

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

A Probabilistic Model of the LMAC Protocol for Concurrent Wireless Sensor Networks

Esparza, Luz Judith R; Zeng, Kebin; Nielsen, Bo Friis

Published in:
2011 11th International Conference on Application of Concurrency to System Design (ACSD)

Link to article, DOI:
10.1109/ACSD.2011.20

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Esparza, L. J. R., Zeng, K., & Nielsen, B. F. (2011). A Probabilistic Model of the LMAC Protocol for Concurrent
Wireless Sensor Networks. In 2011 11th International Conference on Application of Concurrency to System
Design (ACSD) (pp. 98-107). (International Conference on Application of Concurrency to System Design.
Proceedings). DOI: 10.1109/ACSD.2011.20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13776769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ACSD.2011.20
http://orbit.dtu.dk/en/publications/a-probabilistic-model-of-the-lmac-protocol-for-concurrent-wireless-sensor-networks(f6a92618-d3cf-490c-b96e-2e443c07147e).html

A Probabilistic Model of the LMAC Protocol
for Concurrent Wireless Sensor Networks

Luz Judith R. Esparza Kebin Zeng Bo Friis Nielsen
Informatics and Mathematical Modelling

Technical University of Denmark
KGS. Lyngby, Denmark

Email: {ljre,keze,bfn}@imm.dtu.dk

Abstract—We present a probabilistic model for the network
setup phase of the Lightweight Medium Access Protocol
(LMAC) for concurrent Wireless Sensor Networks. In the
network setup phase, time slots are allocated to the individ-
ual sensors through resolution of successive collisions. The
setup phase involving collisions should preferably be as short
as possible for efficiency and energy consumption reasons.
This concurrent stochastic process has inherent internal non-
determinism, and we model it using combinatorics. The setup
phase is modeled by a discrete time Markov chain such that we
can apply results from the theory of phase type distributions.
Having obtained our model we are able to find optimal protocol
parameters. We have simultaneously developed a simulation
model, partly to verify our analytical derivations and partly to
be able to deal with systems of excessively high order or stiff
systems that might cause numerical challenges. Our abstracted
model has a state space of limited size where the number of
states are of the order

(
n+r+1

n

)
, where n is number of sensors,

and r is the maximum back off time. We have developed a
tool, named LMAC analyzer, on the MATLAB platform to
assist automatic generation and analysis of the model.

Keywords-probabilistic model; performance analysis; wire-
less sensor networks;

I. INTRODUCTION

Wireless Sensor Networks (WSN) consist of widely dis-
tributed sensors that cooperatively monitor physical or en-
vironmental conditions, and have been used in widespread
applications. WSN is one of the prime examples of net-
worked embedded systems, where many modern computer
science challenges exist, such as the challenges in distributed
computing, wireless communication, and system integration.
One major consideration in WSN is how to prolong the
network lifetime. The Lightweight Medium Access Protocol
(LMAC) was introduced in [15], designed as a multi-hop and
energy-efficient protocol for WSN at the Medium Access
Control (MAC) layer. In the LMAC protocol, the network
is self-organizing in terms of time slot assignment and
synchronization. The protocol uses Time Division Multiple
Access (TDMA), where each time slot is assigned to a
sensor. In this manner, the nodes can communicate collision-
free after the network has stabilized. In this way, the protocol
provides energy efficiency. The LMAC protocol gives a sig-
nificant lifetime improvement compared to prior protocols,

such as EMACs and SMAC. Thus, analyzing and reducing
collisions in order to optimize the network have been some
of the remaining challenges. As a consequence, we will
concentrate on the part of the protocol that is responsible
for the distributed and localized strategy of assigning time
slots to sensors.

In previous works [7], [14], [17], the concurrent behaviour
of the LMAC nodes was modelled using parallel decom-
position. The complexity of the models rose drastically
with the number of network nodes, limiting the analysis
to small–sized networks far from reality. In addition, the
random nature of the slot selection process required further
analysis and modelling. In our approach, we will use a direct
mathematical method with immediate abstraction of network
details that does not influence the time for the network to
stabilize.

II. RELATED WORK

In [7], [14], formal verification of the LMAC protocol is
investigated in the timed automaton model checker UPPAAL
[1]. The LMAC network is modelled by parallel composition
of single node behaviours. The properties for model check-
ing primarily focus on the fundamental mechanisms. For
example, checking whether collisions can be detected or a
new choice of slots is initiated after collision. The UPPAAL
model has been used to systematically investigate all topolo-
gies with 4 and 5 nodes. Based on this work, the LMAC
protocol has been updated by patching discovered bugs, and
problematic topologies with possible scenarios of unsolved
collision have been identified. However, the UPPAAL model
has encountered serious state space explosion, if the model
contains more than 5 nodes. Moreover, probabilistic aspects
of LMAC, e.g. optimal parameters, have been mentioned as
important future work. This inspired our work and has now
become one of our key contributions.

A study on probabilistic aspects of LMAC is given in
[17] relying on timed automata in the probabilistic version
of UPPAAL (UPPAAL PRO 0.2 [6]). The probabilistic
choice has been made by pre-assigned weights to all possible
transitions when nodes select back off time after collision.
By changing the weights, various probability distributions

represent different back off strategies. It shows that if the
back off time before starting to pick a new time slot
increases, the number of collisions will decrease. In this
work [17], slot selection is modelled in a deterministic way.
Each individual sensor keeps trying from the first time slot
and then the second, until it finds a free one. Thereby, later
coming sensors unavoidably have a number of collisions
before they settle down. This has negative influences on
the overhead of the protocol, therefore we suggest a prob-
abilistic solution. At last, the probabilistic UPPAAL model
encounters even severer state explosion problem than the
non-probabilistic version, which is capable of modelling a
maximum of 4 nodes under the fully connected topology.

In summary, previous works in the slot selection phase of
the LMAC protocol rely on parallel composition approach.
Modelling the non-deterministic nature and solving the state
space dilemma are very interesting topics. In our work, we
propose a mathematical approach using a direct abstraction
technique to solve these concurrent stochastic problems.

III. THE LMAC PROTOCOL

Figure 1. Time structure in LMAC

As a schedule-based MAC protocol, the time in LMAC is
organized in time slots, which are grouped into frames (see
figure 1). For each time slot, the controlling node always
transmits a fixed length (12 bytes, [15]) control message in
order to maintain synchronization. The control message also
carries a node ID of the time slot controller, the size of the
data unit and the intended receiver. In particular, the control
message is critical for broadcasting information regarding
the occupied time slots. For this reason, late coming nodes
can pick only free slots. The remaining part of a time slot
is an optional data unit if there are any needs. The current
maximum size of the data unit is 256 bytes, [15]. During
each frame, nodes can only transmit messages in their own
time slot, for the rest of the time they can only receive
messages. In this manner, energy consumption is minimized.

At the beginning of the network setup phase, all of the
nodes are unsynchronized. In order to get synchronization,
one (or more) gateway node(s) will take initiative to start
controlling the time slot(s), i.e. becoming the master node(s).
Control messages from the gateway will be received by its
one-hop neighbours. Once these nodes get their time slots,

they will start sending control messages to the other hops.
The network will stabilize once all nodes get their reserved
time slots. Thereafter, nodes can communicate with each
other in a collision free manner.

Figure 2 describes the behaviour in terms of the phases
for an individual node in LMAC.

Figure 2. Phase diagram for an individual sensor

Initialization Phase: When a sensor node powers on, it
is unsynchronized. In this phase, a node will try to detect
its neighbouring nodes. As long as at least one neighbouring
node is detected, the node will synchronize with it and go
to the wait phase.

Wait Phase: The wait phase is designed with the purpose
of reducing the number of nodes that pick slots at the same
time, which helps reducing the probability of collision. In
this phase, a node waits at random k frames, where k is
an integer number from the set S = {0, 1, . . . , r}, where r
is the maximum back off time. After waiting k frames, the
node will go to the discover phase.

Discover Phase: Before a node starts to pick a time slot,
it registers all the currently available slots in order to pick
only among those. This happens in the discover phase where
nodes compute free slot information based on the control
messages. Afterwards, it will randomly select one of the
available slots and go to the active phase. A node stays one
time frame in this phase.

Active Phase: After a node has picked a time slot in the
discover phase, it will start to transmit a message and receive
messages from neighbouring nodes. Here, if there are two or
more nodes transmitting simultaneously, a collision occurs.
Then neighbouring nodes will send control messages to ask
them to give up their time slots and go to the wait phase.

In the LMAC specification, the back off mechanism for
collided nodes is underspecified. Thereby, it is possible for
nodes to start back off in either the current frame or the
next. It depends on whether there are neighboring nodes to
register collisions for the discover identities at the remaining
time of the frame. This non-determinism can be interpreted
as implementation freedom. Considering the worst case
scenario, we resolve the non-determinism by assuming that
back off always starts in the successive frame.

Moreover, to limit the number of time slots necessary in
the network, the LMAC protocol allows for time slots to be
reused at non-interfering distances. In [7] is proved that it
is safe to share the same time slot after at least three hops.

The LMAC protocol uses a distributed algorithm described
in [10] and [13] to manage the division of time slots.

IV. A PROBABILISTIC MODEL OF THE LMAC PROTOCOL

The component-based approach to model the concur-
rency in the stabilization process was applied in [7] and
[17], where the behaviour of a single node is modelled
as a basic component. Indeed, the system properties are
represented in terms of parallel composition of individual
nodes. The compositional way is inherently close to the
protocol specification, which gives a detailed verification
result. The state space explosion problem, however, restricts
model checking experiments to 5 nodes. This is far from
the WSN applications, where the number of sensors could
be up to hundreds. Therefore, we will propose a lightweight
model that will be valid for the verification task at hand.

In [7], the case with 5 nodes considering all the 61 topolo-
gies has been investigated. These different topologies can
lead to dramatically varied verification results. Generally, it
is hard to identify a representative one. Hence, throughout
the paper, we will assume only the fully connected topology,
which has been proven as one of the successful topologies.

A. System abstraction

Associated with parallel composition, the abstraction
methods described in [3] and [5] produce abstracted models
to reduce the state space problem of model checking. But,
in order to do so, they have to start with a detailed model.
As an alternative, our mathematical approach will attack the
highly abstracted model directly, thereby obtaining a huge
reduction of the state space. The system is abstracted by the
statistical collection of system level information based on
the given LMAC specification. The statistical collection is
represented by a data vector which also represents the state
of the system. In our implementation, we will propose an
injective function, which maps a set of data vectors to a set
of positive integers in order to construct a one dimensional
discrete state space.

In section III, we introduced the LMAC protocol,
which uses a distributed algorithm to divide time slots
in order to reuse them in more than 2 hops. Thereby, it
is sufficient to analyze the worst case of at most 2 hops
distance to characterize the overall network. Thus, we will
only model the behaviour for the worst case, defined by
max{nt |

n
t ≤ 1;n, t within 2 hops}, where n and t are the

system variables defined below.

System variables

In the following we will define the system variables.
• n is the number of sensors.
• t is the number of time slots, where we assume t ≥ n,

since the number of time slots in each frame is, at least,
equal to the number of nodes in the network.

• r is the maximum back off (waiting) time.
Now, assuming that the system is in frame j ≥ 0, we define
the following:
• Xj = (Xj,0, Xdj

, Xj,1, Xj,2, . . . , Xj,r) is the state
vector which collects the system information, where

Xj,0 is the number of sensors with a reserved slot.
Xdj

is the number of sensors in the discover phase.
Xj,s is the number of sensors which will wait s more

(s ∈ {1, . . . , r}) frames.
• Yj is the number of sensors that successfully get a slot

in frame j.
• Zj,s is the number of sensors that collided in frame

j and chose to wait s (s ∈ {1, . . . , r}) frames. The
vector Zj+1 = (Zj+1,1, . . . , Zj+1,r) is used to record
results of the random choice for back off time from a
multinomial distribution with parameters Xdj

− Yj+1

and p, where p is an r dimensional vector correspond-
ing to a uniform distribution, i.e. p = (1r , . . . , 1r). Based
on various kinds of back off time selection strategies,
however, p can be an arbitrary probability vector.

Hence, we have the basic identity

Xj,0 +Xdj
+

r∑
s=1

Xj,s = n, (j ≥ 0)

as the sensors can only be in the active phase (Xj,0), the
discover phase (Xdj) or the wait phase (

∑r
s=1 Xj,s). With

the variables defined above, we are able to capture the
dynamics of the process.

Algorithm 1 The LMAC Simulation Algorithm
Require: X0 := (0, n, 0, 0, . . . , 0), Y0 := 0, j := 0

1: repeat
2: Generate Yj+1 ← Pt−Xj,0,Xdj

(Y = y)
3: Xj+1,0 ← Xj,0 + Yj+1

4: Generate Zj+1 from multinomial distribution
5: for s = 1 to r − 1 do
6: Xj+1,s ← Xj,s+1 + Zj+1,s

7: end for
8: Xj+1,r ← Zj+1,r

9: Xdj+1 ← Xj,1

10: j ← j + 1
11: until Xj+1,0 = n

The dynamic is driven by frames as the basic time
unit where the vector Xj is used to record the system
information. The network starts when all the sensors are
unsynchronized and are attempting to get (unreserved) slots.
As time elapses, an increasing number of sensors get a
reserved slot. Eventually, the system stabilizes when all of
the nodes have a reserved time slot. The whole process is
modelled as a Discrete Time Markov Chain (DTMC) and
the total time spent on the stabilization process is phase type

distributed ([11], [12]). The absorbing state of the underlying
Markov chain is the state where all of the sensors have
their reserved slots. Algorithm 1 illustrates the dynamics by
pseudo code. Here, we identify the initial state of the system
under the worst case, where all the sensors are trying to get
their slots in the first frame. Indeed, the worst case gives the
highest likelihood for the sensors to experience collisions at
the beginning.

Table I exemplifies one scenario of the network dynamics
of our abstracted model following Algorithm 1, where r =
3 and n = 3. The initial data vector is (0,0,0,0,0,3,0,0,0),
where 3 sensors are in the discover phase, Xd0

. Unluckily,
all of the three collide (2 sensors wait 2 frames and 1 sensor
waits 3 frames), which is depicted by the second line of the
table. Thereafter, time just passes and the sensors are waiting
their turn to retry. In the end, all the sensors successfully get
reserved time slots. Thereby, the number of sensors having
reserved slots, Xj,0, becomes 3.

Table I
EXAMPLE FOR ALGORITHM 1 CONSIDERING r = 3 AND n = 3

Yj Zj,1 Zj,2 Zj,3 Xj,0 Xdj Xj,1 Xj,2 Xj,3

0 0 0 0 0 (3) 0 0 0
0 0 2 1 0 0 0 2 1
0 0 0 0 0 0 2 1 0
0 0 0 0 0 2 1 0 0
0 2 0 0 0 1 2 0 0
1 0 0 0 1 2 0 0 0
0 1 1 0 1 0 1 1 0
0 0 0 0 1 1 1 0 0
1 0 0 0 2 1 0 0 0
1 0 0 0 (3) 0 0 0 0

B. Analysis of randomness

Two probabilistic choices occur in step 2 and 4 of
Algorithm 1. In the following, we will formalize and
calculate both assuming that the system is in arbitrary
frame j.

1) Probability distribution of slot selection: In step 2 of
Algorithm 1, we need to find the random number Yj+1,
which is the number of new sensors with reserved slots.
Note that Yj+1 could be any integer value in the interval [0,
Xdj] except {Xdj −1}, which has a probability distribution
described below.

To shorten notation, we define some new variables to
assist us in calculating probabilities derived from the state
vector Xj :
• l is the number of current free slots, i.e. l = t−Xj,0,

the number of current free slots is equal to the total
available number of slots minus the number of reserved
slots.

• k is the number of sensors in the discover phase, i.e.
k = Xdj

and k ≤ l.

• y is the number of new sensors with reserved slots, i.e.
0 ≤ y ≤ k.

• x is the number of sensors experiencing collision, i.e.
x = k − y.

• h is the number of unreserved slots, i.e. h = l − y.
The probability distribution of slot selection (i.e. distribu-

tion of Y) depends on l, k, and y. Let Pl,k(Y = y) denote
the probability that y sensors successfully get reserved
slots, given the condition that there are l free time slots
and k attempting sensors. Based on combinatorial theory,
Pl,k(Y = y) is calculated by a rational function with
parameters l, k, and y. The numerator counts the number
of combinations where y sensors are reserved, and the
denominator is the number of combinations for all possible
values of Y .

When none of sensors collide, i.e y = k, we have that

Pl,k(Y = k) =
1

lk

(
l

0

)
h!

(h− 0)!

k!

x!

=
1

lk

(
k

x

)
.

Obviously, Pl,k(Y = k − 1) = 0 since it is impossible to
have collision involving just one sensor.

If 2 or 3 sensors are in collision, they can only collide in a
single slot. However, for 4 or more sensors the collision can
happen in more than one time slot. To consider a general
case, we have the formula for y ≥ 2

Pl,k(Y = y) =
1

lk

(
l

y

) b x2 c∑
i=1

[
h!

(h− i)!
k!pi(x)

]

=
1

lk

(
k

x

) b x2 c∑
i=1

[
l!

(l − y − i)!
x!pi(x)

]
(1)

where
• b·c is the floor function. The number of slots with

collided sensors can vary from 1 up to bx2 c. E.g. if
we have 7 collided sensors, these can be in at most
b 72c = 3 slots.

• pi(x) is an iterative function that depends on x and i.
The way of finding the explicit form of this function is
described in appendix.

• x!pi(x) is the number of ways of putting x sensors into
i slots, and these x sensors are under collision.

Thus, from (1), we are able to compute the distribution
of slot selection analytically.

2) Probability distribution of back off time: Intuitively, to
shorten the setup time we give high priority to small back
off times but only in the case where there are only few
sensors in the network ([17]). If there are a considerable
number of sensors, it becomes necessary to have larger
back off time options to reduce the probability of collision.
Therefore, there exists an optimistic strategy which chooses

the probability distribution(s) of the back off time such that
the expected time till absorption is minimum.

In [16] network latency is taken into account. Four types
of strategies to ensure a low latency for the most common
data traffic in WSN are proposed. We chose a uniform
distribution of the back off times, which is one of the four
classic strategies mentioned in [16].

C. Discrete time Markov chain

A Markov chain is a discrete stochastic process with the
Markov property, i.e. the next state depends only on the
current state. As frames are taken as the time unit, the model
is a discrete time model. The model of LMAC is thus a
DTMC. Let E = {1, 2, . . . ,

(
n+r+1

n

)
} denote the state space

of the underlying DTMC with transition matrix defined as
follows

P = (pm,m′)m,m′∈E . (2)

Now, let M be an injective function which maps state vectors
Xj , j ≥ 0, to E in the following way

M(Xj) =

Xdj∑
s=0

(
n+ r − s

s

)
−

r∑
s=1

a∑
i=Xj,s+1

(
a+ r − s− i

r − s

)
,

where a = n−Xdj
−
∑s−1

q=1 Xj,q . Note that other mappings
could have been used.

Now, suppose that M(Xj) = m and M(Xj+1) = m′, the
(m,m′)-th element of P is computed as follows

pm,m′ = P(Xj+1|Xj)

= Pt−Xj,0,Xdj
(Y = Xj+1,0 −Xj,0)

·

(
Xdj − (Xj+1,0 −Xj,0)

(Xj+1,1 −Xj,2), . . . , (Xj+1,r−1 −Xj,r), Xj+1,r

)

·
(
1

r

)Xdj
−(Xj+1,0−Xj,0)

.

As we can see, the transition probability from the state
m to the state m′, consists of two parts. The first part,
Pt−Xj,0,Xdj

(Y = Xj+1,0 − Xj,0), is the probability that
Xj+1,0 − Xj,0 sensors get reserved slots. The remaining
part of the formula calculates the probability that Xdj −
(Xj+1,0 −Xj,0) collided sensors back off, which is multi-
nomially distributed. Since the discovering sensors can either
become reserved or back off, the multiplication of these two
probabilities gives the overall transition probability.

With the above formulae, we have built a DTMC ana-
lytically using combinatorics to represent the dynamics at
the LMAC setup phase. Figure 3 shows an example of a
DTMC considering the parameters n = 3, r = 2, and t =
4. With our proposed mapping function M , the state vector
is ordered with priority from Xdj until Xr. The initial state
of the network is defined with all sensors in the discover
phase at the first frame, corresponding to the last row in the
transition matrix. The absorbing state of the DTMC is state
number 1 at the top row.

Figure 3. Example of the transition matrix P for n = 3, r = 2, t = 4

D. Simulation study

In this section we present the result of a simulation
study using Algorithm 1. The network is configured with
4 sensors, 5 time slots, and 2 as maximum back off time.
We have made statistical inference on the example, where
the standard derivations we obtained indicate the reliability
of the estimation from our simulation. Table II shows the
probabilities of the system after 5 frames for all 35 states
for both analytical and simulation results.

Besides the purpose of verifying the analytical model,
simulation also provides an optional way of computing
probabilities in the case when the model has high order or
stiff systems are hard to be computed analytically.

V. OPTIMIZATION USING PHASE TYPE

In Section IV we have modelled LMAC by a DTMC using
a direct mathematical abstraction. Now, we will investigate
optimal parameter settings of the system in order to mini-
mize the time for stabilization of the WSN. In particular, we
will analyze the stabilization time when adding a minimal
amount of excess capacity.

The critical property of interest is the expected time to
stabilization. By definition, the expectation of a discrete
random variable is calculated by

E(J) =

∞∑
j=1

jP(J = j), (3)

where in our case j represents the frame number, and P(J =
j) is the probability of absorption occurring exactly at frame
j. The formula contains an infinite sum, therefore it is hard to
compute the true value without truncation. Thus, an iterative
method is required to guarantee the convergence. However,

Table II
Simulation probabilities considering n=4, r=2, t=5, obtained from

20000 iterations

State True probability Simulation SD
1 0.81291 0.81710 0.00280
2 0.00000 0.00000 0.00000
3 0.00196 0.00240 0.00031
4 0.00000 0.00000 0.00000
5 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000
7 0.00392 0.00310 0.00044
8 0.00001 0.00000 0.00000
9 0.00000 0.00000 0.00000

10 0.02748 0.02900 0.00227
11 0.00001 0.00000 0.00000
12 0.00001 0.00000 0.00000
13 0.00044 0.00040 0.00015
14 0.00001 0.00000 0.00000
15 0.00005 0.00005 0.00005
16 0.04662 0.04510 0.00150
17 0.00000 0.00000 0.00000
18 0.00009 0.00015 0.00006
19 0.00000 0.00000 0.00000
20 0.05104 0.05020 0.00160
21 0.00018 0.00020 0.00009
22 0.00001 0.00005 0.00002
23 0.00158 0.00170 0.00028
24 0.00002 0.00005 0.00003
25 0.00018 0.00005 0.00009
26 0.04967 0.04655 0.00150
27 0.00000 0.00000 0.00000
28 0.00002 0.00005 0.00003
29 0.00169 0.00205 0.00029
30 0.00004 0.00005 0.00004
31 0.00037 0.00050 0.00014
32 0.00116 0.00080 0.00024
33 0.00000 0.00000 0.00000
34 0.00036 0.00035 0.00013
35 0.00018 0.00010 0.00009

it is very costly to obtain P(J = j) as many vector-matrix
multiplications are required. We now present an alternative
and simplified method to obtain (3).

It is easy to see that the time till absorption of the
underlying Markov chain follows a phase type distribution.
Phase type distributions were considered first in [11], [12],
and are defined as distributions of absorption times in a
Markov process with a finite number of transient states
and one absorbing state. Using phase type distributions in
our analysis gives computational advantages. By assuming
that there is at least the same number of time slots as the
number of sensors, we are able to guarantee absorption.
Thus, we could use phase type distributions to accelerate
computations.

First of all, we note that the transition matrix (2) can be
rewritten into the form

P =

(
1 0
T0 T

)
,

where T is the transition matrix between transient states and
T0 is the vector of probabilities of jumping to the absorbing
state, i.e. T0 = 1 − T1, where 1 is the column vector

consisting of 1’s.
Thus, the expectation can be computed efficiently from

the phase type properties by

E(J) = π(I − T)−11, (4)

where π is the initial probability vector of the underlying
Markov chain and I is the identity matrix (see [9]). The
complexity of computing the formula given in (4) can
be bounded by O(n2 + n2.376). Using the Coppersmith-
Winograd algorithm [4], a matrix inversion has the com-
plexity O(n2.376).

Moreover, the variance of a random variable is defined as

Var(J) = E(J2)− [E(J)]2, (5)

where E(J2) in our case, is computed by the second moment
of a discrete phase type random variable (see [9]) given by

E(J2) = 2π(I − T)−21.

As we can see in this analysis, phase type distributions take
the role as computational vehicle in solving optimization
problems.

Figure 4. Choosing the optimal number of time slots for LMAC
considering n = 10, r = 2

Figure 4 illustrates one optimization problem regarding
the number of time slots. Here, the network contains 10
sensors and the maximum back off time is 2. In this case,
12 time slots provide the best possible stabilization rate, as
it has the lowest expected stabilization time.

Figure 4 describes how to pick the optimal number of time
slots given the number of sensors and the maximum back
off time. By having this way of finding the optimal number
of time slots, figure 5 depicts the growing trend by pairing
the number of sensors and optimized number of time slots.
Here, the maximum back off time is also 2. The result can be
divided in linear segments, where the gap between the sensor

Figure 5. Matching the number of sensors with the optimal number of
time slots considering r = 2

number and the slot number increases in larger networks (i.e.
when the network has more sensors), because the probability
of collision increases when more sensors are in the network.
Therefore, figure 5 provides a guide for network designers to
decide how to match the sensor number with the slot number
in an optimal setting. For instance, 17 sensors should match
20 time slots to be optimal with maximum back off time
being 2.

On the way of computing the plot, the state space is
growing by having an increasing number of sensors. To deal
with higher order models, we switched the computational
engine from analytical to simulation at the point where
we had around 1000 states. In figure 5, we distinguish
the two engines by colours. Note, here we only intend
to show how we used the simulation engine to assist the
analytical engine in deriving solutions. Therefore, the point
of switching would depend on your local computing power.

Furthermore, our abstracted model is able to analyze
modification issues. In a predefined LMAC network, the
number of sensors, the number of time slots, and the
maximum back off are identified. For instance, sometimes it
is necessary to add or remove a certain number of sensors
in the current network. A question that may arise is how to
adjust the parameters to keep the stabilization at an optimal
speed. Figure 6 offers some recommendations regarding
these issues.

It is clear that more time should be expected if there are
more sensors in the network. However, the marginal cost
varies due to the fluctuation of the probability of collision.
Figure 6 has been plotted given 20 time slots with maximum
back off time being 2. The vertical axis describes the
incremental cost for plugging in one extra sensor. Because of

Figure 6. Modification price in the LMAC considering t = 20, r = 2

low utilization rate of the network, i.e. very low probability
for collision, the price for incrementing sensors is higher at
the beginning. For more than 14 sensors in the network, the
cost rises dramatically. Therefore, the recommended number
of sensors for the current configuration should remain in the
middle region. If the required number of sensors has a high
additional cost, it would be better to increase the number
of time slots or the maximum back off time in order to
keep efficiency. In contrast, the number of time slots or the
maximum back off time should be reduced in order to raise
the network utilization rate.

Evidently, there are many other questions about optimiza-
tion that can be solved. For instance, to find the optimal
number of sensors having a fixed maximum back off time
and a fixed number of time slots.

VI. STATE SPACE EXPLOSION

In some experiments, state space explosion emerges con-
sidering above 10,000 states even though the sparseness of
the transition matrix of the underlying DTMC increases as
well. With the MATLAB sparse matrix representation, the
number of states in our model, given by

(
n+r+1

n

)
, crashed

considering 10660 states (38 sensors and 2 maximum back
off) on 2GB RAM memory. For maximum 3 and 4 frames
waiting time, we are up to 19 and 15 sensors, respectively.
Note that since we work on a relatively old computing
platform, we expect our approach can handle a larger number
of states than our experimental data.

Even though the current result is limited due to the state
explosion problem, a pioneer study on different maximum
waiting has been depicted in figure 7. In figure 7, the number
of sensors and time slots is the same in all the sample
points. It clarifies that maximum 2 frames waiting is the most
favourable choice comparing with the cases of 3 frames and
4 frames given a number of sensors up to 10. It supposes that
the favorable choice will switch to 4 frames after reaching
a certain point because of the reduction of the probability

Figure 7. Measure different maximum back off time

of collision. Part of our future work will be to extend the
current plot, i.e. to consider more sensors and time slots.

VII. LMAC ANALYZER

Based on the results described in the previous sections,
we have created a tool, called LMAC analyzer, which is a
prototype on the MATLAB platform. Figure 8 is a screen
shot of the running prototype. Users are required to input
the desired LMAC parameters (the number of sensors, the
number of time slots, and the maximum back off time),
and the tool will automatically output a probabilistic model,
in the form of a probability transition matrix of a DTMC.
The expected time to stabilization is also calculated. It is
our intention that the next version of the tool will support
plotting in order to solve different optimization problems,
such as those mentioned in section V.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we have reported a probabilistic model for
the analysis of a medium access protocol LMAC for WSN.
The model abstracts the concurrent behaviour of the setup
process in LMAC, where individual sensors are allocated to
time slots, preferably in an efficient way to minimize the
price. There are two sources of randomness in this concur-
rent stochastic process. First, when the nodes randomly pick
time slots, and second when the collided nodes randomly
pick back off time. Considering the worst case scenario,
we resolved the non-determinism, which comes from the
underspecification of the protocol by probabilistic choices.
The probabilities are calculated using combinatorial theory
with a uniformity assumption. Moreover, our simulation
engine verifies the analytical model, and it can optionally

Figure 8. Screen shot of the LMAC Analyzer

compute solutions whenever numerical challenges appear
for the analytical model. After obtaining the model, we
have analyzed the performance of the process and we have
calculated optimal parameters for network configuration.

Contrary to previous work ([7], [14], [17]), our contri-
bution is an alternative approach of system abstraction, by
which parallel composition can be avoided. The inherent
advantage is that no detailed model is required in order
to do the abstraction. Thereby, it is possible to handle
larger systems directly. Note that our model has a moderate
state space

(
n+r+1

n

)
, which depends only on the number of

sensors n and the maximum back off time r.

B. Future Work

Our model is based on a uniformity assumption for the
back off time selection, as one of the strategies that was
proposed in [16] in order to ensure a low latency for the
most common data traffic in WSN. It is interesting to see
how all these strategies will perform using our abstracted
model. One straightforward way is to apply different weights

on each back off option, such as the approach given in [17].
In addition, different back off distributions might lead to the
same average waiting time, which could be considered as an
optional way of substituting the maximum waiting time r.
For example, maximum 2 frames waiting with probabilities
1
4 and 3

4 respectively, has the same average waiting time as
maximum 3 frames waiting with probabilities 2

4 , 1
4 , and 1

4 ,
respectively. Thereby, 2 frames maximum waiting (r = 2)
could be used to represent 3 frames maximum waiting (r
= 3). If we could prove the mean of back off waiting is a
crucial factor in the stabilization process, we could build our
model with a smaller maximum back off time, which will
directly reduce the huge number of states.

One of the shortcomings of the abstracted model is that it
is less expressive. So far we have found difficulties express-
ing the model under other topologies. Handling arbitrary
topologies will produce a more general method, which will
be able to attack problems regarding expressiveness. How-
ever, most likely it comes with costs in form of increased
state space.

Abstraction techniques are used to strip away information
that is not relevant for the verification at hand, which lead
to a simplification of verification models. Inspired by the
work given in [2] and [3], we have started to look for
the connections between the mathematical approach and the
compositional approach for the abstracted LMAC protocol.
We have worked on some small cases that can be handled
by the Probabilistic Symbolic Model Checker PRISM [8].
For instance, when the network has 3 sensors, 3 time slots,
and the maximum waiting is 3 frames. With some stochastic
interpretations of the behaviour from the system of parallel
composition, PRISM is able to generate the same abstracted
model. We have got promising results where the DTMC
obtained from our model is exactly the same as the one
from PRISM. One direction for our future work will be
to study and formalize the relationship between these two
approaches.

At last, we aim to initialize a prominent treatment of
generalizing our approach. Contrary to the direction of
abstraction, the model could be concretized in order to coop-
erate with the inherent advantage of having small state space
from our direct method. The main object of concretization
is to enhance the expressiveness of the model. For example,
try to keep the non-determinism and specify our model in
terms of others topologies.

APPENDIX

The number of ordered arrangements of n objects, in
which there are k1 objects of type 1, k2 objects of type 2,
. . . , and km objects of type m, such that k1+k2+· · ·+km =
n, is given by(

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
.

This number is called the multinomial coefficient. For in-
stance, suppose that we have 16 sensors and we want to
put them into 6 slots, with 2, 2, 2, 3, 3, and 4 sensors
respectively, then(

16

2, 2, 2, 3, 3, 4

)
=

16!

2!2!2!3!3!4!
,

is the number of ordered ways of doing so. If we do not
distinguish the sensors, we have to eliminate the ordering,
i.e., we will have that(

16
2,2,2,3,3,4

)
3!2!1!

=
16!

2!2!2!3!3!4!× 3!2!1!

is the number of non-ordered arrangements.
In order to use these arguments and put them into our

case, we define the following function

A(v, g, j) =
1∏x

s=1(v′[s])!
,

where v is an input vector with dimension x, v′ = v+ ej +
eg−j , where ej is a vector with 1 in the j-th entry, and 0
otherwise. This function corresponds to the term 1

3!2!1! in the
previous example, and it is used to eliminate the ordering
of any arrangement.

Having the definition of A, we will give the general form
of pi(x), for i ≥ 1.

When the collision only happens in a single slot, we have
that

p1(x) =
1

x!
.

According to the interpretation of the multinomial coeffi-
cient, we have only one slot within all the x sensors.

Now, define the function

q2(g, v, s) =
b g2 c∑
j=s

1

j!(g − j)!
A(v, g, j), s ≥ 2,

which indicates that collisions can happen in two slots. The
parameter g stands for the number of collided sensors. Note
that in order to eliminate the ordering we call the function
A. Within the summation, j is the number of sensors in the
first slot, and g − j is the number of sensors in the second
slot. Thus, we get that p2(x) is a particular case of q2 given
by

p2(x) = q2(x, 0, 2).

In general, the function qi(g, v, s) for i ≥ 3, indicates
that there are i slots with collisions. It is calculated using
recursive calls as follows

qi(g, v, s) =

b gi c∑
j=s

1

j!
qi−1(g − j, v + ej , j), s ≥ 2.

We compute this function by putting j sensors into the first
slot (corresponding to the term 1

j!), and putting the others

(g− j) sensors into (i− 1) slots, which we can get it from
the previous qi−1.

Thus, the general form of pi(x) for i ≥ 3, is given by

pi(x) =

b xi c∑
j=2

1

j!
qi−1(x− j, ej , j).

ACKNOWLEDGMENT

The work is conducted in the VKR centre of Excellence
- MTLAB. We would like to thank Villum Foundation
and Velux Foundation for financial support. And we would
like to thank Michael James Andrew Smith and Flemming
Nielson for the helpful discussion with their work on com-
positional model of the LMAC protocol in PRISM.

REFERENCES

[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A
tutorial on uppaal. Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software
Systems (SFM-RT 2004), pages 200–236, 2004.

[2] Ed Brinksma. Verification is experimentation. International
Journal on Software Tools for Technology Transfer (STTT),
pages 107–111, 2001.

[3] Edmund M. Clarke, Orna Grumberg, and David E. Long.
Model checking and abstraction. ACM Transactions on
Programming Languages and Systems (TOPLAS), 16, 1994.

[4] Don Coppersmith and Shmuel Winograd. Matrix multi-
plication via arithmetic progressions. Journal of Symbolic
Computation, pages 251–280, 1990.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of program by construction
or approximation of fixpoints. In the 4th Annual ACM
Symposium on Principles of Programming Languages, pages
238–252, New York, 1977. ACM.

[6] Alexandre David, Arild Haugstad, and Kim G. Larsen. Up-
paal pro: Uppaal for probabilistic timed automata. http:
//www.cs.aau.dk/∼arild/uppaal-probabilistic.

[7] Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader.
Modelling and verification of the lmac protocol for wireless
sensor networks. In Integrated Formal Methods (IFM 2007),
volume 4591 of LNCS, pages 253–272. Springer, 2007.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), volume
3920 of LNCS, pages 441–444. Springer, 2006.

[9] G. Latouche and V. Ramaswami. Introduction to Matrix
Analytic Methods in Stochastic Modeling. ASA, SIAM, 1999.

[10] Thomas Moscibroda and Roger Wattenhofer. Coloring un-
structured radio networks. Distributed Computing, 21(4):271–
284, 2008.

[11] M.F. Neuts. Probability distributions of phase type. Univer-
sity of Louvain, 1975.

[12] M.F. Neuts. Matrix geometric solutions in stochastic models.
Jhons Hopkins University Press, 1981.

[13] T.Nieberg, S.Dulman, P.Havinga, L. van Hoesel, and J. Wu.
Collaborative Algorithms for Communication in Wireless
Sensor Networks. Kluwer Academic Publishers, 2003.

[14] L.F.W. van Hoesel. Sensors on speaking terms: schedule-
based medium access control protocols for wireless sensor
networks. PhD thesis, University of Twente, 2007.

[15] L.F.W. van Hoesel and P.J.M. Havinga. A lightweight medium
access protocol (lmac) for wireless sensor networks: Reducing
preamble transmissions and tranceiver state switches. In 1st
International Workshop on Networked Sensing Systems (INSS
2004), pages 205–208. Society of Instrument and Control
Engineers(SICE), 2004.

[16] L.F.W. van Hoesel and P.J.M. Havinga. Design aspects
of an energy-efficient, lightweight medium access control
protocol for wireless sensor networks. Technical report,
Centre for Telematics and Information Technology, University
of Twente, Enschede, 2006.

[17] M.S. Vighio and A.P. Ravn. Analysis of collisions in wireless
sensor networks. In 21st Nordic Workshop on Programming
Theory (NWPT 2009), Lyngby, Denmark, 2009.

