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Abstract

Based on the well-known fact that social networks can provide effective mechanisms that help to
increase the trust level between two trade partners, we apply a simple game-theoretical framework
to derive transaction costs as a high risk of opportunistic behavior in a repeated trade relation
determined by the density and size of trading networks. In the empirical part of the paper we apply
a two stage procedure to estimate the impact of social network structures on farm’s transaction
costs observed for different input and output markets. At a first stage we estimate a multiple
input-multiple output stochastic Ray production function to generate relative shadow prices of
three inputs and two outputs traded by farms. At a second stage a structural equation system is
derived from the first order conditions of farm’s profit maximization to estimate simultaneously the
parameters of commodity specific transaction cost functions for all traded farm inputs and outputs.
Estimation results based on a sample of 315 Polish farms imply a significant influence of social
network structures on farm’s transaction costs. Moreover, estimated transaction costs correspond
to a reasonable amount of farm specific shadow prices.

1 Introduction

In general, one can distinguish two different pathways for how social networks influence individual
behavior and social outcomes: the impact of networks on cooperation and the impact of networks
on beliefs (Jackson, 2008). Regarding the first, economic and social exchange is often plagued by
opportunistic behavior. Ensuring honest compliance with an explicit or implicit contract requires
institutions to detect and punish cheating. In modern and developed economies, a well-functioning
state legal system performs these functions. However, even within a well-functioning legal system,
opportunistic behavior generally still occurs. Thus, self-governance has been studied as a form of
governance, which complements rule-based systems (Dixit, 2003). Self-governance corresponds
to relation-based governance, i.e. the fact that cooperation is sustained via specific structures of
interactions among actors.

Self-governance among a group of actors with repeated exchange among different partners can
work if communication within the group permits a collective memory of cheating and group
members punish cheaters by refusing to trade with them. Kandori (1992) developed a pioneer-
ing theoretical approach, which was elaborated on by Greif (1994) and more recently by Dixit
(2003). Moreover, in sociology, a well-established literature on social exchange and networks ex-
ists (Cook and Emerson, 1978; Raub and Weesie, 1990; Buskens, 2003). However, despite these
seminal contributions, it is fair to conclude that research on networks and cooperation is still in its
infancy. In particular, existing economic studies focus on rather abstract models of relation-based
self-governance. These models do not permit derivation of explicit hypotheses regarding how spe-
cific network structures impact cooperation (Dixit, 2003; Greif, 1994). Moreover, existing studies
mostly analyze the impact of network structure on cooperation or defection as a binary variable,
while the degree of cooperation, or the costs of achieving cooperation, have hardly been studied as
yet.

In this context, this article sets out (1) to develop a simple game-theoretical model in which
transaction costs are derived from the risk of opportunistic behavior in repeated multilateral trade
relations, (2) to demonstrate that individual transaction costs are determined by the structure of
an agent’s ego-centric (personal) business networks, and (3) to estimate empirically the impact



of business network structures on farms’ transaction costs observed for different input and output
markets. Estimation results based on a sample of Polish farms imply a significant influence of
social network structures on farms’ transaction costs.

2 Theory

2.1 A simple trading world

Consider a simple trading world comprising two buyers and three sellers located in two regions.
Let b = 1,2 denote the buyers, while s = 3,4,5 denote the sellers.

Sellers and buyers are matched and can exchange two commodities, A and B. For a given ex-
change rate v, sellers are willing to exchange a specific quantity ¢ of commodity A in return for a
quantity v -t of commodity B. Sellers are defined as the agents who move first, while buyers, by
definition, always respond. Thus, exchange is considered as a one-sided prisoner’s dilemma game
(OSPD), where only buyers can display opportunistic behavior. Let IT*(f,v) = v-¢ — C(t) and
1P (¢,v) = (1 —v)t V¢ <y, TT°(¢,v) = 0V ¢ > 1}, denote the payoff functions of sellers and buyers,
respectively. C(.) is a convex function, which reflects increasing marginal costs of production for
commodity A. Quantity 7, is understood as buyer »’s maximum trading capacity.

2.2 Matches

The game is played in two periods. In the first period, buyers can decide whether they want to
behave honestly or cheat. The appropriate reward or punishment for their behavior occurs in the
second period, which is, as usual, interpreted as the reduced form of a longer future (Dixit, 2003,
p- 1296). In each period, both buyers are randomly matched with sellers, where m,; denotes the
probability that buyer b is matched with seller s. The matches are assumed to have the following
properties:

MI1. Independence: In each period, matches of buyer 1 and 2 are independent of each other.
Further, the actual match in period 1 does not affect the probabilities of matches in period 2—an
assumption to make the analysis more tractable. In reality, buyers and sellers may build reputation
and preserve matches that have had good outcomes. But as long as there is some exogenous
probability of separation due to death or retirement of trading partners, qualitative results will be
unaffected by this assumption (see also Dixit, 2003).

MI2. Matching technology: In each period, each buyer b meets exactly one seller s. Hence
Y mps =1, b € (1,2). However, a seller can meet one, two or no buyer, i.e. Y my; < 1V s. The
s b

latter assumption implies that trading involves search costs for sellers, which can differ among
sellers.

MI3. Spread of information: If a buyer in a match cheats the seller, the seller can inform other
sellers. We denote the probability that information sent by seller s is received by seller s by iy.
Information transmission is symmetric: iyy = iy;. Obviously igo = 1.

2.3 Player types, information, strategies, and payoffs

Following Dixit (2003) there are two behavioral types of buyers: normal buyers (N-type) and
Machiavellian buyers (M-type). The M-type buyers should be thought of as especially skillful
cheaters. In period 1 types are unknown, where nature independently draws the type of each buyer,



with € being the probability that a buyer is of type M. The probability € is assumed to be very small.
In each period, four different matching scenarios are possible for each seller. We denote these by
g=20,1,2,3: no match (g = 0), meeting buyer 1 (g = 1), meeting buyer 2 (g = 2), or meeting both
buyers (g = 3). With given matching probabilities, it is straightforward to calculate the probability
that a specific matching scenario occurs for each seller. We denote these probabilities by Wi.

If a seller is matched with a buyer he may know the buyer’s history of cheating, if any, given
the information mechanism described under MI3. For each matching scenario g, the stage game
of matched sellers and buyers is as follows:

G1. Matched players simultaneously choose whether to play or not. The payoff of the outside
opportunity for each player is normalized to zero.

G2. If a seller and a buyer choose to play, they play the following one-sided prisoner’s dilemma
game (OSPD?).

Seller s formulates an exchange proposal (s, vps), 0 < tps < f), and vy, € (v, v). Buyer b can
agree with this proposal, or reject. If b rejects, the game is over and both players receive their
outside payoff of zero. If b agrees, then seller s delivers #,, units of commodity A to the buyer.
After receiving f,, the buyer can choose to be honest, i.e. return v - #; units of commodity B to the
seller, or the buyer can cheat and only return v, - #;; units, with 0 < v, < v. Hence, we assume that
trading does not occur in a completely lawless environment, i.e. there is a limit to cheating, with
a minimum degree of contract fulfillment being guaranteed by the state legal system at least for
N-type buyers.

If b is honest, he receives payoff I1?(t,,, v,s) which is always lower than, or equal to, his payoff
from cheating IT° (1, v.). Seller s’s payoff depends on the matching scenario g. If a seller meets
only one buyer, his payoff is IT°(¢;, vp,) if the buyer is honest and IT° (¢, v.) if the buyer cheats.
However, if seller s meets both buyers his possible payoffs from the game played with buyer b are
conditional on his trade proposal made to the other buyer t_j, i.e. Y tp5vps — C(tps +1_p) if b is

b

honest and tj,v, +t_pgv_ps — C(tps +1_py) if b cheats, respectively. Thus, under scenario g = 3, a
seller simultaneously plays two OSPD games, one with each of the two buyers. To formulate some
further restrictions regarding the payoff functions of players, we define 7 = argmaxIT*(z,v) and
t& = argmaxIT¥(¢,v.) < t¢ as seller s’s maximum trading volumes given prices v and v, respect-
vely.

If a buyer meets an M-type player, the latter always cheats. In particular, we assume that even if
a seller proposes the state guaranteed exchange rate v., M-type buyers still have sufficient cheating
skills to reduce this price, while N-types pay v.. We thus assume that seller s will always make a
loss, L > 0, when playing against an M-type buyer. Therefore, knowing that b is an M-type buyer
implies that s will choose not to play. If s proposes the higher exchange rate v, cheating of any
buyer will always imply the price v., independently of the buyer’s type.

We make two further assumptions:

P1. It holds for any seller that (1 — &)IT*(¢¢,v.) — €L > 0, which implies that every seller prefers
to play when matched with a random buyer, where in period 2 sellers will always propose the
minimal trading contract (¢{,v.) to any unknown buyer they meet under matching scenarios 1
and 2, while they will propose (0.5¢¢,v,) to each single buyer under matching scenario 3.

P2. Tt holds for any buyer that I1° (7, v) — I1? (5, v.) < ci¥ Vs, where, as defined below, ¢ is the
expected payoff of an N-type player in period 2 who played honestly with seller s in period 1. P2
says that in a world where cheating is detected with certainty, no N-type buyer will choose to cheat.
Thus, N-type buyers will only be tempted to cheat if there is a positive probability that cheating in



period 1 will not be detected by future trading partners.

2.4 Equilibrium

Instead of a full derivation of equilibrium strategies, we focus on characterizing the equilibrium
behavior of sellers and buyers, where a formal proof is available from the authors. The gen-
eral solution concept is an imperfect Bayesian Nash equilibrium. By assumption, M-type players
always choose to play, and if they play, they always cheat. Thus, the relevant strategies to be
characterized are those of the sellers and N-type buyers.

The crucial point is that in equilibrium, N-type buyers will only play honestly in period 1 if
their total expected payoff from playing honestly is higher than the payoff received from cheat-
ing. Given a trading proposal (#s,v), cheating results in a profit gain of #,,(v — v,) in period 1,
while the cost of cheating results from the fact that in period 2 future trading partners might be
informed about a buyer’s cheating and refuse to play. Let cgs and cj’ denote the expected pay-
offs of buyer b in period 2 if he played honestly with seller s and if he cheated in period 1, re-
spectively. Thus, the cost of cheating equals ch —cp’. It holds: cZS = Y mygcpy, Where cpy =

S/
t5(1=ve) [(1=0.5m_py (1 —m_pg€)]. Accordingly, it holds ¢’ = Z{mbs’ (1 —igy)cps. Overall,
buyers play honestly as long as the gains from cheating are lower or e(iual to the costs of cheating,
ie. fps(v—v,) < CZS -5’

Hence, for each seller and each buyer, a maximum trading volume, 75, = Qps/(v — v¢), exists
that guarantees honesty in equilibrium and is determined by the given matching and information
technology MI1-MI3, where Q, = cZS — ¢’ = Y. My, igoCp are the costs of cheating. Accordingly,

S,

given this equilibrium strategy of N-type buyers, a seller s’s Bayesian updating on the information
that a currently matched buyer cheated in period 1 results in the belief that this buyer is an M-type
player. Therefore, choosing not to play with this buyer in period 2 is optimal.

Overall, in equilibrium, each seller has a trading strategy in period 1, £5, = (t;,), Vs, = (Vi)
for each matching scenario g = 0, 1,2,3 which maximizes his expected profit. Assuming Qj, is
sufficiently large so that sellers always cooperate in the first period', equilibrium strategy can

be characterized as follows:? tie = 0,8 =0,2; ff;, = min {f15,71,1°} , 8 = 1,3; e =0,8=0,1;

£,, = min {t_zs,fz,tf - t;;g} g=2.3.

2.5 Transaction costs and networks
Obviously, as long as %t;s g < t¢, trading will be restricted from the view point of a seller, where

trade restrictions are caused by a commitment problem of matched buyers to play honestly (75, <
t7), or due to search costs. In our simple trading game, commitment power of a buyer b vis-a-vis a
seller s is exactly captured by the term Qj, while search costs result from the fact that a seller is
not matched with a buyer, or is matched with a buyer who has limited trading capacities (7, < t?).

'If Qp, is below a specific threshold, sellers will cease to cooperate, i.e. make a non-cooperative trading proposal,
(t{,ve) even in period 1.

ZPlease note that under scenario 3 there might be multiple trading proposals (f,) that maximize seller s’s payoff. For
simplicity, guaranteeing a unique solution, we assume that sellers always suggest a maximum trading quantity to
buyer 1 without changing main implications of our analyses.



In reality, firms often have to make production decisions before actually knowing which trading
deals they can make. In this case, sellers have to make their production decision under uncertainty,
1.e. they do not know which trading scenario g =0, 1,2, 3 will be realized. Assuming that non-sold
quantities of commodity A have value v to the seller, his expected profit maximization with ex
ante uncertainty of trading scenarios can be stated as follows:

t; = argmax IT*(t) — TC(t) (1)

t
TCS(I) = ngg [It>£s‘g (V - vg)(t o fsg> t+ée: fsg(v - VC)]7
8

where 77 denotes seller s’s optimal production decision, 7y, = Ztg‘sg are the equilibrium trading
b

volumes resulting from our simple trading game, and Iisi, is an indicator function that is one if
t > fy, and zero otherwise. Obviously, TC*(r) can be interpreted as seller s’s transaction costs of
using the trading regime (MI1-MI3) reflecting inherent commitment and search problems. Fur-
ther, TC*(¢) is increasing stepwise in 7, where the discontinuous jumps of the transaction costs
occur at the equilibrium trade volumes of each trading scenario g (f = fy,). Accordingly, the con-
crete specification of seller s’s transaction cost function depends on the matching and information
mechanism MI1-MI3.

How can we relate transaction costs of relation-based trading regimes with actual network struc-
tures of underlying interactions? In more specific terms, how can we relate a firm’s personal,
so-called ego-centric, network structures to its individual transaction costs, which result from com-
mitment problems of trading partners?

To understand this relation intuitively, please note that both the matching and the information
mechanisms are defined by a network of dyadic trading and information exchange relations among
the set of traders. Accordingly, an ego-centric or personal business network of an individual trader
i 1s defined as the subset of all dyadic relations among traders in the neighborhood of i, where the
latter is defined as the subset of all traders which have a direct trading or information exchange
relation with trader i.

Assume business occurs in separated small local trading worlds. In this case, it follows that
small and dense ego-centric business networks increase commitment power of firms and hence
reduce c.p. their transaction costs. To see this, consider a small local trading world comprising
only one buyer and three sellers, where a seller s has a strong and direct information link to the
two other sellers, i.e. iz is close to 1, while all sellers have a strong trading link with the buyer b,
say myp, = 0.33 for all s’. Hence, the ego-centric business network of s is small with a size of
3 and dense, with a density of 2/3 = 0.67. Moreover, it follows that Qp; almost equals CZS , that
is cheating is detected with almost certainty and thus seller s has almost full commitment power
vis-a-vis buyer b.

In a large global trading world, however, a seller meets many different buyers with a low match-
ing frequency for a specific buyer. Hence, in a large trading world, a seller would need to form
a large number of information ties to be able to commit all matched buyers. But, network ties
are costly and hence the number of ties per firm is restricted. Accordingly, in a global trading
world, a seller can only reach a large set of other trading partners via indirect information ties. It is
well known in quantitative network theory (Rapoport, 1953) that the probability that information
spreads from any node i to any other node j in a large network is determined by global network
structures, i.e. the global network density and the global clustering of the network. Analogously, at



the micro level, an actor’s ego-centric network structures determine the probability that informa-
tion sent by EGO will reach an average node in the network (see for example Henning and Saggau,
2010), where the probability increases with size and decreases with density of the EGO’s network.

Thus, in a global trading world, large and sparse (not dense) ego-centric business networks imply
higher values of Qy,, which increase the commitment power of firms and lower their transaction
costs. Compared to small local trading worlds, transaction costs are ceteris paribus higher, as
information transmission is less efficient in large, as opposed to small networks. Moreover, please
note that as long as business occurs in separated small trading worlds, large and sparse networks,
including traders of different local trading worlds, are quite inefficient at committing to a specific
local trader.

3 Empirical Framework

Overall, our theory implies that relation-based self-governance of trading involves commitment
problems, which implies individual non-linear transaction costs of firms. Moreover, the density
and size of a firm’s ego-centric business network should have a significant impact on the firm’s
absolute and marginal transaction costs.

To test our theory empirically, we undertake an econometric estimation of the impact of social
networks on transaction costs in commodity markets. Our starting point is the following Lag-
rangian for maximizing a farm’s risk-adjusted profit including transaction cost:

N
A=Y [pyi—T( Z wixg + T ()] — AF (y,x) (2)

i=1 k=1
where y = (y1,...,yn)’ is a vector of N output quantities, x = (xp,...,xx)’ is a vector of K input
quantities, p; is the price of the ith output, wy is the price of the kth input, Tl-y are transaction
costs for selling the ith output, 7;" are transaction costs for purchasing the kth input, Rly is a risk
premium due to price volatility of the ith output, A is a Lagrangian multiplier, and F(y,x) denotes
the transformation function with F(y,x) = 0 if the output quantities y can be produced from the
input quantities x. The first-order conditions are

z_;:pi—riy—'f—/ll’iyzovl'; a—AZ—Wk—TIf—AFIf:OVk )

8xk
with 77 = 9T /dy; being marginal transaction costs for selling the ith output, 7 = dR. /dy; are
marginal risk premiums due to price volatility of the ith output, ' = dF(.)/dy; are partial de-
rivatives of the transformation function with respect to the ith output, 7} = d7;*/dx; are marginal
transaction costs for selling the kth input, and F' = dF(.)/dx, are partial derivatives of the trans-
formation function with respect to the kth input. Some calculus leads to

v P T¥
¥ I-+t-—--+ 1+-%
F. : . pi
Fo P b Pigysy W | owe gy 4)
R omo_n_n By pom 1
P1 P1 P1 P1

Given a specified farm technology, F(y,x), the transaction costs function can be estimated eco-
nometrically based on firms’ observed inputs and outputs, observed farm-specific input and output
prices, as well as further farm characteristics.



3.1 Econometric models

In the first step we estimate F(y,x) as a flexible translog multiple-output stochastic Ray production
frontier, as suggested by Lothgren (2000). The key idea of this approach is to represent the vector
of output quantities y by a distance component /(y) = ||y|| (its Euclidean norm) and a direction
measure m(0(y)), i.e. the polar coordinates (angles related to the ratio of one output to the others)
with [m(8 (y))]| = 1.

In the second step, we estimate transaction cost parameters based on eq. (4). Taking the logar-
ithm and replacing the logarithmic terms on the right-hand side by first-order Taylor series approx-
imations yields after re-arrangements (Henning et al., 2010):

F’ : (P SO A
ln(—’y)—ln(&):——l——l—f——l—i——lViZz )
Fj P1 pbi pi P11 D1
F wToon
ln<_ﬂ>_1n(ﬂ):_k+—l+—1Vk. (©6)
Fy, 4 Wk p1o Pi

Given our theoretical results, we assume that the transaction costs 77 and T;' can be approximated
by the quadratic functions

L=yl v oyt B Vi T = v ofnct Bg Yk, @

where ¥, o, B, v, of, and By are unknown parameters.
To estimate the influence of network parameters on transaction costs, we further parameterize
the parameters of the transaction cost functions by

o =8 +{Vii of =8 +LVk ®)
B =« +nzVi; Bf=xi+mzVk, ©)

where §;, 8, 7, and k}f are unknown parameters, §7, {7, ], and N} are vectors of unknown
parameters, and z denotes a vector of network structural parameters. Finally, we assume that the
risk premium due to volatility of output prices can be approximated by the functions Rly = ,ul.y vly Vi,
where [,Liy is an unknown parameter and vly is the price volatility of the ith output.

Given the above model specifications, we can derive the following system of structural equations

Y =5 (—l) & (—£> + k) (—2~ &> +n; (—2-z&> +u (—ﬁ> 10
Di Pi Pi Pi Pi
+8 (i) +&) <i) +i) <2-y—1) +1 (2-zy—1) + 1 (ﬁ) +e Vi>2
P1 P1 P1 P1 P1
X _ X i X i x_k X . x_k
Y=g (Wk) & (Wk)JrK‘,f(Z Wk)+’1k (2 Zwk) (1)
1 v
< (5 )+ 6t () o (2 ) o (a5 ) o () o v
P1 P1 P1 P1 P1

F p F pi

whereYiy:In F—’y— Vi>2, Y =In T wn Vk,andeiyVi22aswellase,kaare
1 Pi 1 Wk

stochastic error terms.



3.2 Data and estimation

For the econometric estimation of the above structural equations, we use accountancy data and
data of ego-centric networks of Polish farms collected in an farm-household survey in 2007, con-
ducted by the authors (Henning et al., 2010). We have a sample of 315 observations entering the
first step of the estimation. However, at the second step, we had to disregard between 215 and 232
observations due to missing price data (see table 2). We distinguish two outputs, crop products and
livestock products, as well as six inputs, labor, land, capital, intermediate inputs for crop produc-
tion, intermediate inputs for livestock production, and general intermediate inputs. Furthermore,
we include four variables in the model as explanatory variables for the inefficiency term, education
(1 = low to 4 = high), experience (measured in years worked in agriculture), a dummy variable
for mixed (non-specialized) farms, and the farmers’ attitude to risk (1 = risk neutral to 4 = strong
risk aversion). The multi-output stochastic ray production frontier model was estimated enforcing
monotonicity in inputs applying a three-step estimation procedure proposed by Henningsen and
Henning (2009) using the R package frontier (Coelli and Henningsen, 2010). Estimated paramet-
ers of the unrestricted and restricted model are provided in Henning et al. (2010).

Using the parameters of the adjusted restricted model, we compute the dependent variables for
the second step of our estimation procedure, i.e. equations (10) and (11). In this step, we consider
transaction costs on five markets, crop products, animal products, intermediate inputs for crop
production, intermediate inputs for animal production, and general intermediate inputs, while we
consider labor, land, and capital as quasi-fixed production factors. Following our theoretical hy-
pothesis, we use two network parameters, density (z;) and size (number of business contacts, z7),
calculated from farmers’ ego-centric business networks. Following the state-of-the-art approach
in quantitative network theory, we use three name generators to collect ego-centric business net-
work data, i.e. we asked farm managers to name up to five most important suppliers of inputs and
demanders of their outputs, as well as to name up to five most important other firms with whom
they exchange valuable business information (Henning et al., 2010). Following the approach of
Krackhardt (Wasserman and Faust, 1994), we further ask farm managers to describe the relations
between named business partners ranging from 0 = no relation to 3 = very close relation.

We denote crop products as first output (i = 1) so that the corresponding variables are used for
the normalization in equations (10) and (11). Hence, we estimate a system of four equations—
one equation (10) (with i = 2 for livestock products) and three equations (11) (with k£ = 1 for
intermediate inputs for crop production, k = 2 for intermediate inputs for livestock production,
and k = 3 for general intermediate inputs)—by seemingly unrelated regressions (SUR) using the
R package systemfit (Henningsen and Hamann, 2007).

Given the parameter estimates of the second stage, we can calculate the estimated normalized
marginal transaction costs by

T &+ ¢ 21+C,-y7222+21<,~yyi+277,~y,1 )’i21+277,'y,2yi12

5 ’ Vi (12)
Di Di

T GG+ G 2K 20 Xk 2 215, Xk 22

k- ’ ’ ’ 2252 vk (13)
Wi Wi

To analyze estimated network effects on normalized marginal transaction costs, we take the
partial derivatives of eqgs. (12) and (13) with respect to density (z;) and size (z7).



4 Results

Summary statistics and estimated transaction cost parameters are presented in tables 1 and 2. Over-
all, estimation results can be summarized in the following points. First, as can be seen from table 3,
we find considerable marginal transaction costs ranging from 32 % to 59 % of the corresponding in-
put and output prices. Second, a significant influence of network parameters on both marginal pro-
portional ({-parameters) and non-proportional (1)-parameters) transaction costs results. However,
single parameters are only significant at the 5%-level for network size (z;, see t-values for paramet-
ers l.yz, G niyz, 1M;,), but not for network density (z1, see t-values for parameters Ciyl, Sy nl.yl ;Mg In
table 1).

Table 1: Parameters Estimated on the 2nd Step

Coefficient Estimate t value Coefficient Estimate t value
51y 0.80456314  2.3240 ﬁz 0.04102752  1.6079
1y1 0.48501037 0.8573 Ky -0.00000373 -1.8032
lyjz -0.22042459 -2.9761 m -0.00000593 -1.5396
Kf 0.00000410  4.6660 Tlf,z 0.00000009  0.1935
n{ | 0.00000106  0.3474 557‘ 0.08015138  1.0440
77{72 -0.00000012 -0.5614 Cf,] -0.30235091 -1.3487
/.Lf -0.12894477 -1.7863 3o 0.05193221 1.9735
32y 0.09574413  0.3026 K‘é‘ -0.00000045 -0.7926
zyl 0.13505684 0.1623 nil 0.00000167 1.4934
2y’2 -0.18270195 -2.3449 M, -0.00000034 -2.0020
K;y 0.00000112  0.3938 Sé“ 0.20119201 0.7349
ng | 0.00000107 0.2761 33“,1 -0.92568881 -1.0514
n;z 0.00000030 0.5616 g“ ) 0.22630664  3.1923
u§ -0.01044592 -0.1447 K -0.00000995 -1.8383
of 0.11524579  1.1466 LUER 0.00000938  0.5748
i1 0.10241470 0.3176 ng‘jz -0.00000121 -1.1524

Table 2: Summary Statistics of the 2nd-Step Estimation
N DF R* adj. R?
Y5 (livestock products) 97 83 0.4616 0.3772
Y{" (intermediate inputs crop) 98 85 0.6710 0.6245
Yy (intermediate inputs livestock) 83 70 0.4096 0.3084
Yy (general intermediate inputs) 100 87 0.4382 0.3607

Third, on average, the following pattern of the impact of network parameters on transaction
costs can be observed from table 3. While density lowers transaction costs on input markets and
raises transaction costs on output markets, the opposite effect can be observed for network size.

How can these patterns be explained? Based on our above theoretical analysis, it follows that
for globally traded goods, transaction costs are lower the larger and less clustered the business
network of a firm.
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By contrast, for locally traded goods, firms with dense and locally clustered business networks
face comparatively low transaction costs, since they can better constrain their local business part-
ners via direct contacts to their local clients. Clearly, locally clustered networks are less effective
at constraining the opportunistic behavior of global firms.

Assuming inputs are locally traded and outputs are globally traded, the estimated patterns of
network effects tend to support our theory.

Table 3: Relative Transaction Costs and Effects of Network Parameters (Median Values)
relative TAC effect of density effect of size

Input Crops 0.3563 -0.0580 0.1020
Input Livestock 0.2659 -0.4769 0.0785
Input General 0.5905 -0.8188 0.2131
Output Crops 0.5167 0.6414 -0.2523
Output Livestock 0.3232 0.1930 -0.1587

5 Conclusion

We see two contributions of this article to the emerging field of networks and economics. First,
the article extends the theory by introducing transaction costs into existing network models of
multilateral exchange. Second, we submit our extended theory to a comprehensive econometric
empirical estimation of farms’ marginal transaction costs. We find a significant quantitative impact
of ego-centric network structures on these costs. This not only adds to the established theory of
farm behavior and transaction costs, but also suggests future research on how policy intervention
can be designed to change a farm’s business networks to lower transaction costs.
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