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ARX MPC for people with type 1 diabetes

Dimitri Boiroux, Daniel A. Finan, John Bagterp Jørgensen, Niels Kjølstad Poulsen and Henrik 

Madsen

Abstract 

Type 1 diabetes is a chronic disease characterized by a lack of production of pancreatic insulin, 

consequently leading to high blood glucose concentrations (hyperglycemia). Hyperglycemia has 

negative health effects in the long term such as eye, nerve, and kidney disease. Exogenous insulin must 

be injected to keep the blood glucose in the normoglycemic range (approximately 60 – 140 mg/dL, or 

3.3 – 8 mmol/L). However, the dosing of exogenous insulin must be done carefully, because low blood 

glucose concentrations (hypoglycemia) can have immediate and severe consequences like insulin 

shock, coma, or even death. Currently, insulin administration is performed by the subject with type 1 

diabetes based on infrequent glucose measurements (in the form of finger-sticks), often resulting in an 

unsatisfactory blood glucose control.

An artificial pancreas is a medical device that injects exogenous insulin automatically in order to 

regulate the glucose concentration. Blood glucose measurements are obtained from a continuous 

glucose monitor (CGM). Insulin is administrated either continuously through an insulin pump, or at 

discrete times using an insulin pen. A control algorithm uses previous glucose measurements and 

insulin injection information to compute the optimal insulin administration for the current conditions.

We use model predictive control (MPC) to compute the optimal insulin administration for 20 virtual 

type 1 diabetes subjects. The system (i.e., subject) has one manipulated input (insulin infusion rate), 

one disturbance input (carbohydrate meals), and one measured output (blood glucose concentration). 

The subject is represented by a system of nonlinear differential equations describing the dynamic 

effects of insulin and meals on blood glucose [4]. Twenty parameter sets are used in the study, each 

representing a different virtual subject. 

The model used in the MPC is a low order autoregressive exogenous-input (ARX) model [3]. Due to 

both the linearity and relative parsimony of the ARX model, there is a significant amount of 



subject/model mismatch in the model predictions, reflecting real-world conditions. In general, a simple 

ARX MPC cannot reject a step disturbance without a resulting offset; thus, the state vector is 

reformulated using an extended ΔARX description (E-ΔARX) [4], i.e.

1−q−1 Aq−1 y t =1−q−1 Bq−1u t1−q−1e t 

in which q-1 is the backward shift operator, A and B are polynomials, e(t) is a white noise process, and 

01  is a tuning parameter.

The reference signal is time-varying, and is based on the optimal open-loop glucose profile [2]. Insulin-

on-board constraints are implemented to avoid overdosing insulin. State estimation is based on a 

Kalman filter using the noise model described in [1] to simulate a realistic CGM. 

We present the MPC results for simulations of the 20 virtual subjects with type 1 diabetes. In particular, 

we investigate the effects of the prediction horizon length on the control quality of blood glucose and 

the robustness of the solution. 
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