the corresponding calculated harmonic responses regarding

atomic polarization pkcv,m as a function of normalized modulation frequency ∆Ωτk2 .

The atomic polarization is normalized by the probe �eld amplitude A1. For the

harmonic term with order of (m = ±1), the polarizations of density matrix equations
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have the form as

pkcv,1 = Lk(ω0 +∆Ω)γk
2

[
2nk

α,1A0 + (2nk
α,0 − 1)A1

]
(3.32)

pkcv,−1 = Lk(ω0 −∆Ω)γk
22n

k
α,−1A0 (3.33)

where the polarization terms pkcv,1 has a contribution corresponding to scattering

from pump �eld induced by the carrier population pulsation as well as a contribu-

tion from the DC carrier population terms. The polarization term pkcv,−1 also has

a contribution from pump �eld to build up a new �eld component at the conju-

gated frequency −∆Ω. The adiabatic approximation by replacing the Lorentzian

function with a constant value Lk(ω0) simply omits the wide bandwidth properties

(∆Ω ∼ γk
2 ). Semi-adiabatic solutions are intermediate for these two approaches. For

a relatively small pump �eld amplitude A0 = 0.1, all three methods have similar

responses in the narrow bandwidth ∆Ω ∼ γk
α. Both solutions from density matrix

equations and semi-adiabatic approximation keep similar broadband spectral infor-

mation ∆Ω ∼ γk
2 . For larger pump �eld amplitude A0 = 0.4 (which pushes the

population inversion to deeper depletion), the solutions obtained from these three

models deviate from each other. Still the narrow bandwidth responses (∆Ω ∼ γk
α)

are fairly close to each other.
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Figure 3.8: Impact of frequency detuning (ω0−ωk) on the low modulation frequency

(∆Ω ≈ 0) harmonic responses of a two-level system regarding occupation proba-

bilities nk
α,m for m=0 (left) and m=+1 (right). A0 and A1 are the corresponding

electric �eld amplitude of pump and probe. The other relevant parameters include

γk
2 = 1/τk2 = 1, γk

α = 0.01 and neq,k
α = 1.
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For an inhomogeneously broadened set of two-level systems with a span of fre-

quency detuning between the interband transition and optical carrier ωk−ω0, there

is a more general question about how the inhomogeneous broadening changes the

harmonic responses. Figure 3.8 shows corresponding harmonic responses regarding

occupation probabilities as a function of ωk − ω0 at the limit of low modulation

frequency ∆Ω ≈ 0. At this low modulation frequency, density matrix equation

and its approximations provide nearly identical solutions. For the DC part of the

population inversion 2nk
α,0 − 1 shown in Figure 3.8(left), it is a typical saturation

or bleaching appearance determined by:

2nk
α,0 − 1 =

2nk,eq
α − 1

1 + Im{L∗
k(ω0)}|A0|2γk

2
2
/γk

α

(3.34)

As the interband transition ωk is far from optical carrier frequency ω0, the pop-

ulation inversion is less bleached. As the pump �eld A0 (pump power ∝ |A0|2)
increases, the full-width of half maximum is power broadened (well known in two-

level laser theory [90]) as:

2γk
2

(
1 + Im{L∗

k(ω0)}|A0|2γk
2

2
/γk

α

)
(3.35)

The corresponding harmonic terms of population inversion 2nk
α,1 shown in Figure

3.8(right), is given as:

lim
∆Ω→0

2nk
α,1 = −

(2nk
α,0 − 1)A0A1γ

k
2
2

2
(
−γk

α + Im{L∗
k(ω0)}A2

0γ
k
2
2
) (3.36)

which has a denominator term depending on the frequency detuning and pump

intensity. As the pump intensity increases, the magnitude of the relative response

decreases as the population inversion 2nk
α,0 − 1 in the numerator decreases. Mean-

while, as the pump intensity increases and pushes the population inversion into

deep depletion, the denominator starts to play the role and change the shape of the

response. The maximum magnitude starts to shift to frequency detuning |ω0 − ωk|
with non-zero values. When the pumping intensity becoming stronger, the popula-

tion pulsation at the transition levels with a frequency detuning |ω0 − ωk| ∼ γk
2 o�

the optical carrier might still has a signi�cant contribution.
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Figure 3.9: Impact of frequency detuning (ω0 − ωk) on harmonic responses of a

two level system regarding atomic polarization pkcv,m with m=+1 (the probe) as a

function modulation frequency ∆Ω for two pump �eld amplitudes (a) A0=0.1 (b)

A0 = 0.4. The models include density matrix equations (DME, solid lines), carrier

rate equations with the adiabatic (CRE I, dash-dotted lines) and semi-adiabatic

approximation (CRE II, dotted lines). In each subplot, (ω0 − ωk)/2π changes from

0.2 (bottom) to -0.2 (top). The responses are stacked with constant o�sets. The

other relevant parameters are: γk
2 = 1/τk2 = 1, γk

α = 0.01 and neq,k
α = 1.
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Figure 3.10: Impact of frequency detuning (ω0 − ωk) on harmonic responses of a

two level system regarding atomic polarization pkcv,m with m=-1 (the conjugate)

as a function modulation frequency ∆Ω for two types of pump �eld amplitude (a)

A0=0.1 (b) A0 = 0.4. The models include density matrix equations (DME, solid

lines), carrier rate equations with the adiabatic (CRE I, dash-dotted lines) and

semi-adiabatic approximation (CRE II, dotted lines). In each subplot, (ω0−ωk)/2π

changes from 0.2 (bottom) to -0.2 (top). The responses are stacked with constant

o�sets. The other relevant parameters are: γk
2 = 1/τk2 = 1, γk

α = 0.01 and neq,k
α = 1.
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Figure 3.11: Impact of frequency detuning (ω0 − ωk) on harmonic responses of

a two level system regarding occupation factors, nk
α,m with m=+1, as a function

modulation frequency ∆Ω for two types of pump �eld amplitude (a) A0=0.1 (b)

A0 = 0.4. The models include density matrix equations (DME, solid lines), carrier

rate equations with the adiabatic (CRE I, dash-dotted lines) and semi-adiabatic

approximation (CRE II, dotted lines). In each subplot, (ω0 − ωk)/2π changes from

0.2 (bottom) to -0.2 (top). The responses are stacked with constant o�sets. The

other relevant parameters are: γk
2 = 1/τk2 = 1, γk

α = 0.01 and neq,k
α = 1.
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Figure 3.9, 3.10 and 3.11 illustrate the corresponding harmonic responses as a

functions of modulation frequency ∆Ω for a span of frequency detuning ω0 − ωk.

Density matrix equations and carrier rate equations with two kinds of approxima-

tions have been investigated. In general, several issues can be highlighted:

• All three models are capable to reproduce similar narrow-bandwidth

(∆Ω ∼ γk
α) behavior for a wide spread of frequency detuning values

ω0 − ωk even in the presence of a strong pump intensity;

• Density matrix equations provide richer dynamics over a wide-

bandwidth (∆Ω ∼ γk
2 ). The harmonic response as a function of

modulation frequency can be highly asymmetric for di�erent fre-

quency detuning values ω0 − ωk;

• Carrier rate equations with semi-adiabatic approximation give sim-

ilar results as the ones of the density matrix equations up to a rea-

sonable pump intensity with intermediate computation complexity;

• Carrier rate equations with adiabatic approximations provide a sim-

ple approach dedicated for narrow-bandwidth investigations with

less computation complexity.

The harmonic analysis presented here is a general fast mathematical tool to

tackle some issues of the oscillation features presented in a set of coupled rate

equations. Di�erent solutions can be chosen to interpret the dynamics with di�erent

levels of approximations regarding the modulation bandwidth.
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Figure 3.12: The small-signal response of polarization as computed by intermodula-

tion analysis in a two-level system. The input electric �eld is sinusoidally modulated

with multiple arbitrary modulation frequencies.

The basic harmonic analysis can be extended to other con�gurations by choos-

ing di�erent inputs as stimulus, such as intermodulation analysis with an electric

�eld containing multiple modulation frequencies. As shown in Figure 3.12, the in-

termodulation analysis leads to two di�erent categories depending on whether the

modulation frequency di�erences are integer or non-integer multiple of a fundamen-

tal modulation frequency. In general, it is very similar to the harmonics analysis

in the electronics technology [105, 106]. As the �eld of microwave photonics is get-

ting mature, the corresponding analysis for photonic devices, in particular active

semiconductor material and device response, in the presence of di�erent millimeter

wave signals will become increasingly interesting.
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Chapter 4

Modeling of QD SOAs

The model of QD SOAs used in this thesis is normally referred to as Multi Pop-

ulation Rate Equation Model (MPREM), which is an rate equation approach in-

cluding the inhomogeneous broadening e�ects by considering spectral subgroups of

QDs [30, 31, 42, 43, 44]. In this approach QDs belonging to the same spectral

subgroup are assumed identical. The inhomogeneous broadening is introduced by

weighting the relevant quantities for each QD groups with a proper distribution

function. The advantage of this approach is that only a relative small number of

dots (depending on the spectral discretization) have to be considered. Similar treat-

ment have also been used in a more sophisticated system based on semiconductor

Maxwell-Bloch equation [46, 45]. Moreover, balanced scattering models are used

to describe the ultrafast carrier intra-dot transitions between discrete QDs states

with pairs of capture and escape processes. Phenomenological rates for these cap-

ture/escape processes depend on the carrier density and temperature via phonon

and Auger assisted contributions [31, 23]. The typical characteristic times rang-

ing from subpicoseconds to tens of picoseconds can be extracted from pump-probe

type measurements [32, 33, 34, 35, 36] or more comprehensive carrier scattering

calculation [26, 27, 28, 29].

As a simpli�cation with adiabatic approximations, the rate equation approach

might lose some details of the relaxation processes and nonequilibrium situations

calculated by semiconductor Maxwell-Bloch equations in the more fundamental level

studies [45, 46, 47, 48]. For example, the coherent e�ects, which is the temporal
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Chapter 4. Modeling of QD SOAs

dynamics resolved from femtoseconds to picoseconds, are of major consideration

in modeling experiments with ultrafast pump and probe pulses [95, 107]. On the

other hand, the rate equation approach, even neglecting inhomogeneous broadening,

is more preferred in the investigations of optical signal processing in terms of the

analytical sophistication. Therefore the purpose of implementing MPREM model

is to bridge the gap between the fundamental physics study and device simulation

for optical signal processing.

The �rst section describes the QD SOAs device structure for modeling. The sec-

ond part presents the carrier dynamics model for QDs as well as a simple intensity

propagation equation. The third section brie�y discusses the numerical implemen-

tation. The typical parameter values can be found in Appendix E.

4.1 Device Structure
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Figure 4.1: Schematic illustration of the structure and band diagram of QD SOAs.

Our numerical model has been developed to describe a QD SOAs with inho-

mogeneously broadened QDs layers as the active gain medium in a ridged optical

waveguide as shown in Figure 4.1(left). The volume of the active region Va has the

form:

Va = WHL (4.1)

where L, W , H are the length, width and height of active region. This region

contains a number of QD layers, nl, each including a wetting layer (WL), which
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is typical for samples based on the SK growth method. The WL is modeled as a

narrow quantum well of width HW and volume VW :

VW = WLHW (4.2)

The density of QDs per layer is denoted DD and the volume of an average dot in

the ensemble V0. The QDs and WL are surrounded by a barrier material, which is

assumed to separate the QD layers to the extent that they do not couple directly.

Furthermore, tunneling between dots within the same layer is neglected.

Current I is supplied through the top and bottom metal contacts, and carriers

enter the undoped active region by drift and di�usion through the p- and n-doped

regions. In the numerical models, transport e�ects are neglected 1 and current is

assumed to be injected directly into the barrier or WL in a uniform manner along

the entire length of the device. Thus the uniform density of injected carriers in

active region Rinj per unit time (with the unit of m−3 · s−1) has the form:

Rinj = I/(Vaq) = I/(WLHq) = Dc/(Hq), Dc ≡ I/WL (4.3)

Where Dc is denoted as current density with the unit of A/m2, q the magnitude of

electronic charge.

Optical con�nement is supplied by a separate con�nement heterostructure (SCH).

The dimensions of the typical waveguide used for SOAs are su�ciently small to allow

the device remain single mode under all operating conditions. The overlap between

the guided modes (optical mode volume can be approximated as Vmod = WLHmod

with Hmod as a normalized mode height) and the active region, the con�nement

factor of active region ΓA is de�ned by Eq. (A.7). Typical values of ΓA is 0.2-

0.4. The con�nement factor of each WL layer ΓW0 can be calculated in a similar

way. The overall con�nement factor of WL layers ΓW can be approximated as

ΓW = ΓW0nl. In the models re�ections at the facets are in most cases neglected.

The lasing condition is assumed to be not satis�ed in this thesis.

In order to investigate the maximized carrier con�nement e�ects in QDs, both

electrons and holes are considered to be con�ned in the same materials. Our in-

vestigation is based on a simple QD electronic band structure [31] used for de-

scribing 1100nm inhomogeneously broadened InAs/GaAs QDs. Energy separations

1The carrier transport e�ect as well as electrical parasitics can be included following treatments

used for quantum well lasers [108, 109].
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and other relevant quantities in both conduction band and valence band can be

calculated as in Appendix C.

As shown in Figure 4.1(right), we only consider the two lowest discrete states

in the QDs: the ground (G) state (the lower one with degeneracy εG) and the

excited (E) state (the upper one with degeneracy εE). An reservoir (R) including

wetting layer (WL) and barrier (B) have continuous bands for both electron and

holes. And we approximate the inhomogeneous broadening of quantum dots as a

Gaussian distribution Gx with a spectral full width at half maximum (FWHM) γG

(γE) centered at ~ωG (~ωE) for the ground (excited) states 2:

GX(Etr
X , ~ωX) =

√
8 ln 2√
2πγX

exp

−1

2

(√
8 ln 2(Etr

X , ~ωX)

γX

)2
 , X = G,E (4.4)

Here Etr
X is the transition energy. We further divide the quantum dots into sub-

groups with a small spectral interval 2δX . The corresponding ith dot subgroup

density Di
D is :

Di
D = DD

∫ Etr,i
X +δX

Etr,i
X −δX

GX(Etr
X , ~ωX)dEtr

X , X = G,E (4.5)

4.2 Modeling of Carrier Dynamics of QDs

In the following, we outline the balanced scattering description of electron inter-

subband transition between discrete QD levels. Similar treatment can also be used

for hole dynamics [110]. Due to the large e�ective mass and small energy level

spacing in valence band, we treat it with local carrier density description that has

been used for carrier dynamical description in the gain medium with continuum

states [111]. The static [31] and dynamic [42] ASE noise properties are neglected.

4.2.1 Electron dynamics of QDs

A set of carrier rate equations for electron density of ground state N i
G (given by

occupation factor f i
G,c times density of states ρ

i
G) and the excited stateN

i
E (given by

2This approximation follows [43]. The approximation in [31] is an inhomogeneous broadening

function with respect to the conduction band energy
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occupation factor f i
E,c times density of states ρ

i
E) corresponding to i

th dot subgroup

(normalized to the single average dot volume V0) is used:

∂tN
i
E = −RE,i

stim − N i
E

τspon
+ ∂tN

i
E

∣∣∣∣∣
RE

− ∂tN
i
E

∣∣∣∣∣
EG

(4.6)

∂tN
i
G = −RG,i

stim − N i
G

τspon
+ ∂tN

i
G

∣∣∣∣∣
RG

+ ∂tN
i
E

∣∣∣∣∣
EG

(4.7)

where the �rst terms on the right hand side (RHS) of Eq. (4.6) and (4.7) refer to

the stimulated emission/absorption which will be described in the latter section.

The second terms refer to the spontaneous recombination 3 determined by a simple

spontaneous recombination rate 1/τspon. The last two terms denote the carrier

relaxations between discrete states G, E and reservoir R in the form of a balanced

scattering description:

∂tN
i
E

∣∣∣∣∣
RE

= ρiE
fW (1− f i

E,c)

τ iRE

− ρiE
f i
E,c(1− fW )

τ iER

(4.8)

∂tN
i
G

∣∣∣∣∣
RG

= ρiG
fW (1− f i

G,c)

τ iRG

− ρiG
f i
G,c(1− fW )

τ iGR

(4.9)

∂tN
i
E

∣∣∣∣∣
EG

= ρiE
f i
E,c(1− f i

G,c)

τ iEG

− ρiG
f i
G,c(1− f i

E,c)

τ iGE

(4.10)

Here fW are the occupation probabilities at the WL conduction band edge. 1/τ iXY

is the electron transition rate in QDs from state X to state Y, with X, Y = R, E,

G. The rates for these capture/relaxation processes depends on the carrier density

and temperature via phonon and Auger assisted contributions, for which we use a

phenomenological model [31] as following, the downward electron transition rates

are de�ned as 
1/τ iRE = ZP

RE + ZA
REfW ,

1/τ iRG = ZP
RG + ZA

RGfW ,

1/τ iEG = ZP
EG + ZA

EGfW ,

(4.11)

where ZP
XY denoting the pure phonon assisted capture rates and ZA

XY denoting the

Auger assisted contributions for the corresponding downward transitions between
3Strictly the spontaneous emission term is proportional to the production of occupation prob-

abilities of conduction band (c) and valence band (v) as fcfvτ
−1
spon.
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Figure 4.2: Typical characteristic time values for electron transitions in QDs for

modeling. E�ective carrier lifetime τs of reservoir is shown as reference. Parameter

values are given in Appendix E.

upper (X) and lower (Y) states (X, Y = R, E or G). The corresponding upward

transitions are de�ned as
1/τ iER = 1/τ iRE exp

(
−∆Ei

RE/kBT
)

1/τ iGR = 1/τ iRG exp
(
−∆Ei

RG/kBT
)

1/τ iGE = 1/τ iEG
εE
εG

exp
(
−∆Ei

EG/kBT
) (4.12)

where ∆Ei
XY denoting the energy level deference between upper (X) and lower (Y)

states (X, Y = R, E or G). kB is the Boltzmann constant and T is the temperature.

Typical time values are shown in Figure 4.2. In this thesis, the re�lling of electron

in ground states is assumed to be dominated by the carrier relaxation from excited

states.

For simplicity, the WL and barrier are assumed to be in quasi-equilibrium at

all times and thus no capture e�ects of carriers from the barrier into WL are in-

cluded. The electron density of reservoir NR including both WL NW and barrier

NB , normalized to the active region volume Va, is modeled by the following equation
4:

∂tNR =
I

Vaq
− NR

τs
−
∑
i

ξi

{
∂tN

i
E

∣∣∣∣∣
RE

+ ∂tN
i
G

∣∣∣∣∣
RG

}
(4.13)

4The two photon absorption e�ects can be included following the treatment in [112].
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here the last term on the RHS is the superposition of all the electron scatterings

between the reservoir and discrete QD states. ξi =
V0D

i
DWLnl

Va
as volume ratio

weighted between ith dot subgroup and the active region. Di
D is the dot subgroup

density. The �rst term on the RHS of Eq. (4.13) is the current injection. The second

term refers to the reservoir carrier loss characterized by an e�ective carrier lifetime

τs can be de�ned as:


1/τs =

(
NW

τW
+ NB

τB

)
/ (NW +NB) ,

1/τW = AW +BWNW + CWN2
W ,

1/τB = AB +BBNB + CBN
2
B ,

(4.14)

here τB and τW is the carrier lifetime in the barrier and wetting layer, AW , BW

and CW (AB , BB and CB) are the coe�cient for the non-radiative, radiative and

Auger recombination in the WL (barrier).

4.2.2 Hole dynamics in QDs

Meanwhile, the hole dynamics can be treated by introducing the concepts of local

carrier density [111]:

∂tN
i
E,v = −

N i
E,v −N i,eq

E,v

τ1h
−RE,i

stim (4.15)

∂tN
i
G,v = −

N i
G,v −N i,eq

G,v

τ1h
−RG,i

stim (4.16)

where τ1h is the valence band intradot relaxation time approaching to the quasi-

equilibrium status N i,eq
X,v , (X = G, E). For simplicity, τ1h = 100 fs By assuming

charge neutrality and quasi-equilibrium in the valence band (including all the dis-

crete and continuum states), a common Fermi energy in the QD valence band can

be calculated to estimate the occupation probabilities in the valence band following

Eq. (3.16).
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4.2.3 Stimulated emission/absorption

The corresponding stimulated emission terms RX,i
stim, (X = G, E) induced by the

photons at ~ωp has the form:

RX,i
stim =

L

ξiVa

∑
p

gp,iX

Pp

~ωp
, X = G,E (4.17)

where gp,iX , (X = G, E) is the intensity modal gain of photons at energy ~ωp con-

tributed from E or G states of ith dot subgroup. Pp is optical power. Following the

literature [113, 114], optical gain (absorption) coe�cient σD of a single dot in units

of [cross section area]×[energy] is de�ned as:

σD =
π~

nrε0c~ω
q2

2m0

2|Mc|2

m0
|ME |2 (4.18)

|ME |2 ≡ γ

∫
F2(r)F1(r)d

3r (4.19)

where |Mc|2 is the momentum matrix element, |ME |2 is the envelope matrix el-

ement, nr is the refractive index, ~ω is the photon wavelength, ε0 is the electric

constant, c is the light speed in vacuum, q is the electric charge, m0 is the free

electron mass, γ is the polarization factor, F1(r) and F2(r) is the three-dimensional

envelope functions for the upper and lower dot states. For simplicity, by using

parameter values for InAs material: γ = 1/3, 2|Mc|2
m0

= 21.1 eV, ~ω = 1.1 eV,

and assuming complete envelope function overlapping, the calculated σD is at the

scale of 2× 10−20 m2eV. It is expected as an overestimated value with a reasonable

approximation scale �tting with experimental measurements [114].

The modal gain from the G or E states of ith dot population to photon population

p, gp,iG or gp,iE , is de�ned as:

gp,iX =
εXDDnlσD

Hmod
Qp,i

X (f i
X,c + f i

X,v − 1), X = G,E (4.20)

Qp,i
X =

∫ ~ωp+γH

~ωp−γH

∫ Etr,i
X +δX

Etr,i
X −δX

GX(Etr, ~ωX)L(~ω′, Etr)

2γH
dEtrd(~ω′), X = G,E

(4.21)

here σD is the optical gain coe�cient, DD is the QD density per layer, nl is the

number of layers, f i
X,c and f i

X,v are the electron and hole occupation probability

evaluated for the transition Etr,i
X of ith dot subgroup. Hmod is the e�ective width of
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Figure 4.3: Di�erent lineshapes for homogeneous broadening function. Both line-

shapes have the same FWHM value and area under.

the optical mode. Qp,i
X donates the coupling between the ith dot subgroup and the

photon population p. where GX is the Gaussian inhomogeneous broadening function

and L is the homogeneous broadening function, such as Gaussian or Lorentzian

lineshapes as shown in Figure 4.3. We keep the assumption that the lineshape has

the same FWHM value 2γH and area under. 5

At the limit of monochromatic wave, a more strict form of spectral intensity

modal gain is as following:

gX(ω0) =
εXDDnlσD

Hmod

∫ ∞

−∞
GX(Etr, ~ωX)L(~ω0, E

tr)[fX,c + fX,v − 1]dEtr

≈ εXDDnlσD

Hmod

×
∑
i

{∫ Etr,i
X +δX

Etr,i
X −δX

GX(Etr, ~ωX)L(~ω0, E
tr)dEtr

}[
f i
X,c + f i

X,v − 1
]

(4.22)

The time-varying description of gain as well as the stimulated emission is a relatively

complex quantity. Detailed discussion of di�erent levels of approximations can be

found in the previous chapter. Here we follows the adiabatic approximations where

the population inversion factors are excluded from spectral integral of homogeneous

5This condition leads to undervalued gain based on the Lorentzian lineshape in comparison

with the Gaussian lineshape. A variation of the corresponding FWHM values can be used to �x

the di�erence in between. In practise, the Gaussian lineshape is favored for its fast decaying tails.
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Chapter 4. Modeling of QD SOAs

and inhomogeneous function. In comparison, Eq. (4.20) and (4.21) denotes an

averaged intensity gain approximated for an optical signal with a �nite narrow

bandwidth (averaged over an optical bandwidth of 2γH).

4.2.4 Propagation e�ect

Throughout this thesis, we use the simplest propagation equation for the optical

power Pp to estimate the propagation e�ect 6 in the forward direction passing

through the ampli�er:

∂zPp =

[∑
i

(gp,iE + gp,iG )− αint

]
Pp (4.23)

where αint is the internal loss. In this way, only the e�ect of QDs gain dynamics

are included. Extra propagation e�ects can be considered following Appendix A.

The propagation equation can be solved approximately by spatially discretizing the

ampli�er along the propagation direction, where the carrier di�usion e�ect between

the neighbouring spatial intervals are neglected.

4.3 Numerical Implementation

The models described in this chapter have been implemented in Matlab. The

time domain problem is solved using standard ordinary di�erential equation (ODE)

solvers. When carrier densities in QDs have various rapidly changing rates in the

time range, the sti�ness of the problem begins to in�uence the computation e�-

ciency of numerical algorithms. We use the solver ODE23s with a �exible time step

scheme, which is based on a modi�ed Rosenbrock formula of order 2 [115], to most

of our time domain problems (applications for optical signal processing) based on a

�exible time step scheme. However, the heavy computational load due to the large

number of rate equations (in most case even with a coarse spectral interval, 2γH)

is still unavoidable. Especially for the periodic signals, a steady state is achieved

with a long time range (su�ciently longer than the largest exponential relaxation

time) after the �rst incident pulse. Fourier signal analysis is also computationally

6In this thesis, we only consider one polarization mode, i.e., TE mode. The polarization-

dependent loss or gain is neglected.
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expensive for the steady state responses of the simple harmonic modulated signals

at a low repetition rate.

In parallel, we manage to simplify part of the problems by transferring the time-

domain problem into the frequency domain. We use a standard nonlinear equation

solver (fsolve) 7 to solve the steady response to harmonic modulated signals based

on the small-signal perturbation analysis. A semi-analytical approach for the �rst-

order perturbation is presented in Appendix B.2. In this way, results based on

the �ne spectral interval can be resolved much more e�ciently than the equivalent

time-domain results. Most of the frequency domain results are presented in the

following chapter as the basic properties of QD SOAs.

7A proper scaling is required to match the tolerance of errors of all the carrier rate equations.
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Chapter 5

Basic Properties of QD SOAs

5.1 Linear Gain and Linewidth Enhancement Factor

Using the static solutions of our QDs carrier dynamics model, we analyze the

linear gain and refractive index properties in QD medium. The linear intensity

gain/absorption calculated from Eq. (4.22) is proportional to the imaginary part of

the linear susceptibility Im{χ1} (as in Eq. (A.12)). To be consistent with the op-

tical signal processing results in the latter chapters, we still calculate the averaged

intensity gain de�ned in Eq. (4.20). We introduce a quantity referred to as modal

gain change ∆gX(ω) as:

∆gX(ω) =
εXDDnlσD

Hmod

∑
i

Qp,i
X

[
f i
X,c + f i

X,v

]
X = G,E (5.1)

For the real part of the �rst-order susceptibility Re{χ1}, the e�ective index

change ∆nX(ω) contributed by intensity gain change ∆gX(ω) can be calculated by

using Kramers-Kronig transform:

∆nX(ω) = − c

π
P
∫ ∞

0

dω′ ∆gX(ω)

ω′2 − ω2
(5.2)

The Kramer-Kronig transform can be calculated based on the numerical evalu-

ation of principal integral by extracting the divergent term into the logarithm term

[116]. Limited by the �nite available optical frequency range (0 ≤ ωa < ω ≤ ωb,

ωa and ωb are the lower and upper frequency limit), we can approximate the ex-

act result through the truncated Kramer-Kronig transform by assuming negligible
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variation outside the optical frequency range [117]:

∆n(ω) ≈ − c

π
P
∫ ωb

ωa

dω′ ∆g(ω′)

ω′2 − ω2

= − c

π
P
∫ ωb

ωa

dω′
(
∆g(ω′)

ω′ − ω
− ∆g(ω′)

ω′ + ω

)
1

2ω

= − c

2πω
P
∫ ωb

ωa

dω′∆g(ω′)

ω′ − ω
+

c

2πω

∫ ωb

ωa

dω′∆g(ω′)

ω′ + ω

= − c

2πω

∫ ωb

ωa

dω′∆g(ω′)−∆g(ω)

ω′ − ω
− c∆g(ω)

2πω
ln

(
ωb − ω

ω − ωa

)
+

c

2πω

∫ ωb

ωa

dω′∆g(ω′)

ω′ + ω
(5.3)

where the �rst term around the frequency ω′ → ω can be approximated as the

�rst-order derivative:

lim
ω′→ω

∆g(ω′)−∆g(ω)

ω′ − ω
=

∂∆g(ω)

∂ω

The accuracy depends on the spectral resolution of the intensity gain change (num-

ber of QD subgroups) as well as the step size of the numerical scheme used for

integration (for example, based on Simpson's rule).

To quantify the carrier-induced refractive index change, we also use the linewidth

enhancement factor (α-factor) de�ned in Eq. (A.12) as the ratio between the carrier-

density induced change of the real and imaginary part of the susceptibility, i.e.,

corresponding to the changes of the refractive index ∆n and gain ∆g:

α = −2k0
∂∆n(ω)/∂N

∂∆g(ω)/∂N
(5.4)

Here, k0 is the propagation constant in vacuum. N is the quasi-equilibrium de�ni-

tion of carrier density.

For quantum dot semiconductor lasers, a number of experimental works [118,

119, 120, 121] have reported a great variety of values for the α-factor ranging from

zero to large values as high as 60. Meanwhile theoretical investigations indicate two

optical transition mechanisms governing the linewidth enhancement factor, see in

Figure 5.1(a). One is the interband transition [122, 123], where the generated or

recombined elecron-hole pairs induce the gain and refractive index change. Detailed

modelings considering valence-band mixing e�ects [124] and coulomb interactions
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Figure 5.1: Schematic diagram of carrier-induced refractive index change. (a) The

band structure of QDs with interband and intraband transitions. Schematic illustra-

tion of bulk-like electron (electron-hole pair) distribution under the assumption of

(b) quasi-equilibrium Fermi distribution and (c) non-quasi-equilibrium distribution.

[125] predict a small or even negative α-factor. Another is the intraband free-

carrier absorption (plasma e�ect), where an electron or hole, absorbing a photon

and transiting to a higher-lying continuum state, gives rise to the gain and refractive

index change [126, 127, 128].

Moreover, conventional linewidth enhancement factor as de�ned in Eq. (5.4)

is evaluated with the carrier density change under the quasi-equilibrium (Fermi)

distribution, see Figure 5.1(b). Although an instantaneous linewidth enhancement

factor has been justi�ed in the transient response regime (as phase change divided

by the gain change) [128], the understanding of the carrier dynamical contributions

under non-quasi-equilibrium condition as shown in Figure 5.1(c) are still more or

less kept in a black-box status. In particular, di�erent experimental α-factor mea-

surement approaches reveal di�erent carrier dynamical contributions, which require

the corresponding de�nitions on a case-by-case basis.

Notice that the gain and refractive index changes considered in our model are

from interband transitions in QDs, WL and barrier under the quasi-equilibrium

condition. The calculated values are determined by the density of states, the inho-
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Figure 5.2: Modal gain spectra of QD SOAs for di�erent current injection levels.

The homogeneous broadening is described by a Gaussian lineshape. The spectral

interval for each dot subgroup is γH/10.

mogeneous and homogeneous lineshape function and the carrier occupation. The

plasma e�ects are neglected in our results.

The evaluation of the intensity modal gain is determined from the static solu-

tions of corresponding carrier rate equations. The gain spectra for di�erent current

injections are shown in Figure 5.2. As the current density increases, the QD states

are gradually �lled with carriers and the corresponding gain maximum are reached.

As the current density further increases, the carriers starts to �ll up the reser-

voir states and provide extra gains at higher photon energies corresponding to the

conventional spectral gain appearance of quantum well and bulk material.

The use of a Gaussian lineshape for homogeneous broadening requires Kramers-

Kronig transform to retrieve the e�ective index change. In this case we choose γH/10

as the spectral interval for the QD subgroups to calculate the static solutions of the

occupation factors for all the discrete states in QDs as well as the continuum states

of the reservoir. Figure 5.3 shows the corresponding e�ective index change at a low

current density. At this low current density, most of the e�ective index change is

contributed from the interband transitions in the QD discrete states as well as the

WL. We also calculated the corresponding contributions from di�erent states. Here

the corresponding carrier density variation is induced by a small change (1%) of the

injection current density. The calculated linewidth enhancement factor around ωG
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Figure 5.3: Calculated carrier-induced refractive index change (left) and correspond-

ing linewidth enhancement factor (right) in QD SOAs as a function of the photon

energy. Contributions from di�erent transition states (E, G, R ≡ WL + B) are

indicated. Current injection density is 200 A/cm2. The homogeneous broadening is

described by a Gaussian lineshape. The spectral interval for dot subgroup is γH/10.

The variation of carrier density for evaluating the linewidth enhancement factor is

induced by changing 1% of the injection current density.

is very small and close to zero, which is determined by the index change induced

by ground states. However, the other index change contributions especially from

excited states as well as WL, do play a role to alter the corresponding linewidth

enhancement factor values. For the low current density situation, the linewidth

enhancement factor can be still well approximated by the contributions only from

discrete QD states.

As shown in Figure 5.4, the e�ective index change induced from the reservoir is

enhanced signi�cantly as we increase the current density to 1 kA/cm2 or even higher

10 kA/cm2. Therefore the large linewidth enhancement factor can not be simply

approximated by the contributions from the discrete QD states only. In general, as

the current density is strong enough to nearly �ll up all the available QD states, the

space for corresponding gain and refractive index change at QD states is limited by

the �nite QD density of states. Although the tails of the e�ective index change from

the reservoir states are relatively small, it keeps increasing as there are far more

density of states in reservoir to �ll up. In this way, the linewidth enhancement
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Figure 5.4: Calculated carrier-induced refractive index change and corresponding

linewidth enhancement factor in QD SOAs as a function of the photon energy for

two current injection densities of (a) 1 kA/cm2 and 10 kA/cm2. Contributions from

di�erent transition states (E, G, R ≡ WL + B) are indicated. The homogeneous

broadening is described by a Gaussian lineshape. The spectral interval for dot

subgroup is γH/10. The variation of carrier density for evaluation the linewidth

enhancement factor is induced by changing 1% of the injection current density.

factor as a function of injection current density change depends heavily on how the

reservoir is structured. This is similar to the discussion in [129] when the QD SOAs

are at high current injection with maximal gain. There, the di�erential refractive

index is dominated by the plasma e�ects while the contributions from the QDs are

negligible and the contributions from reservoir are relatively low.

In Figure 5.5, the modal gain and corresponding linewidth enhancement factor
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Figure 5.5: Modal gain and corresponding linewidth enhancement factor in QD

SOAs as a function of the injection current density. The properties are calculated

for ωE and ωG corresponding to the peak spectra gain of QD states E and G.

Contributions from di�erent transition states E,G and R are included. The solid

lines are results based on Gaussian homogeneous lineshape. The circles are results

based on Lorentzian homogeneous lineshape. The spectral interval for the dot

subgroups is γH/10. The variation of carrier density for evaluation the linewidth

enhancement factor is induced by changing 1% of the injection current density.

for ωE and ωG are calculated as a function of injection current density. The typical

transparency current density is around 100 A/cm2. As the injection current density

increases, the gains gradually reach their maximum values and the corresponding

di�erential gains decrease. The linewidth enhancement factor estimated with di�er-

ent contributions can be signi�cantly di�erent from each other. If only considering

the carrier-induced index change from ground states or excited states individually,

the typical values of linewidth enhancement factor is ranging between -0.5 and 0.5.

As the contribution from both QD states are considered, the α-factor at ωG increases

up to 1.5 in high current density regime. The α-factor for ωE decreases down to -2

in low current density regime. This re�ects the di�erent impact of the asymmetric

spectral e�ective index change. Qualitatively our results with contributions from

QDs agree well with the calculations in [122]. As the contribution from the reservoir

is added, the linewidth enhancement factor has a signi�cant increase to tens or even

higher. Instead of Gaussian linshape, the usage of Lorentzian lineshape for homo-
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geneous broadening function leads to similar results. In this case, the properties are

determined by how the carriers �ll up the available states (sequentially from G, E,

WL to B) in QD SOAs. At the high current density, the α-factor at ωG is higher

than the one at ωE because the ground state levels are more completely occupied

than the excited states.

The discussion in this section indicates the possibility to estimate the refractive

index dynamics (phase dynamics) with our QDs carrier dynamics model presented

in this thesis. However, extra e�orts are still needed to quantify our present under-

standing, i.e., inclusion of the plasma e�ects, calculation of a more detailed/realistic

QD band structure and implementation of a universal numerical scheme for Kramers-

Kronig transform. More fundamentally, we need to understand the dominating car-

rier dynamical contributions behind di�erent experimental approaches, instead of

blindly implementing the conventional α-factor de�nition without justi�cations. In

the rest of the thesis, our discussion is limited to gain dynamics with the assumption

of zero linewidth enhancement factor.
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Figure 5.6: Carrier occupation factors corresponding to the ground states (left) and

excited state (right) in response to CW pump @ωG at a low injection current density

(1 kA/cm2) for di�erent homogeneous lineshapes. The solid lines are results based

on Gaussian homogeneous lineshape. The circles are results based on Lorentzian

homogeneous lineshape. The FWHM values of homogeneous broadening are �xed.

The spectral interval for dot subgroup is γH/10.

In this section we will discuss the CW gain saturation properties of QD SOAs

without propagation e�ects. In general, as we increase the CW pump power, carriers

in the corresponding dot subgroups will be depleted based on the magnitude of

stimulated emission determined by homogenous broadening lineshape.

Figure 5.6 illustrates the case with pump @ωG at low current density 1 kA/cm2.

In the unsaturated regime at this current density, the QD states in the conduction

band are close to being completely �lled, while the corresponding valence band

states are partly �lled due to the large e�ective hole mass. As the pump power

@ωG increases, the carriers in the ground states of the dot subgroups within the

homogeneous broadening range are depleted due to stimulated emission as shown in

Figure 5.6(left). Spectral holes, in particular in the conduction band, are developed

due to the relatively slow electron scattering rates to re�ll the carrier depletion

induced by the stimulated emission. Spectral holes for the valance band are barely
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visible, because the valence band intradot relaxations are still strong enough to

keep the valence band distribution close to the quasi-equilibrium situation with a

reduced common Fermi energy. As a consequence, the ground state population

inversion factors of all QD subgroups have a corresponding reduction contributed

from valence band. The appearance of the calculated spectral holes strongly depends

on the choice of homogenous lineshapes even with the same FWHM value. The use

of Lorentzian lineshape, which has very slow decaying tail, leads to carrier depletions

in QD subgroups over a much wider spectral range than the ones with Gaussian

lineshape.

Moreover, an important signature of the unique QDs carrier dynamics between

discrete states is the satellite spectral holes with transition energy corresponding to

the higher QD discrete states as show in Figure 5.6(right). The conventional bulk

semiconductor material which has a continuum of states, allows fast carrier-carrier

scattering within the continuum band for carriers to reach the quasi-equilibrium

distribution. In comparison, for spatially separated self-assembled QDs such direct

carrier-carrier scattering between spectrally adjacent dot subgroup is greatly de-

creased. Instead, the carriers in each QDs are balanced via the common continuum

reservoir states through intradot carrier capture/relaxations in between di�erent

levels at di�erent rates. Here, the electron re�lling of the ground states have been

assumed dominated by the fast carrier scattering from the excited states of the

same dot (subgroup), while the re�lling of the excited states from the reservoir

is considerably slower. Thus the depletion of electrons at the ground states im-

print a correlated spectral hole at the excited states of the same dot subgroups,

which is synonymous to the existence of an injection bottleneck due to long capture

time or short escape time [130]. The hole dynamics approximated by the simple

continuum-type model keeps the quasi-equilibrium appearance.

Figure 5.7(left) shows the calculated modal gain in the presence of a CW pump

beam @ωG at low current density (1 kA/cm2). The di�erence of choosing Gaus-

sian or Lorentzian homogeneous lineshape (with the same FWHM value) has been

illustrated. In the unsaturated regime, the modal gain for the pump beam based

on Lorentzian lineshape is comparably smaller than the Gaussian lineshape. As

the pump power increases, both of them have similar saturation tendency with a

saturation power around 10 dBm.
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Figure 5.7: Gain saturation in response to the CW pump @ωG at a low injection

current density (1 kA/cm2) for di�erent lineshapes. (left) Saturation of the intensity

modal gain corresponding to the optical pump. (right) The corresponding spectral

gain with Gaussian or Lorentzian lineshapes for homogeneous broadening function.

The FWHM values of homogeneous broadening are �xed to 2γH . The spectral

interval for dot subgroup is γH/10.

Meanwhile, we use another weak optical CW beam to probe the spectral gain

with the assumption of no wave mixing between the two beams, the change of

occupation probabilities also leads to a spectral gain change for the probe beam

as shown in Figure 5.7(right). Additional to the spectral hole corresponding to

the ground states transition, an extra spectral hole corresponding to the excited

states transition of the same dot subgroups is developed. The spectral gain with

Gaussian lineshape develops a narrow spectral hole. The spectral hole estimated

with Lorentzian lineshape is much more smeared-out. Moreover, in the presence

of a strong pump beam (20 dBm), severe depletion of total carrier density in the

conduction and valence band leads to the signi�cant drop of the overall spectral

gain and dominates the gain saturation mechanism.

As suggested by di�erent literatures [30, 31, 131], the use of a stronger cur-

rent density will improve the gain saturation performance regarding the saturation

power. We calculate the case in the presence of the CW pump beam @ωG at a

higher current density of 10 kA/cm2 as shown in Figure 5.8. In the unsaturated

regime at this current density, the occupation probabilities in the valence band for
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Figure 5.8: Carrier occupation factor corresponding to the ground states (left) and

excited state (right) in response to the CW pump @ωG at a high injection current

density (10 kA/cm2) for di�erent lineshapes. The solid lines are results based

on Gaussian homogeneous lineshape. The circles are results based on loretzian

homogeneous lineshape. The FWHM values of homogeneous broadening are �xed.

The spectral interval for dot subgroup is γH/10.

all the dot subgroups are improved and the population inversion factors are much

closer to 1. In comparison to the situation with 1 kA/cm2, when the pump power

increases, the decrease of the overall occupation probabilities in both conduction

and valence band for all the dot subgroups is limited. It is simply due to the fact

that more current injected carriers are available in the reservoir to re�ll the QD

states and the depletion of total carrier density is greatly relieved. In this way,

the stimulated emissions result in clearer spectral holes of population inversion fac-

tors. Here, electron recovery of the ground and excited states (electron intra-dot

relaxations) in each QDs determines the spectral hole appearance. It is also eas-

ier to interpret the power-broadened FWHM of the spectral hole based on simple

expressions similar to Eq. (3.34).

Figure 5.9 shows the corresponding modal gain for the case with 10 kA/cm2. The

unsaturated modal gain is increased as the population inversion factor is closer to 1.

The saturation power has been increased to around 20 dBm. As the modal gain for
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Figure 5.9: Gain saturation in response to the CW pump @ωG at a high injection

current density (10 kA/cm2) for di�erent lineshapes. (left) Saturation of the modal

gain corresponding to the optical pump. (right) The corresponding spectral gain

with Gaussian or Lorentzian lineshapes for homogeneous broadening function. The

FWHM values of homogeneous broadening are �xed. The spectral interval for dot

subgroup is γH/10.

the pump beam based on Lorentzian lineshape involves inversion contributions from

more dot subgroups, it has a slightly higher saturation power than the Gaussian

lineshape. At such high current density, the spectral gain is more featured with

spectral hole burning rather than the overall decline of spectral gain levels.

Figure 5.10 shows the calculated modal gain and saturation power corresponding

to the CW pump @ωG and @ωE as a function of the current density based on

Gaussian homogenous lineshape. As the injection current density increases, the

saturation power increases and gradually reaches its maximum around 20dBm 1.

This maximum saturation power for pump @ωG is higher than that for pump @ωE

due to the fact that ground state is assumed to have an ultrafast carrier relaxation

contribution from excited states.

1Notice that the high saturation powers are also obtained in the low-con�nement bulk or QW

SOAs [132]. Quantum dots inherently bene�t from the low con�nement regarding high saturation

power.
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Figure 5.10: Modal gain and saturation power corresponding to the CW pump

@ωE and ωG as a function of the injection current density. Gaussian homogeneous

broadening lineshape is used. The spectral interval for dot subgroup is γH/10.
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5.3 Small-Signal Harmonic Medium Responses

This section describes the harmonic analysis for QD SOAs without propagation

e�ects. The principle is based on the harmonic analysis described in section 3.4.

Calculations are based on the detailed derivations found in Appendix B.2. This

investigation is inspired by a similar work in a 2-level QD-WL system [133].

For a weakly harmonically modulated signal with optical frequency of ωp and

modulation frequency Ω, we have:

Pp(t) = Ppump + (∆Pe−iΩt + c.c.)/2 (5.5)

where Ppump is the power of optical carrier as a pump, ∆P is the corresponding

perturbation. We assume that the modulated occupation probabilities f i
α(t) of the

corresponding states in a QD subgroup, with (α = c, v) for conduction and valence

band, have the form:

f i
α(t) = f i

α0 + (∆f i
αe

−iΩt + c.c.)/2, (α = c, v) (5.6)

here f i
α0 is the static part of the occupation probabilities and ∆f i

α is the harmonic

terms of the corresponding occupation probabilities.

By substituting Eq. (5.5) and (5.6) into (4.23) and only keeping the �rst-order

perturbation terms, the propagation equation for the modulation envelope can be

derived: 
∂zPpump = (gincoh − αint)Ppump,

∂z∆P = (gincoh − αint)∆P + gcoh∆P

(5.7)

Here we have introduced:

gincoh =
εXDDnlσD

Hmod

∑
i

[
Qp,i

X

(
f i
c0 + f i

v0 − 1
)]

,

gcoh =
εXDDnlσD

Hmod

∑
i

[
Qp,i

X

(
∆f i

c +∆f i
v

)
ηp

]
(5.8)

where the term
(
f i
c0 + f i

v0 − 1
)
is the static population inversion factor contributing

to the incoherent gain gincoh. The second term
(
∆f i

c +∆f i
v

)
ηp is e�ective coherent

population probabilities contributing to the coherent gain gcoh. The coherent gain is

also referred to as the slowly varying envelope of dynamic gain grating. ηp =
Ppump

∆P
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is the power ratio of DC and AC part denoting the corresponding normalization

factor.

The static population inversion factor as well as the corresponding incoherent

spectral gain are same to quantities discussed in the previous section regarding CW

gain saturation. In the following sections, we will mainly discuss the coherent con-

tributions. Here we only focus on the Gaussian homogenous broadening lineshape.

In terms of the modulation frequency, we start with a low modulation frequency

Ω/2π=1 MHz, which is much lower than the inverse of carrier lifetime. Then we ex-

tended the discussion to a broad modulation frequency range. The spectral interval

for dot subgroup is γH/10.

5.3.1 Oscillations of carrier populations at a low modulation

frequency
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Figure 5.11: Spectral distribution for ground state incoherent and coherent pop-

ulation properbilities of the inhomogeneously broadened dots (subgroups) in the

presence of di�erent pump powers @ωG. The detuning of transition energy is rel-

ative to ~ωG. Injection current is 1 kA/cm2. The results are calculated at low

modulation frequency limit Ω/2π=1 MHz. ηp is the normalization factor. Gaussian

homogeneous broadening lineshape is used. The spectral interval for dot subgroup

is γH/10.

An example of the calculated population probabilities of di�erent dot subgroups

in the presence of di�erent pump power @ωG is shown in Figure 5.11. The results are
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calculated at a low modulation frequency Ω/2π=1 MHz. The incoherent occupation

probabilities are shown for reference. For the given current injection, the variation

of population probabilities with frequency detuning relative to the photon energy of

the pump is similar to the discussion related to Eq. (3.36) in the two-level system.

As the pump power increases, the spectral hole appearance of Re{∆f i
c +∆f i

v}ηp is
power broadened. As the pump power is further increased to deplete the carriers, the

maximum magnitude starts to shift to the dot subgroups with non-zero frequency

detuning. Di�erent from the two-level system results shown in Figure 3.8, the

quantum dots have complex responses with di�erent carrier dynamical contributions

from both the conduction and valence band. For the given current density, the

spectral hole feature is contributed mostly by the conduction band contribution,

while the quasi-equilibrium feature with a common Fermi energy perturbation is

mostly from the valence band.

5.3.2 Oscillations of carrier populations over a broad modula-

tion frequency range

The oscillations of QDs carrier populations as a function of the modulation fre-

quency show rich details induced by the carrier dynamical processes. In order

to facilitate the understanding of the application results in Chapter 7, we choose

three di�erent current densities to illustrate the carrier oscillation in the absorption

regime (1 A/cm2), gain regime with low saturation power (1 kA/cm2) and gain

regime with high saturation power (10 kA/cm2). We calculate the real and imag-

inary parts of coherent carrier oscillations including the conduction and valence

band contributions in the presence of a 10 dBm pump power @ωG. What has been

shown in Figure 5.12 are the ground state carrier oscillations in the dot subgroup

with ground state transition energy equal to ~ωG.

In principle, at the low modulation frequencies, the imaginary parts of coher-

ent population occupations are approaching to zero. As modulation frequencies

increases, the imaginary parts peak at several characteristic modulation frequencies

determined by the corresponding dominating carrier dynamical processes. The real

parts have their maximum magnitudes at the low frequency limit, which are positive

in the absorption regime and negative in the gain regime, indicating whether the

carrier oscillations are in phase or in antiphase with the intensity modulated signal.
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As the modulation frequency increases, the real parts gradually decrease to zero.

The non-zero imaginary parts give rise to the changes of relative phases between

the carrier oscillations and intensity modulated signals.

For the hole dynamics, it is relative simple to distinguish the characteristic

modulation frequencies determined by the total carrier density pulsation peaked

around Ω1 at the scale of hundreds of MHz and the intradot valence band relax-

ation (100 fs) peaked around Ω3 = 10/2π THz. Depending on the details of the

electron dynamical processes, the intermediate characteristic modulation frequen-

cies Ω2 are between 10-100 GHz. At high current density, the electrons also have a

characteristic modulation frequency close to Ω3 which is determined by the ultra-

fast carrier relaxation between the ground and excited states. As the e�ective mass,

band structures and dynamical contributions for electrons and holes are di�erent

from each other, the corresponding electron and hole responses are not necessary

in phase with each other. The dominating dynamical processes are determined by

the relative magnitude ratio between electron and hole responses.

Figure 5.12(a) shows that electron responses make a large contribution to the

overall responses in the absorption regime. Notice that the saturation power in the

absorption regime is far below 10 dBm. Here, the fast electron responses around

10 GHz are mainly induced by the upward electron transitions in the deep saturation

regime. In the gain regime with low saturation power as shown in Figure 5.12(b), the

hole responses at low frequencies dominate the overall appearance. As the injection

current increases as seen in Figure 5.12(c), the electron responses are enhanced and

surpass the hole responses. Hereby, the dominating total carrier density pulsation

can be relieved. And the fast electron responses are determined by the downward

electron transitions.

We also calculate similar results in the presence of a 10dBm pump power @ωE .

Figure 5.13 shows the calculated results of the excited state carrier oscillations for

the dot subgroup resonant with ωE . In this case, we can observe similar qualitative

behaviors as the ones of the ground states. In comparison with the ones of the

ground states, the electron responses of the excited states make a larger contri-

bution to the overall responses, especially for the modulation frequencies between

10-100 GHz. The missing of ultrafast responses around THz range corresponds to

the fact that the ultrafast carrier relaxation between the ground and excited states
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have limited impact to the electron recovery at excited states. It is clear that the

details of the band structure, pump power intensity, carrier dynamical processes

will signi�cantly modify the quantitative appearance of the results.

Additional to the image of carrier oscillations in an individual dot (subgroup),

our model also allows us to have a deeper view of the carrier oscillations in the

inhomogeneously broadened QDs (dot subgroups). Here we show a set of examples

of the electron occupation factors in the inhomogeneously broadened dot subgroups

as a function of modulation frequency, in particular, when the pump power increases

and drives the QDs into the deep saturation regime. We choose the situation in the

gain regime with low saturation power 1 kA/cm2. The pump frequency is set at

ωG. The modulation frequency is varying from 1 MHz to 10 THz.

Figure 5.14 shows the three-dimensional plot of the real and imaginary part of

electron occupation factors as a function of transition energy and modulation fre-

quency for 10 dBm pump power. Most of the variations are centered around the

pump frequency ωG within the homogeneous broadening range, where the carrier os-

cillations are directly induced by stimulated emission. The imaginary parts peak at

the modulation frequencies around 100 GHz, also indicated in Figure 5.12(b). Due

to no direct electron transfer between adjacent dot subgroups, the electrons in the

dot subgroups outside of homogeneous broadening range are barely oscillated. The

only exceptions are the variations at low modulation frequencies around 100 MHz,

which are induced from total carrier density pulsation in the reservoir. Following

the discussion of carrier oscillations at the low modulation frequency in previous

section, the spectral appearance changes a lot as the pump power increases.

Figure 5.15 and 5.16 show the calculated results for 15dBm and 20dBm pump

power, respectively. The variations of occupation factors regarding the transition

energy tend to be broadened and then split. Such changes take place for a broad

modulation frequency range up to 100 GHz or even higher. The summation of all

these microscopic occupation factors contribute to the gain described by Eq. (5.8).

It is clear that a proper spectral interval is required to model the in�uence

of the inhomogeneous and homogeneous broadening. As a consequence, it also

indicates the possible problem of calculation accuracy in gain dynamics by choosing

a coarse spectral interval for QD subgroups, e.g., 6.6 meV used in our time-domain

calculation. This question arises immediately after the recently implementation
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of harmonic-analysis code. There is much more work to be done concerning this

issues. Fortunately, our preliminary calculations indicate that the quantitatively

di�erence is still reasonable. The qualitative behaviors especially concerning the

phase properties discussed in the later parts of the thesis are fairly close to the ones

with a �ne spectral interval.
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Figure 5.12: Occupation factors for dot subgroup resonant with ωG as a function of

modulation frequency Ω. The pump power @ωG is 10 dBm. Three current densities

(a) 1 A/cm2, (b) 1 kA/cm2 and (c) 10 kA/cm2 are investigated. The contributions

from electron ∆f i
c and holes ∆f i

v are indicated. ηp is the normalization factor. Ω1,

Ω2 and Ω3 are three characteristic modulation frequencies. The spectral interval

for dot subgroup is γH/10.
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Figure 5.13: Occupation factors for dot subgroup resonant with ωE as a function of

modulation frequency Ω. The pump power @ωE is 10 dBm. Three current densities

(a) 1 A/cm2, (b) 1 kA/cm2 and (c) 10 kA/cm2 are investigated. The contributions

from electron ∆f i
c and holes ∆f i

v are indicated. ηp is the normalization factor. Ω1,

Ω2 and Ω3 are three characteristic modulation frequencies. The spectral interval

for dot subgroup is γH/10.
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Figure 5.14: Variation of ground state electron coherent populations occupations

∆f i
c of the inhomogeneously broadened dots (subgroups) as a function of modulation

frequency and transition energy in the presence of 10 dBm pump power @ωG.

Injection current is 1 kA/cm2. The real (upper) and imaginary (lower) part of∆f i
cηp

are calculated for modulation range from 1 MHz to 10 THz. Gaussian homogeneous

broadening lineshape is used. The spectral interval for dot subgroup is γH/10.
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Figure 5.15: Variation of ground state electron coherent populations occupations

∆f i
c of the inhomogeneously broadened dots (subgroups) as a function of modulation

frequency and transition energy in the presence of 15 dBm pump power @ωG.

Injection current is 1 kA/cm2. The real (upper) and imaginary (lower) part of∆f i
cηp

are calculated for modulation range from 1 MHz to 10 THz. Gaussian homogeneous

broadening lineshape is used. The spectral interval for dot subgroup is γH/10.
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Figure 5.16: Variation of ground state electron coherent populations occupations

∆f i
c of the inhomogeneously broadened dots (subgroups) as a function of modulation

frequency and transition energy in the presence of 20 dBm pump power @ωG.

Injection current is 1 kA/cm2. The real (upper) and imaginary (lower) part of∆f i
cηp

are calculated for modulation range from 1MHz to 10THz. Gaussian homogeneous

broadening lineshape is used. The spectral interval for dot subgroup is γH/10.
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5.3.3 Oscillations of gain at a low modulation frequency

After the simulation of the microscopic occupation factors of all the dot subgroups,

it is straightforward to calculate the coherent gain gcoh based on Eq. (5.8). At

a low modulation frequency 1 MHz, we can evaluate the magnitude of coherent

gain as a function of pump power, which is similar to the discussion in [133]. We

de�ne the modulation response (in units of cm−1/W) as the magnitude of coherent

gain divided by the pump power. The gain contributions from electron and hole

are separated to identify whether the slow hole dynamics (total carrier density

pulsation) dominates.

Figure 5.17 shows the ground state coherent gains and corresponding modulation

responses as a function of pump power at ωG for three di�erent current densities.

In general, when the pump power increases, the coherent gains �rst increase, peak

around the saturation power and then decrease. It indicates that the maximum

coherent gain takes place when the modal gain/absorption is nearly bleached by

half. The electron and hole gain contributions peak at di�erent pump powers as

the corresponding saturation mechanisms are di�erent. The modulation responses

provide another kind of measurements which have been widely used for semicon-

ductor lasers [98]. At the low pump power (in the the unsaturated situation), the

modulation responses is a constant. As the pump power increases, this unsaturated

modulation responses will be changed by the stimulated emission/absorption and

decrease to zero at high pump power limit. Two types of modulation responses as a

function of pump power are observed. One is a monotonically decreasing curve and

another has an extra resonant-type increase. The exact physical origins (dynamical

contributions) are not clear but might be analyzed in the future by the decomposi-

tion method used in [133]. In the absorption regime (1 A/cm2), the coherent gains

are dominated by the electron contributions peaked around -5 dBm. In the gain

regime with low saturation power (1 kA/cm2), the coherent gains are dominated by

the hole contributions peaked around 10 dBm. By increasing the current density,

the hole contributions have been surpassed by the electron contributions.

Meanwhile, we also calculate the excited state coherent gains as a function of

pump power at ωE in the same conditions as shown in Figure 5.18. The excited

state coherent gains show the similar behaviors as the ones of ground states. Two

di�erences need to be highlighted. Firstly, the portion of the electron contributions
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to the excited state coherent gain is larger especially in the gain regime, where

the slow hole dynamics are greatly suppressed. Secondly, the excited state coherent

gains peak at a relatively low pump power (as the saturation powers of excited states

are lower). These features make the excited states (the relatively slow recovered

upper states) more attractive to realistic applications.
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Figure 5.17: Magnitude of the coherent gain |gcoh| and modulation response

|gcoh|/Ppump as a function of pump power @ωG corresponding to QD ground states.

Three di�erent current density (a) 1 A/cm2, (b) 1 kA/cm2 and (c) 10 kA/cm2 are

considered. The results are at a low modulation frequency Ω/2π=1 MHz. Gaussian

homogeneous broadening lineshape is used. The spectral interval for dot subgroup

is γH/10.
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Figure 5.18: Magnitude of the coherent gain |gcoh| and modulation response

|gcoh|/Ppump as a function of pump power @ωE corresponding to QD excited states.

Three di�erent current densities (a) 1 A/cm2, (b) 1 kA/cm2 and (c) 10 kA/cm2 are

considered. The results are shown for a low modulation frequency Ω/2π=1 MHz.

Gaussian homogeneous broadening lineshape is used. The spectral interval for dot

subgroup is γH/10.
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5.3.4 Oscillations of gain over a broad modulation frequency

range
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Figure 5.19: Variation of real and imaginary part of ground state coherent gain

gcoh with modulation frequency Ω for di�erent pump powers @ωG. The injection

current density is 1kA/cm2. Gaussian homogeneous broadening lineshape is used.

The spectral interval for dot subgroup is γH/10.

The estimation of electron and hole contributions to coherent gain at low modu-

lation frequencies is not good enough to demonstrate the performance over a broad
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Figure 5.20: Variation of real and imaginary part of ground state coherent gain

gcoh with modulation frequency Ω for di�erent pump powers @ωG. The injection

current density is 10 kA/cm2. Gaussian homogeneous broadening lineshape is used.

The spectral interval for dot subgroup is γH/10.

modulation frequency range. Here, we calculated the variation of real and image

part of ground state coherent gain with modulation frequency for di�erent pump

powers at ωG. In general, the increase of the pump power leads to the pump res-

onant with the ground state transitions. Figure 5.19 illustrated the results in the

gain regime with low saturation power (1 kA/cm2). The magnitude of coherent
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gain at the low pump power -30 dBm (far from the saturation situation) is very

small and dominated by slow hole contributions. When the pump power increases

to 10 dBm (close to the saturation power), the coherent gain increases but with the

spectral appearance similar to the unsaturated situation. When the pump power

further increases and drives the devices into deeper gain saturation, extra resonant

components start to appear at the high modulation frequencies from ten to several

hundreds gigahertz. Such fast electron contributions can be identi�ed by the peak

characteristic frequencies of the imaginary parts. The hole contributions have been

suppressed.

Figure 5.20 illustrates the results in the gain regime with high saturation power

(10 kA/cm2). Additional to the enhancement induced by large current injection,

similar enhancement of the electron contributions by increasing pump power can

be observed. In this case, a relatively high pump power (due to the high saturation

power) is required to enhance the resonant components around 100 GHz. The cor-

responding variations of real and imaginary parts with modulation frequencies lead

to rich dispersion properties, which can be used for nonlinear optical applications.
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Figure 5.21: Illustration of ground states modulation response and relative phase as

a function of modulation frequency induced by CW pump power @ωG at low and

high current density: (left)1 kA/cm2, (right)10 kA/cm2. Gaussian homogeneous

broadening lineshape is used. The spectral interval for dot subgroup is γH/10.
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Alternatively, we can illustrate the real and imaginary part of coherent gain gcoh

in terms of the modulation response |gcoh|/Ppump and the relative phase ∠gcoh. In
this way, Figure 5.21 shows the same results in Figure 5.19 and 5.20. For the low

current density (1 kA/cm2) shown in Figure 5.21(left), the modulation response in

the unsaturated situation has a relative large decrease around 1GHz. As the pump

power increases, the bandwidth of modulation response expends over 100GHz. But

the magnitude of the decrease in modulation responses is more than one order.

The relative phase has a signi�cant change between -180 degree (in antiphase at

low modulation frequencies) to nearly -90 degree (out of phase, at high modulation

frequencies). By increasing the pump power, the change of the relative phase at

low modulation frequencies are mostly induced by suppressing the hole dynamical

contributions. The change of the relative phase at high modulation frequencies are

due to the enhancement of electron dynamical contributions.

In contrast, for the hight current density (10 kA/cm2) shown in Figure 5.21(right),

the bandwidth of the unsaturated modulation response has already reached over

100 GHz. When pump power increases, the magnitude of the changes in modu-

lation responses is very small. As the high current injection has suppressed the

hole dynamical contributions a lot, the relative phase changes at low modulation

frequencies are barely observed. The relative phase changes at high modulation

frequencies are induced by the corresponding enhancement of electron dynamical

contributions.

Moreover, the propagation equation for the intensity envelope as in Eq. (5.7)

indicates that the magnitude ratio between gcoh and gincoh −αint is also important

to the overall device output. Nevertheless, by enhancing the coherent gain and

meanwhile suppressing the incoherent gain due to gain saturation, the relative phase

is highly likely preserved and observable from the device output.

5.3.5 Summary

An e�cient semi-analytical approach is employed to investigate the small-signal

medium response of inhomogeneously broadened QDs in the presence of an intensity

modulated optical signal.

Hereby, the coherent population oscillations of QDs can be described on a mi-

croscopic footing. Distinct oscillation contributions from the electrons and holes are
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shown to be determined by the corresponding carrier dynamical processes. The elec-

tron intra-dot relaxation contributes to the corresponding coherent gain responses,

also referred to as the dynamic gain grating, ranging from 10 to 100 GHz or higher.

The variations of the modulation response and relative phase, (or the real and

imaginary part of dynamic gain grating), strongly depend on the input power and

injection current density. The high-speed performance can be enhanced by increas-

ing the input power or the injection current density, which is one of the interesting

properties for nonlinear optical applications.

In practice, experiments with QD SOAs operation regime around 3-dB gain

saturation level might reveal some of our theoretical predictions in terms of dynamic

contributions. In particular, high-quality QD SOAs with a small internal loss,

reasonable device gain, low saturation power are mostly desirable. The detailed

models are fairly �exible to be justi�ed for experiments facts.
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Chapter 6

Coherent Population

Oscillations in Semiconductor

Optical Waveguide

This chapter presents a theoretical analysis of slow and fast light e�ects in semicon-

ductor optical ampli�ers (SOAs) based on coherent population oscillations (CPO)

and the in�uence of optical �ltering. Optical �ltering prior to detection is shown

to enable a signi�cant increase of the controllable phase shift experienced by an in-

tensity modulated signal traversing the waveguide. The theoretical model based on

a wave mixing description of carrier dynamics in SOAs [64] accounts for the recent

experimental results [73] and is used to analyze and interpret the dependence on

material and device parameters. Furthermore analytical approximations are derived

using a perturbation approach and are used to gain a better physical understanding

of the underlying phenomena, in particular the refractive index dynamics.

6.1 Introduction of Optical Filtering Schemes

In the practically important case where the input optical signal is a double-sideband

signal generated by sinusoidal modulation of a laser beam, it can be shown that the

refractive index dynamics plays no role in the observed phase shift [52]. The change

in group velocity is in this case only controlled by the gain or absorption dynamics.
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Instead, using a single sideband excitation, in the form of a single sideband modu-

lation or a modulated probe beam slightly detuned form a strong pump beam, as

the input optical signal, has been proposed as a way of increasing the phase shift

by bene�ting from refractive index dynamics [134, 135]. However, FWM leads to

the generation of a conjugate sideband, which to a large extent cancels the refrac-

tive index dynamics e�ects after photodetection. We proposed enhancing the phase

shift and bandwidth by employing optical �ltering before photodetection [136] and

a maximum phase shift of 150 degrees at 19 GHz modulation frequency is achieved

in a bulk SOA [73], corresponding to a several-fold increase of the absolute phase

shift as well as achievable bandwidth. In [137] electrical �ltering was employed

after photodetection in order to suppress higher harmonics. In contrast, we are

here �ltering in the optical domain directly, thereby selectively suppressing beating

components, and this is shown to lead to the observation of both phase delay (slow

light) and phase advance (fast light) in the same device.
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Figure 6.1: Optical signal processor based on SOA and pre-detection optical �ltering

for microwave phase shifter. Optical output signal with i) no sideband removed; ii)

with blue-shifted sideband removed; iii) with red-shifted sideband removed.

Figure 6.1 shows the optical �ltering schemes we introduced to the microwave

phase shifter based on SOA. In general, the phase and amplitude of the electric

�elds of the optical signal are altered by an active semiconductor waveguide de-

vice, for example an SOA, via di�erent wave mixing processes. By controlling the

operation conditions of the photonic components, for example the input power to

the SOA or its bias current, the microwave phase shift can be controlled. In ad-
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dition to the SOA, optical �ltering is included as part of optical signal processing.

By employing an optical notch �lter, one of the sidebands can be blocked and the

other transmitted. When the bandwidth of the notch �lter is much narrower than

the modulation frequency, it can be approximated as an ideal �lter suppressing all

power in the sideband and the corresponding beating terms in the photodetector.

We have investigated three cases: (Case-i) passing both sidebands, corresponding to

the standard case considered so far without optical �ltering, (Case-ii) suppressing

the blue and passing the red-shifted sideband and (Case-iii) suppressing the red and

passing the blue-shifted sideband.

6.2 Modeling of Microwave Phase shifter

6.2.1 Microwave modulated optical signal

A weakly sinusoidal intensity modulated (IM) signal with electric �eld of the general

form

E (t, z) =

√
2

2

[
E0 (z) + E−1 (z) e

iΩt + E+1 (z) e
−iΩt

]
e−i(ω0t−k0z) + c.c.

=

√
2

2

[
|E0 (z)| eiθ0 + |E−1 (z)| eiΩt+iθ−1

+ |E+1 (z)| e−iΩt+iθ+1
]
e−i(ω0t−k0z) + c.c. (6.1)

is assumed. Here ω0 is the frequency of the optical carrier, k0 is the propagation

constant of the carrier and Ω is the modulation frequency. E0, E−1, E+1 are the

corresponding complex amplitudes of the carrier, red-shifted sideband and blue-

shifted sideband. θ0, θ−1, θ+1 are the corresponding optical spectral phases. For

simplicity, the higher order sidebands are neglected. When θ−1 − θ0 = −(θ+1 − θ0)

and E−1 = |E+1|, the optical signal is a pure amplitude modulated signal. When

θ−1−θ0 = π−(θ+1−θ0) and |E−1|/|E0| = |E+1|/|E0| << 1, the optical signal can be

approximated as a phase modulated signal. In practice, the output optical �eld after

a general Mach-Zehnder electro-optical modulator contains amplitude modulation

(AM) and phase modulation (PM) [138] and the spectral phase di�erence is di�erent

from the pure AM signal.
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6.2.2 Frequency domain modeling of SOA and semi-analytical

solution

We theoretically analyze the slow and fast light e�ects in SOA structures due to

CPO e�ects by using a wave mixing description [52, 66]. Wave mixing in active

semiconductor waveguide has contributions from carrier density depletion, carrier

heating (CH), spectral hole burning (SHB) as well as two-photon absorption (TPA)

and Kerr e�ects [95]. For the modulation frequency range investigated in this paper

with a magnitude on the order of ∼ 1/τs (the inverse of carrier lifetime), i.e., up

to some tens of GHz, the dominating mechanism mediating the wave mixing is

pulsation of carrier density [139, 64]. The ultra fast e�ects are therefore neglected,

which is a reasonable approximation in the regime of moderate input optical power.

Based on the weak modulation assumption, the wave mixing problem in this paper

can be approximated and simpli�ed as interactions between three optical waves

[139, 64]. Gain saturation due to ASE is neglected, which is reasonable unless the

input power is very low.

The propagation equations for the electric �elds are:

∂E0

∂z = γ0E0

∂E−1

∂z = γ0E−1 + ξ−1

(
|E0|2 E−1 + E2

0E
∗
+1e

i∆kz
)

∂E+1

∂z = γ0E+1 + ξ+1

(
|E0|2 E+1 + E2

0E
∗
−1e

i∆kz
) (6.2)

with

γ0 =
1

2
[gsat (1− iα)− aint] , gsat =

Γg0
1 + S

,

S =
|E0|2 + |E−1|2 + |E+1|2

Psat
, (6.3)

ξ±1 = −1

2

gsat
Psat

1− iα

1 + S ∓ iΩτs
,

Here, γ0 corresponds to the �rst-order susceptibility with saturated modal gain

gsat, linewidth enhancement factor α and internal waveguide loss αint. Γg0 is the

unsaturated modal gain, S is the normalized CW optical power and Psat is sat-

uration power. ξ±1 corresponds to the complex third-order susceptibility at the

sidebands. τs is the carrier lifetime. ∆k is the phase mismatching factor induced by
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background material dispersion and waveguide dispersion. The phase matching con-

dition ∆k = 0 is ful�lled to a good approximation at the low detuning frequencies

considered here [64].

Eq. (6.2) is nonlinear and can be solved numerically to directly provide the

output signal from the SOA. However, in order to highlight the physical e�ects of

the microwave phase shifting, and especially the e�ect of the �lter, we derive a

more transparent semi-analytical solution, which is subsequently considered in the

perturbation treatment. The amplitudes E−1, E+1 are assumed to be small and

only �rst-order terms are included, consistently with the assumption of small-signal

modulation. Similarly, gain saturation is governed by the carrier (pump) signal,

corresponding to S ≈ |E0|2/Psat. By assuming, without loss of generality, the

input electric �eld E0(0) to be real and de�ning the input conditions as:


u (0) = E+1(0) + E∗

−1(0)

v (0) = E+1(0)− E∗
−1(0)

(6.4)

then a general analytical solution to Eq. 6.2 can be obtained for an SOA with given

device length L (details in Appendix D):



E0 (L) = E0 (0) e
F (L)

E+1 (L) = Ẽ+1 (L) e
F (L)

= eF (L)
{

1
2v (0) +

1
2u (0)

[
eH(L) + iα

(
1− eH(L)

)]}
E∗

−1 (L) = Ẽ∗
−1 (L) e

F (L)∗

= eF (L)∗
{
− 1

2v (0) +
1
2u (0)

[
eH(L) − iα

(
1− eH(L)

)]}
(6.5)

The common complex ampli�cation factor F (L) is:

F (L) =

L∫
0

γ0dz =

S(L)∫
S(0)

γ0
(γ0 + γ∗

0)S
′ dS

′ (6.6)
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And the gain grating related complex ampli�cation factor H(L) is:

H (L) ≡ γ1 + iβ1

= Psat

L∫
0

(
ξ+1 + ξ∗−1

)
Sdz = Psat

S(L)∫
S(0)

(
ξ+1 + ξ∗−1

)
S′

(γ0 + γ∗
0)S

′ dS′

= −
S(L)∫

S(0)

gsat
gsat − aint

1 + S′

(1 + S′)
2
+ (Ωτs)

2 dS
′

−i

S(L)∫
S(0)

gsat
gsat − aint

Ωτs

(1 + S′)
2
+ (Ωτs)

2 dS
′ (6.7)

Here γ1 and β1 indicate the real and imaginary part of H(L), respectively. The

integrals are determined by the input and output optical power S of the SOA,

which can be calculated by solving the CW optical power propagation equation

for the SOA numerically [52, 66]. Based on the wave mixing description and linear

treatment shown in Eq. (6.5), F (L) can be considered as a complex ampli�cation to

the CW signal due to the �rst-order susceptibility andH(L) can be considered as the

spatial integral of the spatially varying gain grating due to third-order susceptibility,

which is implicitly determined by the spatial variation of the CW optical power S

as well as the carrier lifetime τs along the waveguide. The refractive index grating

is quanti�ed by a non-zero linewidth enhancement factor α.

For a given SOA, the values of functions F (L) and H(L) can be modi�ed by

changing the unsaturated modal gain (electrical bias or current control), input CW

optical power (optical intensity control) and modulation frequency (frequency de-

tuning). In the following sections, numerical results refer to the model based on

Eq. (6.2) and semi-analytical results refer to the model based on Eq. (6.5).

6.2.3 Photodetection and optical �ltering

Due to the frequency beating between the optical waves in the photodetector, the

photocurrent at modulation frequency Ω is proportional to the corresponding com-

plex AC term PAC of EE∗. For the microwave signal, a time delay ∆t will introduce

a phase change to |PAC |/2e−iΩ(t−∆t) + c.c. which is positive for a time delay and

negative for a time advance.
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The absolute microwave phase is determined by arg{PAC}, which can be tuned

through di�erent control schemes. The microwave phase shift

∆ϕ = arg{PAC} − arg{PAC} |reference

is stated relative to a reference situation, e.g., corresponding to |H(L)| ≈ 0. In

the following we separately write down the expressions for the AC power for the

di�erent cases of optical �ltering.

i) Without optical �ltering before photodetection

Without the notch �lter both sidebands and the carrier are detected. The resulting

AC power is:

PAC(L) = E∗
0 (L)E+1(L) + E0(L)E

∗
−1(L)

=
|E0 (L)|2

E0 (0)
u (0) eH(L) (6.8)

The microwave phase shift induced by the SOA is determined by:

∆ϕ = arg
{
u (0) eH(L)

}
− arg

{
u (0) eH(L)

}∣∣∣
|H(L)|≈0

≈ arg
{
u (0) eH(L) ·u(0)∗

}
(6.9)

ii) Red-shifted sideband

With the notch �lter blocking the blue-shifted sideband before photodetection only

the red shifted sideband and the carrier are detected. The resulting AC power is:

PAC(L) = E0 (L)E
∗
−1 (L)

=
|E0 (L)|2

E0 (0)

{
−1

2
v (0) +

1

2
u (0)

[
eH(L) − iα

(
1− eH(L)

)]}
(6.10)

The microwave phase shift induced by the SOA is determined by:

∆ϕ−1 = arg

{
−1

2
v (0) +

1

2
u (0)

[
eH(L) − iα

(
1− eH(L)

)]}
− arg

{
−1

2
v (0) +

1

2
u (0)

[
eH(L) − iα

(
1− eH(L)

)]}∣∣∣∣
|H(L)|≈0

≈ arg

{{
−1

2
v (0) +

1

2
u (0)

[
eH(L) − iα

(
1− eH(L)

)]}
·
[
−1

2
v (0) +

1

2
u (0)

]∗}
(6.11)
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iii) Blue-shifted sideband

With the notch �lter blocking the red-shifted sideband before photodetection only

the blue-shifted sideband and the carrier are detected. The resulting AC power is:

PAC(L) = E∗
0 (L)E+1 (L)

=
|E0 (L)|2

E0 (0)

{
1

2
v (0) +

1

2
u (0)

[
eH(L) + iα

(
1− eH(L)

)]}
(6.12)

The microwave phase shift induced by SOA is determined by:

∆ϕ+1 = arg

{
1

2
v (0) +

1

2
u (0)

[
eH(L) + iα

(
1− eH(L)

)]}
−arg

{
1

2
v (0) +

1

2
u (0)

[
eH(L) + iα

(
1− eH(L)

)]}∣∣∣∣
|H(L)|≈0

≈ arg

{{
1

2
v (0) +

1

2
u (0)

[
eH(L) + iα

(
1− eH(L)

)]}
·
[
1

2
v (0) +

1

2
u (0)

]∗}
(6.13)

Thus based on the semi-analytical solution and di�erent optical �ltering schemes,

the corresponding phase shift and AC power depends di�erently on the complex

ampli�cation H(L), the linewidth enhancement factor α as well as the input optical

signal u(0), v(0). In particular, for the usual case where both sidebands are detected,

the phase shift does not depend on the α-factor, i.e., the dynamics of the refractive

index does not in�uence the phase of the envelope. This is in agreement with

[52] where it was shown also that this case can be analyzed by considering the

dynamical e�ects of gain saturation. The e�ect of gain saturation also explains the

time shifting of ultrashort pulses [63] in the limit where material dispersion can be

neglected.
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6.3 Phase Shifting Results

6.3.1 Comparison to experimental results
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Figure 6.2: (a) Phase shifts and (b) AC power change vs.the input optical power

in an SOA with di�erent optical �ltering schemes. The marks are experimental

data taken on a bulk SOA at a modulation frequency of 19 GHz. The lines show

the theoretical results for a pure AM input signal. The dotted lines are numerical

results; the solid lines are semi-analytical results. The dashed line is a numerical

result for an IM input signal with θ+1 − θ0 = θ−1 − θ0 = 0.1 rad. Main model

parameters: Psat=10 dBm, τs=100 ps, Γg0L=5.75, α=6 and αintL=2.75.

In Figure 6.2 we compare experimental results from [73] with the results of our

theoretical model. The experiments were carried out using a bulk SOA and a Fiber

Bragg Grating (FBG) notch �lter with 0.1nm bandwidth. Experimental (mark-

ers) and theoretical results (lines) are shown for the phase shift and the AC power

change at a modulation frequency of 19 GHz as a function of input optical power

for a �xed SOA injection current. The phase is measured relative to the values at

the minimum input optical power. The AC power in the calculations is normalized

to agree with the experimental value at the minimum input optical power when

blocking red-shifted sideband. As seen in the �gure the theoretical results agree

very well with the experimental data for both phase shift and AC power. Both the

numerical solution (solid line) and the semi-analytical calculation (dotted lines) are
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presented. The small di�erence between numerical and semi-analytical results for

a pure AM input signal indicates that the semi-analytical solution provides a very

good approximation for the phase shift. In addition, Figure 6.2 shows modeling

results for an IM input signal with a small spectral phase di�erence between dif-

ferent frequency components (dashed lines), corresponding to a realistic non-ideal

modulator with a small chirp similar to the one used in the experiment. The inclu-

sion of the small chirp provides a better quantitative agreement with experimental

data. As shown in Figure 6.2(a), comparing with the conventional case without op-

tical �ltering, blocking the red-shifted or blue-shifted sideband leads to positive and

negative phase changes, corresponding to the slow light and fast light, respectively.

Especially when the red-shifted sideband is blocked, about 150 degrees phase delay

is achieved, which corresponds to a ten-fold increase of the maximum phase shift

obtained in the absence of optical �ltering.

6.3.2 Parameter dependence
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Figure 6.3: (a) Phase shifts and (b) AC power change vs. modulation frequency in

an SOA with di�erent optical �ltering schemes. The numerical results are for a pure

AM signal at di�erent normalized input optical power S(0): 0.01 (dotted line), 0.03

(dashed line), 0.1 (solid line) and 1 (dash-dotted line). Main model parameters:

Psat=10 dBm, τs=100 ps, Γg0L=5.75, α=6 and αintL=2.75. Phase shift and AC

power are relative to the value with minimum input power at maximum modulation

frequency (|H(L)| ≈ 0).
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As discussed previously the microwave phase shift in the SOA plus �lter is

in�uenced by several parameters. In this subsection, we numerically investigate

the in�uence of the modulation frequency (carrier lifetime), linewidth enhancement

factor, modal gain (internal loss) and waveguide length.

As shown in Figure 6.3, the phase shift for a pure AM signal as a function of

modulation frequency indicates that the modulation response regarding the phase

shift can be enhanced by optical �ltering. Here the situation of minimum input

power at maximum modulation frequency, |H(L)| ≈ 0, is chosen as the reference

for phase shift and AC power. Especially when the red-shifted sideband is blocked,

100 degree variable phase delay can be achieved for 20 dB optical power change over

a large bandwidth 20 GHz. The sharp increase of the phase shift also corresponds

to a dip in AC power. The result as a function ofΩτs indicates that the modulation

frequency can also be enhanced with a scale given by 1/τs. With the assumption of

a constant carrier lifetime in the device, it qualitatively explains the experimentally

measured phase shift and relative AC power as a function of modulation frequency

in [73].

The phase shift results for a pure AM signal at a modulation frequency of 10 GHz

as a function of the linewidth enhancement factor are shown in Figure 6.4. When

the α-factor is zero, the employment of optical �ltering has no in�uence on the phase

shift as the refractive index dynamics is negligible. All the cases hence give the same

phase shift as seen in the Figure 6.4. When the α-factor increases, the constant

phase advance value for the conventional case without optical �ltering indicates the

refractive index dynamics e�ects are cancelled after photodetection. While the red-

shifted sideband is blocked, the contribution from the refractive index dynamics

turns the phase advance into a large delay. Moreover, comparing the results in

Figure 6.4, the gain grating and refractive index grating for the given modulation

frequency are stronger in an SOA with the shorter carrier lifetime τs=50 ps than

the one with τs=100 ps. This also reveals that the magnitude of gain and refractive

index grating depends on the product of modulation frequency and carrier lifetime

shown in Figure 6.3. For bulk or QW semiconductor material with moderate α-

factor, the refractive index dynamics for a given input power is strong. Although

the α-factor of QDs is still debated in Section 5.1, for QD semiconductor material

with a small α-factor the refractive index varies less but this might be compensated
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Figure 6.4: Phase shifts vs. linewidth enhancement factor α in an SOA with di�erent

optical �ltering schemes for (a) τs=100 ps and (b) τs=50 ps. The numerical results

are for a pure AM input signal at a modulation frequency of 10GHz with di�erent

normalized input power S(0): 0.01(dotted line), 0.03 (dashed line), 0.1 (solid line)

and 1 (dash-dotted line). Main model parameters: Psat=10 dBm, Γg0L=5.75 and

αintL=2.75. Phase shift is relative to the value at minimum input optical power

with zero value of α.

by a short carrier lifetime. Or vice versa, our optical �ltering scheme might be

used to experimentally distinguish whether the QD SOAs in reality has a zero or

bulk-like α-factor.

The phase shift results for a pure AM signal at a modulation frequency 10 GHz

as a function of modal gain for a 500 µm long active semiconductor waveguide are

shown in Figure 6.5. Here we estimated the phase shifting in the absorption/gain

regime with the assumption of constant carrier lifetime and saturation power, Al-

though the absolute scaling of the phase shift will be di�erent for the realistic varying

values of carrier lifetime and saturation power for di�erent electrical bias/current

control, the results qualitatively indicate the properties of phase delay/advance by

electrical bias/current control. By tuning the SOA from the gain regime into ab-

sorption regime, the sign of the phase shift changes from negative (fast light) to
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Figure 6.5: Phase shift vs. modal gain in an SOA with di�erent optical �ltering

schemes. The numerical results for a pure AM input signal at a modulation fre-

quency 10 GHz with di�erent normalized optical power S(0): 0.01 (dotted line),

0.1 (dashed line), 1(solid line) and 5 (dash-dotted line). Main model parameters:

τs=100 ps, α = 6, L=500 µm. αint=55 cm−1. Phase shift is relative to the value

at zero modal gain.

positive (slow light) without optical �ltering [70]. By blocking the blue-shifted side-

band, we observe a large phase delay in the absorption regime and a phase advance

in the gain regime. By blocking the red-shifted sideband, we observe a large phase

delay in the gain regime and phase advance in the absorption regime. This �ip-

ping of the sign of corresponding phase shift can be interpreted by the perturbation

treatment in the next section. The internal loss also in�uences the �nal phase shift

as discussed in [66].

The phase shifts for a pure AM signal at a modulation frequency of 10 GHz as a

function of the waveguide length of an SOA for di�erent input optical power levels

are presented in Figure 6.6(left). For the conventional case without optical �ltering,

a long SOA device is expected to show larger device gain (unless limited by ASE)

and thus enhance the variable phase shift range [66]. As shown in Figure 6.6, for

example, for the given input optical power range, 32 degree phase advance can be

achieved through a 1000 µm long device comparing with 22 degree phase advance

through a 500 µm long SOA. However, by blocking the red-shifted sideband a much
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Figure 6.6: (a) Phase shift and (b) normalized AC power vs. waveguide length in an

SOA with di�erent optical �ltering schemes. The numerical results for a pure AM

input signal at a modulation frequency 10 GHz with di�erent normalized optical

power S(0): 0.01 (dotted line), 0.1 (dashed line), 0.3(solid line) and 1 (dash-dotted

line). Main model parameters: τs=100 ps, α = 6, Γg0=115 cm−1, αint=55 cm−1.

Phase shift and AC power is relative to the value with minimum input power.

larger e�ect is obtained, about 150 degree phase delay can be achieved in an SOA

with the length of 200-600 µm, corresponding to the moderate small signal device

gain of 5-15 dB. It indicates that the corresponding spatial integral of the refractive

index grating (quanti�ed by the large value of the α-factor) over this length is

signi�cant enough to achieve a large variable phase change range. However, as

shown in Figure 6.6(right) the corresponding AC power has a notch-like variation

accompanying the large phase shift. We should also emphasize that our present

model does not include ASE noise, which is expected to limit the gain and phase

shift for long devices [69].

6.4 Perturbation Analysis and Discussion

In order to gain a better understanding of the physical e�ects resulting in the large

impact of optical �ltering on the microwave phase shift, e.g., the large phase change

shown in Figure 6.2 by tuning input optical power, it is helpful to further simplify

the model. Therefore we investigate the �lter-assisted phase shift by perturbation
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Figure 6.7: Illustration of the relative amplitude and phase changes of the complex

electric �eld. (a) Perturbations induced by gain grating and refractive index grating.

(b) Electric �eld components including perturbation. (c) Resulting beating terms

after a certain propagation distance.

analysis. For simplicity, we assume that the input optical signal satis�es |u(0)| =
u(0) = ε and |v(0)| = 0 as an pure AM signal with amplitude ε normalized to the

carrier. Internal loss is also neglected.

6.4.1 Perturbation without spatial variation

Firstly, the enhancement of the phase shift by the optical �ltering can be qual-

itatively understood from a perturbation treatment of the FWM in the limit of

relatively small propagation length δL [73]. This is equivalent to investigating the

role of the gain grating and the refractive index grating as material response without

spatial variation along the propagation coordinate.

We may obtain the electric �elds after the ampli�cation and interaction in the

SOA based on Eq. (6.5):
Ẽ+1 (δL) = ε (1 + δγ1 + αδβ1 + iδβ1 − iαδγ1)

Ẽ∗
−1 (δL) = ε (1 + δγ1 − αδβ1 + iδβ1 + iαδγ1)

(6.14)

Where 
δγ1 = −gsat

(1+S)S

(1+S)2+(Ωτs)
2 δL

δβ1 = −gsat
ΩτsS

(1+S)2+(Ωτs)
2 δL

(6.15)

The changes in the complex �eld components are illustrated in a phasor diagram

in Figure 6.7. It is seen that both δγ1 and δβ1 are negative for an SOA with positive
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gain. The perturbations with α-factor, which indicate the sign of the corresponding

phase changes, can be sketched in Figure 6.7(a) and (b).

When both sidebands are detected after the SOA, the phase shift becomes δϕ =

arg{1+δγ1+iδβ1} indicating that the in�uence from the refractive index dynamics is

canceled. When employing an optical �lter to block the red-shifted sideband before

detection, the phase shift, δϕ+1 = arg{1 + δγ1 + αδβ1 + i(δβ1 − αδγ1)}, includes
a contribution −αδγ1, corresponding to an additional delay (positive phase shift)

for positive α-factor. If the blue-shifted sideband is blocked before detection, the

phase shift δϕ−1 = arg{1 + δγ1 − αδβ1 + i(δβ1 + αδγ1)} instead contains a term

αδγ1, corresponding to an additional advance (negative phase shift). When the

semiconductor waveguide devices are biased in the absorption regime, the sign of

the corresponding phase shift will be �ipped as in Figure 6.5.

6.4.2 Perturbation including propagation e�ects

Notice that treatments in previous section only qualitatively explains the sign of

phase shifting. For an SOA device with given length L, the vision of perturbation

analysis should be extended to take into account propagation e�ects as shown in

Figure 6.7(c). The optical pump power levels at the input and output of SOA satisfy

the relation:

S (L) = S (0)Tsat (6.16)

Here Tsat = F (L) + F (L)∗ is the saturated value of the transmission.

For a small perturbation of input power δS the output power satis�es the rela-

tion:

S (L) + δSout = (S (0) + δS)

(
Tsat +

∂Tsat

∂S
δS

)
≈ S(0)Tsat + δS

(
Tsat + S (0)

∂Tsat

∂S

)
(6.17)

where δSout is the resulting perturbation of the output power. The corresponding

di�erential change of H(L) is:

δH (L) ≡ δγ1 (L) + iδβ1 (L) = H (L)|S(0)+δS − H (L)|S(0) (6.18)

106



Perturbation Analysis and Discussion

2
Λ

δφ arg{ }∆

Real

Imag

0

∆

0

1

2

3

10
−3

10
−2

10
−1

10
0

10
1

10
2

−50

0

50

100

150

Normalized Input Optical Power S(0) 

|Λ
|

ar
g{

∆}
 

P
ha

se
 S

hi
ft 

(d
eg

re
e)

i)

i)

i)

ii)

ii)

ii)

iii)

iii)

iii)

0

−π

π

(b)

(a)

Figure 6.8: (a) Illustration of the perturbation approach including propagation

e�ects in an SOA. (b) Numerical example with di�erent optical �ltering schemes

for a pure AM input signal as a function of normalized input optical power S(0).

(Γg0L = 5.75, αintL = 0, α = 6 and Ωτs = 12)

where
δγ1(L)

δS = Psat

[
1+S(0)

(1+S(0))2+(Ωτs)
2 − 1+S(L)

(1+S(L))2+(Ωτs)
2

(
Tsat + S (0) ∂Tsat

∂S

)]
δβ1(L)

δS = Psat

[
Ωτs

(1+S(0))2+(Ωτs)
2 − Ωτs

(1+S(L))2+(Ωτs)
2

(
Tsat + S (0) ∂Tsat

∂S

)]
(6.19)

The electric �elds after the ampli�cation and interaction in the SOA are based on

Eq. (6.5):
Ẽ+1 (L, δS) = ε

[
eH(L) + iα

(
1− eH(L)

)
+ eH(L)

(
eδH(L) − 1

)
(1− iα)

]
Ẽ∗

−1 (L, δS) = ε
[
eH(L) − iα

(
1− eH(L)

)
+ eH(L)

(
eδH(L) − 1

)
(1 + iα)

] (6.20)
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The perturbations eH(L)(eδH(L) − 1)(1 ± iα) induced by the gain grating and the

refractive index grating can alter the amplitude and phase of the corresponding elec-

tric �elds destructively (or constructively) when the perturbations are in antiphase

(or in phase) compared with the complex ampli�cation terms eH(L)∓ iα(1−eH(L)).

As the destructive addition turns to the constructive one, the perturbations thus

lead to a dip of the related AC power, as seen in Figure 6.2.

Using Eq. (6.9), (6.11) and (6.13) for the di�erent cases of �ltering, the corre-

sponding di�erential phase change δϕ with respect to the intensity can be expressed

as:

δϕ = arg
{
|Λ|2 +∆

}
(6.21)

i) Without optical �ltering before photodetection
|Λ|2 =

∣∣eH(L)
∣∣2

∆ =
(
eδH(L) − 1

)
·
∣∣eH(L)

∣∣2 (6.22)

ii) Red-shifted sideband
|Λ|2 =

∣∣eH(L) − iα
(
1− eH(L)

)∣∣2
∆ =

(
eδH(L) − 1

)
(1 + iα) · eH(L) ·

[
eH(L) − iα

(
1− eH(L)

)]∗ (6.23)

iii) Blue-shifted sideband
|Λ|2 =

∣∣eH(L) + iα
(
1− eH(L)

)∣∣2
∆ =

(
eδH(L) − 1

)
(1− iα) · eH(L) ·

[
eH(L) + iα

(
1− eH(L)

)]∗ (6.24)

Here, |Λ| indicates the absolute value of the complex ampli�cation without pertur-

bation and ∆ is the perturbation term.

For a pure AM input signal, |Λ| is correlated to the modulation index and AC

power of the output optical signal into the photodetector. To the �rst order in δS
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we have:

(
eδH(L) − 1

)
(1± iα)

≈ (δγ1 (L)∓ αδβ1 (L) + iδβ1 (L)± iαδγ1 (L))

(6.25)

Here we illustrate the perturbation results including propagation e�ects based

on Eq. (6.21) as a phasor diagram in Figure 6.8(a). The value of arg{∆} determines
the sign of δϕ: A value between 0 and π for arg{∆} introduces a positive di�erential
phase change δϕ (phase delay); a value between −π and 0 for arg{∆} introduces a

negative di�erential phase change δϕ (phase advance). For a perturbation with unit

amplitude |∆|, a larger di�erential phase change δϕ is expected with a smaller |Λ|
value. By employing optical �ltering, both ∆ and |Λ| are signi�cantly in�uenced

by α-factor as well as δγ1(L), δβ1(L) and H(L).

In Figure 6.8(b), a numerical example of Eq. (6.21) in an SOA is used to illustrate

the complex situation, whereas only the electric �eld of blue-shifted sideband evolves

from destructively to constructively. When the red-shifted sideband is blocked, the

large phase change can thus be achieved around the dip of |Λ|. This also reveals

the correlation between the large phase change and the dip in AC power seen in the

numerical and experimental results as shown in Figure 6.2.

When the device length is approaching zero, corresponding to |H(L)| ≈ 0 and

|Λ| ≈ 1, this perturbation analysis is consistent with the simple interpretation

of phase delay and advance without spatial variation in previous section. The

perturbation analysis used here may also be used to analyze the role of the phase

di�erence between di�erent frequency components of the input optical signal, which

will become increasingly important in practice. Such a phase di�erence may appear

due to chirp in the modulator or dispersion in the optical path before the SOA.

As far as modeling in the regime of weak modulation is concerned, a change of the

phase di�erence does not change the gain grating or refractive index grating in the

SOA from the case of pure AM signal, as seen in Eq. (6.7). However, the amplitude

and phase of the electric �elds are in�uenced by such a change of phase di�erence,

based on Eq. (6.5), and thus the �nal �lter-assisted phase delay or advance can be

modi�ed.
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6.5 Summary

We have theoretically investigated the physical e�ects of CPO that contribute to

microwave phase shifts in semiconductor optical waveguides, in particular analyzing

the in�uence of optical �ltering.

The semi-analytical solution accounts for the evolution of the electric �elds with

complex ampli�cation factors, which are spatial integrals of spatially varying gain

and refractive index gratings. When optical �ltering is included to selectively sup-

press a sideband of the optical signal before photodetection, the refractive index

grating becomes important and leads to the observation of both phase delay and

phase advance.

In the small signal regime, the strength of the gain grating is in�uenced by

the input optical power (optical intensity control), modulation frequency/carrier

lifetime (frequency detuning), modal gain/internal loss (electrical bias/current con-

trol). The strength of the refractive index grating is quanti�ed by the α-factor,

which means that the in�uence of optical �ltering can be increased signi�cantly in

QW and bulk devices, while QD devices with low α-factor are expected to show a

smaller in�uence from �ltering. Or vice versa, our optical �ltering scheme can be

implemented as a standard experimental approach to distinguish whether or not

QD SOAs has a non-zero bulk-like α-factor. In return, such experimental results

will be valuable inputs for the debates in Section 5.1.

A large phase shift is achievable at higher modulation frequency with a moderate

small signal device gain when properly exploiting optical �ltering. Furthermore,

the e�ects of phase di�erence between di�erent frequency components of the input

optical signal on the measured microwave phase shift adds the potential to further

in�uence the �lter-assisted phase shifts.

The phase shifting e�ect induced by optical �ltering is qualitatively explained

by a simple perturbation approach. This approximate approach provides a simple

physical explanation of the large di�erence, seen in both experiments and numerical

simulations, between �ltering the red and the blue modulation sideband.
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Chapter 7

Microwave Phase Shifting

based on QD SOAs

In addition to the general discussion of slow and fast light in semiconductor waveg-

uide in Chapter 6, this chapter presents two proposals to realize the microwave

phase shifting based on the understanding of harmonic responses of QD SOAs.

As already discussed in Chapter 5, our small-signal harmonic analysis reveals that

ultrafast carrier dynamics of QDs leads to the coherent gain responses with rich

dispersion details over a wide modulation frequency range. These unique properties

are attractive to alleviate the limits of the achievable phase shifting and bandwidth

induced by the slow total carrier density pulsation in SOAs. Here, the theoreti-

cal investigations are based on time-domain implementation of our MPREM model

presented in Chapter 4. Gaussian homogeneous broadening lineshape is used. Stan-

dard Fourier signal analysis are used to retrieve the �rst-order harmonic responses.

The treatment focuses on the gain dynamics only, equivalent to the situation with

zero linewidth enhancement factor. The parameters are given in Appendix F.

For the proposal with one optical carrier as input, the con�guration is same to

the conventional scheme used for the investigation of coherent population oscilla-

tions e�ects in Chapter 6. For the proposal with additional optical carriers as input,

the con�guration is equivalent to the investigations of the cross gain modulation ef-

fects, which was reported in a distributed feedback (DFB) Laser [140].
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7.1 Coherent Population Oscillations E�ects

QD 

SOAs
PD

RF OutputOptical Input

Ω

Ω

ω0 Ωω0

Figure 7.1: Schematic con�guration of microwave phase shifter based on coherent

population oscillations (CPO) e�ects in QD SOAs.

Figure 7.1 shows the conventional scheme to achieve slow/fast light based on

CPO e�ects for sinusoidally modulation optical signals as discussed in Chapter 6.

Since the refractive index change imposed on a probe component by wave mixing

with a pump is anti-symmetric with respect to the detuning frequency between

pump and probe, the e�ect of such anti-symmetric phase change cancels out for a

conventional double sideband signal with a central carrier (pump) and two modu-

lation sidebands (probes) [141]. Hereby, only dynamic gain gratings in QD SOAs

contribute to the phase shifting. In this section, our QD SOAs model is referred

to as the full model. The semi-analytical solutions of the wave-mixing model in

Chapter 6 are referred to as the (carrier density pulsation) CDP model.

In general, we have fast light (negative phase shifts) in the gain regime with

respect to the speed of light with no CPO e�ects, i.e., for very low input power.

In order to compare the phase shifts obtained at di�erent optical transitions (ωG

and ωE), we start with a reference current density (1 kA/cm2), at which the modal

gains for the compared optical transitions are similar as shown in Figure 5.10.

Figure 7.2 shows the simulated phase shift and RF optical gain as a function of

modulation frequency at di�erent optical transitions corresponding to ground state

(ωG) and excited state (ωE) for di�erent input pump powers. For the G transition,

shown in Figure 7.2(left), a maximum phase shift of around -34 degree is observed

at a peak modulation frequency around 300 MHz by increasing the input power by

20 dB, and this phase shift is accompanied by a steep RF optical gain variation.

112



Coherent Population Oscillations E�ects

-40

-30

-20

-10

0

0 1 10 100

-5

0

5

0 1 10 100

 

 

Ph
as

e 
Sh

ift
 (D

eg
.)

G

 

R
F 

O
pt

ic
al

 G
ai

n 
(d

B)

I=1kA/cm2

 -10dBm
 0dBm
 10dBm

 

 

Input Power

E

 Full model
 CDP model  

Modulation Frequency (GHz)

Figure 7.2: Phase shift and RF optical gain as a function of modulation frequency

at optical transitions corresponding to ground (left) and excited (right) states of QD

SOAs for di�erent input pump powers under moderate injection current (fast light

in gain regime). Solid curves are based on the full model. Dotted curves are based

on the CDP model used in chapter 6. The injected current density is 1 kA/cm2.

As the modulation frequency is increased, the phase shifts decreases. These results

agree well with experimental observations [142] and are explained by the slow CDP

model discussed in Chapter 6. As such, the frequency is limited by the carrier

recovery rate, τ−1
s . Dotted curves in Figure 7.2 are thus reference curves calculated

with the assumptions of constant carrier lifetime and CW saturation power.

As we consider the case of the E transition, shown in Figure 7.2(right), we

observe the appearance of phase shift maxima at two separate frequencies: a value

of -18 degree peaked around 300 MHz and a value of -12 degree peaked at a much

higher frequency of around 70 GHz. Because of the di�erent saturation powers for

G and E transitions, even with similar modal gain, the magnitude of the two phase

shifts di�ers considerably. The high-frequency peak corresponds to the inverse of

a combination of downward electron transition times, which is determined by the

slowest process on the order of several picoseconds. Detailed discussion of the

coherent gain contributions are presented in Chapter 5. This e�ect is obviously

not taken into account in the CDP model in Chapter 6 due to the exclusion of

ultrafast dynamics. As a comparison, the intraband scattering dominated SHB

(CH) dynamics in bulk or QW occurs on a time scale of about 50 fs (500 fs) and

the corresponding phase shift would be appearing in the THz frequency range and
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correspond to a very small phase shift amplitude. In QDs, the intra-dot scattering

dominated downward electron transition rates, especially for excited state, are two

to three orders faster than the CDP process, and one to two orders slower than

the SHB (or CH) process in bulk or QW media. We observe also that the two

phase shift peaks correspond to the two di�erent plateau-levels of RF optical gain

seen in the lower plot of Figure 7.2. The high-frequency peak corresponds to the

resonant response determined by the ultrafast electron intra-dot dynamics as shown

in Figure 5.12(b) and 5.13(b).

-30

-20

-10

0

0 1 10 100
-5
0
5

10
15
20

0 1 10 100

G

 

 

Ph
as

e 
Sh

ift
 

(D
eg

.)

 

R
F 

O
pt

ic
al

 G
ai

n
 (d

B)

I=10kA/cm2

 -10dBm
 0dBm
 3dBm
 10dBm

 

 E

Input Power

 

Modulation Frequency (GHz)

Figure 7.3: Phase shift and RF optical gain as a function of modulation frequency

at optical transitions corresponding to ground (left) and excited (right) states of

QD SOAs for di�erent input pump powers under strong injection current (fast light

in gain regime). The injected current density is 10 kA/cm2.

As we increase the injection current to 10 kA/cm2, this downward electron tran-

sition dynamics in QDs is further enhanced and dominates over the CDP mechanism

[131]. The second phase shift peak is enhanced (to around -11 degree for ωG and

-22 degree for ωE) and shifted towards 100 GHz, or even higher frequencies, as

shown in Figure 7.3. The plateaus of constant RF optical gain are also extended to

higher frequencies. As discussed in the Chapter 5, the ultrafast carrier dynamical

contribution, i.e., the relaxations between the ground and excited states τ−1
EG, do

not imply the large coherent gain response change in the target frequency range

of 10-100 GHz, see Figure 5.12(c). Instead, the relatively slow carrier dynamical

processes for excited states result in a larger change see 5.13(b). In reality, the

ultrafast carrier dynamics in QD SOAs might strongly depend on the bias control
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condition and signal power as well as dot shape and fabrication process via the

intra-dot scattering times, see e.g. [26], which provides potential for controlling the

second peak modulation frequency.
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Figure 7.4: Phase shift and RF optical gain as a function of modulation frequency

at optical transitions corresponding to ground (left) and excited (right) states of

QD SOAs for di�erent input pump powers under a weak injection current (slow

light in absorption regime). The injected current density is 1 A/cm2.

Furthermore, as shown in Figure 7.4, similar e�ects on slow light in the absorp-

tion regime (under a weak forward bias) can also be observed whereas the additional

phase shift peak and �at plateaus of RF optical gains appearing at high modulation

frequencies originate from upward electron transitions see Figure 5.12(c) and see

Figure 5.13(c). As we assumed the electron upward transitions to be dominated

by thermal excitation, the height of the energy barriers relative to the kinetic en-

ergy are important in determining the characteristic modulation frequencies and

the phase shift.

In summary, we have numerically demonstrated that a tunable RF phase shifter

based on CPO e�ects (dynamic gain grating) can be achieved at modulation fre-

quencies, i.e., 30-100 GHz, much higher than the inverse of the carrier lifetime.

This e�ect is explained as a result of nonequilibrium e�ects in QDs and highlights

the importance of the intra-dot electron scattering processes, which is consistent

with the results discussed in chapter 5. The magnitude of tunable phase shift can

be further enhanced by the idea of cascading [72] and optical �ltering discussed in

chapter 6.
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7.2 Cross Gain Modulation E�ects

Data Signal

ωDATA

IN

DATA
P

QD 

SOAs
PD

Ω

Ω

RF Output

CW Signal
IN

CW
P

Optical Input ωCW

ωCW

ωDATA

ωCWωCW

Figure 7.5: Con�guration of wavelength up-conversion based on cross gain modu-

lation in QD SOAs. PD: photodetector.

Here, we also proposed a novel dual-wavelength-con�gured phase shifter based

on dynamic gain gratings induced by high speed XGM in QD SOAs as shown in

Figure 7.5. It is similar to the small signal XGM con�guration in [143] with a

sine-modulated data signal, at optical frequency ωDATA, as input:

P IN
DATA[1 +m0 cos(Ωt)],

where P IN
DATA, m0 and Ω are input power, modulation index and modulation fre-

quency. The data signal will modulate the gain of the SOA and thus in turn XGM

in the ampli�er will transfer the modulation to the co-propagating continuous-wave

(CW) signal at optical frequency ωCW as an XGM converted signal with an inverse

pattern.

For simplicity, by ideal �at-top selective optical bandpass �ltering, the output

intensity envelope centered around ωDATA and ωCW can be detected in the form

of:

POUT
X [1 +mOUT

X cos(Ωt+ φOUT
X )],

Here, POUT
X , mOUT

X and φOUT
X (X=CW, DATA) are the mean output optical in-

tensity, modulation index and RF phase shift at the given optical frequency. The

corresponding RF optical gain is in the form of POUT
X mOUT

X /(P IN
DATAm0).
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Note that there are two main changes compared to previous results. Firstly, the

optical frequencies of the data signal (ωDATA = ωE) and CW signal (ωCW = ωG)

are chosen corresponding to the two lowest discrete QD bound states, i.e., the

excited (E) and ground (G) state, which are connected by fast (sub-picosecond)

inter-subband electron relaxation. The frequency detuning (ωDATA−ωCW = ωE −
ωG) is assumed much larger than the homogenous linewidth of the QDs, and thus

FWM interaction between data and CW signals are neglected. Secondly, the input

CW power P IN
CW is variable and acts as a strong pump, while the average input data

power P IN
DATA is constant and relatively weak. Therefore the dynamic gain grating is

no longer solely determined by the data signal as in the small signal regime. Instead,

in terms of the two wave competition [143], both the data and XGM converted signal

are considered to compete for the available carriers and interact with dynamic gain

gratings (at frequencies ωDATA and ωCW ) via fast intra-dot scattering e�ects in

QDs. Recent calculations and experiments indicate that quantum dot (QD) based

devices are good candidates for small signal cross gain modulation (XGM) up to

40 GHz in QD SOAs. The high-speed XGM can be increased by increasing the

current injection and suppressing the total carrier density depletion [44]. As a

consequence, we emphasize the phase shifting pro�le of the XGM converted signal

(ωCW ) after the QD SOAs for a strong current injection (10 kA/cm2).

Figure 7.6(left) shows the calculated incoherent modal gain of QD SOAs for dif-

ferent values of the input CW power. Details regarding the CW gain saturation are

presented in Chapter 5. As the stimulated emission at frequency ωCW (input CW

power) increases, spectral holes are seen to develop in the gain spectrum, centered

at the E and G states. Notice that the SHB corresponding to the E state transition

originates from the large contrast between the fastest intradot electron relaxation

and the intermediate electron capture from R to E states, which is synonymous to

the existence of an injection bottleneck due to long capture time or short escape

time [130]. As the rate of removal of carriers in the QD G state due to stimulated

emission approaches the injection rate between reservoir and QDs, it is possible to

deplete the E state carrier population and thus even switch from gain to absorption.

Now, in the presence of a modulated data signal, let us consider the modal gain
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Figure 7.6: Calculated modal gain pro�le for the up-conversion scheme in QD SOAs

at a strong current density (10kA/cm2) for di�erent input CW power, P IN
CW . (Left)

Static spectral modal gain. (Right) XGM response and relative phase. Input data

signal is set to P IN
DATA=1mW with 20% modulation index.

at frequency ωCW in the form of a Fourier series:

ḡ +
∞∑

n=1

[|∆gn| exp(inΩt+ i∆ϕn) + c.c.] /2,

Here ḡ is the static gain. |∆gn| and ∆ϕn are the modulated gain and phase for

the nth order harmonics. The modulation index of input data signal (ωDATA) is

�xed at 20%. The corresponding higher order harmonics at this modulation index

level give relatively small contributions (distortions) to the overall XGM. Hereby,

we only keep the �rst order harmonics. The XGM response |∆g1|/(P IN
DATAm0) and

relative phase ∆ϕ1 are shown in Figure 7.6(right). Flat XGM responses approxi-

mately up to 100 GHz are observed. Regardless of di�erent optical carriers used

for XGM, the corresponding carrier dynamical contributions are similar to what is

discussed in section 5.3. As the CW power is modest, the XGM responses in the

low modulation frequency range have a phase shift of around −π relative to the

modulation of the input data signal, which is similar to wavelength conversion with

an inverse pattern in the small signal regime [44]. As the CW power is strong and

depletes the incoherent gain of E state into absorption, a π-shift of the XGM re-

sponse is consistent with switching to "non-inverting" cross absorption modulation
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Figure 7.7: Characteristics of the RF output signal at a current of 10 kA/cm2.

(Top) Phase shift. (Bottom) RF optical gain and mean output optical power as a

function of input CW power. The input data signal power is 1 mW and has a 20%

modulation index at a modulation frequency of 40 GHz.

(XAM) [144]. Thus, by increasing the input CW power, the XGM converted signal

experiences the corresponding π-shift and also bene�ts from the e�cient conversion

at high modulation frequencies.

Figure 7.7 shows the calculated characteristics of the RF output signal at a

modulation frequency of 40 GHz in our wavelength conversion con�guration under

strong current injection. We �x the input data signal at 1 mW to retain a reasonable

signal-to-noise level. Figure 7.7(Top) shows a ∼180 degree tunable phase shift φOUT
CW

for the XGM converted output by controlling the input probe power. The sharp

increase of the phase shift corresponds to the notch-type drop of the XGM e�ciency

(related to the RF optical gain) seen in Figure 7.7(bottom) at frequency ωCW . By

evaluating the mean output optical power in Figure 7.7(bottom), the wavelength

conversion in QD SOAs can be divided into two regimes: a small signal regime

(POUT
CW ≪ POUT

DATA) and a two-wave-competing regime (where POUT
CW is comparable

to or much larger than POUT
DATA). In the small signal regime, only the data signal

dominates the dynamic gain grating and a linear increase of XGM e�ciency can be

observed. The intensity envelopes of the output data signal and the XGM converted
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Figure 7.8: Spectral characteristics of the XGM converted output signal for di�erent

input CW power at a current density of 10 kA/cm2. (Top) Phase shift. (Bottom)

RF optical gain. The input data signal is 1 mW input with 20% modulation index.

signal are nearly in antiphase (∼ −180 degree for φOUT
CW −φOUT

DATA). In the two-wave-

competition regime, the dynamic gain gratings depend on the mean power of the

spatially varying CW signal. As the stimulated emission at the G state transition

reaches the maximum value imposed by the injection bottleneck, the ampli�ers can

be regarded as being spatially divided into a usual XGM section and an XAM

section. Thus the intensity envelope of the XGM signal experiences a π-shift in

between these two sections, which results in a notch-type drop in the XGM e�ciency

and a ∼180 degree phase shift.
Figure 7.8 shows the XGM converted output signal as a function of modulation

frequency for di�erent input CW power levels. Due to the fast intersubband carrier

dynamics between E and G states, the dynamic gain grating (at frequencies ωDATA

and ωCW ) can balance and follow each other at high speed modulation. It is seen

that a shift of π can be achieved by changing the input power from 5 mW to

30 mW for modulation frequencies even beyond 100 GHz. For di�erent modulation

frequencies, di�erent input power levels are required to achieve a given phase shift,

such as π/4, π/2, 3π/4 etc. We also notice that the corresponding RF optical gain

changes signi�cantly, which is an undesirable feature. This feature is related to the

properties of the dynamic gain grating as a function of modulation frequency shown

in Figure 7.6(right). Especially in the two-wave-competition regime, the magnitude
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and phase of the XGM response vary for di�erent modulation frequency even for

identical mean power. Therefore the cancellation and reconstruction of the XGM

converted signal, with a notch-type drop appearance of RF optical gain in Figure

7.7, are sensitive to both modulation frequency and input CW power. In practice,

there is a trade-o� between the maximum modulation frequency and the minimum

signal power to retain a reasonable signal to noise ratio.

In summary, we numerically demonstrated a scheme to realize a ∼180 degree

broadband RF phase shifter based on high-speed XGM e�ects under strong in-

jection. The non-equilibrium intra-dot electron relaxations in QD SOAs plays an

important role in extending the bandwidth to 100 GHz or even higher. In addition,

this con�guration allows an alternative way of characterizing ultrafast QD dynamics

in between discrete states.
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Chapter 8

Optical Pulse Regeneration

in QD Devices

QD SOAs

A

LA

IA

Input Output

(a) Ampli�cation

QD gain 

section

QD 

absorption 

section

LB

IA=10kA/cm
2
IB~0

Input Output

LA=2mm

(b) Regeneration

Figure 8.1: Schematic diagram of QD waveguide based devices: (a) for ampli�ca-

tion; (b) for regeneration.

This chapter presents the numerical simulations of QDs gain dynamics in the

presence of picosecond transform-limited Gaussian-shape pulsed signals. The pat-

tern e�ects are systematically investigated by periodic pulse train with various time

spacing. And then we discuss the possibility of realizing an all-optical regenerator

by incorporating a QD absorber section in an ampli�er structure at bit rates up to

100 Gb/s. Here, the theoretical investigations are based on the time domain imple-

mentation of our MPREM model presented in Chapter 4. The treatment focuses on

the gain dynamics corresponding to the lowest discrete QD states, i.e., the ground

(G) states. The ampli�cation and regeneration properties are quanti�ed by the
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ratio between the output and input pulse energy. Further topics, e.g., two photon

absorption, pulse shape distortion, phase dynamics and dispersive propagation ef-

fect, are not considered. Gaussian homogeneous lineshape is used. The parameters

are given in Appendix F.

Figure 8.1 schematically shows the QD waveguide devices we investigated. Fig-

ure 8.1(a) shows a QD gain section with length LA under forward-bias injection

current IA, referred to as QD SOAs. Figure 8.1(b) shows our QD device con�g-

uration for regeneration of pulsed signals by incorporating a QD absorber section

with length LB in an ampli�er structure, which is also close to the analysis of pulse

shaping per pass in mode-locked lasers [145].

8.1 Ampli�cation of Pulsed Signals
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Figure 8.2: Ampli�cation of 1ps pulsed signals in a QD SOAs (LA=2 mm). (a)

Calculated temporal gain variation of a QD SOAs (LA=2 mm) at the injection

current density of (top) 1 kA/cm2 and (bottom) 10 kA/cm2. (b) Steady gain vs.

output pulse energy in a single QD gain section for ampli�cation of periodic pulses

at di�erent repetition frequency, F, up to 200 GHz. Optical carrier frequency of

pulsed signals are @ωG.

Figure 8.2 shows the ampli�cation results of 1ps pulsed signals in QD SOAs.

Figure 8.2(a) shows an example of the calculated temporal variation of the gain

change at di�erent current densities. Here we used pulses with energy of 10 fJ at
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repetition frequency 200 GHz starting from time '0'. The fast gain recovery corre-

sponding to the �rst four pulses is due to the fast intra-dot relaxations between the

ground and excited states. Due to the large contrast between electron scattering

rates, the ground (G) states are re�lled mainly via intra-dot relaxation from ex-

cited (E) states. As the following pulses continue to deplete carriers at the lowest

QD states due to stimulated emission, �rst the excited states and then the reser-

voir carrier densities will be adjusted by di�erent fast re�lling mechanisms. Then

the total carrier density becomes stabilized after several nanoseconds (longer than

reservoir carrier lifetime) and determines the steady G state gain responses. At a

weak injection current (1 kA/cm2), the total carrier density is relatively di�cult to

be resupplied. Thus the G state gain starts to decline after tens of picoseconds and

then approaches to a steady value after several nanoseconds, which is distinctively

di�erent from the single pulse response at time '0'. As the total carrier density

decreases towards the transparency point, the di�erential gain increases and thus

the saturation energy decreases. The nonlinear gain term induced by the ultra-

fast capture process makes the saturation energy decrease as the pulse width is

shortened [146, 147]. At a strong injection current (10 kA/cm2), the total carrier

density is much more di�cult to deplete and thus the ground state gain is only

slightly changed. The gain recovery with the dependence on the injection current

is consistent with the experimental pump probe observations [34].

Figure 8.2(b) shows the periodic pulse train ampli�cation results of a QD gain

section with a maximum small signal gain (∼19 dB). The single pulse ampli�cation
is illustrated (dashed line). The gain saturation for the single pulse, which is much

shorter than the carrier lifetime τs, is limited by the QD inter-subband relaxation

times [131]. For pulse trains at a repetition frequency of 10 GHz, the gain recovery

in the QDs is fast enough to achieve pJ output pulse energies without signi�cant

deviation of the gain from the single pulse case. As the repetition frequency increases

to 200 GHz, only 20 fJ output pulse energies can be achieved for patterning free

performance at the injection current density of 1 kA/cm2. As the injection current

density increases from 1 kA/cm2 to 10 kA/cm2, patterning e�ects at high bit rates,

up to 200 Gb/s, with sub-pJ output pulse energies can be signi�cantly suppressed.
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8.2 Regeneration of Pulsed Signals
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Figure 8.3: Regeneration of 1 ps single pulse in QD devices by incorporating a

QD absorber section in an ampli�er structure (LA=2 mm, IA=10 kA/cm2) . a)

Calculated temporal variation of the gain change and b) 3dB input saturation energy

in a QD absorption section with di�erent carrier lifetimes τs,ab. Gain vs. input pulse

energy in a QD gain section cascaded with c) a slow (τs,ab=1 ns) absorption section

with di�erent device lengths LB ; d) an absorption section ( �xed length LB=2 mm)

with di�erent carrier lifetimes.

One of the biggest challenges here is how to properly simulate the absorption

dynamics in a QD electro-absorber. Weak quantum-con�ned stark e�ect (QCSE)
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and low absorption saturation energy have been observed in InGaAs QD under

reverse biased voltage, whereas a reverse bias can be applied to reduce the QD

absorber recovery time by introducing a sweep-out mechanism for carriers without

increasing the absorber loss [148]. A rate equation model of reverse biased QD

saturable absorbers have been used in the dynamic simulation and optimization

of mode-locked QD lasers [149]. For simplicity, we still use our MPREM model to

approximate the QD absorption recovery by using di�erent absorber carrier lifetimes

τs,ab (corresponding to the ground states transition 1) scaling from 1 ns down to

1 ps. The other parameters are the same as the ones for the gain section. The

intention is to verify the 2R regeneration with patterning free performance (above

10 Gb/s) in such QD structures, which make them superior to the bulk and QW

counterparts [84, 85]. Figure 8.3(a) shows an example of the calculated temporal

variation of the gain change in a QD absorber section, which approximates the

ultrafast QD electroabsorption dynamics [148, 149]. As seen in Figure 8.3(b), the

3dB input saturation energy of the QD absorber for 1 ps pulses can be increased

by shortening the carrier lifetime or propagating through a longer absorber.

Figure 8.3(c) shows the nonlinear ampli�cation of a single pulse through a QD

gain section cascaded with a slow (τs,ab=1 ns) QD absorption section with di�erent

length LB . Here we keep the high injection current density 10 kA/cm2 to enable

ultrafast gain recovery in the QD gain section with �xed length (LA=2 mm) for

patterning free ampli�cation at high frequencies. Due to the di�erence between

the saturation properties of QDs in the gain and absorption regime, we can realize

2R-regeneration for pulsed signals with the additional absorption section. Although

this "bandpass"-like transfer function is non-ideal, it still suppresses the gain at low

pulse energy levels while keeping the similar limiting ampli�cation pro�le of the QD

SOAs at high pulse energy levels. For example, ∼9 dB net regeneration, given by

the net gain contrast between low and high input pulse energy, can be achieved for a

single pulse in case of a long absorption section (LB=2 mm). The net regeneration

depends on the di�erence between the 3dB output saturation energy of the gain

section and 3dB input saturation energy of the absorption section as well as the

small signal device gain/absorption for 1ps pulse.

1τs,ab is used to replace the ground state spontaneous time τspon in Eq. (4.7). Meanwhile the

excited state spontaneous lifetime and carrier lifetime in reservoir are also scaled down with the

same ratio.
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Figure 8.4: Regeneration of 1 ps periodic pulsed signals in a QD gain section

(LA=2 mm, IA=10 kA/cm2) cascaded with a QD absorption section. Di�erent

carrier lifetime τs,ab for absorption section has been used. Pulsed signals are at

di�erent repetition frequencies F. (a): 40 GHz. (b): 100 GHz. Dotted lines indicate

single pulse results with di�erent absorption carrier lifetime as in Fig. 8.3(d).

Figure 8.3(d) shows that decreasing the carrier lifetime from 1ns down to 1ps

in the absorption section τs,ab reduces the net regeneration without shifting the

operational pulse energy in such structures. When the pulse width τp is much

shorter than τs,ab, the absorption recovery is not fast enough to make a response

to the pulse. But for pulses longer than or comparable to τs,ab, there is a partial

recovery during the pulse width. The 3dB input saturation energy of the absorption

section can be increased by decreasing the carrier lifetime with �xed small signal

device absorption.

Figure 8.4 shows results of the periodic 1 ps pulsed signals for the regenerator

structure shown in Figure 8.1(b). Comparing with the single pulse case as in Fig-

ure 8.3(d), the regeneration of a pulse train at a repetition frequency F of 40 GHz

or 100 GHz results in a large deviation, which degrades the high-speed patterning

free performance of QD SOAs as in Figure 8.2(b). This bottleneck is severe in the

case of slow absorption recovery in the absorption section, when the carrier lifetime

τs,ab is longer than the inverse of the repetition frequency. We investigated the role

of the absorber lifetime, τs,ab, by decreasing its value from 1 ns to 1 ps, which e�ec-

tively speeds up the absorption recovery and leads to small gain deviation from the

128



Summary

single pulse case. By increasing the repetition frequency from 40 GHz to 100 GHz,

patterning free regeneration requires shorter absorption carrier lifetime at the ex-

pense of smaller net regeneration. As long as the absorption recovery is fast enough

(τs,ab< 5 ps), the single pulse regeneration can provide a good estimation to high

speed regeneration at a frequency close to 100 GHz.

8.3 Summary

Numerical simulations based on the QD carrier dynamics for picosecond pulsed

signals have shown that the strong current injection enables high-speed ampli�cation

in QD SOAs and a fast integrated QD absorber enables high-speed 2R regeneration

by shortening the carrier lifetime at the expense of lowering the net regeneration.

Our simulations suggest that the use of QDs instead of bulk or QW materials

is a positive solution to overcome degradation due to the pattern e�ects in the

concatenated regenerator structures.
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Chapter 9

Conclusions

This thesis has considered some properties and potential applications of quantum

dot devices, i.e., QD SOAs, through a systematic numerical simulation and theo-

retical analysis of carrier dynamics.

The basis for the theoretical work has been described in the beginning of the the-

sis. Start with the semiclassical density matrix equations in the simplest two-level

system, the adiabatic approximation assumptions and limitations of carrier rate

equations are presented. We present a detailed quantum dot semiconductor optical

ampli�er model incorporating a carrier dynamics rate equation model for quantum

dots with inhomogeneous broadening as well as equations describing propagation.

A phenomenological balanced scattering description has been used to model the in-

tradot electron scattering between discrete quantum dot states and the continuum.

A local carrier density description has been used to model the hole scattering as in

the continuum.

The basic properties of quantum dot devices are investigated. The QDs linear

gain and refractive index changes are modeled only based on the interband transition

contributions. It is argued that di�erent interband transition contributions can lead

to a large variety of linewidth enhancement factor (α-factor). As a consequence, our

simulations for QD SOAs are limited in gain dynamics only. The QD gain saturation

at the low injection current is found to be limited by total carrier density depletion.

As the injection current increases, the total carrier density depletion is suppressed

and dominated by the intra-dot carrier relaxation. For example, for the optical
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frequency corresponding to the lowest QD states, a large saturation power around

20 dBm is predicted at high current densities.

Additional to the time domain implementation, an e�cient semi-analytical ap-

proach is employed based on a microscopic footing. The small-signal medium re-

sponse of inhomogeneously broadened QDs in the presence of an intensity modu-

lated optical signal is investigated. Distinct oscillation contributions from electrons

and holes are shown to be determined by the corresponding carrier dynamical pro-

cesses. The electron intra-dot relaxation contributes to the corresponding coherent

gain responses, also referred to as the dynamic gain grating, ranging from 10 to

100 GHz or higher. The variations of the modulation response and relative phase

strongly depend on the input power and injection current density. The high-speed

performance can be enhanced by increasing the input power or the injection current

density, which is one of the interesting properties for nonlinear optical applications.

We have theoretically investigated the physical e�ects of CPO that contribute

to microwave phase shifts in semiconductor optical waveguides using a general SOA

carrier density pulsation model. In particular, the in�uence of optical �ltering is

analyzed. When optical �ltering is included to selectively suppress a sideband of the

optical signal before photodetection, the refractive index grating becomes important

and leads to the observation of both phase delay and phase advance. The strength

of the refractive index grating is quanti�ed by the α-factor, which means that the

in�uence of optical �ltering can be increased signi�cantly in QW and bulk devices,

while QD devices with low α-factor are expected to show a smaller in�uence from

�ltering. Vice versa, our optical �ltering scheme can be implemented as a standard

experimental approach to distinguish whether or not all the available QD SOAs has

a non-zero bulk-like α-factor, which will be important experimental arguments in the

relevant debates. A large phase shift is achievable at higher modulation frequencies

with a moderate small signal device gain when properly exploiting optical �ltering.

The theoretical results agree with the experimental values. The phase shifting

e�ect induced by optical �ltering is qualitatively explained by a simple perturbation

approach. This approximate approach provides a simple physical explanation of

the large di�erence, seen in both experiments and numerical simulations, between

�ltering the red and the blue modulation sideband.

For QD SOAs, the phase shifting has been simulated based on gain dynamics
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with zero α-factor. A tunable RF phase shifter based on CPO e�ects (dynamic

gain grating) can be achieved at the modulation frequencies, i.e., 30-100 GHz, much

higher than the inverse of the carrier lifetime. This e�ect is explained as a result

of nonequilibrium e�ects in QDs and highlights the importance of the intra-dot

electron scattering processes. The magnitude of tunable phase shift can be possible

enhanced by employing the idea of cascading and optical �ltering. Another potential

scheme based on XGM e�ects has also been investigated. ∼180 degree phase shifting
is achieved over a broad bandwidth up to 100 GHz or even higher.

Finally, we have also investigate the gain dynamics of QD SOAs in the presence

of picosecond pulsed signals, in particular the steady gain response to a periodic

pulse trains with various time period. Our model predicts a high speed patterning

free ampli�cation up to 150-200 GHz in QD SOAs by increasing injection current.

The fast gain recovery are bene�tted from the ultrafast intra-dot relaxations be-

tween discrete QD states. The patterning e�ects induced by total carrier density

depletion are greatly alleviated by the strong current injection. The QD absorber

is schematically modeled by altering an e�ective absorber carrier lifetime. The pos-

sibility to realize a compact high-speed all-optical regenerator by incorporating a

quantum dot absorption section in an ampli�er structure has been discussed. By

decreasing the absorber carrier lifetime, the speed performance is enhanced at the

expense of lowering the net regeneration.

The future of QD Devices is pending on the progress in both theory and experi-

ment, especially high-quality fabrications. Nowadays, the physics insight of QDs is

still quite limited and most of the experimental results are justi�ed by implementing

heuristically approximated models, including the work in this thesis. Nevertheless,

I hope that my work is to be one of the many paving stones on the road towards

the promising future.
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Appendix A

Propagation E�ects in
Semiconductor Waveguide

In this appendix, we brie�y discuss di�erent levels of approximations in describing

propagation e�ects in semiconductor waveguide.

In a practical semiconductor waveguide, the evolution of the complex electric

�eld along the propagation direction is described in the framework of Maxwell-Bloch

equations [92]. Like all the electromagnetic phenomena, the optical propagation

in semiconductor waveguide is governed by Maxwell's equations [150]. For opti-

cal waveguiding structures with small transverse inhomogeneities of the medium

polarization [96], the three dimensional scalar wave equation can be written as

[151, 152, 153]:

(
∇2

z +∇2
⊥
)
E(r, t)− 1

c2
∂2
tE(r, t) = µ0∂

2
tPb(r, t) + µ0∂

2
tP(r, t) (A.1)

where ∇2
⊥ is the transversal Laplace operator, c is the speed of light in vacuum

satisfying 1/c2 = µ0ϵ0 with vacuum permittivity ϵ0 and permeability µ0. r is the

3D spatial vector. The electric �eld E propagates along the z direction. Pb is

the material polarization induced by the background (linear e�ect). P is material

polarization induced from medium response (typically including linear and third-

order nonlinear e�ects),which are de�ned as:

Pb(r, t) = ϵ0

∫ t

−∞
χb(r, t− t′)E(r, t′)dt′ (A.2)
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P(r, t) = ϵ0

∫ t

−∞
χ(1)(r, t− t′)E(r, t′)dt′

+ϵ0

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(r, t− t1, t− t2, t− t3)

...

×E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3 (A.3)

These relations are valid in the electric-dipole approximation and assume that the

medium response is local. χb is the background linear susceptibility. χ(1) and χ(3)

are the linear and third-order susceptibility of the medium response 1.

The time and spectral representation of the linear susceptibility satis�es a simple

relation as:

χ(1)(r, t) =
1

2π

∫ ∞

−∞
dωχ(1)(r, ω)e−iωt

As the usual treatment in nonlinear optics [151, 152], a slowly varying envelope

approximation E = A(z, t)F (r⊥)e
i(β0z−ω0t) is introduced. A(z, t) is the slowly vary-

ing envelope along the propagation direction with the wave number β0 = ω0n0/c,

n0 is the refractive index at optical carrier frequency ω0. F (r⊥) is the transversal

�eld distribution pro�le.

Quite often in a passive waveguide structure, the 3D wave equation is often ap-

proximated as a monochromatic wave problem and decoupled into two independent

parts according to the spatial coordinates :
[
∇2

⊥ + ϵb(r⊥, ω)k
2
0 − β2

eff

]
F (r⊥) = 0[

2iβ0∂z + (β2
eff − β2

0)
]
A(z) = 0

(A.4)

where the background dielectric constant ϵb(r⊥, ω) = 1 + χb(r⊥, ω). βeff is the

e�ective wave number. The transversal 2D eigenvalue equation determines the

transverse mode pro�le F (r⊥) and the 1D propagation equation determines the

evolution of electric �eld envelope along the propagation direction z. By expanding

βeff (ω) in a Taylor series about the carrier frequency ω0 as:

βeff (ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)

2β2 +
1

6
(ω − ω0)

3β3 + · · ·

1We should be aware of the fact that the susceptibilities χ(1)(r) and χ(3)(r) used here are
e�ective notations of the one in Eq. (3.6) with the complex summations over the momentum
vector k.
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where

βm =

(
dmβeff

dωm

)
ω=ω0

(m = 1, 2, · · · )

The corresponding dispersion operator is:

D̂ = β0 +
∞∑

m=1

βm(i∂t)
m

The propagation equation are often derived into a form of nonlinear Schrödinger

equation [151] for the �eld envelope:

∂A

∂z
= i
[
D̂ − β0 + N̂(A)

]
A(z, t) (A.5)

where N̂(A) = k0nkerr|A|2 is the nonlinear operator used to describe the kerr

e�ects, nkerr is nonlinear kerr coe�cient. More general derivations [96, 154] have

been developed to re�ne the dispersion properties especially for ultrashort pulse

propagation.

In active semiconductor waveguide structures, by treating the medium response

as a perturbation, which does not a�ect the transverse �eld distribution, the corre-

sponding slowly varying material polarization B(z, t) induced by the the material

response can be approximated as:

P(r, t) ≈ ΓB(z, t)F (r⊥)e
i(β0z−ω0t) (A.6)

where Γ is de�ned as the overlap of the transverse optical mode distribution and

the active region,

Γ =

∫
active

|F (r⊥)|2dr⊥∫ +∞
−∞ |F (r⊥)|2dr⊥

(A.7)

Notice that this con�nement factor only provides a rough estimation of the linear

optical e�ects [155], the corresponding con�nement factor for the third-order e�ects

can be de�ned in a similar form as:

Γ(3) =

∫
active

|F (r⊥)|4dr⊥∫ +∞
−∞ |F (r⊥)|2dr⊥

(A.8)

Thus a re�ned representation [156] of slow varying linear and third-order material

polarization, B(1)(z, t) and B(3)(z, t) can also be used as following:

P(r, t) ≈
[
ΓB(1)(z, t) + Γ(3)B(3)(z, t)

]
F (r⊥)e

i(β0z−ω0t) (A.9)
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The additional treatment to the third-order con�nement factor has been well-

understood in the multi-mode laser dynamics theory [157, 90], where a more general

spatial mode function can be used to evaluate the high-order interactions between

multi modes and the semiconductor medium. For the comprehensive carrier dynam-

ical system typically with many-body e�ects or even quantum kinetic descriptions,

such transverse �eld e�ects are often intentionally neglected to reduce computa-

tional complexity [46]. While the laser dynamics theory is further simpli�ed for

narrow band single mode operation with an plane wave form as A(z, t)ei(β0z−ω0t),

such approximation is still not changed. In recent literature for simulations of

semiconductor optical ampli�er, the third-order con�nement factor Γ(3) is mostly

replaced by the linear con�nement factor Γ. Normally for the condition Γ > Γ(3),

this substitution leads to an overestimation of the third-order e�ect induced by the

carrier dynamics.

In this thesis, we focus on solving the 1D optical propagation problem of the

electric �eld envelope with much smaller computational e�orts than the complete set

of Maxwell's equations. Similar to derivation of the nonlinear schrödinger equation

Eq.(A.5), we have:

∂A(z, t)

∂z
= −αint

2
A(z, t) + i

[
D̂ − β0

]
A(z, t)

+i

[
k0nkerr + i

βTPA

2

]
|A|2A(z, t)

+i
β0

2n2
0ϵ0

ΓB(z, t) (A.10)

αint is internal loss. D̂ − β0 is the background dispersion operator as in a pas-

sive waveguide. nkerr is the Kerr coe�cient, βTPA is the two photon absorption

(TPA) coe�cient. B(z, t) is the summation of all the linear and third-order ef-

fects of medium responses, which are solved from the dimensionless density matrix

equations and its approximation forms.

In reality, the dispersion e�ect in a short semiconductor waveguide is relatively

weak. For example, using group velocity dispersion values −λ
∂2neff

∂λ2 = −0.63 µm−1

[158], the corresponding characteristic dispersion length LD = τ2p/β2 =8.98 mm is

calculated for an ultrashort pulse with FWHM width τp=150 fs. Such characteristic

dispersion length is much longer than the device length used in practice, e.g., 0.3-

0.5 mm. So the dispersion operator D̂ − β0 is often neglected. The two photon
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absorption and Kerr e�ects contributed from di�erent materials in the waveguiding

region, can be weighted with the corresponding con�nement factors [132].

Notice that Eq. (A.10) can still keep track of the detailed microscopic polar-

izations from di�erent states. However, it is complex in computation as well as

notation for most simulations of semiconductor devices with a narrow signal spec-

tral bandwidth (well within adiabatic approximation limit).

As a consequence, at the monochromatic wave limit, gain coe�cient g and

linewidth enhancement factor α from the linear susceptibility with respect to carrier

density N have been de�ned [159]:

i
β0

2n2
0ϵ0

ΓB(z, ω0) = i
β0

2n2
0

Γχ(z, ω0)A(z, ω0)

⇒ Γ
g(ω0)

2
(1− iα)A(z, ω0) (A.11)

where 
χ(ω0) = χr + iχi

g(ω0) = − ω0

cn0
χi

α = ∂χr

∂N /∂χi

∂N

(A.12)

Following the adiabatic approximation for the rate equations, we obtain the ap-

proximated medium response as:

i
β0

2n2
0ϵ0

ΓB(z, t) ≈ i
β0

2n2
0

Γχ(z, t)A(z, t) = Γ
g(t)

2
(1− iα)A(z, t) (A.13)

The propagation equation of the �eld envelope can be simpli�ed as:

∂A(z, t)

∂z
= −αintA(z, t)

2
+ Γ

g(z, t)A(z, t)

2
(1− iα) (A.14)

The corresponding propagation equation of the optical intensity,

P (z, t) =
n0cϵ0ω

2
0

2
A(z, t)2,

has s simple form as:

∂P (z, t)

∂z
= [Γg(z, t)− αint]P (z, t) (A.15)

Hereby, optical intensity propagation equation is the simplest way to estimate

the gain dynamics with propagation e�ects based on the footing of the adiabatic

approximation.
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Appendix B

Derivations of Small-Signal
Harmonic Analysis

B.1 General Formulism in a Two-level System

This appendix presents the derivation of the small-signal harmonic analysis for the

density matrix equation and the corresponding carrier rate equation approximations

in a simple two-level system.

Based on the principle of small-signal analysis, we assume that the steady slow-

varying envelope solution of all variables in the density matrix equations for the

two level system of state k, nk
c (t), n

k
v(t), p

k
cv and A(t), can be well approximated by

a Fourier series expansion with �nite orders of harmonics (m = 0,±1, ...,±M):

y(t) =
M∑

m=−M

yme−im∆Ωt (B.1)

where y∗m = y−m is satis�ed for y(t) with real values.

By substituting the Fourier series expansions into the spectral solution of Eq.(3.14),

we have:

pkcv,m =
dk
~
Lk(ω0 +m∆Ω)×

{∑
m1

2nk
α,m1

Am−m1 −Am

}
(B.2)

and the generation rate as:

Rk
stim,m =

i

~

{
d∗k
∑
m1

pkcv,m1
A∗

m1−m − dk
∑
m1

pk∗cv,m1
Am+m1

}
(B.3)
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Appendix B. Derivations of Small-Signal Harmonic Analysis

Let us form the variables' Fourier series into (2M + 1)× 1 column vector as:

pk
cv = [pkcv,−M , ..., pkcv,0, ..., p

k
cv,M ]T (B.4)

nk
α = [nk

α,−M , ..., nk
α,0, ..., n

k
α,M ]T (B.5)

and rearrange Eq. (3.8) and (3.9) into a set of linear matrix equations for Fourier

series of each harmonics as:

Xpp Xpn 0 0

Xnp Xnn 0 Xnp∗

Xn∗p 0 Xn∗n∗ Xn∗p∗

0 0 Xp∗n∗ Xp∗p∗


︸ ︷︷ ︸

X

·



pk
cv

nk
α

(nk
α)

∗

(pk
cv)

∗


︸ ︷︷ ︸

y

=



bp

bn

(bn)
∗

(bp)
∗


︸ ︷︷ ︸

b

(B.6)

where the (2M + 1)× (2M + 1) block matrixes satisfy the following relations:

Xpn ⇒ −2
∑
m

∑
m1

dk
~
Lk(ω0 +m∆Ω)Am−m1 (B.7)

Xnp ⇒
∑
m

∑
m1

i

~
d∗kA

∗
m1−m (B.8)

Xnp∗ ⇒ −
∑
m

∑
m1

i

~
dkAm+m1 (B.9)

Xnn ⇒
∑
m

(−im∆Ω) +
∑
m

γk
α (B.10)

here block matrix Xpn indicates the impact of occupation probability to polarization

(n → p) and represents the summation (convolution matrix) relation in Eq. (B.2).

Xnp and Xnp∗ indicates the impact of polarization probability to occupation prob-

ability (p, p∗ → n) and represents the summation (convolution matrix) relation in

Eq. (B.3). Xnn indicates the temporal-di�erential and phenomenological relaxation

terms of occupation probability. Xpp = Xp∗p∗ is an simply identity matrix. The

rest of block matrixes are the corresponding conjugate representation as:

Xp∗n∗ ≡ (Xpn)
∗ , Xn∗p∗ ≡ (Xnp)

∗

Xn∗p ≡ (Xnp∗)∗ , Xn∗n∗ ≡ (Xnn)
∗
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First-order Derivations in QDs

And (2M + 1)× 1 stimulus vector bp indicates the interaction between electric

�eld and the empty state k. bn indicates the equilibrium terms in the phenomeno-

logical relaxation processes. The stimulus vectors are in the form:

bp ⇒ [...,−dk
~
Lk(ω0 +m∆Ω)Am, ...︸ ︷︷ ︸

2M+1

]T (B.11)

bn ⇒ γk
αn

k,eq
α [0, ..., 0︸ ︷︷ ︸

M

, 1, 0, ..., 0︸ ︷︷ ︸
M

]T (B.12)

For linear matrix equations as Xy = b, the solution can be easily solved by

simple linear algebra.

Following the discussion in previous section, the adiabatic approximation re-

places all the Lk(ω0 +m∆Ω) with a constant Lk(ω0).

While the semi-adiabatic approximation replace the matrix form Eq.(B.7) as:

Xpn ⇒ −2
∑
m

∑
m1

dk
~
Lk(ω0 + (m−m1)∆Ω)Am−m1

(B.13)

For more complex carrier or even energy phenomenological relaxations involving

nonlinear relations between occupation probabilities, it is still possible to get the

solutions by using numerical iteration method.

B.2 First-order Derivations in QDs

This appendix presents a semi-analytical approach to solve the �rst-order small-

signal harmonic solutions of the QD multi-population rate equations, including

Eq. (4.6), (4.7), (4.13), (4.15) and (4.16).

For a weakly, harmonically modulated optical signal:

Pp(t) = P̄p + (∆̃Ppe
−iΩt + c.c.)/2

The corresponding �rst-order perturbation over di�erent carrier densities in the
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Appendix B. Derivations of Small-Signal Harmonic Analysis

conduction band:

NR = N̄R +
(
∆̃NRe

−iΩt + c.c.
)
/2 (B.14)

N i
E = N̄ i

E +
(
∆̃N i

Ee
−iΩt + c.c

)
/2

=
εE
V0

[
f̄ i
E +

(
∆̃f i

Ee
−iΩt + c.c

)
/2
]

(B.15)

N i
G = N̄ i

G +
(
∆̃N i

Ge
−iΩt + c.c

)
/2

=
εG
V0

[
f̄ i
G +

(
∆̃f i

Ge
−iΩt + c.c

)
/2
]

(B.16)

where N̄R, N̄ i
E , N̄ i

G are the CW part of solutions. ∆̃NR, ∆̃NW , ∆̃NB are the

corresponding complex amplitude of modulation. We also assume the common

conduction band quasi-fermi level Ef,c in the reservoir and occupation probability

of WL fw oscillates in the form:

Ef,c = Ēf,c +
(
∆̃Ef,ce

−iΩt + c.c
)
/2, (B.17)

fw = f̄w +
(
∆̃fwe

−iΩt + c.c
)
/2 (B.18)

where

∆̃NR =

(
∂NW

∂Ef,c

∣∣∣∣
Ēf,c

+
∂NB

∂Ef,c

∣∣∣∣
Ēf,c

)
∆̃Ef,c (B.19)

∆̃fw =
∂fW
∂Ef,c

∣∣∣∣
Ēf,c

∆̃Ef,c (B.20)

First-order perturbation of valence band QD carrier densities can be de�ned in

a similar form as Eq. (B.15) and (B.16).

N i
E,v = N̄ i

E,v +
(
∆̃N i

E,ve
−iΩt + c.c

)
/2

=
εE
V0

[
f̄ i
E,v +

(
∆̃f i

E,ve
−iΩt + c.c

)
/2
]
, (B.21)

N i
G,v = N̄ i

G,v +
(
∆̃N i

G,ve
−iΩt + c.c

)
/2

=
εG
V0

[
f̄ i
G,v +

(
∆̃f i

G,ve
−iΩt + c.c

)
/2
]
, (B.22)
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First-order Derivations in QDs

The corresponding valence band quasi-equilibrium quantities are:

N i,eq
E,v = N̄ i,eq

E,v +
(
∆N i,eq

E,v e
−iΩt + c.c

)
/2

=
εE
V0

[
f̄ i,eq
E,v +

(
∆̃f i,eq

E,v e
−iΩt + c.c

)
/2

]
(B.23)

N i,eq
G,v = N̄ i,eq

G,v +

(
∆̃N i,eq

G,v e
−iΩt + c.c

)
/2

=
εG
V0

[
f̄ i,eq
G,v +

(
∆̃f i,eq

G,v e
−iΩt + c.c

)
/2

]
(B.24)

We also assume the common valence band quasi-fermi level Ef,v and quasi-

equilibrium oscillate in the form:

Ef,v = Ēf,v +
(
∆̃Ef,ve

−iΩt + c.c
)
/2 (B.25)

where we can get the relation based on charge neutrality,

∆̃Ef,v =

(
∂NW

∂Ef,c

∣∣∣∣
Ēf,c

+ ∂NB

∂Ef,c

∣∣∣∣
Ēf,c

)
∆̃Ef,c +

∑
i ξ

i
(

εE
V0

∆̃f i
E + εG

V0
∆̃f i

G

)
∂NW,v

∂Ef,v

∣∣∣∣
Ēf,v

+
∂NB,v

∂Ef,v

∣∣∣∣
Ēf,v

+
∑

i ξ
i

(
∂Ni,eq

E,v

∂Ef,v

∣∣∣∣
Ēf,v

+
∂Ni,eq

h,G

∂Ef,v

∣∣∣∣
Ēf,v

) , (B.26)

Notice that the relations between harmonic components depend heavily on the

derivative values of carrier density or occupation factor with respect to the quasi-

fermi levels determined by the CW solutions. The CW solutions can be numerically

solved by setting all the time derivatives of the carrier densities to zero.

By collecting all the �rst order terms, the complex modulation amplitudes can

be found by solving a set of coupled equations for modulation amplitude of QD

occupation probabilities:

iΩ∆̃f i
E − ∆̃f i

Eτ
−1
spon + ∆̃fwR

i
RE − ∆̃f i

ER
i
ER

− ∆̃f i
ER

i
EG + ∆̃f i

GR
i
GE

= ĝiE

[(
∆̃f i

E + ∆̃f i
E,v

)
P̄p +

(
f̄ i
E + f̄ i

E,v − 1
)
∆̃Pp

]
, (B.27)

iΩ∆̃f i
G − ∆̃f i

Gτ
−1
spon + ∆̃fwR

i
RG − ∆̃f i

gR
i
GR

+
εE
εG

(
∆̃f i

ER
i
EG − ∆̃f i

GR
i
GE

)
= ĝiG

[(
∆̃f i

G + ∆̃f i
G,v

)
P̄p +

(
f̄ i
G + f̄ i

G,v − 1
)
∆̃Pp

]
, (B.28)
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iΩ∆̃f i
E,v − ∆̃f i

E,vτ
−1
1,v +

∂f i,eq
E,v

∂Efv

∣∣∣∣
Ēf,v

∆̃Efvτ
−1
1v

= ĝiE

[(
∆̃f i

E + ∆̃f i
E,v

)
P̄p +

(
f̄ i
E + f̄ i

E,v − 1
)
∆̃Pp

]
, (B.29)

iΩ∆̃f i
G,v − ∆̃f i

G,vτ
−1
1,v +

∂f i,eq
G,v

∂Efv

∣∣∣∣
Ēf,v

∆̃Efvτ
−1
1v

= ĝiG

[(
∆̃f i

G + ∆̃f i
G,v

)
P̄p +

(
f̄ i
G + f̄ i

G,v − 1
)
∆̃Pp

]
, (B.30)

where

ĝix =
DDσD

Di
DHmodW

Qp,i
x , (x = G,E) (B.31)

Ri
RE = τ−1

RE − f̄ i
E

(
τ−1
RE − τ iER

−1
)
,

Ri
ER = τ−1

ER + f̄w

(
τ−1
RE − τ iER

−1
)
,

Ri
RG = τ−1

RG − f̄ i
G

(
τ−1
RG − τ iGR

−1
)
,

Ri
GR = τ−1

GR + f̄w

(
τ−1
RG − τ iGR

−1
)
,

Ri
EG = τ−1

EG − f̄ i
G

(
τ−1
EG − τ iGE

−1
)
,

Ri
GE = τ−1

GE + f̄ i
E

(
τ−1
EG − τ iGE

−1
)
,

(B.32)

The corresponding modulation amplitude of WL occupation probability ∆̃fw has

the form as following;

∆̃fw =

(∑
ξi εEV0

∆̃f i
ER

i
ER +

∑
ξi εGV0

∆̃f i
GR

i
GR

)
∂fw
∂NR

∣∣∣∣
Ēf,c

τ−1
r +

(∑
ξi εEV0

∆̃f i
ER

i
RE +

∑
ξi εGV0

∆̃f i
GR

i
RG

)
∂fw
∂NR

∣∣∣∣
Ēf,c

− iΩ

, (B.33)

τ−1
r =

(AB + 2BBNB + 3CBN
2
B)

∂NB

∂Ef,c

∣∣∣∣
Ēf,c

+ (AW + 2BWNW + 3CWN2
W ) ∂NW

∂Ef,c

∣∣∣∣
Ēf,c

∂NR

∂Ef,c

∣∣∣∣
Ēf,c

,

(B.34)
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Continuous Band
Approximation for QD
Electronic Structures
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Figure C.1: Schematic band diagram based on continuous band approximation.

This appendix presents a continuous band approximation method [31] used to

calculate QD electronic band structure. The advantages of this approach is that it

requires only a little detailed knowledge of the exact electronic structure.

Hereby, a continuous bulk-like valence band is assumed and the hole e�ective

mass is introduced to estimate the valence band energy and density of states. By

assuming charge neutrality and quasi-equilibrium in the valence band, a common
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Appendix C. Continuous Band Approximation for QD Electronic Structures

Fermi energy in the QD valence band can be calculated to estimate the occupation

probabilities in the valence band.

Thus the calculation of the QD hole occupation probabilities fV
G and fV

E for the

QD gain terms, requires:

• a determination of the valence band energy;

• an estimation of the valence band DOS;

• a calculation of the Fermi energy of the total valence band;

As shown in Figure C.1, the conduction band energy EC
G for the G state and EC

E

for the E state are �tted to a parabolic band (corresponding to a bulk DOS) with

curvature determined by the e�ective electron mass of the QD material, mD
e . By

integrating over the bulk-like DOS from the e�ective conduction bandedge EC to

the bound energy of either the G or E state, multiplying by the e�ective volume of a

single dot V0 and equating it with either the number of states including degeneracy

of the G state εG or that of combined G and E states εE + εG, two equations are

formed:

εG =
V0

2π2

[
2mD

e

~2
(
EC

G − EC
)]3/2

(C.1)

εE + εG =
V0

2π2

[
2mD

e

~2
(
EC

E − EC
)]3/2

(C.2)

By solving these two equations, the e�ective conduction bandedge EC and the

e�ective volume of a single dot V0 can be found:

EC =
EC

G

(
1 + εE

εG

)2/3
− EC

E(
1 + εE

εG

)2/3
− 1

(C.3)

and

V0 = 3π2εG~3
(
2mD

e

[
EC

E − EC
G

)]−3/2
(C.4)

By using the e�ective parabolic band approximation and `k-conservation' as-

sumption in the transition, the relations between energies follows:

EC
G = EC +

mD
h

mD
e +mD

h

(
Etr

G − Egap
)

(C.5)

EC
E = EC +

mD
h

mD
e +mD

h

(
Etr

E − Egap
)

(C.6)
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wheremD
h is the e�ective hole mass of the QD material. Etr

G and Etr
E is the transition

energy of the G state and ES. Egap is the energy gap between the conduction

bandedge EC and valence bandedge EV . Substitute EC
E and EV

G into Eq. (C.3), we

have:

EC =

[
EC +

mD
h

mD
e +mD

h

(Etr
G − Egap)

] (
1 + εE

εG

)2/3
−
[
EC +

mD
h

mD
e +mD

h

(Etr
E − Egap)

]
(
1 + εE

εG

)2/3
− 1

= EC +

mD
h

mD
e +mD

h

(Etr
G − Egap)

(
1 + εE

εG

)2/3
− mD

h

mD
e +mD

h

(Etr
E − Egap)(

1 + εE
εG

)2/3
− 1

(C.7)

thus the energy gap Egap can be derived from Eq. (C.7):

Egap =
Etr

G

(
1 + εE

εG

)2/3
− Etr

E(
1 + εE

εG

)2/3
− 1

(C.8)

In order to calculated the EC level, we introduce relation:

EC0
W − EC

EV 0
W − EV

=
∆C

1−∆C
(C.9)

where the conduction and valence bandedge of WL EC0
W ,EV 0

W are set as reference

zero level, ∆C is the relative band o�set between the QD and QW materials. Due

to the fact of large variety of dot sizes and strains, ∆C is expected to be di�erent

[160]. In this thesis, ∆C =
mD

h

mD
h +mD

e
is used.

The DOS of the QD valence band for a single QD, ρV,D(E), is now given as:

ρV,D(E) =


1

2π2
(
2mD

e

~2
)3/2

√
E − EV , E > EV

0 , E < EV

(C.10)

With the knowledge of DOS, a common Fermi energy ED
F in the valence band

can be calculated through an integral equation:

NV =

∫ ∞

−∞
ρV (E)

[
1 + exp

(
E − ED

F

kBT

)]−1

dE (C.11)
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where ρV is density of states of the total valence band, which includes the contri-

bution from the QD as well as the WL and barrier. NV is the hole density, which

is correlated with the electron density according to the charge neutrality relation.

Thus the hole occupation probability calculated re�ects the characteristics of the

bulk-like semiconductor material.
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Appendix D

Analytical Derivation of
Three Wave Mixing in SOA

This appendix includes the derivations of a semi-analytical solution of the three

wave mixing in SOA.

Based on Eq. 6.2, the propagation equation for optical intensity S is

dS

dz
= (γ0 + γ∗

0)S (D.1)

The propagation equation ofE0 can be transformed by substituting variable z with

normalized optical intensity S:

dE0

dS
− γ0

(γ0 + γ∗
0)S

E0 = 0 (D.2)

Which can be solved for E0 to obtain:

E0 (z) = E0 (0) e
F (z);

F (z) =
S(z)∫
S(0)

γ0

(γ0+γ∗
0 )S′ dS

′

= 1
2
aint−Γg0+iΓg0α

aint−Γg0
ln
(

S(z)
S(0)

)
− 1

2
iΓg0α

aint−Γg0
ln
(

aint−Γg0+aintS(z)
aint−Γg0+aintS(0)

) (D.3)

Here, S(z) and S(0) are the output and input power of S, which can easily be

related numerically by Eq. (D.1). We can also keep the function F (z) in the form

of an integral over the propagation length z in SOA with implicit relation between

power S and propagation length z as:

F (z) =

z∫
0

γ0dz
′ (D.4)
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Here we introduce the new normalized complex amplitude Ẽ±1:

E±1 = Ẽ±1e
F (z) (D.5)

Inserting Ẽ±1 into the propagation equations of E±1, When |eF (z)| ̸= 0 and

|E0(0)| = E0(0), we have a new set of propagation equations of Ẽ±1:
dẼ−1

dz = ξ−1

(
Ẽ−1 + Ẽ∗

+1

)
|E0(z)|2

dẼ+1

dz = ξ+1

(
Ẽ+1 + Ẽ∗

−1

)
|E0(z)|2

(D.6)

By de�ning an extra pair of variables
u = Ẽ+1 + Ẽ∗

−1

v = Ẽ+1 − Ẽ∗
−1

(D.7)

We have 
du
dz =

(
ξ+1 + ξ∗−1

)
|E0 (z)|2u

dv
dz = −iα

(
ξ+1 + ξ∗−1

)
|E0 (z)|2u

(D.8)

A propagation equation of the form:

du

dS
− Psat

(
ξ+1 + ξ∗−1

)
S

(γ0 + γ∗
0 )S

u = 0 (D.9)

can be solved for u, v to obtain:
u (z) = u (0) eH(z)

v (z) = v (0) + iαu (0)
(
1− eH(z)

) (D.10)

Where

H (z) ≡ γ1 + iβ1 = Psat

S(z)∫
S(0)

(
ξ+1 + ξ∗−1

)
S′

(γ0 + γ∗
0)S

′ dS′ (D.11)

γ1 = Γg0

[
aintτs

2Ω2

τsΩ((Γg0)2+aint
2τs2Ω2)

Arctan
(

Ωτs(S(z)−S(0))

(Ωτs)
2+(1+S(z))(1+S(0))

)
+ Γg0

(Γg0)
2+aint

2τs2Ω2 ln
(

aint−Γg0+aintS(z)
aint−Γg0+aintS(0)

)
− 1

2
Γg0

(Γg0)
2+aint

2τs2Ω2 ln
(

1+2S(z)+S(z)2+τs
2Ω2

1+2S(0)+S(0)2+τs2Ω2

)] (D.12)
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β1 = Γg0Ωτs

[
− Γg0

τsΩ((Γg0)2+aint
2τs2Ω2)

Arctan
(

Ωτs(S(z)−S(0))

(Ωτs)
2+(1+S(z))(1+S(0))

)
+ aint

(Γg0)
2+aint

2τs2Ω2 ln
(

aint−Γg0+aintS(z)
aint−Γg0+aintS(0)

)
− 1

2
aint

(Γg0)
2+aint

2τs2Ω2 ln
(

1+2S(z)+S(z)2+τs
2Ω2

1+2S(0)+S(0)2+τs2Ω2

)] (D.13)

This result is equivalent to the semi-analytical solution for the time delay given

in [66]. When the internal loss aint is neglected, Eq. (D.13) is equivalent to the

semi-analytical solution for the time delay given in [52]. The function H(z) can be

kept in the form of an integral over the propagation length z with implicit relations

between power S and propagation length z.

H (z) =

z∫
0

ξu|E0(z
′)|2dz′ = Psat

z∫
0

ξuSdz
′ (D.14)

Thus a general solution to the evolution of electric �elds in SOA is:
E0 (z) = E0 (0) e

F (z)

E+1 (z) = Ẽ+1 (z) e
F (z) = eF (z)

{
1
2v (0) +

1
2u (0)

[
eH(z) + iα

(
1− eH(z)

)]}
E∗

−1 (z) = Ẽ∗
−1 (z) e

F (z)∗ = eF (z)∗
{
−1

2v (0) +
1
2u (0)

[
eH(z) − iα

(
1− eH(z)

)]}
(D.15)
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Appendix E

Simulation Parameters

Table E.1: Typical Parameter Values for MPREM model

W 2µm mD
e = mW

e 0.026m0

H 250nm mD
h = mW

h 0.0742m0

L 2mm mB
e 0.062m0

DD 4× 1010cm−2 mB
h 0.1628m0

HW 1nm V̄0 4.509× 10−24m3

Hmod 400nm ZP
RG 1.6× 1011s−1

Γa 0.3 ZA
RG 1× 1011s−1

ΓW0 0.0012 ZP
RE 2.5× 1011s−1

ΓW 0.006 ZA
RE 1.5× 1011s−1

T 300K ZP
EG 5× 1011s−1

∆C 0.742 ZA
EG 4.5× 1012s−1

Etr
W 1.3eV AW 2× 108s−1

~ωE = Etr0
E 1.21eV BW 1.2× 10−16m3s−1

~ωG = Etr0
G 1.1eV CW 5× 10−42m6s−1

Egap
B 1.42eV AB 4.7× 108s−1

εG 2 BB 5× 10−17m3s−1

εE 4 CB 5.24× 10−41m6s−1

γH 3.3meV δX γH or smaller

γG 67meV γE 80meV

αint 2cm−1 σD 1× 10−20m2eV

nl 5
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1. Jerper Mørk, Per Lunnemann Hansen, Weiqi Xue, Yaohui Chen, Per Kaer
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waveguides, Semicond. Sci. Technol. 25, 083002, 2010

2. Yaohui Chen, Jesper Mørk, Ultrahigh-Frequency Microwave Phase Shifts
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Ampli�ers, IEEE Photonic. Technol. Lett., 22, 935-937, 2010
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