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Soliton propagation in slow-light states of nonuniform high-index photonic crystal fibers (PCFs) is studied nu-
merically by a recently developed time-propagating 1þ1D equation. It is demonstrated that very slow solitons
can be highly stable against even short-period roughness. Soliton trapping by longitudinal inhomogeneities is
also found as the soliton velocity decreases due to Raman scattering. Practical limitations and opportunities based
on the simulation results are briefly discussed. © 2011 Optical Society of America

OCIS codes: 060.4005, 060.4370, 060.5295, 060.5530, 190.5650, 190.6135.

1. INTRODUCTION
Slow-light states in photonic bandgap structures are of inter-
est for all-optical buffering or processing of optical signals (for
a recent review, see [1]). While ideal photonic crystal struc-
tures will in principle allow arbitrarily slow propagation,
material loss and structural imperfections have been shown
to strongly impact the propagation of slow-light states, limit-
ing the slow-down factors obtainable in practice [2,3]. Effects
of loss can in principle be mitigated by the implementation of
amplification schemes. Structural imperfections, however,
will in practice be an unavoidable limitation. Guidance of
slow-light has so far been experimentally realized in planar
photonic crystals, which are structured on the subwavelength
scale and therefore also has disorder effects appearing on that
scale. An interesting, although so far hypothetical, alternative
is the use of photonic crystal fibers (PCFs) made of high-index
materials such as As2Se3, which support slowmodes in axially
uniform waveguides due to the existence of an in-plane photo-
nic bandgap [4]. General experience from fiber drawing and
nanowire tapering gives reason to expect that significant in-
homogeneity in such fibers would only appear over longer
length scales and so it is of interest to study the limitations
arising from such fluctuations.

It has recently been suggested that slow-light states in fi-
bers could conveniently be excited by optical solitons, which
would asymptotically approach the zero-velocity state due to
Raman scattering [5,6]. It is well-known that solitons are re-
latively stable against long-wavelength perturbations [7,8]
and that sufficiently slow solitons may be trapped or reflected
by longitudinal inhomogeneities [9]. Recent modeling has stu-
died these processes for slow solitons in quantum two-level
media [10] and atomic chains [11]. On the one hand, this in-
dicates that solitons may be stable, even if their propagation is
strongly perturbed. On the other hand, it suggests that unin-
tentional imperfections could make it difficult to control the
behavior of slow solitons. The purpose of this paper is to mod-
el the propagation of slow solitons in a realistic As2Se3 fiber
design [6], to quantify the effect of weak disorder on soliton
stability and propagation.

Because of the high-index contrasts necessary in slow-light
fibers of the type investigated here, it is important to develop
nonlinear propagation equations whose formulation do not
rely on scalar approximations. In a recent paper, a generalized
nonlinear Schrödinger equation propagating in the time-
domain was developed and used to model soliton propagation
in a microstructured As2Se3 fiber supporting slow modes
around 2 μm in a small-area solid core [6]. The time-domain
propagation formulation is highly advantageous for describing
pulses with very slow, and possibly bidirectional, motion in
the longitudinal dimension. In this paper, the method is ex-
tended to include the effect of longitudinal inhomogeneities
and the same fiber design is studied numerically. It is shown
that soliton deceleration will eventually lead to trapping of the
soliton in some “potential well” of the longitudinal structure.
Thus, the inhomogeneity does not in principle limit the slow-
down factor, but does severely limit controlled application of
slow-light propagation.

2. FORMALISM
The starting point is the Maxwell equations with the displace-
ment term separated into a linear term describing the ideal
waveguide and a small perturbation term δP:

∇ × E ¼ −μ0
∂H
∂t

; ð1Þ

∇ ×H ¼ ε0εðr⊥Þ
∂E
∂t

þ ∂δP
∂t

: ð2Þ

In [6], δP was assumed to include only nonlinear terms, but
in this paper it will also include a linear term representing
deviations from the ideal structure:

δP ¼ ε0δεðr⊥; zÞEþ PNL: ð3Þ

Here ε is the relative dielectric constant of the ideal fiber and
PNL is the nonlinear part of the induced polarization. For high-
index contrast structures, δεðr⊥; zÞ must be considered a ten-
sorial quantity, which is not always related to the structural
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perturbations in a simple way [12,13], although for the case of
a shifting plane material boundary an analytical expression is
readily obtained [14]. In this paper, explicit calculations of the
perturbed fields for specific structural perturbations will not
be carried out and there is no need to go in further details with
this issue. Instead, the fluctuations will be parameterized in a
simple way as described below.

The E and H fields are expanded into modal fields:

Hðr; tÞ¼ 1ffiffiffiffiffi
2π

p
X
m

Z
dβ½ðAmðt;βÞþδmðt;βÞÞhmðr⊥;βÞeiðωmðβÞt−βzÞ

þ ðA�
mðt;−βÞþδ�mðt;−βÞÞh�mðr⊥;−βÞe−iðωmðβÞtþβzÞ�; ð4Þ

Eðr; tÞ ¼ 1ffiffiffiffiffi
2π

p
X
m

Z
dβ½Amðt; βÞemðr⊥; βÞeiðωmðβÞt−βzÞ

þ A�
mðt;−βÞe�mðr⊥;−βÞe−iðωmðβÞtþβzÞ�; ð5Þ

where the β integration extends over both positive and
negative values. The modes hmðr; t; βÞ, emðr; t; βÞ given by

hmðr; t; βÞ ¼ hmðr⊥; βÞeiðωmðβÞt−βzÞ;

emðr; t; βÞ ¼ emðr⊥; βÞeiðωmðβÞt−βzÞ;
ð6Þ

fulfill the linear Maxwell equations for the ideal structure

∇ × emðr; t; βÞ ¼ −μ0
∂hmðr; t; βÞ

∂t
;

∇ × hmðr; t; βÞ ¼ ε0εðr⊥Þ
∂emðr; t; βÞ

∂t
; ð7Þ

and are normalized according to

ε0
Z

dr⊥εðr⊥Þe�mðr⊥; βÞ · enðr⊥; βÞ

¼ μ0
Z

dr⊥h
�
mðr⊥; βÞ · hnðr⊥; βÞ ¼

1
2
δmn: ð8Þ

The time-dependent expansion coefficients Amðt; βÞ and
δmðt; βÞ coefficients are respectively constant and zero for lin-
ear propagation in the ideal fiber. When nonlinear effects and/
or linear perturbations are added, Amðt; βÞ aquires a time de-
pendence, and in this case δmðt; βÞ must be nonzero, because
both E, H and e, h must satisfy Faradays law, Eqs. (1) and (7),
respectively. These equations lead to the requirement

∂Amðt; βÞ
∂t

¼ −iωmðβÞδmðt; βÞ −
∂δmðt; βÞ

∂t
; ð9Þ

which specifies the connection between Amðt; βÞ and δmðt; βÞ.
It is important to note that Eq. (9) is a consequence of the
choice of basis states in Eqs. (4) and (5), and might appear
different in formulations based on other expansions.

The central assumption underlying the following deriva-
tions is that j∂Amðt; βÞ=∂tj ≪ ωðβÞjAmðt; βÞj, i.e. the field ex-
pansion coefficients vary slowly compared to the optical
frequencies. It is then natural to neglect the time derivative
of δmðt; βÞ in Eq. (9) compared to the term −iωmðβÞδmðt; βÞ.
This is because a rapidly oscillating term in δmðt; βÞ would
tend to average out over the slower time scale of Amðt; βÞ var-
iations, whereas a rapid growth or decay in the amplitude of

δmðt; βÞ would be difficult to reconcile with Eq. (9) under
the assumption of a small ∂Amðt; βÞ=∂t. Neglecting the time
derivative of δmðt; βÞ, one obtains

∂Amðt; βÞ
∂t

≈ −iωmðβÞδmðt; βÞ ⇒ δmðt; βÞ ≈
i

ωmðβÞ
∂Amðt; βÞ

∂t
:

ð10Þ
With this expression, the time derivative of δmðt; βÞ becomes

∂δmðt; βÞ
∂t

¼ i

ωðβÞ
∂2Amðt; βÞ

∂t2
: ð11Þ

Thus, the neglect of ∂δmðt; βÞ=∂t can also be thought of as a
neglect of the second time derivative of Amðt; βÞ, an assump-
tion which is commonly used in scalar z- or t-propagating
derivations [15].

Since the Amðt; βÞ are constant in the linear case, they can
be expected to be slowly varying for sufficiently weak linear
and nonlinear perturbations. On the other hand, the assump-
tion does not limit the pulse duration, which can in principle
be very short even with slowly varying Amðt; βÞ coefficients, if
they extend over a broad bandwidth. Using Eq. (10) along with
the Maxwell equations and eigenmode expansions discussed
above, one may derive the propagation equation [6]

∂Amðt; βÞ
∂t

¼ −
1ffiffiffiffiffi
2π

p
Z

dre�mðr; t; βÞ ·
∂δPþ

∂t
: ð12Þ

Here ∂δPþ
∂t denotes that part of δP which oscillates at positive

frequencies. This is a very general equation, from which one
can derive both nonlinear Schrödinger-type equations and
linear or nonlinear coupled-mode equations, depending on
the number of eigenstates in the expansion, and the nature
of the δP term.

Consider the linear part of δPþ, as given by Eq. (3). The
overlap with e� on the RHS of Eq. (12) can be evaluated to

Z
dre�mðr; t; βÞ · ε0δεðr⊥; zÞ

∂Eðr; tÞ
∂t

≈
1ffiffiffiffiffi
2π

p
Z

dzeiðβz−ωmðβÞtÞ

×
1ffiffiffiffiffi
2π

p
Z

dβ1iωnðβ1Þeiðωnðβ1Þt−β1zÞAðt; β1Þ

×
Z

dr⊥ε0δεðr⊥; zÞe�mðr⊥;−βÞ · enðr⊥; β1Þ ≈ e−iωmðβÞt

×
Z

dzeiβzBnðt; zÞΔmnðzÞ: ð13Þ

Here ΔmnðzÞ describes the overlap integral of the modal field
and the perturbation,

ΔmnðzÞ ¼
Z

dr⊥ε0δεðr⊥; zÞe�mðr⊥; β ¼ 0Þ · enðr⊥; β ¼ 0Þ:
ð14Þ

The function Bmðt; zÞ is given by

Bmðt; zÞ ¼
1ffiffiffiffiffi
2π

p
Z

dβe−iβziωmðβÞ~Amðt; βÞ

¼ 1ffiffiffiffiffi
2π

p
Z

dβe−iβziωmðβÞAmðt; βÞeiωmðβÞt ð15Þ
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and is approximately equal to iωmð0Þ~Amðt; zÞ if the variation of
ωm with β is ignored. In the first equality in Eq. (13), the time
derivative of Anðt; βÞ was neglected in comparison with
iωnðβÞAnðt; βÞ. This is consistent with the assumption that
δP is weak, since An would be constant in the absence of
δP. In the last step, the mode profile dispersion was neglected.
This approximation can straightforwardly be improved, e.g.
by expanding the modal fields in powers of β. As an example,
a first-order expansion of the form

enðr⊥; βÞ ≈ enðr⊥; β ¼ 0Þ þ βeð1Þn ðr⊥Þ ð16Þ

would yield the linear δPþ contribution

Z
dre�mðr; t; βÞ · ε0δεðr⊥; zÞ

∂Eðr; tÞ
∂t

≈ e−iωmðβÞt
Z

dzeiβz
�
Bnðt; zÞðΔmnðzÞ − βΔ0�

nmðzÞÞ

−Δ0
mnðzÞ

∂Bnðt; zÞ
∂z

�
; ð17Þ

with an additional complex overlap term Δ0
mnðzÞ given by

Δ0
mnðzÞ ¼

Z
dr⊥ε0δεðr⊥; zÞe�mðr⊥; β ¼ 0Þ · eð1Þn ðr⊥Þ: ð18Þ

Since in this paper, the inhomogeneity will be parameter-
ized in a phenomenological way, only the Δmn term will be
retained in the following, to simplify the parametrization. A
few test calculations incorporating a correction of the form
(17) did not indicate that this correction added new quali-
tative trends, although this subject has not been exhaustively
investigated.

In the following, itwill further be assumed that only one fiber
mode needs to be included in the calculations and the mn in-
dices on envelope functions, frequencies, etc. will therefore be
suppressed. With this approximation, the modeling does not
describe scattering of the slow solitons into other guided
modes, or cladding modes, of the fiber. It does, however, de-
scribe scattering of soliton power into dispersive waves, and
also backscattering into the slow mode itself. In planar
slow-light devices, the latter effect has been found to constitute
the dominant loss mechanism at low group velocities [2].

Inserting the nonlinear polarization term derived in [6],
Eq. (12) becomes

∂Aðt; βÞ
∂t

¼ −e−iωðβÞt
1ffiffiffiffiffi
2π

p
Z

dzeiβz
�
N2

Aeff
fð1

− f RÞð2∣~Aðt; zÞ∣2Bðt; zÞ þ ~A2ðt; zÞB�ðt; zÞÞ
þ f Rð~Aðt; zÞGðt; zÞ þ Bðt; zÞFðt; zÞÞg

þ Bðt; zÞΔðzÞ
�
: ð19Þ

The functions F and G describe the Raman interaction which
appears in a different form than for z-stepping formalisms be-
cause the Raman interaction is nonlocal in time, but not in
space. They are given by

Fðt; zÞ ¼
Z

t

−∞
dt1Rðt − t1Þ∣~Aðt1; zÞ∣2;

Gðt; zÞ ¼
Z

t

−∞
dt1R0ðt − t1Þ∣~Aðt1; zÞ∣2: ð20Þ

The nonlinear parameters N2 and f R are given in terms of the
χð3Þ constants by

N2 ¼
3χð3Þs

4ε0ε2m
; χð3Þs ¼ χð3ÞKxxxx þ

2
3
χð3ÞRxxxx; f R ¼ 2χð3ÞRxxxx

3χð3Þs

:

ð21Þ

The Raman response function, RðtÞ will in this paper
be parameterized as the interaction of the optical field with
a single damped oscillator [15],

RðtÞ ¼ τ21 þ τ22
τ1τ22

sin
�
t

τ1

�
e
− t
τ2 : ð22Þ

As discussed in [6], this allows for a convenient determination
of the F and G functions during the numerical calculations.

Transforming the propagation equation into the z-domain,
recasting it as an equation for ~A, neglecting the nonlinear
terms, and assuming Bðt; zÞ ≈ iωð0Þ~Aðt; zÞ yields the propaga-
tion equation

−i
∂ ~Aðt; zÞ

∂t
¼ ω0½1 −ΔðzÞ�~Aðt; zÞ − ω2

2
∂2 ~Aðt; zÞ

∂z2
; ð23Þ

which is seen to be identical to the quantum mechanical
Schrödinger equation, with −ω0ΔðzÞ acting as a potential
term. Thus, a moving soliton (or other wavepacket) will be
slowed down when ΔðzÞ decreases and accelerated when
ΔðzÞ increases. In optics language, the local eigenmodes at
some value of z where the fiber cross section is perturbed
by δεðr⊥; zÞ will have the β ¼ 0 eigenfrequency shifted by a
δω given by

δω
ω ¼ −

Z
dr⊥ε0δεðr⊥; zÞ∣eðr⊥; β ¼ 0Þ∣2 ¼ −ΔðzÞ ð24Þ

in first-order perturbation theory [12]. Thus, in the simplest
approximation, the perturbation can be imagined to shift
the ωðβÞ curve up or down, depending on the sign of ΔðzÞ.
However, in the linear regime the frequency of the pulse can-
not change, and so its propagation constant, and hence its ve-
locity, must change instead (which is possible, because the
translational symmetry along z is broken by the perturbation).
If the frequency curve is shifted upwards (negative ΔðzÞ), the
propagation constant must decrease and vice versa. If the fre-
quency curve is shifted high enough that ωð0Þ becomes larger
than the pulse frequency, the pulse cannot propagate further
and reflection must be expected. In the quantum mechanics
analogue, this would correspond to hitting an insurmountable
potential barrier. From this consideration a simple criterion
for an impenetrable ΔðzÞ value may be derived:
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δω
ω ¼ −ΔðzÞ > ωðβÞ − ω0

ω ¼
ω2
2 β2

ω0 þ ω2
2 β2 ≈

ω2

2ω0
β2: ð25Þ

3. NUMERICAL RESULTS AND DISCUSSION
In the numerical simulations, the same fiber parameters as in
[6] were used. Thus ωðβÞ is given by

ωðβÞ ¼ ω0 þ ω2β2; ω0 ¼
2πc
λ0

; ð26Þ

with λ0 ¼ 1:989 μm and ω2 ¼ 26:23 μm2=ps. The effective area
was set to¼ 1:7 μm2 and the Raman response function param-
eters were taken as τ1 ¼ 23 fs, τ2 ¼ 230 fs, f R ¼ 0:2. The non-
linear coefficient of As2Se3 at a wavelength of ∼2 μm was
assumed to be 6 × 10−6 μm2=W, from which χð3Þ and thereby
N2 was calculated. The simulations were performed on a
z-grid with a discretization step of 0:5 μm.

With these parameters, a pulse with β ≈ μm−1 will have a
group velocity vg ≈ 0:087c. If the pulse moves at this velocity
for ΔðzÞ ¼ 0, it will be unable to penetrate a ΔðzÞ < −0:0138.
This critical barrier height will be proportional to β2 and there-
fore v2g. In the following ΔðzÞ magnitudes significantly below
10−2 will be investigated.

A. Periodic Perturbation
The response of a soliton to a weak periodic perturbation is
well-studied and is experimentally clearly seen as the forma-
tion of Kelly sidebands in solitonic fiber lasers [7,8]. Below, a
brief derivation of the key results is presented using the nota-
tion of the present paper. A nonlinear Schrödinger equation
equation without Raman and self-steepening terms will be
used. Consider a cosine perturbation with magnitude δω
and wave vectorK ¼ 2π=Lp and assume that a soliton couples
to a weak dispersive wave with propagation constant βd:

Aðt; βÞ ¼ Asðt; βÞ þ δAðt; βÞ; ð27Þ

Asðt; βÞ is the soliton waveform in reciprocal space,

Asðt; βÞ ¼
1ffiffiffiffiffi
2π

p
Z

dz exp−iβz Asðt; zÞ; ð28Þ

with the real-space waveform being

Asðt; zÞ ¼
ffiffiffiffiffi
ξ0

p
sech

�
z − vgt

z0

�
eitðωðβsÞ−1=TNLÞe−iβsz: ð29Þ

The nonlinear coefficient Γ and the soliton parameters z0 and
TNL are given by

z20 ¼
ω2

Γξ0
; Γ ¼ ω0N2

Aeff
; TNL ¼ 1

Γξ0
: ð30Þ

The dispersive wave δAðt; βÞ is assumed to be strongly peaked
around βd. The time evolution of δA is found to be

∂δAðt; βdÞ
∂t

¼ iffiffiffi
2

p
Z

dzfeitðωðβsÞ−1=2TNL−ωðβdÞÞeizðβd−βsÞ
δω
2
ðeiKz

þ e−iKzÞ
ffiffiffiffiffi
ξ0

p
sech

�
z − vgt

z0

�

þ Γeiðβdz−ωðβdÞtÞ½2∣~Asðt; zÞ∣2δ~Aðt; zÞ
þ ~A2

sδ~A�ðt; zÞ�g: ð31Þ

If the dispersive wave is extended compared to the soliton,
its nonlinear interaction with the soliton will be negligible. The
first term in Eq. (31) can be rewritten as

iffiffiffi
2

p eitðωðβsÞ−1=2TNL−ωðβdÞÞ
Z

dzeizðβd−βsÞ
δω
2
ðeiKz

þ e−iKzÞ
ffiffiffiffiffi
ξ0

p
sech

�
z − vgt

z0

�

¼ iffiffiffi
2

p eitðωðβsÞ−1=2TNL−ωðβdÞþvgðβd−βsÞÞ
Z

dueiuðβd−βsÞ
δω
2
ðeiKvgteiKu

þ e−iKvgte−iKuÞ
ffiffiffiffiffi
ξ0

p
sech

�
u

z0

�

¼ iffiffiffi
2

p eitðωðβsÞ−1=2TNL−ωðβdÞþvgðβd−βsÞÞ
ffiffiffiffiffi
ξ0

p

×
�
eiKvgtsech

�π
2
ðβd − βs þ KÞz0

�

þ e−iKvgtsech

�π
2
ðβd − βs − KÞz0

��
: ð32Þ

Resonant transfer of energy from the soliton into the
dispersive wave will occur when

ωðβsÞ −
1
2
TNL − ωðβdÞ þ vgðβd − βsÞ � Kvg ¼ 0: ð33Þ

Using the relations ωðβÞ ¼ ω0 þ 1
2ω2β2 and vg ¼ ω2βs this

becomes

1
2
ω2ðβ2s − β2dÞ þ ω2βsðβd − βsÞ � Kvg −

1
2
TNL

¼ −
1
2
ω2ðβs − βdÞ2 � Kvg −

1
2
TNL ¼ 0: ð34Þ

Finally, introducing the soliton spatial width z0 through
Eq. (30) one arrives at

ðβd − βsÞ2 ¼ �2Kβs − z−20 ¼ z−20

�
4πvgTNL

Lp

− 1

�
; ð35Þ

where the last step follows from the fact that the LHS is po-
sitive definite. It is evident that if Lp > 4πvgTNL, the resonance
condition is not satisfied for real βd.

A numerical test of the analytical predictions is illustrated
in Fig. 1. A perturbation of the form

ΔðzÞ ¼ Δ0 cosðKzÞ; K ¼ 2π
Lp

ð36Þ

was introduced withΔ0 ¼ 10−4 and 10−3,respectively. An ideal
soliton with a peak energy density of 15pJ=μm was launched
at z ¼ 0 and propagated for 500 ps. Raman effects were
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neglected for the sake of comparison with the analytical
prediction. At the end of the propagation, it was determined
how much pulse power remained in the main peak of the
pulse. Two values of βs were investigated, βs ¼ 1 μm−1 and
βs ¼ 0:5 μm−1, corresponding to group velocities of 0:087c
and 0:044c, respectively. In Fig. 1, which shows the results
forΔ0 ¼ 10−4, vertical lines indicate the analytical predictions
for the Lp values above which the soliton should become ro-
bust against the perturbation and it is seen that they match
very well with the numerical results. For Δ0 ¼ 10−3, the
threshold Lp value is seen to shift significantly for the soliton
with βs ¼ 0:5 μm−1, showing that the soliton shape varies sig-
nificantly during propagation, so that the perturbative analysis
becomes invalid. In Fig. 2, the fluctuations in peak intensity
are depicted for Δ0 ¼ 10−3 and two values of Lp above the
threshold where the soliton is stable. The fluctuations can
be understood by noting that the soliton accelerates for in-
creasing values of ΔðzÞ, and vice versa, as discussed in the
previous section. An accelerating soliton is stretched in space
since its leading edge aquires a higher velocity than its trailing
edge. Conversely, a decelerating soliton is compressed
spatially. In Fig. 2, the variation in peak intensity is seen to
become stronger when the period of ΔðzÞ is shortened be-
cause the acceleration and deceleration caused by the fluctua-
tions thereby become larger.

In Fig. 1, it may be noticed that the soliton scattering tends
to be stronger as Lp moves closer to the threshold value where
scattering is cut off. This can be understood from Eq. (32),
which shows that for small βd − βs the scattering intensity will
be proportional to sechðKz0Þ. From Eq. (35) βd − βs will be
small in the vicinity of the threshold Lp value. If Lp is made
very small, βd − βs ≈

ffiffiffiffiffiffiffiffiffiffiffi
2Kβs

p
, so sechððβd − βs � KÞz0Þ ≈

sechðKz0Þ is a reasonable first approximation also when
K ≫ βs. In Fig. 3, an example with Lp ¼ 2:5 μm (K ≈ 2:5 μm−1),
Δ0 ¼ 4 · 10−3, βs ¼ 0:5 μm−1 is shown (other parameters as in
Fig. 1). Clearly, this example is not in the perturbative regime:
the peak energy density of the soliton is seen to have signifi-
cant fluctuations and the pulse after 500 ps deviates strongly
from the ideal soliton form. Nevertheless, a pulse with a
FWHM close to the starting value of ∼6:5 μm (corresponding
to z0 ≈ 3:7) is retained, with less than 10% of the total energy
lost to dispersive waves.

It follows from the above discussion that Lp ≲ z0 may
be taken as a rough criterion for low scattering magnitude,

altough there is not a threshold effect as in the opposite limit
of large Lp. If z0 is larger than the Lp threshold value 4πvgTNL

that follows from Eq. (35), the soliton should then be immune
to scattering from perturbations of all wavelengths. This
requirement can be rewritten as

z0 ≳ 4πvgTNL ⇒ z0 ≳
4πvgz20
ω2

⇒ 4πβsz0 ≲ 1: ð37Þ

Since the soliton amplitude in reciprocal space is propor-
tional to sechðπðβ − βsÞz0=2Þ, this requirement basically states
that the β-space width of the soliton is larger than the magni-
tude of βs, i.e. the soliton should have appreciable compo-
nents of both forward- and backward-propagating waves.
This is exactly the regime where unidirectional z-propagating
schemes become inadequate.

B. Random Structural Fluctuations
In a real fiber, the structural fluctuations will be random and
will in principle have contributions from all Fourier compo-
nents. It is therefore not obvious that the existence of a thresh-
old periodicity for soliton scattering has any practical
relevance. In this subsection, propagation along a fiber per-
turbed by a random ΔðzÞ is therefore investigated. Since
our knowledge of the actual fluctuation spectrum in a fiber
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Fig. 1. (Color online) Fraction of pulse energy in main peak after 500ps of propagation for various periods of a cosineΔðzÞ. (a) Results for aΔðzÞ
magnitude of 10−4, (b) results for a magnitude of 10−3.
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propagation distance for a cosine ΔðzÞ of magnitude 10−3. The initial
soliton velocity is 0:044 c.
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is limited, especially for a fiber type which has not yet been
fabricated, a Gaussian fluctuation spectrum is adopted here,
with

ΔðzÞ ¼ Δ0

X
m

Φm exp

�
−
1
2
k2m

�
Lc

2

�
2
�
expðikmzÞ;

km ¼ 2πm
L

; ð38Þ

where L is the length of the z-domain used in the calculation.
Here the Φm are random phase factors, whereas the ampli-
tude of the fluctuations can be adjusted by the overall Δ0 fac-
tor. Lc can be regarded as a correlation length for the
structural fluctuations [16]. In the numerical calculations,
theΔðzÞ function calculated from Eq. (38) is shifted to be zero
at z ¼ 0, where the soliton is launched and then rescaled so
that the root-mean-square (RMS) deviation from its mean is
equal to a desired value. This implies that the mean value
of ΔðzÞ may be different from zero. Two realization examples
are shown in Fig. 4(a) for an RMS width of 10−3. In Fig. 4(b),
the energy fraction remaining in the main soliton peak after
500 ps of propagation is plotted versus Lc for the same
RMS value. The soliton peak intensity was 15pJ=μm as in

the previous subsection, however, in this case Raman scatter-
ing was included in the calculations. For each Lc value, four
different realizations of the random structure were investi-
gated. The randomness smoothens out the transition between
scattering and nonscattering regimes a bit, but an approxi-
mate threshold is still noticeable.

In the previous subsection, it was suggested that very slow
solitons could be relatively immune to scattering from all
Fourier components of the disorder. In Fig. 5, this hypothesis
is tested by propagating solitons with different initial veloci-
ties in a ΔðzÞ structure having Gaussian randomness with
Lc ¼ 0:5 μm, which is identical to the real-space Fourier grid
spacing and a RMS width of 10−4. The figure reports the frac-
tion of energy remaining in the soliton as a function of propa-
gation time. It can be seen that the scattering rate initially
increases as the velocity is reduced, but that still further re-
duction reverses the trend, and at velocities below 0:01c the
soliton is fairly well preserved over several hundred picose-
conds, corresponding to about 1mm of propagation. Interest-
ingly, the slowest soliton has z0 ≈ 3:7 and βs ¼ 0:1 μm−1, so
that 4πβsz0 ≈ 4:6, i.e., the crude stability criterion derived in
the previous subsection is quite far from being fulfilled. If the
white-noise magnitude is increased to an RMS width of 10−3,
stronger scattering and a much more fluctuating pulse profile
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Fig. 4. (Color online) (a) Two examples of randomΔðzÞ distributions with Gaussian disorder. The RMS value ofΔðzÞ is 10−3. (b) Fraction of pulse
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is seen, but the basic trend of reduced scattering for very slow
pulses holds up and the soliton with initial vg ¼ 0:013c retains
∼70% of the total energy in the main peak after 500 ps. In this
regime of stronger scattering the slowest solitons are also
found to localize, propagating no further than ∼10 μm from
their starting point.

C. Raman-Induced Soliton Localization
The inclusion of Raman scattering leads to a downshifting of
the soliton frequency and thereby an approach towards the
β ¼ 0 state [5,6]. This slowing down in turn implies that it gets
increasingly difficult for the soliton to overcome the barriers
present in the ‘potential’ landscape presented by the random
ΔðzÞ function. This can eventually lead to both reflection and
localization of the soliton in some ‘potential well’ of the fiber.
An example is illustrated in Fig. 6. The initial soliton peak in-
tensity has been increased to 25pJ=μm, to enhance the Raman
scattering. The initial βs is 1 μm−1, Lc ¼ 60 μm and the RMS
width of the fluctuations is again 10−3. In Fig. 6(a), the z-
position of the pulse is plotted as a function of time and in
Fig. 6(b), the pulse velocity is plotted as a function of z, to-
gether with δω=ω ¼ −ΔðzÞ, scaled to facilitate comparison.
The pulse velocity is seen to fluctuate corresponding to the
fluctuations in δω=ω, while decreasing due to Raman scatter-
ing. After about 2:7mm of propagation, the soliton hits a
barrier that it cannot pass, due to the reduced velocity. The
soliton is then reflected and travels backward while further
reducing its velocity. Eventually, the soliton is trapped in a
local minimum of δω=ω, where it goes back and forth with
decreasing velocity. The inset of Fig. 6 shows the spatial pro-
file of the soliton after 500ps propagation and it is seen to be
in a more or less intact shape, with very little energy lost to
dispersive waves, and a peak intensity close to the starting
value.

D. Discussion
The results presented shows two major trends regarding the
stability of slow solitons: On the one hand, the scattering of
solitons by roughness of a certain magnitude becomes stron-
ger when the soliton slows down, but at the same time the
range of fluctuations periods affecting the soliton decreases.
Depending on the details of the roughness spectrum, it seems
conceivable that very slow localized solitons might exist for a
substantial time in a slow-light photonic bandgap fiber. At the

same time, Raman scattering constitutes a convenient me-
chanism for achieving the localization behavior. On the other
hand, even if slow-moving solitons can be kept stable, the re-
sults found here seem to complicate controlled applications of
solitons moving at speeds of 0:1c or smaller. Even small un-
intended structural fluctuations will affect the soliton propa-
gation in a way that is not controlled by the fiber designer. To
put the numerical results into perspective, it is useful to con-
sider a perturbation which is just an overall scaling of the fiber
structure. In this case, the scale invariance of Maxwells equa-
tions ensures that the relative change in frequency (i.e. −ΔðzÞ)
will be equal to the relative change in overall scale. In [6], it
was found that a fiber structure with a 1 μm periodicity of the
cladding leads to a useful bandgap around 2 μm. Thus, a ΔðzÞ
magnitude of 10−3 would correspond to a 1 nm fluctuation.
While it has been found that standard fibers may have out-
er-diameter variations of this magnitude over centimeter
length scales [17], it is not clear whether a similar level of
uniformity can be achieved in the complex microstructures
studied here.

However, the findings also point to some technological pos-
sibilities using this type of fiber. The high sensitivity of pulse
propagation to even small modifications of the fiber structure
is unparalleled in standard fiber technology. Working with
light states sufficiently fast to avoid trapping and backscatter-
ing from uncontrolled imperfections, this degree of propaga-
tion control could be useful for e.g. reflection filters or tunable
delay lines, which could be controlled nonlinearly by the
Raman effect.

4. CONCLUSION
In conclusion, a recently derived time-propagating general-
ized nonlinear Schrödinger equation has been generalized
to the case of a longitudinally structured waveguide and ap-
plied to the case of slow solitons in a high-index PCF with
structural fluctuations. It is shown that the fluctuations scatter
solitons into forward- and backward-propagating dispersive
waves, unless the soliton velocity is below a threshold related
to the periodicity of the fluctuation. Above this thres-
hold, slow solitons are scattered more strongly than fast
solitons, except for very slow solitons where the trend is re-
versed. Even structural fluctuations on the per mill level are
found to significantly influence soliton propagation. Soliton
deceleration due to the Raman effect is shown to enable
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soliton localization in ‘potential wells’ of the fluctuating long-
itudinal fiber structure. The results indicate that solitons loca-
lized by a combination of disorder and nonlinear effects may
well be observable, but also that utilization of the slow pulses
in a controlled way may be compromised by finite fabrication
tolerances.
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