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Electronic hole transfer in rutile and anatase TiO2: Effect of a delocalization error in the density
functional theory on the charge transfer barrier height
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We analyze the deformation of the potential energy surface (PES) due to the incorrect description of fractional
electron systems (the nonlinearity of the energy with electron number) within a (semi)local density functional
theory (DFT). Particularly sensitive to this failure are polaronic systems where charge localization is strongly
coupled to lattice distortion. As an example we calculate the adiabatic PES for the hole transfer process in rutile
and anatase TiO2. (Semi)local DFT leads to qualitatively wrong, barrierless curves. Removal of the nonlinearity
improves the PES shape and allows us to calculate hole mobilities.
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Introduction. Inconsistent treatment of states with differ-
ent degrees of localization is a known failure of standard
(semi)local density functional theory (DFT). A clear case is
the dissociation of X2

+ systems, such as He2
+, for which

the solutions Xλ-X1−λ should be degenerated for 0 � λ �
1 at infinite separation whereas (semi)local DFT favors
energetically homolytic X+0.5-X+0.5 dissociation.1 This bias
can be traced back to the behavior of fractional electron
systems. The exact energy is linear as the number of electrons
is varied between integers.2 (Semi)local approximations are
δN convex, thus solutions with electron density delocalized
over several fragments are artificially favored over those
having an electron localized on one fragment.1,3,4 This biased
behavior is related to the spurious electron self-interaction
present in the common functionals. The relation, however,
is by far not a straightforward one as it has been shown
that even one-electron self-interaction free methods fail to
reproduce linearity of the energy as a function of electron
number.1,3

The inconsistent description of states with different degrees
of localization is especially troublesome in polaronic systems
where the charge localization is coupled to lattice distortion.5,6

(Semi)local DFT artificially elevates areas on the potential
energy surface (PES) related to more localized states, therefore
it provides too delocalized solutions and incorrect atomic
structures. Such PES deformations lead to incorrect pictures
of processes where the degree of localization changes. Charge
transfer is one of these processes as states along a charge
transferring coordinate vary in the amount of charge sharing
between the transferring sites. Here we analyze the PES arising
from the electronic hole transfer in a technologically important
photocatalyst—titanium dioxide. Transport of photogenerated
holes to surfaces is a necessary step preceding photocatalytic
reaction. In this material hole transfer largely determines
photocatalytic efficiency as charge recombination in the bulk
and reactions on the surface occur on similar time scales.7

Various experimental techniques such as electron paramag-
netic resonance,8–10 transient absorption spectroscopy,11–16

and photoluminescence17–19 have revealed that photogenerated
holes are trapped. Yet the nature of the trapping sites has
remained obscure. Only recently it is becoming evident that
holes self-trap intrinsically, both in rutile8,20 and in anatase,20

forming O− small polarons.21

Model. To examine the effect of the δN convexity of
(semi)local functionals on the PES for the self-trapped hole
transfer, we first introduce a two-site model of the process. The
hole is transferred between lattice sites L and R: Lλ + R →
L + Rλ, where the hole number can be fractional, λ ∈ [0,1].
We assume that the system interacts with the lattice via a
single mode x and at λ = 0 the PES is harmonic, E(x,λ =
0) = 1

2Kx2. In the basis of orthonormal states localized on
these sites, the electronic Hamiltonian takes the form

He =
(

εL + V x t

t εR − V x

)
. (1)

εL,εR are the on-site energies associated with the basis
functions |L〉 and |R〉; t is the electronic coupling between the
sites; and V is the strength of the electron-mode interaction.

In the static approximation—excluding the mode kinetic
energy—the hole transfer occurs on a single PES. We construct
the PES by removing a fraction λ of a hole from the highest
occupied eigenstate ε of He:

�E(x,λ) = 1
2Kx2 − λε(x). (2)

For L and R representing O2− lattice ions, ε is the antibonding
solution of He:

ε(x) = {εL + εR + t
√

tan[2ζ (x)]−2 + 1}/2, (3)

where 2ζ (x) = arctan [2t/(εL − εR + 2V x)]. In the following
we consider x � 0; for x > 0 indexes L and R should be
interchanged.

The hole then occupies the antibonding state |�〉 =
|L〉 cos[ζ (x)] + |R〉 sin[ζ (x)]. If ζ (x) = 0, the hole is confined
to the L site; if ζ (x) = π/4, the hole is equally shared
between the two sites—therefore ζ (x) defines the degree of
hole localization. In the absence of electron-mode coupling,
ζ is independent of the coordinate x. The composition of
eigenstates then does not change along the coordinate; the
PES should not be deformed if there is any bias toward a more
localized or delocalized state. Contrary, for a nonzero V the
states along x differ in the degree of localization and their
inconsistent treatment will result in a deformed PES.

A δN convexity of a (semi)local DFT leads to such
inconsistent descriptions. For a quadratic behavior of the total
energies of subsystems L and R, the on-site energies vary
linearly with their occupations: ε′

L(ζ ) = εL − αλ cos2(ζ ) and
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FIG. 1. (Color online) Top: The PESs for a two-state model
of a hole transfer between equivalent fragments (full lines) and the
deformed PESs due to δN convexity of the energy (dashed lines).
Bottom: The hole localization on the L site. Curves are plotted for
t = 0.2 eV (black) and t = 0.02 eV (yellow/gray) with V = 1.7,
K = 3.5 eV corresponding to the path E in rutile [see Fig. 2 b]. Zero
energy is at the minimum of the nondeformed PES and the deformed
PES is aligned at |x| → ∞.

ε′
R(ζ ) = εR − αλ sin2(ζ ), α > 0. In Fig. 1 we show the effect

of such a quadratic deviation on the PES when sites L and R are
equivalent. For α = 0 the PES exhibits a barrier at x = 0; for
α = 1 the PES shape is deformed around the transition point.
The deformation increases with stronger electronic coupling
t as the variation of the degree of localization extends toward
larger |x|.

A non-self-consistent (preserving the site occupations) first-
order expansion in α of the deformed PES yields

�E′(x,λ) ≈ �E(x,λ) + αλ2f [ζ (x)], (4)

where f (ζ ) = {1 + [2 cos2(ζ ) − 1]/
√

tan(2ζ )2 + 1}/2, The
correction to the PES of the system with a single hole is then
αf (x) and can be calculated as a quadratic nonlinearity of
�E′(x,λ). As one could expect, the correction is twice as
large for the localized hole, f (ζ = 0) = 1, compared to the
hole shared between two sites, f (|ζ | → π/4) = 1

2 .
Computational details.We perform revised Perdew-Burke-

Ernzerhof (RPBE) DFT22 calculations within the projector
augmented-wave formalism implemented in the GPAW code.23

The wave functions, densities and potentials are described on a
grid with a spacing of 0.2 Å. Atomic structures are defined by
lattice vectors a′ = 3(a + b), b′ = 2(a − b), c′ = 2c for rutile,
and a′ = 3a, b′ = 3b, c′ = 2c for anatase, a, b, and c being the
vectors of the respective tetragonal crystallographic cells.20,24

The Brillouin zone is sampled on 3 × 2 × 2 and 2 × 2 × 1
Monkhorst-Pack meshes for rutile and anatase, respectively.

The basic, oxygen-based, building motif of the anatase
and rutile structures is a flat C2v-symmetric OTi3 unit. Upon
hole localization the three OTi bonds elongate by 0.1–
0.2 Å, preserving the initial symmetry.20 The hole occupies a
p-like orbital centered on the oxygen site and is perpendicular
to the OTi3 plane. In anatase such distortion renders the
localized hole state more stable than the delocalized one,
whereas in rutile the two have a comparable stability.20 We

(a)Anatase (b)Rutile

FIG. 2. (Color online) Hole transfer paths between neighboring
oxygen lattice sites in TiO2.

consider hole transfer between two neighboring oxygen sites
L and R. There are several such possible pairs of oxygen
atoms (see Fig. 2). For each pair we construct a set of
structures Q defined through linear interpolation between the
distortions localized on the two sites QL and QR, respectively:
Q = [x(QR − QL) + QR + QL]/2.

For the constructed paths, we then calculate a set of PESs,
�E′(x,λ), by removing a fraction of an electron λ from the
highest occupied state and placing it at the bottom of the
conduction band using linear expansion �-SCF (delta self-
consistent field).20,25,26 To correct the PESs for the spurious
delocalization error, we remove the PES quadratic nonlinarlity
in λ: �E(x,λ = 1) = �E′(x,λ = 1) − αf (x).

Results and discussion. In the top plots of Fig. 3 we show
PESs resulting from RPBE DFT calculations for different
paths. The curves are seen to exhibit a drop around the
transition point. We have shown that this characteristic kink
is caused by the δN convexity of (semi)local functionals. At
x = 0 the delocalization of the hole charge is the largest—the
hole is shared between two sites; therefore the relative error
with respect to the localized state takes its maximum. The
quadratic nonlinearity of �E′(x,λ), αf , is shown in the middle
plots of Fig. 3. The two-state model predicts that at large
|x| the correction should be twice as big as at x = 0. This
ratio is not strictly conserved for some paths. The hole orbital

FIG. 3. (Color online) Top: PESs �E′(x,λ = 1) resulting from
RPBE DFT calculations are plotted for different hole transfer paths.
Middle: The nonlinearity of PES αf (x) with respect to hole number
λ. Bottom: The corrected PES, �E(x,λ = 1) = �E′(x,λ = 1) −
αf (x).
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hybridizes with the surrounding orbitals, therefore the degree
of localization can to some extent be different than in the
model. In the bottom plots of Fig. 3 we show the corrected
PESs, �E(x,λ = 1). Their shape is improved, notably the
kinks around x = 0 are removed.

We use the thus corrected PESs to calculate high-
temperature hole mobility. At high T small-polaron transport
is dominated by the hopping mechanism. If the relative
dynamics of the hole is fast compared to lattice fluctuations,
the hole instantaneously follows the lattice coordinate and the
charge transfer proceeds via barrier crossing at the transition
point—the adiabatic limit. The hopping frequency in this case
is given by27

k = [
/(2π )] exp
[−Ead

b

/
(kBT )

]
, (5)

where Ead
b is the adiabatic barrier height and 
 is the

transferring mode frequency. In the nonadiabatic regime the
hole is not able to follow the distortion. The transfer between
two sites occurs at the intersection of two nonadiabatic PESs
with a certain transition probability. The resulting hopping
frequency in this case is given by27

k = t2
√

π/
(
4h̄2Enad

b kBT
)

exp
[−Enad

b

/(
kBT

)]
, (6)

where Enad
b = Ead

b + t is the nonadiabatic barrier height and
t is the electronic coupling. We discriminate between these
cases by calculating the parameter η2 = t2/(h̄


√
EnadkT )

describing the relative inertia of the nuclear and electronic
motion.27 For η2 > 1 we assume adiabatic transport and
otherwise the nonadiabatic one. At 1300 K we find all
the nearest paths in rutile and paths A and B in anatase
adiabatic. Apart from paths C and E in rutile, this is in
accordance with wave-function calculations28 (our notation
ABC . . . corresponds to DFBCEA and BCADE in Ref. 28
for anatase and rutile, respectively).

We calculate the drift mobility using the Einstein-
Smoluchowski relation μ = eD/(kBT ). D is the average
hole diffusion coefficient D = ∑

i∈A... niki |Ri|2/3, where ni

is a number of equivalent paths, ki is the transfer fre-
quency, and |Ri| is the transfer distance. The two-site model
for small-polaron hopping holds if η1 = t/Enad

b 	 1.27 For
anatase we find η1 ∈ (0.05,0.56) eV and for rutile η1 ∈ (0.27,

0.67) eV. Smaller η1 in anatase indicates that the hole in this
phase is more localized. (For what is also reflected in larger
nonlinearities αf , see the middle plots in Fig. 3.)

The characteristic parameters of the different hole transfer
paths in anatase and rutile are shown in the Supplemental
Material.29 We only note here that h̄
 (≈20 meV in rutile and
≈40 meV in anatase) is much lower than the highest-frequency
mode at ∼100 meV used to calculate hole mobility in Ref. 28.
We find our values in accordance with the fact that the transfer
coordinate arises mostly from the displacements of the cationic
sublattice corresponding to the breathing mode of the flat

OTi3 unit. Such vibrations resemble the optical modes B1g at
50 meV and 64 meV in anatase30 and B1u at 14 meV and
50 meV in rutile.31

In units of cm2 V−1 s−1, mobilities measured in electrical
conductivity experiments at 1300 K are 0.25 (Ref. 32) for
single crystal and 0.16,32 5.0 × 10−2 (Ref. 33) for polycrys-
talline samples. At this temperature we find hole mobilities of
5.2 × 10−2 and 4.0 × 10−2 for anatase and rutile, respectively.
At 873 K the transient grating technique predicts a value of
0.18,34 whereas we find 3.3 × 10−2 for anatase and 3.1 × 10−2

for rutile.
Clearly, the calculated values underestimate the hole

mobility. A better guess for the transition points (achieved
by constraining the hole to be equally shared between the
hole transferring sites) lowers the adiabatic barriers from
Ead ∈ (0.14,0.39) to Ead ∈ (0.09,0.39) eV in anatase and from
Ead ∈ (0.14,0.29) to Ead ∈ (0.06,0.21) eV in rutile, whereas
only barrierless paths could provide mobilities close to the
experimental ones.

This underestimation is likely due to the contribution of
valence-band (VB) holes to the hole conduction mechanism.
At 1300 K—assuming hole stabilization of 0.05 eV in rutile
and 0.2 eV in anatase20—∼39% and ∼14% of the total
hole concentration occupies the VB in rutile and anatase,
respectively. Two types of hole transport mechanisms are
more evident at lower temperatures, where the disparity
between the band and small-polaron mobilities increases
(the latter becomes relatively immobile). Room-temperature
experiments indicate the existence of two hole dynamics time
scales: a fast one, after excitation—hole transfer to the surface
within τ ≈ r2D/(kT ), where r is the particle diameter and D

corresponds to the VB hole diffusion coefficient; and a much
slower, nanosecond-microsecond decay of surface trapped
holes.11–19 We think that these two time scales are related
to the VB band and the small-polaron transport mechanisms.

Conclusion. In summary, we have shown that the spurious
nonlinearity of the total energy in a (semi)local DFT leads
to a significant deformation of the PES if the states on the
PES differ in the degree of charge localization. As an example
we studied the electronic hole hopping in TiO2. (Semi)local
DFT results in a quantitatively incorrect barrierless PES. By
removing the energy nonlinearity in the fractional hole number
from the PES, we improved the PES shape. With the thus
corrected PES we calculated high-temperature hole hopping
mobilities. Our results indicate that both the trapped and the
VB holes contribute to the hole transport mechanism.
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