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Abstract. In 3D surface scanning it is desirable to filter away bad data
without altering the quality of the remaining good data. Filtering of raw
scanner data before surface reconstruction can minimize the induced er-
ror and improve on the probability of reconstructing the true surface.
If outliers consist of actual data such as hair, and not just evenly dis-
tributed noise, these outliers tend to err smoothing algorithms away from
the wanted result. We present a novel algorithm based on a Markov Ran-
dom Field that uses a distance constraint to robustly classify a 3D scan
volume. Through this classification a signal preserving filtering of the
data set is done. The remaining data are used for a smooth surface re-
construction creating very plausible surfaces. The data used in our work
comes from a newly developed hand held 3D scanner. The scanner is
an Ultra Fast Optical Sectioning scanner, which is able to extract high
quality 3D surface points from 2D images recorded at over 3000 fps. The
scanner has been developed for digital impression taking in the dental
area. Our work relates to future in-ear scanning for fitting custom hearing
aids without impression taking.
-Keywords: 3D scanning, Markov Random Field, computer vision, sur-
face reconstruction, noise filtering.

1 Introduction

3D surface acquisition is an established and active research and development
area. Novel applications and devices continues to emerge, where the data scale
ranges from minuscule in microscopy optical sectioning [7] to large scale aerial
surface laser scanning of the earth [13]. A variety of scanners and cameras exist;
each with their own strengths and weaknesses. While some scanners produce 3D
surface data, scanning an object from one direction is known as 2.5D scanning as
it only portrays the object from one side and does not provide a full 3D model.
To construct a 3D model several 2.5D scans need to be patched creating a full
reconstruction [8].

We have worked with a new scanner, the Ultra Fast Optical Sectioning
TRIOS scanner from 3Shape[1], which has been developed to facilitate 3D im-
pression taking in the dental area. Our work is a study on how to reconstruct
surfaces in the presence of structured noise. The study is a preliminary study,



which relates to fitting custom hearing aids, where the construction of an in-the-
ear scanner would make the ear canal impression step obsolete.

Anticipating the problem of structured noise from hair in the ear canal we
want an algorithm that filters the data and leaves only valid surface data. As
no scanner has yet been produced that will actually go into the ear, we have
used data of hairy arms and bearded chins recorded by the TRIOS scanner. The
scanner produces high quality data with some very sparse salt-and-pepper type
noise and also good scanning of actual hair strands. As the scanner is a dental
scanner with both high precision and accuracy, we were faced with a specific
problem of removing only the hair without degrading the remaining data.

Simple mean or median filtering can make any surface fair (if one smoothens
enough) but these filters also distort the data set and are useable only when
the noise is Gaussian (mean filtering) or when the number of outliers are few
(median filtering). An adaptive application of such filters used only on outliers
can remove noise without too much degrading of the data, but such an approach
would break down in areas with a lot of outliers. Generally, local filtering does
only preserve local structure; for areas with a lot of hair a global method is
needed.

Implicit functions err towards outliers and noise. Splines [10] are a well known
tool for creating both smooth curves and surfaces, but if noise is not Gaussian
the smoothing will be skewed. This is the case in our data, where outliers are
mainly found above the surface. Splines are also continuous and therefore do not
handle discontinuity well.

A way of removing outliers in a data set is to use random sampling such as
RANSAC [4] and fit to the random sample until a fit matches the data well. Even
though this removes the influence of outliers it does not guarantee an optimal
match. A RANSAC approach is described in [11], where an algorithm is created
that finds basic shapes and structures in noisy data sets.

There exist a large body of literature covering noise properties and handling
in direct surface scanners [3]. However, the used scanning device is not directly
comparable with devices previously investigated.

To maintain as much of the good data as possible in our scans, we have
solved our problem based a Markov Random Field (MRF) formulation on a 3D
voxel grid. An early description of MRFs in 2D image analysis is on the noise
removal in dirty pictures addressed in [2]. The novelty of our work is the use
of a 3D MRF with a distance based smoothness prior that classifies the data
set into surface data and not surface data. The classification allows for a signal
preserving filtering of the data set before any actual surface reconstruction.

2 Data

The data come from an Ultra Fast Optical Sectioning TRIOS scanner, which
records a stream of 2D images. Approximately 130 images are collected into a
set that constitutes a voxel volume. From known changes in the scanner during
the volume acquisition a scan surface is constructed which can be converted



into a real world coordinate system through a calibration step. The scanner
computes the voxels that defines the interface between air and solid material
as seen from the scanners viewpoint. Since the scanner is known to be above
the surface it is possible to label the voxels along the depth axis as either above
or below the sought surface. When the scanner firmware has determined which
voxels belong to the interface, the row, column and depth volume is transformed
into real world 3D points using the calibrating parameters. The resulting 2.5D
point cloud represents the interface between air and solid material as seen from
the scanners viewpoint. To perform a full 3D surface scan, the scanner is moved
around the object and the partial scans are merged together using a proprietary
algorithm.

The scanner is normally used for digital impression taking in dental work,
which requires a very high accuracy. Therefore, the quality of scans are very
high and the noise levels due to the scanner hardware is minimal. However, real
physical objects as for example hair will also be captured by the scanner. In the
current application (direct ear-scanning) we are interested in the true surface of
the ear and therefore hair is considered noise and should be removed from the
scan. In the following we consider hair as being structured noise.

A 2.5D scan can also be considered a depth map, where the pixel value
reflect the distance to the object. Figure 1 shows four depth maps of scans from
different surfaces. The scans constitute a range from very bad to perfect, and
the algorithm should be able to handle all examples. When there is a lot of
structured noise in the scan, we need an algorithm that does not break down
but does a good filtering leaving only the actual surface data (even if it is very
little).

Fig. 1. Four depthmaps of scan surfaces. From left to right: Little surface coverage
with hair, half coverage with hair, full coverage with hair, full coverage without hair.

3 Markov Random Field volume classification

The raw output from the scanner (and the scanner firmware) is a voxel set where
the scanner is virtually placed above the voxel volume looking down the depth
direction. Each voxel is labeled as being either above or under the scan surface.
The scan surface, Sscan, is the initial surface that can be extracted as the in-
terface between the above and under voxel sets. However, Sscan is noisy (in the



sense that hair is present in the scan) and does not represent the true underlying
skin surface. We aim to produce a consistent and locally smooth skin surface,
Sskin, from the data set. In order to re-label the voxel set and thereby implicitly
producing, Sskin, a Markov Random Field (MRF) classification/regularisation
approach is chosen. In the following, a short introduction to MRFs and a de-
scription of the chosen models are given.

3.1 The volume random field

We define a random field with spatial voxel positions {v1, v2, . . . , vn} in the
volume V with the index set I. In this set each voxel vi takes a value xi from
the binary label set L={under,above}, where under is under and above is over
the skin surface. Notice that we make a distinction between scan surfaces Sscan

and skin surfaces Sskin; the classification relates to the latter. All values of xi
are represented by the vector x, which is the configuration of the random field.

A neighbourhood system to vi is defined as N = {Ni|i ∈ I} for which it holds
that i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random field is said to be a Markov field,
if the probability P of any configuration of x satisfies the positivity property:

P (x) > 0 ∀x ∈ L (1)

And the Markovian property:

P (xi|{xj : j ∈ I\{i}}) = P (xi|{xj : j ∈ Ni}) (2)

Or in other words the probability of xi given the index set I\{i} is the same
as the probability given the neighbourhood of i. Our use of neighbourhood is
limited to the direct 6-neighbours in the volume. The goal is to compute the
configuration of the field that maximizes the probability.

3.2 Defining the Markov Random Field

We aim to produce a labelling x of the voxel volume V , such that the boundary
of the labelling coincides with the skin surface. A likelihood term and two priors
are defined on the following:

– Under scan surface is likely to be under skin surface (under), while above
scan surface is likely to be above skin surface (above).

– Skin surface points are in the vicinity of scan points.
– Skin surface is locally smooth.

Here surface points and scan points are defined as the local interface between
above and under labelled voxels. Using these priors a MRF is created for which
a minimal energy problem is defined using the following:

Likelihood term: This term is based on the relative position of a voxel and
the scan surface:

Φ(vi|xi) = − logP (vi|xi) (3)



Generally, we expect the scan and skin surfaces to coincide and therefore
make a simplification of the likelihood function, such that voxels below the
scan surface Sscan have low energy if labelled under and high energy if la-
belled above and vice versa for voxels above the scan surface. The energy
then becomes:

Φ(vi < Sscan|xi) =

{
1 xi = under
0 xi = above

Φ(vi > Sscan|xi) =

{
0 xi = under
1 xi = above

(4)

This somewhat loosely defined term alone would just produce the scan sur-
face.

Vicinity prior: The skin surface should be close to scan surface points. This
is induced by adding an energy penalty to changes in label, which relates to
the distance from the voxel vi to the nearest scan point Sscan:

λ(xi, xj) =

{
Kdist · dist(vi, Sscan) xi 6= xj

0 xi = xj
(5)

The distance is approximated using an Euclidean distance transform (EDT) [5].
This is a fast linear time algorithm that approximates distance in a number
of sweeps. This penalty should only affect voxels that are not in the immedi-
ate neighbourhood of scan surface points, which is why 1 is subtracted from
the distances, such that both an actual surface point and its direct neigh-
bours have distance 0. The vicinity constraint mainly effects areas with high
discontinuity but it also forces the resulting surface to be true to the data
in areas with continuity.

Smoothness prior: Neighbouring voxels are expected to have the same la-
bel with higher probability than having different labels, therefore an energy
penalty is given to adjacent voxels with different label:

ψ(xi, xj) =

{
Kij xi 6= xj
0 xi = xj

(6)

This is a general smoothness constraint.

Combining the likelihood term with the vicinity and smoothness prior, we get
the following energy minimization problem for the scan volume:

E(x) =
∑
i∈I

Φ(vi|xi) +
∑
j∈Ni

(λ(xi, xj) + ψ(xi, xj))

 (7)

Where x is the classification of the whole volume. The vicinity constant Kdist and
the smoothness constant Kij relates to each other and the likelihood term, which
we defined to be 0 or 1. The solution to the MRF ensures maximum probability
with the constraint that the labelling is both highly consistent with the data
and smooth. To solve the minimization problem the Graph Cut algorithm [6]
is used. This algorithm is an efficient way to find the optimal solution for such
binary problems. From the resulting MRF classification a new surface SMRF is
extracted as the interface between the under and above labelled voxels.



4 Filtering based on the MRF solution

With a solution to the MRF and a new surface estimate SMRF the changes
compared to the original surface Sscan can be analyzed. As the MRF is set up so
create a surface that coincides with the skin surface Sskin, we set up a filtering
based on the following:

Sskin = Sscan ∩ SMRF ∧ Shair = Sscan \ SMRF

This results in a pure skin surface estimate and an estimate of the structured
noise (hair) removed from the original scan to create the skin surface. We have
used the strict definition but to give some flexibility one might add a threshold
on how much is considered a change when comparing the original data with the
MRF surface. Figure 2 shows examples of the resulting depthmaps of the MRF
based filtering. Even though it is difficult to quantify the result, clearly both
hair and noise are removed leaving only the smooth skin surface data.

(a) Very little skin with hair

(b) Half skin coverage with hair

Fig. 2. From left to right: depth map of original scan, surface based on volume classi-
fication, changes made in new surface, unchanged data in new surface. It is especially
worth noting that the first scan is of very poor quality. The scanner is only focusing
on very little skin surface and on top of that there is a lot of hair. In spite of this the
algorithm returns the small amount of actual skin surface present in the scan.

Setting the relations between the likelihood term, the vicinity and smooth-
ness prior is not trivial and based on trial-and-error. However, a reasonable
approach is (at least for this type of data) to set the smoothness prior Kij to
0, while incrementing the vicinity prior Kdist until a good result is achieved
(Fig. 3(a)). This parameter effects areas with discontinuity such as skin to hair,



while it actually forces the algorithm to be true to the input data in areas with
continuity such as skin to skin. Setting the parameter removes most of the hair
strands leaving only a little stubble, which can then be removed by adding the
smoothness constraint. Figure 3(b) shows the difference between surface data
found using only the vicinity prior and using both vicinity and smoothness, the
difference is seen as green, and the blue is the filtered surface data.

Even though the MRF solution actually creates a surface without holes,
this surface tends to have bumps where the surface is closed below the hair
strands. This is why only the unchanged part of the MRF surface should be
kept. These remaining data are a much better starting point for a smooth surface
reconstruction, as these data belong to the actual surface. Figure 3(c) shows a
surface reconstruction based on the filtered point set. The surface has been
reconstructed with the Markov Random Field Surface Reconstruction [9]. This
algorithm uses a Markov Random Field to regularize a point distance field and
it creates plausible hole filling, where data is missing. If computation time is a
factor a simple 2D Delaunay triangulation [12] (considering the data as a 2D
height map) would produce a reasonably fair surface.

5 Conclusion

In this paper data from a novel surface scanner has been used in an approach
to remove structured noise from raw scanner data. The approach is based on re-
labelling a voxel set using a Markov Random Field classification and extracting
the sought surface as the interface between two voxel labels.

We have achieved good results on filtering noise and hair from our surface
scans. Even though it is hard to quantify the ability to filter both noise and hair,
qualitative visual inspections of the results are very promising. Because of the
high quality expectance of the scans it is a strong point that the data is filtered
such that the remaining data is unchanged.

Our algorithm has been implemented in Matlab with crucial parts in C++
.mex-files and it filters in a matter of a few seconds on a 2.8 GHz Intel processor
laptop. There is good reason to believe that the surface filtering could be done
in realtime with a full implementation in a precompiled programming language.

One could argue that a full volume classification as part of the filtering is
not necessary. This is meant in the sense that large parts of the scan volume
will be far from the actual surface and therefore a smarter way of classification
close to the surface could speed up the process. This would however complicate
the approach and is a topic for future research.



(a) Filtering done using only the vicinity prior

(b) Filtering after adding the smoothness prior

(c) Filtered data and surface reconstruction

Fig. 3. The figure shows a side view of a hairy surface. In the first image the effect of
adding the vicinity prior alone is shown. Hair strands are coloured red and the surface
green. The second image shows the difference between the surface using only vicinity
prior and the surface, where both vicinity and smoothness prior has been applied.
The difference is shown in green, while the resulting surface points of both vicinity
and smoothness prior filtering are shown in blue. The third image shows a surface
reconstruction using the filtered point set.
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