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Quantum interference (QI) in molecular transport junctions can lead to dramatic reductions of

the electron transmission at certain energies. In a recent work [Markussen et al., Nano Lett., 2010,

10, 4260] we showed how the presence of such transmission nodes near the Fermi energy can be

predicted solely from the structure of a conjugated molecule when the energies of the atomic

pz orbitals do not vary too much. Here we relax the assumption of equal on-site energies and

generalize the graphical scheme to molecules containing different atomic species. We use this

diagrammatic scheme together with tight-binding and density functional theory calculations to

investigate QI in linear molecular chains and aromatic molecules with different side groups.

For the molecular chains we find a linear relation between the position of the transmission nodes

and the side group p orbital energy. In contrast, the transmission functions of functionalized

aromatic molecules generally display a rather complex nodal structure due to the interplay

between molecular topology and the energy of the side group orbital.

1 Introduction

Quantum interference (QI) effects in molecular junctions

have recently been suggested as an enabling tool for the

implementation of molecular switches,1–3 logic gates,4 data

storage elements5 and thermoelectric devices.6–8 These concepts

originate from mesoscopics, where electron transport through

waveguide devices has been investigated already two decades

ago.9–12 In the context of single-molecule devices, QI was

found to be responsible for the observed reduction of the

conductance of a benzene contacted in the meta configuration

as compared to the para and ortho configurations,13,14 and this

finding was rationalized by a variety of different physical

pictures, such as phase shifts of transmission channels or

interfering spatial pathways.15–18 More recently, the interest

in QI has widened to aromatic molecules of increasing size19–22

and also to incoherent transport in the Coulomb blockade

regime.23,24 One way to induce QI in molecular junctions

is to control the electron transmission through chemical/

conformational modification of side groups to aromatic

molecules,4,5,25–27 but also simpler cross-conjugated molecular

wires exhibit QI28 and are promising candidates for imple-

menting switching and rectifying behaviour.29

Within the phase-coherent regime, electron transport through

a molecular junction is described by the energy dependent elastic

transmission function, T(E). In order to illustrate what is meant

by QI in a molecular junction, it is instructive to consider the

structure in T(E) as arising from three distinct sources. First, we

assume that the density of states in the electrodes is constant

(wide band approximation) and that each molecular orbital

contributes with an independent channel for electron transport.

Under these simplifying assumptions, T(E) is a sum of Lorentzian

shaped peaks centered at the energy of the molecular orbitals

(MOs). Next, we relax the wide band approximation. This will

introduce an additional structure in T(E); in particular, the

peaks in T(E) will be shifted and change shape. Finally, we

relax the assumption of independent transport channels. The

structure introduced in T(E) in this last step is referred to as a

QI effect. The impact of QI on T(E) depends on the relative

energies and shape/symmetry of the MOs, and is in general

difficult to predict. The most characteristic signature of QI is

the presence of transmission nodes, i.e. destructive interference,

in the energy gap between two adjacent MOs. For obvious

reasons such transmission nodes are most interesting when

they appear in the gap between the highest occupied molecular

orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) in which case the QI can suppress the conductance

by several orders of magnitude.

In a recent work, we showed that the presence/absence of QI

induced transmission nodes under certain conditions can be

derived solely from the topological structure of the molecule

using a very simple graphical method.4,30 In particular it was

demonstrated, by comparing to density functional theory

(DFT) calculations, that the graphical scheme correctly predicts

the presence/absence of QI tranmission nodes in ten different
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anthraquinone based structures. The graphical scheme is exact

for a nearest neighbour tight-binding (TB) model with equal

on-site energies, and therefore is expected to work well for

all-carbon conjugated systems. The successful application of

the scheme to systems containing heteroatoms, such as

anthraquinone with its oxygen side groups, may seem surprising

and calls for further analysis.

In this paper we relax the assumption of equal on-site

energies. By doing so we can write down equations for the

zero points of the transmission function directly from the

graphs leading to a ‘‘generalized graphical scheme’’. For

molecules, where the conjugated p system is defined by a

linear carbon chain and a side group (which might contain

heteroatoms), the scheme predicts a linear relationship

between the energy of the QI induced transmission node and

the energy of the p orbital of the side group. This behavior

is confirmed by DFT calculations for molecules with a

variety of different side groups. For aromatic molecules the

situation is more complicated due to the interplay between

topological and on-site energy effects. In general several

QI induced minima occur in the transmission function; their

energetic position is given by the roots of polynomials in

energy which can be derived from the generalized QI graphs.

We explore the dependence of these transmission nodes

on the side group on-site energy for the ten anthraquinone

structures reported in ref. 30 using both TB and DFT

calculations.

The paper is organized as follows. In Section 2 we summarize

the graphical QI scheme from ref. 30 and generalize it to the

case of varying on-site energies (heteroatoms). More details on

the graphical scheme are given in the Appendix. In Sections 3

and 4 we present our results for QI in functionalized molecular

chains and aromatic molecules, respectively. The summary

and conclusions are given in Section 5.

2 Graphical scheme

In this section we review our graphical approach to quantum

interference. Some of the details in the derivation are further

explained in Appendix A.

Within a single-particle picture, the transmission probability

of an electron impinging on a molecular junction with an

energy E is given by

T(E) = Tr[GCLG
wCR](E) (1)

where G = (EI � Hmol � RL � RR)
�1 is the Green function

matrix of the contacted molecule, I is the identity matrix,

RL/R is the self-energy due to the left/right lead, and

CL/R = i(RL/R � Rw
L/R). Let us assume that the Hamiltonian

describing the molecule is given in terms of a basis consisting

of localized atomic-like orbitals, f1,f2,. . .,fN, and that only

the two orbitals f1 and fN couple to the leads. In this case the

transmission reduces to

T(E) = g(E)2|G1N(E)|
2. (2)

Often the energy dependence on the lead coupling strength, g,
can be neglected. It then follows that the transport properties

are entirely governed by the matrix element G1N(E). The latter

can be obtained using Cramer’s rule

G1NðEÞ ¼
C1NðEI �HmolÞ

detðE �Hmol � RL � RRÞ
ð3Þ

where C1N(E � Hmol) is the (1N) co-factor of (EI � Hmol)

defined as the determinant of the matrix obtained by removing

the 1st row and Nth column from (EI � Hmol � RL � RR) and

multiplying it by (�1)1+N. Since we assume that only orbitals

f1 and fN couple to the leads, the removal of the 1st row and

Nth column completely removes RL,R in the co-factor.

In the following we shall focus on C1N(EI � Hmol) and

represent the determinant graphically. We use the following

notation: a hopping matrix element tij, i a j, is represented by

a (red) line connecting site i and site j. For simplicity we restrict

ourselves to nearest neighbor hopping, but the application of the

graphical scheme is not limited to this case. An on-site element

(ei � E) is represented by a (blue) on-site loop. Each on-site

loop contributes a factor (�1) (see Appendix A). We shall set

the on-site energy of the ‘‘back-bone’’ carbon atoms to zero,

e0 = 0, but let the on-site energy of any side groups, esg, be of
an arbitrary value. This is the main difference between this

work and the previous work.4,30 Also, we will not limit the

discussion to transmission at the Fermi energy, but consider

transmission zeros throughout the energy range.

The generalized graphical scheme is summarized as follows:

the transmission zeros can be determined from the zeros of the

co-factor C1N(E � Hmol). The terms in the co-factor can be

represented graphically by drawing all possible diagrams

according to the rules: (i) in each diagram the external sites

connected to the electrodes must be connected to each other by

a continuous path. (ii) All internal atomic sites must either

have one ingoing and one outgoing path or have an on-site

loop. (iii) The sign of a diagram is (�1)p where p is the total

number of on-site loops and closed hopping loops. When we

add up all diagrams constructed according to the above rules

we obtain a polynomial in E whose roots represent the QI

induced transmission nodes.

3 Simple molecular wires

We first apply our generalized graphical scheme to the simple

system shown in Fig. 1 where the p system consists of a nine-

atom carbon chain (C9) which is cross-conjugated with a side

group. Assuming nearest neighbor hopping there is only one

possible path from left to right which invariably exhibits an

on-site loop on the side group. This loop corresponds to a term

Fig. 1 Junction setup for a C9 chain with an oxygen side group (top).

The generalized diagram is shown in the bottom.
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�(esg � E) in the determinant of the cofactor, with esg being

the energy of the side group. The path from the left to

right contacts consists of ten hoppings and thus contributes

with a factor t10, where t is the nearest neighbor hopping

energy. To find the possible energies at which the transmission

is zero, i.e. where C1N(Hmol � EI) = 0, we have only one

diagram to consider, which is shown in the bottom part of

Fig. 1, and therefore must solve the trivial equation

�(esg � E)t10 = 0 ) E = esg. (4)

Consequently, the transmission zero occurs at the on-site

energy of the side group. We note that the energy of the

transmission minimum is independent of the on-site energies

of the carbon atoms in the chain and all hopping parameters

in the molecule. Such a case where the energy dependence

of the transmission minimum is linear with the side group

energy will in the following be denoted as a simple side

group transmission node. We note that such transmission

nodes directly caused by the side group bear much resem-

blance with the general concept of a Fano resonance31,32

originating from the coupling of a localized state (the side

group) with a continuum (extended states in the carbon chain).

In ref. 33 we have analyzed the analogy of the simple

side-group transmission nodes with Fano resonances in more

detail.

Fig. 2 (left) shows the transmission for C9-type molecules as

obtained from DFT calculations34 with four different side

groups: CH2, O, NO2, and CF2. For all four molecules, we

observe a distinct transmission minimum, where its energy can

be tuned from E � EF = �1.4 eV for O to E � EF = 1.7 eV

for NO2. In order to illustrate the validity of the graphical

scheme and the prediction from eqn (4), we plot in the right

panel of Fig. 2 the energy of the side group orbital esg (see

Appendix B for details) vs. the energy of the transmission

minima E0. There is a clear linear dependence (with a slope of

1.2) in good qualitative agreement with eqn (4). The deviation

from a slope of 1 is probably due to the simplifying

assumptions in the TB model of only nearest neighbour

hopping, only a single pz orbital on each atom, etc. In the

DFT calculations there are interactions beyond nearest

neighbours and several orbitals on each atom. In addition to

this more subtle charge transfer effects may lead to deviations

from the simple TB model. However, overall eqn (4) gives a

good description of the DFT data.

4 Aromatic molecules

We now consider the ten anthracene based molecules illustrated

in Fig. 3, which only differ in the position of the two side

groups. In ref. 30 we studied the same molecules with oxygen

side groups, then they become anthraquinones, and categorized

them into two groups, where five of them exhibited QI in the

HOMO–LUMO gap (I1–I5) and the others (N1–N5) did not.

We made this distinction on the basis of our original graphical

scheme and our conclusions were in good agreement with

DFT calculations. This prediction, however, was based on the

assumption that the on-site energy of the side group would be

approximately equal to the on-site energy of the carbon pz
orbitals (e0 E EF). From the side group analysis above, we see

that this assumption is questionable for oxygen with a side

group energy of e0 E �2 eV (relative to the Fermi level). We

note that this 2 eV difference in on-site energies should be

considered relative to the size of the hopping matrix element

which is B�3 eV. Still, the success we had in applying the

graphical scheme4,30 to the anthraquinone molecules deserves

a more careful analysis and explanation.

For this purpose we make use of a single-orbital nearest

neighbour TB model with carbon on-site energies e0 = 0 and

hopping elements t= �2.9 eV. We do not explicitly model the

sulfur end group in the TB model, but include it as an effective

part of the electrodes. Within this model we vary only the

on-site energy of the side group and compute the transmission

function within a wide band approximation, where the results

for the transmission zeros are shown in Fig. 3 as black dots.

The lower and upper dashed lines show the energy of the

HOMO and LUMO orbitals, respectively. The red circles

indicate the position of the transmission nodes obtained from

DFT calculations for the anthraquinone structures, i.e. using

oxygen as side groups.35 First, we note that the simple TB

model is in excellent agreement with the DFT calculations,

where both result in the same number and the same energetic

positions of transmission zeros. Our second observation is that

the complexity of the dependence of the transmission minima

on the on-site energy is quite striking, in particular when

compared to the simple linear scaling found in the last section

for the C9-type molecules.

In order to understand this complexity, we make use of the

generalized graphical scheme introduced above. However,

before turning to the anthraquinones we consider the related

but simpler benzoquinone structure shown in the upper panel

of Fig. 4. The lower panel shows the generalized diagrams. In

addition to the displayed diagrams there are three additional

but equivalent diagrams where the external sites are connected

via the lower part of the molecule. These diagrams will simply

contribute a factor of two to the resulting polynomials. As for

C9 the on-site loops on the side groups again correspond to a

term �(esg � E) in the determinant while for the carbon atoms

we define �(e0 � E) = E with e0 = 0.

Converting the diagrams into a polynomial and taking out

their common factor (esg � E)t3, we arrive at the equation

(esg � E)t3[E2(esg � E) � t2(esg � E) + t2E] = 0, (5)

which determines the transmission zeros. We note that it

follows directly from the diagrams that there will be a

Fig. 2 Left: DFT calculated transmission functions for C9 with

four different side groups. Right: p state eigenenergy of the side

groups, esg, plotted against the energy of the transmission minimum E0.

The side group eigenenergy scales linearly with E0 with a slope

of B1.2.
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maximum of four transmission nodes since there can be a

maximum of four on-site loops no matter how the diagrams

are drawn. The common factor in the equation corresponds to

the common part of all three diagrams, where the upper

oxygen on-site loop contributes (esg � E) and the path from

left to right yields t3. We thus immediately see that for

benzoquinone one of the transmission zeros is always at

energy E = esg, which is trivially defined by the side group

on-site energy as for the C9 molecule in Fig. 1.

In addition to this simple side group transmission node,

eqn (5) has additional zeros defined by the third order

equation

E3 � esgE
2 � 2t2E + t2esg = 0. (6)

While eqn (6) can still be solved analytically, this results in

rather lengthy expressions for the energies where T = 0 as

functions of esg, which do not lend themselves to a transparent

physical interpretation. Instead we solve the problem numerically

Fig. 3 Transmission node energies (black dots) for 10 different anthraquinone molecules as a function of the side group on-site energy, esg, as
calculated in a nearest neighbour tight-binding model. The dashed curves show the HOMO (lower curve) and LUMO (upper curve) energies. The

red circles are results from DFT calculations with oxygen side groups. Each panel in the two central columns corresponds to the molecular

structure in the left- and right most columns. The molecules I1–I5 on the left side all exhibit QI in terms of transmission nodes within the

HOMO–LUMO gap for most values of esg, where no nodes are found in this energy range for any of the molecules N1–N5 on the right side for any

realistic value of esg.

Fig. 4 Junction setup for a benzoquinone (top) and all the generalized

diagrams (bottom).



This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 14311–14317 14315

and plot the results for all four transmission zeros in Fig. 5.

The linear curve (black) corresponds to the simple side group

transmission node at E = esg. The remaining three zeros

exhibit a more complicated behavior, where particularly the

red curve is of interest because it is situated within the

HOMO–LUMO gap (marked by the two dashed curves) for

the whole range of esg shown in Fig. 5. It is striking

that although the benzoquinone is much simpler than the

anthraquinone I2 (in terms of the total number of atoms),

the nodal structures of the two corresponding transmission

functions are very similar. Most importantly, this applies for

both, the simple side group transmission node (black curve in

Fig. 5) and the mimimum which is situated within the

HOMO–LUMO gap (red curve in Fig. 5). Also the remaining

two transmission nodes below the HOMO and above the

LUMO are similar for I2 and benzoquinone.

From the five molecules with transmission zeros inside the

HOMO–LUMO gap, I1–I5, only I1 and I2 have a simple side

group transmission node. This is straightforward to explain

by using our generalized graphical scheme. I1 and I2 are

characterized by having both side groups on the same benzene

ring, and therefore every path from the left to the right contact

has to go through at least one carbon atom with a side group

directly attached. This means that all valid diagrams have at

least one on-site loop, where (esg � E) becomes a common

factor among them, resulting in a simple side group transmission

node. For I3–I5 on the other hand, it is possible to draw valid

diagrams with no on-site loop on a side group, which we

illustrate in Fig. 6 (top) with a diagram for the central part of I3.

If such a diagram is possible, no common factors can be

found for all diagrams, and hence no simple on-site transmission

node exists. The nodal spectra of the transmission functions

for I3–I5 thus have to be solely defined by higher order

polynomial equations which we find indeed in Fig. 3.

We note that all the structures I1–I5 have transmission zeros

within the HOMO–LUMO gap up to rather large side group

on-site energies |esg| t 2.0 eV. These are the molecules

expected to show QI based on the predictions from our

original graphical scheme.4,30 This is consistent with the

underlying assumption of that scheme, namely that the variation

in on-site energies should be smaller than the hopping matrix

element which is B3 eV in the present case.

We now turn our attention to the five molecules N1–N5,

which we previously predicted not to have transmission zeros

in the relevant energy range around the Fermi energy.30

Strictly speaking our predictions on the basis of the simpler

graphical scheme in ref. 30 were limited to the assessment of

the absence or occurence of transmission zeros at the Fermi

level, when esg = 0. From the data plotted in Fig. 3 we can

now confirm that even allowing for a rather large variation of

the side group on-site energies, namely for |esg|t 2.5 eV, there

are indeed no transmission zeros to be found within the

HOMO–LUMO gap. We now show how the simple graphical

scheme of ref. 30 is a special case of the generalized graphical

scheme we introduce in the current paper. When esg = e0 = 0,

all diagrams containing on-site loops will be zero, which

implies for the I1–I5 molecules that all diagrams deliver zero

terms to the polynomial equations and the transmission is zero

at E= 0. Since there are always two on-site loops, as shown in

Fig. 6 (top), the transmission node at E= 0 eV for esg = 0 will

be doubly degenerate. By changing esg the degenerate nodes

split into two and node crossings are observed for all I1–I5.

For the molecules N1–N5 there are, however, always diagrams

without on-site loops (an example is shown for N3 in Fig. 6

(bottom)) which will thus contribute a finite value to the

transmission at E = 0.

We conclude that the categorization of the ten anthraquinone

molecules into interfering (I1–I5) and non-interfering (N1–N5)

predicted by the simple graphical scheme of ref. 30 holds for

all realistic values of esg. Only for very large values of |esg|,
which would require side groups which do not couple to

the aromatic p system and are therefore irrelevant for our

considerations here, deviations can occur. Fig. 3 shows for

instance that I1 has no transmission nodes in the HOMO–

LUMO gap for |esg| \ 2.5 eV, while for N1 a transmission

node enters the HOMO–LUMO gap for equally rather large

|esg| values.

Fig. 5 Energy of transmission nodes Ei for the benzoquinone

as a function of side group on-site energy, esg. The dashed lines

mark the HOMO (lower line) and LUMO (upper line) of the

molecule. While the simple side group transmission node (black)

falls outside the HOMO–LUMO gap for large values of |esg|,
another node (red curve) stays in the HOMO–LUMO gap for all

values of esg.

Fig. 6 Examples of diagrams for I3 (top) and N3 (bottom). I3 will

always have on-site loops (blue circles), but not necessarily on the side

group. The N3-diagram has no on-site loop and contributes with a

finite value at all energies.
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5 Conclusions

We have discussed how characteristic quantum interference

(QI) induced nodes in the transmission function of conjugated

molecules can be predicted from simple graphical considerations

involving only the topology of the molecule and the on-site

energy of non-carbon elements of the p-system. A previously

introduced diagrammatic scheme, strictly valid for all-carbon

molecules, was shown to be qualitatively valid for molecules

containing different atomic species as long as the on-site

energies (pz-orbital energies) do not vary too much compared

to the interatomic hopping strength—a condition we found to

be met for a range of conjugated molecules with different side

groups (O, CH2, NO2, CF2). We showed that more quantitative

estimates of the transmission node position can be obtained

from a straightforward generalization of the graphical scheme

to the case of finite (and varying) on-site energies. This scheme

was then used to analyze the transmission nodes in linear and

aromatic molecules with side groups. For linear molecular

chains a single transmission node occurs at an energy corres-

ponding to the energy of the side group p-orbital while for

aromatic molecules the nodal structure of the transmission

function is in general more complex due to a non-trivial

interplay between molecular topology and side group on-site

energy. The richness of the nodal structure provides a flexible

design tool for applications of QI in electronic devices based

on molecular junctions.

A Derivation of the generalized graphical scheme

We shall illustrate the derivation of the graphical scheme by

considering the four site ‘‘molecule’’ shown in Fig. 7 (top). The

molecule is connected to the contacts at site 1 and site 4. The

Hamiltonian describing the molecule is

Hmol ¼

e1 t12 0 t14
t21 e2 t23 0
0 t32 e3 t34
t41 0 t43 e4

0
BB@

1
CCA: ð7Þ

As shown in Section 2, transmission zeros are determined

by the zeros of the co-factor C1N(E � Hmol). The relavant

co-factor for the four-site molecule is

C14ðE �HmolÞ ¼
�t21 E � e2 �t23
0 �t32 E � e3
�t41 0 �t43

������

������
: ð8Þ

The evaluation of the determinant can be done using Laplace’s

formula,

detðAÞ ¼
Xn
j¼1

Ai;jð�1ÞiþjMi;j ; ð9Þ

where the minor Mi,j is the determinant of the matrix that

results from A by removing the ith row and the jth column

(i.e. the cofactor without the sign). Since the on-site energies

appear in the first upper diagonal at indices (i,i + 1), each

factor (E � ei) has a sign factor (�1)2i+1 = �1, and thus

contributes with a minus sign. In the minor Mi,i+1 the on-site

terms will still be in the first upper diagonal and thus

contribute with an additional minus sign.

Writing down the elements of the co-factor gives an

equation for the transmission zeros (the minus sign is included

for notational simplicity):

�C1N(E � Hmol) = 0

t12t23t34 � t14t23t32 + (e2 � E)t14(e3 � E) = 0.

The three terms in the co-factor can be represented graphically

with the following convention: each hopping element

tij is drawn as a line from site i to site j. Note that in all

diagrams, the terminating sites (in this case sites 1 and 4)

are connected by a continuous path of hopping elements.

An on-site term (ei � E) is drawn as a circle around

site i and contributes a factor (�1). We also note that the

loop t23t32 going back and forth between sites 2 and 3 in

the middlemost diagram gives a minus sign. It is a general

rule that closed loops, similar to on-site loops, contribute a

minus sign. This can also be derived from Laplace’s formula:

a hopping element tij appears at index (i � 1, j) in the co-factor

determinant, eqn (8). By evaluation of the co-factor along

the (i � 1)th row the terms involving tij will contribute

with a sign (�1)i�1+j. The new minor appearing after

removing the (i � 1)th row and jth column will have the

hopping element tji at index (j � 2, i), assuming without

loss of generality that i 4 j. In evaluating this minor along

the jth column, the term tji comes with a sign (�1)j�2+i and

the over all sign of the combination tijtji is (�1)2i+2j�3 = �1.
This shows that a loop between two neighbouring sites

contributes a minus sign. The over all sign of a diagram is

thus (�1)p where p is the total number of on-site loops and

neighbour loops.

In summary, the transmission zeros can be determined

from the zeros of the co-factor C1N(E � Hmol). The terms

in the co-factor can be represented graphically by drawing

all possible diagrams according to the rules: (i) in each

diagram the terminal sites connected to the electrodes

must be connected to each other by a continuous path.

(ii) A path can be drawn between sites i and j having

non-zero hopping elements, tij. It is not limited to nearest

neighbour interactions only. (iii) All remaining, internal

sites must either have one ingoing and one outgoing path

or have an on-site loop. (iv) The sign of a diagram is (�1)p
where p is the total number of on-site loops and closed

hopping loops.
Fig. 7 Top: four site molecule connected to electrodes at sites 1 and

4. Bottom: all the diagrams determining the transmission zeros.
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B Computation of on-site energies

We calculate the side group on-site energy from the full

Hamiltonian matrix, H, describing the molecule and the Au

electrodes. We project onto the subspace spanned by the basis

functions of the side groups:

hsg = PsgHPsg,

where Psg has diagonal elements on the indices of the side

group basis functions, and zeros elsewhere. Similarly we get a

side group overlap matrix, ssg. We then diagonalize s�1sg hsg to

find the side group energies and eigenstates. The corresponding

side group orbitals for the C9 molecules responsible for the QI

effects are plotted in Fig. 8.
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