

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Dependable Workflow Reconfiguration in WS-BPEL

Mazzara, Manuel; Dragoni, Nicola; Zhou, Mu

Published in:
Proceedings of the 5th Nordic Workshop on Dependability and Security (NODES’11)

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Mazzara, M., Dragoni, N., & Zhou, M. (2011). Dependable Workflow Reconfiguration in WS-BPEL. In
Proceedings of the 5th Nordic Workshop on Dependability and Security (NODES’11)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13776829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/dependable-workflow-reconfiguration-in-wsbpel(67107c8e-655d-4010-9c95-50e0329aab99).html

Dependable Workflow
Reconfiguration in WS-BPEL

Manuel Mazzara1, Nicola Dragoni2, and Mu Zhou2

1 Newcastle University, Newcastle upon Tyne, UK
Manuel.Mazzara@ncl.ac.uk

2 Technical University of Denmark (DTU), Copenhagen
ndra@imm.dtu.dk, mu.zhou31@gmail.com

Abstract. This paper describes a workflow reconfiguration and how to
implement it in WS-BPEL, a language that would not naturally support
reconfiguration. We state the requirements on a system implementing
the workflow and its reconfiguration, and we describe the system’s de-
sign in BPMN. The WS-BPEL recovery framework is then exploited to
implement the reconfiguration.

1 Introduction

Modern dependable systems are required to be flexible, available and dependable
and dynamic reconfiguration is one way of achieving these requirements. While a
significant amount of research has been performed on hardware reconfiguration
(see [3] and [7]), reconfiguration of services — especially regarding computational
models, formalisms and methods — has not been fully explored yet. In [13] and
[12] these observations lead to the conclusion that further research is required
on dynamic reconfiguration of dependable services, and especially on its formal
foundations, modelling and verification.

To bring our contribution to this research field, we first examined a number of
well-known formalisms for their suitability for reconfigurable dependable systems
[13] and then we approached a case study of workflow reconfiguration using an
asynchronous π-calculus [8] and Webπ∞ [14] to model the design and to verify
whether or not it meets the requirements [12]. In this paper, instead, we describe
the same workflow reconfiguration and how to implement it in WS-BPEL [9], a
language that would not natively support reconfiguration.

In Section 2, we state the requirements on a system implementing the work-
flow and its reconfiguration. In Section 3, we describe the system’s design in
BPMN. Finally, the WS-BPEL implementation is discussed in Section 4, 5,6
and 7. Further details on the case study can be also found in [12]. The major
contribution of this paper is showing how WS-BPEL can be exploited in imple-
menting a workflow reconfiguration by means of its recovery framework [5]. This
evaluation may be useful to system designers intending to design dynamically
reconfigurable systems as well as WS-BPEL specialists who have to cope with
workflow reconfigurations which are not natively supported in the language.

2 Office Workflow: Requirements and Design

This case study describes dynamic reconfiguration of an office workflow for order
processing that is commonly found in large and medium-sized organizations
[6]. These workflows typically handle large numbers of orders. Furthermore, the
organizational environment of a workflow can change in structure, procedures,
policies and legal obligations in a manner unforseen by the original designers
of the workflow. Therefore, it is necessary to support the unplanned change of
these workflows. Furthermore, the state of an order in the old configuration may
not correspond to any state of the order in the new configuration. These factors,
taken in combination, imply that instantaneous reconfiguration of a workflow is
not always possible; neither is it practical to delay or abort large numbers of
orders because the workflow is being reconfigured. The only other possibility is
to allow overlapping modes for the workflow during its reconfiguration.

2.1 Requirements

A given organization handles its orders from existing customers using a number
of activities arranged according to the following procedure:

1. Order Receipt: an order for a product is received from a customer. The order
includes customer identity and product identity information.

2. Evaluation: the product identity is used to perform an inventory check on the
availability of the product. The customer identity is used to perform a credit check
on the customer using an external service. If both the checks are positive, the order
is accepted for processing; otherwise the order is rejected.

3. Rejection: if the order is rejected, a notification of rejection is sent to the customer
and the workflow terminates.

4. If the order is to be processed, the following two activities are performed concur-
rently:
(a) Billing: the customer is billed for the total cost of the goods ordered plus

shipping costs.
(b) Shipping: the goods are shipped to the customer.

5. Archiving: the order is archived for future reference.
6. Confirmation: a notification of successful completion of the order is sent to the

customer.

In addition, for any given order, Order Receipt must precede Evaluation,
which must precede Rejection or Billing and Shipping.

After some time, managers notice that lack of synchronisation between the
Billing and Shipping activities is causing delays between the receipt of bills and
the receipt of goods that are unacceptable to customers. Therefore, the managers
decide to change the order processing procedure, so that Billing is performed
before Shipping (instead of performing the two activities concurrently). During
the transition interval from one procedure to the other, the following require-
ments must be met:

1. The result of the Evaluation activity for any given order should not be
affected by the change in procedure.

2. All accepted orders must be billed and shipped exactly once, then archived,
then confirmed.

3. All orders accepted after the change in procedure must be processed accord-
ing to the new procedure.

3 BPMN Design of the Office Workflow

In this section, we present a design of the office workflow by using notation and
concepts of BPMN. The case study is depicted in Figure 1 as composed of several
Participants working together to process orders from customers and it employs
several Pools to represent different functional entities (Order Generator, Credit
Check, Inventory Check, Bill&Ship, Archive). It is worth noting the requirements
state that only the Credit Check service is supposed to be external. Thus, every
other service might be included in a single pool, representing an activity within
the organization. However, we have decided to design a more generic situation
where the different services are offered by external entities by adopting a pool
for each service. We are now describing the diagram in more detail.

The Office Workflow pool is the coordinating entity. It starts by receiving
a request message from a customer. Then an order is created by calling the
Order Generator entity. The process within the Order Generator pool starts by
receiving the order request message from Office Workflow ; it then executes the
”Make Order” Task and finally it sends an order back to Office Workflow again.
This order is then sent to both the credit check handler (Credit Check) to check
the customer credit’s availability and the inventory check handler (Inventory
Check) to verify the availability of the product. The latter is performed only
in case the credit check is successful. After receiving the evaluation result, an
Exclusive Data-Based Gateway is used. In case of a negative reply from Credit
Check, a notification is sent to the customer, the order is rejected and the overall
workflow terminates. Otherwise, the order is sent to Inventory Check. The same
happens with the result from Inventory Check: in case of a negative reply the
customer is notified and the order is rejected. In case of a positive reply, the
order is processed.

The Bill&Ship represents the entity responsible for both the billing and ship-
ping activities by using two lanes (Bill and Ship) in a pool. For the sake of
simplicity and readability, we assume that neither billing nor shipping provide a
negative result. When Bill&Ship receives the order, the two activities are called
concurrently by a Parallel Gateway. The same gateway is used to merge the re-
sult from Bill and Ship. A message containing the bill and ship details is sent to
Office Workflow to call Archive to store the order. Office Workflow terminates
by receiving a response from Archive and sending a confirmation notification to
the customer.

3.1 Change in Configuration

Now the company decides to reconfigure the order of billing and shipping: the
billing activity will now take place before the shipping. Both the old and the new

Fig. 1. The Case Study Workflow - Old Configuration BPMN Model

configuration processes will have to be simultaneously available while processing
the already active orders. Thus, our concern is performing the structural change
safely without flushing the system. Looking at the design we have presented
so far, it should be quite easy to realize that this reconfiguration requires a
change in the main lane of Bill&Ship only, where the actual billing and shipping
activities are called. The rest of the workflow has to remain the same. The
new configuration diagram is shown in Figure 2. When compared to the old
configuration diagram of Figure 1, the two Parallel Gateways in the main lane
of Bill&Ship have been now removed and the two activities are synchronously
called.

Fig. 2. The Case Study Workflow - New Configuration BPMN Model

How the transition from the old configuration (Figure 1) to the new configu-
ration (Figure 2) can be performed? The BPMN design for the entire workflow,
during its reconfiguration, is shown in Figure 3. In order to keep both the old
configuration process and the new one simultaneously available, we define a de-
fault flow that is identical to the old configuration. This default flow can be
altered through an interrupting Message Event contained in the ”Determine
configuration” activity included in a separate Reconfig.region pool. This activity
determines which configuration should be used when Bill&Ship is called. In this
way, we highlight that an authority has to be in charge of triggering the recon-
figuration. Thus, when the interrupt event happens, it will affect the flow and it
will activate the new configuration.

4 WS-BPEL Implementation of the Office Workflow

In [11] the mapping from WS-BPEL to π-calculus has been investigated. The
idea was to design the system at the WS-BPEL level and then verifying it at
the π-calculus level. In [2], the opposite direction has been instead explored.
That work supports the idea that building the π-calculus model, check it and
only then map it into WS-BPEL seems to be a more effective way to tackle the
problem of verification for WS-BPEL systems. In this paper, we have instead
decided to follow an approach based on the BPMN design because we think it
is a powerful design tool with widespread use these days and it is easy to be
understood by designers and by non formalists (while the other two approaches
actually require a specific technical knowledge). In this section, we will present a
BPMN derived WS-BPEL implementation of the case study and the basic ideas
behind it.

Our intuition was that, although WS-BPEL itself has not been designed
to cope with dynamic reconfiguration, it presents some features which could be
used for this purpose. This idea has emerged because of similar considerations we
have done about Webπ∞ [14]. Since Webπ∞ has been used to encode WS-BPEL
[11], we have suspected that the basic mechanisms of the WS-BPEL recovery
framework would have offered a support to dynamic reconfiguration, in the same
way as Webπ∞ did. This was just an intuition, but we have then focused on the
details to make it work and the results are presented in this section.

The basics principles, derived from the Webπ∞ experience, on which our
implementation is constructed are:

– The regions to be reconfigured have to be represented by BPEL scopes
– Each BPEL scope (i.e. region) will be associated with termination and event

handlers

For a better understanding of how event handlers work please have a look at
[5]. However, that paper does not investigate termination handlers (please see
[9] for more details on this). Event handlers run in parallel with the scope body
and are available more than once to be called (one single call does not suspend
further availability). Thus, when using event handlers for reconfiguration, the

Fig. 3. The Case Study Workflow - Configuration Transition BPMN Model

new configuration has to be triggered by an event handler while the old one will
have to be terminated by a termination handler. As said, the scope body runs
separately (in parallel) from the event handler, so the old configuration can be
terminated while the event handler brings the new one into play.In this way we
can implement the synthetic cut-over change as defined in terms of Petri nets in
[6].

While so far we have just presented the general principles on which the
implementation is based, readers who are familiar with WS-BPEL and who are
interested in more details can find them in the following sections. Readers who
are not interested in the details of the implementation can just skip the following
sections and go straight to the conclusions without missing to grasp the general
concept of our research.

5 Manual Mapping BPMN to WS-BPEL

The first problem we have encountered when mapping the BPMN design into
a WS-BPEL implementation comes from the evident observation that BPMN
and WS-BPEL are representative of two different classes of languages. BPMN
is graph oriented while WS-BPEL is mainly block-structured [4], at least in its
commonly used XLANG [15] derived subset (WS-BPEL has been also influenced
by the graph oriented WSFL [10]). A consequence of this divergence is that the
mapping from BPMN to WS-BPEL is hard and it has a number of limitations
since BPMN is able to express process patterns which cannot be expressed in
WS-BPEL. As a general comment, we could say that the block structured na-
ture of a WS-BPEL process is too limited for modeling purposes. However, we
believe that WS-BPEL cannot be ignored when it comes to workflow modeling
because, although the business analysts more easily work with BPMN as model-
ing language and use its graphical notation to describe a business process (Task,
Activity, Sequence flow, etc), the system developers manage better to work with
an executable language like WS-BPEL to define the composite structure of a
business process. In WS-BPEL such a structure is defined in terms of a flow of
structured activities (Sequence, Parallel, etc) where each activity, in turn, can
contain a nested list of other activities being those Web service invocations or
other structured activities.

In this work, the structure mismatch between BPMN and BPEL has been
resolved following the approach presented in [4] consisting of a complete trans-
lation based on the identification of patterns of BPMN fragments which can
be directly mapped onto WS-BPEL code. Due to space constraints, in this pa-
per we will show only a part of the implementation and we cannot show the
details of the mapping. The full implementation and mapping can be found in
[16]. Figure 3 shows a BPMN Activity named ”Determine Configuration“ with a
Non-Interrupting Intermediate Message Event, which can be mapped to a BPEL
scope with an event handler activity as follows:

<scope name="OldConfigScope">

<terminationHandler>

<scope name="NewConfigScope">

<sequence>

<!--perform the new configuration activities>

</sequence>

</scope>

</terminationHandler>

<eventHandlers>

<onEvent partnerLink="Reconf.Region"

operation="DetermineConfig"

portType="Reconf.region:ChangePortType"

variable="Rec"

messageType="Reconf.region:Rec">

<scope name="Scope">

<exit name="terminate"/>

</scope>

</onEvent>

<eventHandlers>

</scope>

<scope name="BillAndShip1">

<!-- perform bill and ship activities in parallel>

</scope>

This WS-BPEL segment of code does not show the details but the under-
lying idea is that, if the process receives the Rec change message event once
the OldConfigScope scope has been entered, it will terminate the current pro-
cess and execute the new process defined within the scope NewConfigScope in
the termination handler. This other process is precisely the new configuration.
Otherwise, the order will enter the BillAndShip1 scope and it will be processed
accordingly to the original procedure. The full implementation of the system
proves how the two basics principles presented in Section 4 are actually effective
in implementing (planned) dynamic reconfiguration.

6 Discussion of the Requirements

In this section, we discuss the requirements given in section 2.1 and how they
hold during the reconfiguration interval.

– The result of the Evaluation activity for any given order should not
be affected by the change in procedure. The acceptability of an order
(Evaluation activity) is computed outside the region to be reconfigured,
and there is no interaction between Evaluation and the region. It means
that the Evaluation in the old procedure workflow is exactly the same as
in the new procedure workflow.

– All accepted orders must be billed and shipped exactly once, then
archived, then confirmed. This process describes billing and shipping
happening in any order but both before archiving and confirming. We de-
clare individual variables for BillShip1 and NewConfigScope. These are the

request messages used to invoke the Bill and Ship services and they are only
visible within their own scope. This means that, if the request message for
billing and shipping has already been created, this activity can be invoked
without any interrupt. Technically, the event handler is used to implement
the management decision for change. When the event is received, NewCon-
figScope will be enabled. However, if the event is received after the order
leaving OldConfigScope, BillShip1 will run because the request message has
been initialized. If the event is received while OldConfigScope is running,
OldConfigScope will be terminated and NewConfigScope will start redoing
order receipt, order evaluation, and executing BillShip2. BillShip1 will not
be run because no request message has been initialized and NewConfigScope
only calls BillShip2.

– All orders accepted after the change in procedure must be proceed
according to the new procedure. In order to distinguish between these
two situations - receiving the event before billing and shipping activities
have started or after - we use scopes to define different procedures: OldCon-
figScope represents the procedure running before billing and shipping, Bill-
Ship1 represents the concurrent billing and shipping and NewConfigScope
represents the new configuration procedure which includes sequential billing
and shipping. When a management decision is made, the event handler for
OldConfigScope will be invoked and it will terminate OldConfigScope, which
contains the procedure for order receipt, order evaluation activities. We use
a termination handler to replace OldConfigScope with NewConfigScope rep-
resenting the new procedure. In this way, after its termination, the process
will restart calling the new procedure.

In the real world, after the management decision is made to switch to Bill-
Ship2, BillShip1 would be not available anymore. It is like ending to offer the
BillShip1 service. However, in BPEL, we cannot model exactly this situation. All
the services remain available. If we want to ensure all the instances of the work-
flow created after the change run BillShip2 (instead of BillShip1), the process
needs to continuosly receiving the ”change reconfiguration” event.

7 Tool-based Mapping BPMN to WS-BPEL

The BPMN to BPEL mapping presented so far has been obtained by follow-
ing the approach given in [4]. This allowed us to have some flexibility but the
process had to be entirely manually generated. Another option, although more
restrictive, is to use some automatic tool for the translation. In this section we
will discuss this option using the Intalio BPMS Designer version 6.0 [1].

Intalio BPMS Designer is a set of Eclipse plugins allowing process designers
to model processes with BPMN and to use several graphical tools to manage the
data. It includes most of the BPMN elements which are relevant to executable
business process models. External activities and message flows are mapped into
specific interface operations and message definitions using WSDL. The message

structures are indicated by XML Schema elements. Service calls are modeled by
introducing Pools containing the operations of the WSDL. The process interacts
with this external participants through message flows. After the process has been
modeled and concrete services, messages and data have been defined, Intalio
Designer will automatically generate a BPEL description.

To model the office workflow with the Intalio Designer the first thing we
have to do is creating a ’Business Process Project’ containing Business Process
diagrams, XML Schemas, WSDL files. Once the project has been created, we can
then create a BPMN diagram with the embedded BPMN modeler. The palette
provides an immediate access to all the existing BPMN shapes. After the BPMN
modeling for the office workflow will be completed, we can start implementing the
process Office Workflow by integrating all the operations from the existing Web
services, creating the interface to define how it will be exposed to the external
users and defining the graphical mappings to invoke the services.

Once the Office Workflow process is ready to be executed we can easily
deploy it. There are several artifacts being generated at this point: the BPEL
code corresponding to the Office Workflow process, the WSDL files used by the
process to represent its interactions with the other participants and the different
WSDLs used to represent external services.

Change Configuration As before, we have to deal with the Office Workflow
reconfiguration, i.e. the process will invoke Bill and Ship in sequence instead of
parallel. The remaining parts like partner links, external services, WSDLs are not
altered by this but the BPEL is. We need indeed a new participant Reconf.region
used to send a reconfiguration message and invoke the new procedure. We also
have to create a WSDL for it.

We need to use a sub-process to include the two configurations and to add
an Non-interrupt Message Event to perform the choice. If the process receives
the change message, then the configuration2 sub-process will execute (the new
configuration) otherwise the process will automatically execute the old configu-
ration sub-process configuraiton1. The generated BPEL code, partner links can
be found in [16]. As we can see from the generated BPEL code, the interaction
between the Reconf.Region web service and BPEL process is mapped into an
event handler and fault hander activity.

<bpel:scope bpmn:label="Reconfiguration" name="Reconfiguration"

bpmn:id="_EPcN4ClKEeCRVpI5R3SUgw">

<bpel:scope bpmn:label="configuration1" name="configuration1"

bpmn:id="_Kw694ClKEeCRVpI5R3SUgw">

<bpel:variables>

<!---define variables>

....

<bpel:variable

name="BillShipReply"

messageType="BillShip1:BillingAndShipping"/>

</bpel:variables>

<bpel:faultHandlers>

<bpel:catch faultName="bpmn:_YPUcsClKEeCRVpI5R3SUgw"

faultVariable="thisChange_ConfigurationRequestMsg"

faultMessageType="this:Change_ConfigurationRequest">

<bpel:scope bpmn:label="configuration2"

name="configuration2"

bpmn:id="_bJFfIClKEeCRVpI5R3SUgw">

<bpel:variables>

....

<bpel:variable name="billShip2ShipReplyRequestMsg"

messageType="BillShip2:Shipping"/>

</bpel:varables>

<bpel:sequence>

<!--perform all the new configuration actvities>

</bpel:sequence>

</bpel:scope>

</bpel:catch>

</bpel:faultHandlers>

<bpel:eventHandlers>

<bpel:onEvent

partnerLink="reconfig.RegionAndOffice_WorkflowPlkVar"

portType="this:ForReconfig.Region"

operation="Change_Configuration"

messageType="this:Change_ConfigurationRequest"

variable="thisChange_ConfigurationRequestMsg"

bpmn:label="Change Configuration"

name="Change_Configuration"

bpmn:id="_YPUcsClKEeCRVpI5R3SUgw">

<bpel:scope bpmn:label="Change ConfigurationScope"

name="Change_ConfigurationScope"

bpmn:id="_YPUcsClKEeCRVpI5R3SUgw_scope">

<bpel:throw faultName="bpmn:_YPUcsClKEeCRVpI5R3SUgw"

faultVariable="thisChange_ConfigurationRequestMsg"/>

</bpel:scope>

</bpel:onEvent>

</bpel:eventHandlers>

<bpel:sequence>

<!--perform the activities happens before calling BillAndShip>

</bpel:sequence>

</bpel:scope>

<bpel:scope bpmn:label="BillShip1Scope" name="BillShip1Scope"

bpmn:id="_S_Dc8ClKEeCRVpI5R3SUgw">

<bpel:variables>

<!--define variables for bill and ship>

</bpel:variables>

<bpel:sequence>

<bpel:variables>

<!--define variables only visible in this scope>

....

<bpel:variable name="billShip1BillShipReplyRequestMsg"

messageType="BillShip1:BillingAndShipping"/>

</bpel:variables>

<!--call bill and ship in parallel>

</bpel:sequence>

</bpel:scope>

</bpel:scope>

<!--call Archive>

...

Thus, if the process receives the change message before invoking the BillAnd-
Ship operation on BillAndShipPortType, the order will be processed according
to the new procedure, otherwise it will be processed according to the old one.

The main difference between this implementation and the manual mapping is
the way in which the dynamic reconfiguration is handled. The manual mapping
uses an event handler to react to the change event. The event handler starts
when OldConfigScope scope starts. This scope defines the procedure running
before bill and ship. We use a termination handler activity to define a new scope
NewConfigScope which will start the new procedure for the order generator,
order evaluation and BillShip2 activities. So when the Change Configuration
event occurs, all the activities before bill ship will be terminated and the process
will restart calling the new configuration procedure.

In the Intalio BPMS implementation, instead, the fault handler activity is
used to define the new configuration procedure used to recover from the fault.
The generated code is also using the event handler activity to react to the
Change Configuration event throwing an error once the event occurs. In the
BPMN diagram, it is not allowed to have two message flows entering the same
task object: intermediate message event can only receive one message (bill and
ship details) either from Bill&Ship1 or from Bill&Ship2. So we have to add a
new Data Object (BillShipReply) to represent a global BillShip reply message
for the whole process. If the Bill&Ship1 service is invoked, the reply message of
Bill&Ship1 is copied into this global variable while if the Bill&Ship2 service is
invoked the reply of Bill&Ship2 is copied. The request message for the Archive
Web Service is constructed by this defined global variable.

By comparing these two implementation options, we can see that even though
this automatic tool can succeed in generating BPEL code, additional procedures
have still to be manually provided. For example, the variables have to be initial-
ized and correlation set has to be established. The BPMN diagram has too many
limitations, the generated BPEL process maybe not suitable and able to satisfy
all the requirements. In general, we cannot completely rely on the code generated
by the automatic tools. We have to keep in mind that tool-based transformation
has its weaknesses and should always be used with caution.

8 Conclusions

In this paper we investigated the issue of workflow reconfiguration in BPMN and
WS-BPEL. We then proposed two implementations, one manually generated and

one tool-based and we identified the weaknesses of the tool-based one. With this
work we have shown how WS-BPEL, which is not originally intended to model
dynamic reconfiguration, can be exploited for this purpose by the use of its very
powerful recovery framework and, in particular, event and termination handlers.
The idea on which the paper is based derives from some intuitions emerged
during our previous work on Webπ∞. We are planning to consider more complex
case studies to validate our statements. We are also working on a more complete
comparisons of formalisms than the one presented in [13]: this will include the
modeling of this workflow case study in several different formalisms (including
π-calculus, Webπ∞, VDM, etc...) with the consequent verification of the desired
requirements. This work will also include the full WS-BPEL implementation.

Acknowledgments

The paper has been improved by conversations with Anirban Bhattacharyya,
John Fitzgerald and Cliff Jones. We also want to thank members of the Recon-
figuration Interest Group (in particular, Kamarul Abdul Basit, Carl Gamble and
Richard Payne), the Dependability Group (at Newcastle University) and the EU
FP7 DEPLOY Project (Industrial deployment of system engineering methods
providing high dependability and productivity).

References

1. Intalio BPMS Designer 6.0. Tutorials avaliable at
http://community.intalio.com/tutorials-6.0.html (checked February 3,
2011).

2. F. Abouzaid. A mapping from pi-calculus into bpel. In Proceeding of the 2006
conference on Leading the Web in Concurrent Engineering: Next Generation Con-
current Engineering. IOS Press, 2006.

3. A. Carter. Using dynamically reconfigurable hardware in real-time communications
systems: Literature survey. Technical report, Computer Laboratory, University of
Cambridge, November 2001.

4. O. Chun, M. Dumas, and A. H. ter Hofstede. From bpmn process models to
bpel web services. In Proceedings of the IEEE International Conference on Web
Services, pages 285–293. IEEE Computer Society, Los Alamitos, 2006.

5. N. Dragoni and M. Mazzara. A formal semantics for the ws-bpel recovery frame-
work - the pi-calculus way. In WS-FM’09, Springer Verlag, 2009.

6. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proceedings of the Conference on Organizational Computing Systems (COOCS
1995). ACM, 1995.

7. P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu. An overview of re-
configurable hardware in embedded systems. EURASIP J. Embedded Syst., 2006,
January 2006.

8. K. Honda and M. Tokoro. An object calculus for asynchronous communica-
tion. In P. America, editor, European Conference on Object-Oriented Programming
(ECOOP), page 133147. Lecture Notes in Computer Science 512, 1991.

9. D. Jordan and J. E. editors. Web services
business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf.

10. F. Leymann. Web services flow language (wsfl 1.0).
‘http://www-01.ibm.com/software/solutions/soa/.

11. R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming, 70(1):96–118, 2007.

12. N. D. A. B. M. Mazzara, F. Abouzaid. Design, modelling and analysis of a work-
flow reconfiguration. Technical report, School of Computing Science, University of
Newcastle, February 2011.

13. M. Mazzara and A. Bhattacharyya. On modelling and analysis of dynamic recon-
figuration of dependable real-time systems. In DEPEND, International Conference
on Dependability, 2010.

14. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition.
In WS-FM, pages 257–272, 2006.

15. S. Thatte. Xlang: Web services for business process design. Microsoft Corporation,
2001.

16. M. Zhou. A case study of workflow reconfiguration: Design and implementation.
Technical report, Master Thesis.Informatics and Mathematical Modelling Depart-
ment, Technical University of Denmark, 2011.

