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1 Introduction

For glass fibre composites, the interfacial properties are controlled by the sizing, which is ap-
plied to the glass fibres during manufacture. For the same matrix system, a change of sizing
results in changes of these properties, thereby influencing the mechanical properties such as
strength and fracture toughness. The concept of strength is used for characterising crack initia-
tion in composite design, while fracture toughness determines crack growth and damage devel-
opment. In mode I crack growth in unidirectional fiber composites, fibre cross-over bridging
occurs during cracking along the fiber direction. This failure mode plays an important role dur-
ing delamination of fibre composites and splitting cracks around holes and notches. The fibre
bridging zone must be modelled as a discrete mechanism on its own; failure is not just con-
trolled by the cracking at the crack tip. The failure process can be described by a bridging law,
which defines the relationship between the crack opening displacement and the local bridging
tractions resulting from the bridging ligaments. Cohesive laws were measured experimentally
in previous work. This report derives the necessary basics and equations to implement these
laws into the commercial finite element code ABAQUS with a cohesive user element. Different
numerical adjustments of the bridging law are discussed in detail. Crack aspects, such as crack
opening shape and the influence of bridging law parameters, are studied based on the numerical
results. It is furthermore of interest to identify the experimental measurements which show the
highest sensitivity with respect to the bridging law shape.

2 Mode I bridging law measurement

The approach for the measurements of bridging laws is based on the application of the path
independent J integral [1], and has been used recently to determine the bridging characteristics
of unidirectional carbon fibre/ epoxy composites [2] and glass fibre composites [3]. A sym-
metric DCB specimen is loaded with pure bending moments M (Figure 1) under pure mode I.
This specimen is one of the few practical specimen geometries, for which the global J integral
(i.e. the integral evaluated around the external boundaries of the specimen) can be determined
analytically [1]:

J = 12(1− ν13ν31)
M2

b2H3E11

(1)

E11 is the Young’s modulus referring to the material directions, ν13 and ν31 are the major
and minor Poisson’s ratio, b is the width and H the beam height.

x

x

1

2

M

M

2HH+∆u2
*

Figure 1. DCB specimen with pure bending moment

Now consider the specimen having a crack with bridging fibres across the crack faces near
the tip. The closure stress σ (x2-direction) can be assumed to depend only on the local crack
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opening δ, i.e. the crack grows in pure mode I. The bridging law σ = σ(δ) is then taken as
identical at each point along the bridging zone. Since fibres will fail when loaded sufficiently,
we assume the existence of a characteristic crack opening δ0, beyond which the closure traction
vanishes. Shrinking the path of the J integral to the crack faces and around the crack tip [4]
gives

J =

δ∗

∫

0

σ(δ)dδ + Jtip, (2)

where Jtip is the J integral evaluated around the crack tip (during cracking Jtip is equal to the
fracture energy of the tip, J0). The integral is the energy dissipation in the bridging zone and
δ∗ is the end-opening of the bridging zone at the notch root.

Connection is made to the overall R-curves as follows. By definition JR is the value of J

during crack growth. Initially, the crack is unbridged. Thus, by Eq. (2), crack growth initiates
when JR = Jtip = J0. As the crack grows, JR increases in accordance with Eq. (2). When
the end opening of the bridging zone δ∗ reaches δ0, the overall R-curve attains its steady state
value Jss.

The bridging law can be determined by differentiating Eq. (2) [4].

σ(δ∗) =
∂JR

∂δ
(3)

The applied moment and the end opening of the bridging zone ∆u∗

2 are recorded. Assuming that
δ∗ ≈ ∆u∗

2, where ∆u∗

2 is the notch opening measured at the neutral axis of the DCB specimen
(see Figure 1), the bridging law can be determined. This approach models the bridging zone as
a discrete mechanism on its own. Contrary to crack growth resistance curves (R-curves), the
bridging law can be considered a material property and does not depend on specimen size [2].

The test above has been modified with two different bending moments to result in mixed
mode testing [5]. In this case, mixed bridging laws can be measured. This has not been under-
taken for the current material selection.

3 Experimental results

Recently, we have, by the use of a J integral based approach, measured the bridging laws under
mode I fracture during transverse splitting of unidirectional glass-fiber/epoxy and glass-fiber/
polyester composites with different interface characteristics [3]. With increasing applied mo-
ment, crack propagation took place. Fibre cross-over bridging developed in the zone between
the notch and the crack tip.

JR is calculated according to Eq. (1). The specimen width b was 5 mm with a beam height of
H=8 mm. Assuming that the unidirectional composite is transversely isotropic, the following
elastic composite data were applied for Eq. (1) as previously measured: E11,epoxy= 41.5 GPa,
E33= 9.2 GPa, E11,polyester = 42 GPa, E33,polyester= 10 GPa and ν13=0.3 (assumption). The
analytical function

JR(δ∗) = J0 + ∆Jss

(

δ∗

δ0

)
1

2

(4)

was found to fit all experimental data curves of crack growth resistance versus crack opening
well, resulting in curve fits as shown in Figure 2. J0 is the initial value of the experimental
curve and equal to the fracture energy of the tip during crack growth, while ∆Jss, which is
equal to (Jss −J0), is the increase in crack growth resistance. Sørensen and Jacobsen [2] found
that the same function fit the data of carbon fibre composite systems well.

The experimental values for the bridging laws are given in Table 1. The starting value J0

indicates the point of crack growth initiation and can easily be determined during the experi-
ment. The highest value of 345 J/m2 was observed for the sizing B/ epoxy system. The crack
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Table 1. Experimental values for the bridging law for different composite systems

Composite system J0 [J/m2] ∆Jss [J/m2] δ0 [mm]
sizing A/epoxy 321 ± 40 4000 ± 1000 2.0 ± 0.2
sizing B/epoxy 345 ± 30 3700 ± 500 2.0 ± 0.2
sizing A/polyester 150 ± 20 3800 5.5
sizing B/polyester 120 ± 30 > 4100 > 5.0

initiation value is significantly lower for the sizing B/ polyester system with 120 J/m2, which
is also related to a significantly lower transverse strength of not more than half the strength of
the other composites [3]. In fact, the relation between transverse strength (measured with the
transverse bending test [3]) and crack initiation for the different composite systems is fitted
well by a linear relationship as seen in Figure 3. This verifies the assumption that the crack
initiation value for the DCB test is controlled by the strength of the fiber-matrix bond. It can
furthermore be seen that both axes show about the same ratio low strength and high strength
of nearly a factor 3; however, the transverse bending test results in much lower standard devi-
ations. The higher standard deviation for the DCB fracture initiation is most likely explained
by specimen-to-specimen differences of the manufactured notch, which influences the crack
initiation process.

The end opening value δ0 at the onset of steady-state cracking was determined to be 2 mm
for the epoxy systems. For the sizing B/ polyester system, steady-state cracking could not be
determined with the present specimens, as the fibres continued to bridge the whole length of
the crack after the maximum measurable notch opening of 5 mm was obtained. Since no upper
bound was found for ∆Jss, this bridging behaviour was termed ’infinite toughening’.

Differentiating equation (4) results in the bridging law

σ(δ) =
∆Jss

2δ0

(

δ

δ0

)

−
1

2

, for 0 < δ < δ0, (5)

where ∆Jss is the increase in crack growth resistance due to bridging (from zero to steady state
bridging), and δ0 is the crack opening where the bridging stress vanishes.

The bridging laws for the different fibre systems are compared in Figure 4. The bridging law
can be considered a material property [2, 6] and is in an accessible form for implementation
into finite element codes.
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4 Implementation of the user element

There are a variety of possible methods for implementing cohesive laws within commercial
finite element programs. The most versatile is the development and programming of cohe-
sive elements [7–10]. These elements are in most cases defined with zero thickness and pre-
scribe stresses based on the relative displacement of the nodes of the element. Similar work has
also been undertaken with spring elements (force-opening relation), although in this case there
might be simplifications required when calculating the equivalent nodal spring forces from the
surrounding elements. The procedure is not straight forward when springs are connected to
elements with non-linear shape functions, such as 8-noded elements [11].
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4.1 Background and basic equations
Figure 5 shows the interface elements in 2-D and 3-D. The interface element is made up of two
quadratic line elements (a), or two quadratic 2-D plane elements (b). These elements connect
the faces of adjacent elements during the fracture process. The implementation is based on [10].
Quadratic elements are chosen as the cantilever beam mostly deforms under bending, which
is best modelled by quadratic solid elements. The nodes of the interface element need to fit to
these elements. The node numbering is chosen according to ABAQUS conventions of quadratic
2-D and 3D solids. The elements can also be derived in linear form by substituting the quadratic
shape functions with linear ones in the appropriate equations. Consequently, the node numbers
and degree of freedoms for the elements will decrease.

x

y 1 23

4 56

1 25

34
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15

16

x

y

z

ξ

ξ

η

Figure 5. (a) Quadratic line interface element (3 node pairs) and (b) Quadratic plane interface
element (8 node pairs)

The two surfaces of the interface element initially lie together in the unstressed deformation
state (zero thickness) and separate as the adjacent elements deform. The relative displacements
of the element faces create normal and shear displacements, which in turn generate element
stresses depending on the constitutive equations (stress - opening relations) of the material.
The constitutive relationship was derived in the experimental section, and is independent of the
element formulation.

The implementation of a general interface element is explained in the following. Details are
given for the special case of the quadratic line element for 2-D simulations, while the equivalent
formulations for the quadratic plane element for 3-D simulations are provided in Appendix A.

The line interface element has 12 (2x6) degrees of freedom. The vector (12× 1) of the nodal
displacements in the global coordinate system is given as:

dN =
(

d1

x d1

y d2

x d2

y · · · d6

x d6

y

)T
(6)

The order follows typical ABAQUS’ conventions, and this is considered in the derived formu-
lations below.

The opening of the interface element is defined as the difference in displacements between
the top and bottom nodes:

∆u = {u}top − {u}bot
, (7)

thereby leading to the following definition of the interface opening ∆uN in terms of nodal
displacements of paired nodes:

∆uN = ΦdN = [−I6×6 | I6×6]dN (8)

where I6×6 denotes a unity matrix with 6 rows and columns. uN is a 6 × 1 vector.
From the nodal positions, the crack opening is interpolated to the integration points with

the help of standard shape functions. Let Ni(ξ) be the shape functions for the node pair i

(i = 1, 2, 3), where ξ stands for the local coordinate of the element with −1 ≤ ξ ≤ 1. The

9



relative displacement between the nodes for each point within the element is then given by:

∆u(ξ) =

(

∆ux(ξ)

∆uy(ξ)

)

= H(ξ)∆uN , (9)

where H(ξ) is a 2x6 matrix containing the quadratic shape functions.
For the line element, it is of the form

H(ξ) =

(

N1(ξ) 0 N2(ξ) 0 N3(ξ) 0

0 N1(ξ) 0 N2(ξ) 0 N3(ξ)

)

. (10)

The shape functions for the line element are given in Appendix B. As a result, we get

∆u(ξ) = H(ξ)ΦdN = B(ξ)dN , (11)

where B(ξ) is of the dimension 2x12 and ∆u(ξ) of the dimension 2x1; thereby describing the
continuous displacement field in both directions within the element.

During large deformations, the element requires a local coordinate system to compute local
deformations in normal and tangential directions. The most common choice is a coordinate
system given by the middle points of the two element faces, which thereby coincides with the
nodal positions in the undeformed state. If the coordinates of the initial configuration are given
by the vector xN and the deformation state is defined by the vector dN , the reference surface
coordinates x

R
N are computed by linear interpolation between the top and bottom nodes in their

deformed state:

x
N
R =

1

2
(I6×6 | I6×6)(xN + dN ) (12)

The coordinates of any specific reference plane can be derived analogous to Eq. (9):

x
R(ξ) =

(

xR(ξ)

yR(ξ)

)

= H(ξ)xR
N (13)

This local coordinate vector, with unit length, is obtained by differentiating the global position
vector with respect to the local coordinates:

t1 =
1

||∂x
R

∂ξ
||

(

∂xR

∂ξ
,
∂yR

∂ξ

)T

. (14)

The normal vector (also with unit length) of the local coordinate element needs to be perpen-
dicular to the vector t1:

tn =
1

||∂x
R

∂ξ
||

(−∂yR

∂ξ
,
∂xR

∂ξ

)T

, (15)

and the derivatives are determined as follows:

δxR(ξ)

δξ
=

(

xR
,ξ

yR
,ξ

)

=
δ (H(ξ))

δξ
x

R
N = h(ξ)xR

N , (16)

with

h(ξ) =

(

N1,ξ(ξ) 0 N2,ξ(ξ) 0 N3,ξ(ξ) 0

0 N1,ξ(ξ) 0 N2,ξ(ξ) 0 N3,ξ(ξ)

)

. (17)

The derivatives of the shape functions are given in Appendix B.
The length of the vector is given by the standard definition:

||∂x
R

∂ξ
|| =

√

(

∂xR

∂ξ

)2

+

(

∂yR

∂ξ

)2

. (18)

The components t1 and tn represent the direction cosines of the local coordinate system to
the global one, thus defining the 2 × 2 transformation tensor Θ:

Θ = [t1, tn] , (19)
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which relates the local and global displacements as follows:

∆uloc = Θ
T∆u. (20)

In the following, local matrices will be indicated by the subscript loc as above, while the equa-
tions otherwise refer to the global values.

tloc is the 1×2 vector defining the bridging stresses in the local coordinate system and relates
to the local relative displacement via the constitutive expression for the interface element:

tloc =

(

σ1

σn

)

= Cloc(∆uloc) ∆uloc (21)

The constitutive expression can be expressed either with a linear displacement term for ∆u

as shown above, or with a coupled form, where ∆u is included with non-linear dependence.
The preferred option depends on the form of the constitutive equation. For our expression as
introduced in Eq. (5), a coupled form is preferable:

tloc = Cloc ∆u
−

1

2

loc (22)

Cloc is now a constant, and does not depend on the displacement. Note that in comparison with
Eq. (5), δ has been replaced with the general numerical nomenclature for the opening, ∆uloc.
This convention will be kept in the following.

The element stiffness matrix and the right hand side nodal force vector are required for the
UEL subroutine in ABAQUS.

The element force vector is of size 12×1. Its contribution to the global force vector is defined
as

f
el
N =

∫

Ael

B
T
t dA (23)

= W

∫

Lel

B
T
t dl (24)

= W

∫ 1

−1

B
T
t detJ dξ (25)

= W

∫ 1

−1

B
T
Θtloc detJ dξ, (26)

where W is the width of the interface element and, as in most cases of 2-D modelling, also the
width of the finite element model.

detJ is the Jacobian defined by the transformation of the global coordinates (x, y) to the
current element coordinate (ξ), and results, for the line element, in the same expression as
previously used for calculating the length of the unit vector in Eq. (18):

detJ =

√

(

∂xR

∂ξ

)2

+

(

∂yR

∂ξ

)2

. (27)

It should be noted that the Jacobian will in most analysis cases not be constant, but depend on
the local element coordinates. It therefore needs to be derived for each integration point.

The tangent stiffness matrix of according size 12 × 12 (note negative sign convention for
ABAQUS) is defined as

K
el = −∂f

el
N

∂del (28)
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With the derivation from Eq. (23), this results in:

K = −
∫

Ael

B
T
Θ

∂tloc

∂del dA (29)

= −W

∫

Lel

B
T
Θ

∂tloc

∂del dl (30)

= −W

∫

Lel

B
T
Θ

∂tloc

∂∆uloc

∂∆uloc

∂∆u

∂∆u

∂del dl (31)

= −W

∫

Lel

B
T
Θ

∂tloc

∂∆uloc
Θ

T
B dl (32)

= −W

∫ 1

−1

B
T
ΘDlocΘ

T
B detJ dξ (33)

As can be seen above, the stiffness matrix D is defined as:

Dloc =
∂tloc

∂∆uloc
. (34)

It can also be expressed in terms of the constitutive expression in Eq. (21) with a linear depen-
dence on ∆u:

Dloc =
(∂C(∆u)∆u)

∂∆u
=

∂C(∆u)

∂∆u
∆u + C(∆u) (35)

The local traction matrix D is then given by

Dloc =

(

D1 Dc

Dc Dn

)

. (36)

The terms D1 and Dn are derived by finding the derivatives according to Eq. (34). The com-
ponents Dc are possible coupling terms. They are normally obtained if the traction laws are
derived from an overall elastic potential for the cohesive law. For mode I loading, the relative
displacement in u1 direction will be zero, and thereby will lead to zero traction stresses. The
coupling terms can then be set to zero as they do not influence the results. However, a dummy
value for D1 should be assigned to avoid possible numerical problems due to a singular stiff-
ness matrix.

4.2 Unloading
The cohesive relationship as given in Eq. (21) is elastic, and the stresses transferred through the
crack obey the same law whether the crack opens or closes. For most damage mechanisms, this
is most likely not true, as it neglects the damage introduced at the interface during partial open-
ing. Local unloading can occur when sudden changes occur in the external loading application
or internal stress redistribution in neighbouring elements is introduced, for example by sudden
failure. This problem is usually circumvented by introducing a maximum damage parameter
∆u∗, which stands for the maximum value the opening ∆u obtained during a given increment
of the analysis. If the next value of ∆u is larger, damage continues to grow; otherwise elastic
unloading is assumed to occur (see the elastic unloading towards the origin in the simplified
bridging law in Figure 6). This elastic mechanism applies for the case of fibre bridging. The
failure mechanism includes peeling off of the fibers on either side of the crack, the development
of bridging fiber ligaments and failure of these ligaments. During unloading, however, these
ligaments simply deform elastically, thereby leading to a elastic unloading towards the origin,
which can be observed during the experiment. For numerical purposes it should be noted that
∆u∗ should only be updated at the end of the increment; the current iterative opening solution
is not considered.
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4.3 State variables for the analysis
The number of state variables for each element depends on the chosen integration procedure.
At each integration point of the linear element, there are two state variables for the relative
displacement (x- and y-direction) and the local stresses acting in the x- and y-direction. Fur-
thermore, there is one value describing the current interaction state between the two surfaces
for the purpose of stability analysis and position tracking during the numerical procedure. For a
standard integration procedure with 3 integration points, this results in 15 (3x5) state variables
for the linear element. As ABAQUS will not terminate the analysis if an insufficient number of
state variables is provided for the chosen integration procedure, this user input error is checked
within the UEL subroutine.

4.4 Numerical integration
The integration scheme was previously shown to have an influence on the performance of the
interface element. For the Newton-Cotes scheme, the integration points are located at the nodes.
For linear elements, the application of the standard Gauss integration was shown to result in a
coupling between the degrees of freedom of different node sets and then in oscillations of the
traction profile in the presence of large traction gradients, such as during the initial stiffness
increase prior to damage, over the element [7].

Non-convergence can occur if the element size is too large compared to the stress uptake
based on the traction law: around three elements should be present to resolve the changing
stress state in the interface [12]. This restriction on maximum element size can also be cir-
cumvented by choosing a larger number of integration points instead of reducing the element
size [13]. These approaches are investigated in the report. The 3 point rules (normally chosen
as standard in accordance with the quadratic element type) as well as 6 and 12 point rules for
Gauss and Newton-Cotes were tested with the current model. The respective points and weights
are given in Appendix C.
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5 Numerical model

The beam-contact problem is shown in Figure 7. Owing to symmetry, it is sufficient to consider

F

F  = M/s1

2

User elements

Initial crack tipF  + F   = 01 2

s k

H

Free movement 

at corner point

Figure 7. Problem statement and boundary conditions for pure moment loaded DCB specimen
(symmetric half model)

only one beam of the DCB specimen, although full models were run to check the boundary
conditions (see Section 5.1). The thickness H is equal to 8 mm, as discussed in Section 3. Plane
strain conditions were assumed, which neglect edge effects. The mesh consisted of eight-noded
plane strain solid CPE8 elements, which are suited to describe bending deformations without
hourglass effects. The composite material is assumed to be transversely isotropic. The material
properties were given in the previous section. Nonlinear, large displacements are considered in
the analysis to rotate the non-isotropic material properties accordingly. The interface elements
are applied from the crack tip onwards to the end of the beam. The lower element nodes are
fixed on the symmetry line.

5.1 Symmetric half model versus full model: boundary con-
ditions
For the symmetric half model, additional nodes are duplicated on the symmetry line for the de-
scription of the user elements. During deformation, the top and bottom node sets will separate.
The bottom nodes are therefore fixed in the y-direction as a zero boundary condition. However,
preliminary analyses showed that this condition does not truly represent the full model (see
Figure 8), as the nodes can move freely along the symmetry line in the x-direction. For the true
full model, the bottom nodes will move in the same way as the top nodes, therefore maintain-
ing the same absolute x-value (no shear introduced in the elements). As discussed previously,
the coupling terms in the local constitutive equation (see Eq. (36)) therefore do not influence
the results. For the symmetric half model, the movement of the symmetry nodes in x-direction
therefore needs to be coupled to the movement of the beam nodes via *EQUATION for each
duplicated node. The difference in deformation is visualised in Figure 8. The effect is rather
small, but leads to differences in the results for larger beam deflection.

5.2 Application of pure moment bending by displacement
control
In analyses with possible decreasing stresses due to introduced material damage or decreasing
bridging stresses, displacement controlled deformation, rather than force controlled, becomes
the preferred way of introducing boundary conditions. Furthermore, displacement control is
mostly applied in experimental testing and also in the case of the DCB specimen testing: testing
procedure and simulation are therefore more closely related.

The application of a homogeneous bending moment by force control requires consideration
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Figure 8. Effekt of linking symmetry nodes

of the element type, where varying forces need to be applied to each node according to the
underlying shape functions of the element type. This procedure does unfortunately not work for
displacements, as for a given translation the rotation of the beam is unknown. The displacement
controlled procedure introduced in the following was first described in previous work of the
group [11]. The moment application is simplified, thereby resulting in a non-homogeneous
displacement field towards the nodes of the applied boundary conditions at the end of the beam.
However, pure bending conditions are introduced around the contact zone by ensuring that the
distance k between moment introduction and beginning of the contact zone (see Figure 7)
is large enough. The value is set to k=12 mm in the present model, with s being equal to
24.65 mm. As a rule of thumb, boundary conditions should be applied more than the beam
thickness away from the point of interest to ensure a uniform bending stress in this region.
With a beam height of H=8 mm, this requirement is fulfilled.

The displacements v1 and v2 of two nodes are to be controlled such that the resulting forces
in the two nodes, F1 and F2, are equal and opposite in magnitude, thereby introducing a pure
bending moment (see Figure 9). To accomplish this, v1 and v2 are inter-connected by two so-
called dummy nodes A and B, having displacement vA and vB , respectively. Dummy nodes
are nodes that are not associated with the geometry. Their positions with respect to the beam
structure are arbitrary, but their displacements have to be coupled to the structural deformation.
In the following we derive a suitable relationship between v1, v2, vA and vB . The displacement
of node A is defined as

vA = v1 − v2. (37)
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Figure 9. Displacements used for controlling the rotation and applying a pure moment to the
beam arm of a DCB specimen

Note that θ = arctan(vA/s) ≈ vA/s is the rotation of the beam, with s being the current dif-
ference in x-coordinates between nodes 1 and 2, i.e. the moment arm. The distance between the
nodes will change during the analysis, which needs to be taken into account. The displacement
in node B is set to

vB = v1 + v2. (38)

These definitions are mostly arbitrary. In a physical sense, they can be described as a rotational
component (displacement νA) and a translational component (displacement νB). We have to
make sure that the same energy is applied to the dummy nodes as is applied to the structure
itself. Using the principle of virtual work, the applied incremental elastic energy dw is given
by

dw = F1dv1 + F2dv2. (39)

Similarly, the incremental elastic energy applied to nodes A and B is

dw = FAdvA + FBdvB , (40)

where FA and FB are the forces in nodes A and B. Finally, the pure bending condition

F1 + F2 = 0 (41)

must hold true. As the forces in the dummy nodes must (according to the principle of virtual
work) perform the same incremental work as F1 and F2, the following relations are obtained:

dw = FAd(v1 − v2) + FBd(v1 + v2) (42)

= (FA + FB)dv1 + (FB − FA)dv2 (43)

In comparison with Eq. (39), this gives the correct relationships between the forces at the nodes.

F1 = FA + FB and F2 = FB − FA (44)

2FA = F1 − F2 and 2FB = F1 + F2 (45)

Comparing Eq. (41) and Eq. (44) leads to FB = 0, and gives FA = F1. Thus, the constraints
between v1, v2, vA and vB in Eq. (37) and Eq. (38) provide the correct constraints. The multi-
point constraints for the numerical analysis are implemented into the finite element analysis as
follows:

2v1 − vA − vB = 0 and 2v2 + vA − vB = 0 (46)

In summary, FA is the applied force to the beam from which the moment M = FAs = F1s can
be calculated for each increment. JR is computed from Eq. (1) using the calculated moment.
The displacement vA is the loading parameter, which is increased during the simulations.
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5.3 Bridging law adjustments for numerical modelling
The bridging law adjustment is shown exemplary for the case of the normal stresses across the
interface element. With the experimental result of Eq. (5), the stress σn in normal direction was
defined by the following non-linear relationship

σn = Kn ∆u
−

1

2

n with Cn =
∆Jss

2
√

∆u0,n

for 0 < ∆un < ∆u0,n. (47)

Cn is a constant in this case as explained in Eq. (22). In the following, we will drop the subscript
n for the normal direction. The relationship above can easily be modified or be expressed in
piecewise linear form for different values of ∆u. The use of numerical predictions for a better
fit of the cohesive law to the experimental results will be discussed later.

Two points need to be addressed during the numerical adjustment:

• Removal of the stress singularity at ∆u = 0 and

• Incorporation of the intial fracture strength J0.

The bridging law as shown in Eq. (47) has a simple form, but inhibits a singularity in ∆u =

0 : σ → ∞ (see Eq. 5). Two different methods of numerical adjustment are thought of in
the following as shown in Figure 10. Micromechanical considerations [6] predict that crack
initiation starts at a finite stress value at the interface, which is reached as the deformation
starts to take place. At the point of crack initiation, the opening at the interface will still be
zero (a). This option is unconventional in the numerical sense; and the implications of using a
non-zero starting value for the analysis results have been explored previously [14]. In the case
of a finite stress value σ0 for ∆u = 0 in the bridging law, the finite element model actually
starts with a force imbalance, as no initial force equilibrium is given. This is resolved in the first
increment by overlapping the user elements to achieve zero stresses away from the crack tip.
From a numerical point of force equilibrium at analysis start, a zero stress state is preferable
at ∆u = 0 as shown in (b). For small values of ∆u1 and Deltau2 these adjustments are only
have a small influence on the numerical results.
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Figure 10. Possibilities of circumventing infinite stress at zero opening

For both methods, the most important point is that the energy uptake is equivalent in the
experimental and numerical model. Details of the bridging law can then be adjusted in the
numerical evaluation to provide the best fit with the experimental data.

The differentiation of Eq. (4), which leads to Eq. (5), results in a loss of the initial starting
value J0 (see Table 1). It is therefore not advisable to simply use the earlier bridging law
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parameters for the numerical simulations. A further adjustment is required. Two procedures
based on the initial choice of singularity treatment above are proposed.

The total energy uptake of the experimental bridging law is determined by calculating the
area Wexp under the curve.

σexp =
∆Jss

2∆u0

(

∆u0

∆u

)
1

2

(48)

Wexp = ∆Jss + J0 for ∆u ∈ [0, ∆u0] (49)

For a better physical understanding, J0 can be considered as the elastic fracture energy during
initial fracture (strength controlled), while ∆Jss represents the damage fracture energy (tough-
ness controlled). To ensure the same energy uptake during the simulated fracture process, the
initial starting value J0 needs to be incorporated into the bridging law.

For the two bridging law adjustments introduced in Figure 10, different ideas for including
J0 are suggested. For method (a) with a finite stress, the initial linear bridging law part can
be further adjusted in such a way that the numerical fracture energy at the point ∆u1 of the
bridging process also includes the experimental starting value J0, while for method (b), the
easiest method is to split the two components J0 and ∆Jss within the bridging law, and use
the initial increase up to ∆u2 to introduce J0. In the following, the necessary adjustments are
derived for both cases, and the results are compared with the experimental data.

Finite stress value

Figure 11 visualises method (a). Upon reaching the value of ∆u1, the energy uptake is adjusted
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according to the experimental curve:

Wexp = ∆Jss

(

∆u1

∆u0

)
1

2

+ J0 for ∆u ∈ [0, ∆u1] (50)

The maximum stress σ0 is found by requiring that the area W1 of the linear softening law in
the range 0 ≤ ∆u ≤ ∆u1 must equal the area Wexp of the general bridging law in this range
(see Eq. (50)). Area W1 is given by

W1 =
∆Jss

2

(

∆u1

∆u0

)
1

2

+
1

2
σ0∆u1 (51)
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Setting Wexp = W1, while including the starting value J0 as before, the maximum stress for a
given ∆u1 (as also included in Figure 11) is

σ0 =
2J0 + 3

2
∆Jss

(

∆u1

δ0

)
1

2

∆u1

(52)

The energy uptake J0 is now included by raising the starting value σ0. Upon reaching of ∆u1,
the original bridging law is followed.

Zero stress value

In the second case of a zero stress condition with subsequent increase of the bridging stresses,
a separated bridging law is proposed. A small value of ∆u2 is assumed, up to which the energy
J0 is taken up. This is the physically more relevant case, and is visualised in Figure 12.
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Figure 12. Numerical bridging law (adjusted). Separated fracture energy.

The value of ∆u2 is determined from the initial fracture energy of J0 and the maximum stress
value, σ0. ∆u2 can become quite small based on the value of J0. This leads to convergence
problems with the linear increase shown in Figure 12(a), as a steep tangent changes to a negative
tangent at ∆u = ∆u2. Instead of the common linear increase up to ∆u2, a power-law approach
(see Figure 12(b)) can be applied:

σ(∆u) = σ0

(

1 −
[

∆u2 − ∆u

∆u2

]α)

(53)

∆u2 can then be determined for a given value of J0 by the integral:
∫ ∆u2

0

σ(∆u)d∆u = J0 (54)

⇒ ∆u2 =
J0

σ0

(

α + 1

α

)

(55)

The power-law factor α determines the initial increase in stress with opening. The increase with
α = 1 is identical to the linear increase. A factor of α = 100 leads to the same result for ∆u2

as a constant finite stress value up to ∆u2 with a non-equilibrium starting point as shown in
Table 2. The proposed power-law function is therefore more versatile. However, the power-law
approach is also a numerically more robust approach as the sign change in the tangent stiffness

19



Table 2. Comparison of values for ∆u2 for a maximum stress of σ0 = 3.5 MPa and J0 = 300

J/m2

α=1 α=5 α=10 α=100 linear const σ0

∆u2 [mm] 0.1714 0.1029 0.0943 0.0857 0.1714 0.0857

at ∆u = ∆u2 is avoided. The tangent is close to zero before becoming negative. This leads to
largely improved numerical behaviour in terms of convergence.

As the energy uptake for the damage part needs to equal the original ∆Jss for whole bridging
law between 0 and ∆u0, the value of ∆Jss, adj (see Figure 12) in the bridging law needs to be
adjusted accordingly:

∆Jss, adj =
∆Jss

1 −
√

∆u2

∆u0

(56)

The problem with this procedure is that σ0 in turn again depends on the adjusted value for
∆Jss, adj:

σ0 =
∆Jss, adj

2
√

∆u2∆u0

(57)

As a consequence, σ0 and therefore ∆u2 will change as well. An iterative procedure needs
to be applied to determine the values for ∆Jss, adj and ∆u2. A starting value for ∆u2 in Eq. (56)
can be determined by integrating the bridging law within the limits of ∆u2 and ∆u0 and setting
the integral value equal to ∆Jss (see Figure 12 (b)):

∆u2 =
4J2

0∆u0

∆J2
ss

(

α + 1

α

)2

. (58)

We therefore determine first ∆u2 with Eq. (58). This is followed by calculating ∆Jss, adj with
Eq. (56) and σ0 is calculated with Eq. (57). In the last step, ∆u2 is determined with Eq. (55).
The latter three steps are repeated until convergence is achieved.

6 Numerical results

In the following sections, results are introduced for the bridging law shape with finite stress
value (method (a)) and the bridging law shape with split values of J0 and ∆Jss with a power-
law increase (method (b)) as introduced earlier. Based on these results, the bridging law shape
was then modified to give a better fit with the experimental data. To justify this procedure, it is
important to keep in mind that the bridging law was derived in the first place by analytical curve
fitting of the crack growth resistance (see Section 2). Any deviation from the experimental data
to this curve fitting will of course influence the match of the predictions. Analytically, it is
only possible to fit the crack growth resistance. In this section, we also compare the numerical
fit with other experimental observations, such as the crack growth resistance as a function of
crack growth development and the shape of the crack opening. Based on these findings, it is
shown that the crack growth resistance as a function of crack growth development is much
more sensitive to changes in the bridging law shape. Numerical adjustment of the bridging law
parameters on this curve leads to a very good agreement of the numerical predictions with all
measured experimental data.

6.1 Comparison of numerical integration procedures
Non-convergence problems can occur in the following simulations if the element size is too
large compared to the stress uptake based on the traction law. This is most severe for the method
of the finite stress value, while all approaches with the power-law show a better numerical
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performance. This restriction on element size can be improved by choosing a larger number of
integration points instead of reducing the element size.

Different mesh refinements were used to determine the numerical response during the sim-
ulations. For the first refinement, which was shown in Figure 8, the element length for the
cohesive elements is given by 0.36 mm. This is in relation to values of ∆u1 = 0.05 mm and
∆u2 ≈ 0.01 mm. The mesh density is not sufficient to ensure convergence for 3 Gauss integra-
tion points and Newton-Cotes points for all methods introduced in the following: further mesh
refinement for those integration procedures is required down to lel = 0.0906 mm is required.
At this level, all integration procedures converge.

However, the use of 6 integration points for both the Gauss and Newton-Cotes integration
result in convergence of the simulation. Running the simulation with a lower mesh density is of
course beneficial in terms of computational effort. For 12 integration points, Gauss integration
again shows good performance, while the 12 point Newton-Cotes integration does not converge
after an initial start of the analysis. Some oscillatory effects in the numerical predictions of the
steady-state level are observed for a large number of integration points and low mesh density.

6.2 Numerical bridging results with finite stress value
Calculations were undertaken by method (a) with a finite stress value. The value of J0 was
included as described earlier. Two experimental tests were simulated: sizing A / epoxy and
sizing A / polyester. As specific experiments were modelled, the data was not fitted to the
average of all tests as shown in Table 1, but to the specific test data of some of the specimens
(one for sizing A / epoxy, two for sizing A / polyester). For these specimens, we also recorded
the crack length as a function of crack growth resistance.

The following data were used for the bridging law (for reference for the numerical nomen-
clature see Figure 11):

Sizing A / epoxy:
∆Jss=3300 J/m2

J0=300 J/m2

∆u0 = 2 mm
∆u1 = 0.05 mm → σ0 = 27.65 MPa (σ1 = 5.22 MPa)

Sizing A / polyester:
∆Jss=4000 J/m2

J0=130 J/m2

∆u0 = 5.5 mm
∆u1 = 0.05 mm → σ0 = 16.64 MPa (σ1 = 3.81 MPa)

The value for ∆u1 has to be chosen as small as possible if we want to imitate the original
bridging law shape. However, there are numerical limitations, as with decreasing ∆u1 the value
of σ0 increases rapidly. The current value of ∆u1= 0.05 mm was found to lead to converging
numerical studies with suitable levels of mesh refinement.

The fit with the crack growth resistance as shown in Figure 13 is satisfactory apart from
slight differences in the initial increase of the crack growth resistance for small openings. For
both materials, the model predicts a steeper increase than experimentally observed.

Figure 14 shows the comparison of the numerical predictions and the measured crack length
for different values of crack growth resistance. The current numerical crack length is deter-
mined from a minimum positive node opening at the crack tip. An small threshold value of
1e-4 is used to determine the crack tip position. The results are quite insensitive to threshold
value variations between 1e-4 and 1e-8.

It can be clearly seen that this comparison is much more sensitive to the bridging law shape,
and the figure shows the deficiency of the current bridging law shape clearly. Numerically, for

21



0

1000

2000

3000

4000

5000

0 2 4           6

Data
sizing A/epoxy

 sizing A/epoxy
sizing A/polyester
Data sizing A/polyesterC

ra
c
k
 g

ro
w

th
 r

e
s
is

ta
n
c
e
 [
J
/m

2
]

Crack opening [mm]

∆Jss = 4000 J/m2

J0 = 130 J/m2

∆u0= 5.5 mm
∆u1= 0.05 mm

∆Jss = 3300 J/m2

J0 = 300 J/m2

∆u0= 2 mm
∆u1= 0.05 mm

Figure 13. Comparison of crack growth resistance for method (a) with finite stress value

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70

sizing A / epoxy

sizing A / polyester

C
ra

c
k
 g

ro
w

th
 r

e
s
is

ta
n
c
e
 [
J
/m

2
]

Crack extension, ∆a [mm]

∆Jss = 4000 J/m2

J0 = 130 J/m2

∆u0= 5.5 mm
∆u1= 0.05 mm

∆Jss = 3300 J/m2

J0 = 300 J/m2

∆u0= 2 mm
∆u1= 0.05 mm

Figure 14. Comparison of crack growth development for method (a) with finite stress value

a given crack length a higher crack growth resistance is predicted.
The second concern is the initial prediction of crack growth. Naturally, due to the adjust-

ment of the bridging law with respect to the incorporation of J0 into the initial linear part,
crack growth starts at zero crack growth resistance, and reaches the value after the initial crack
opening of ∆u1= 0.05 mm. This corresponds to approximate crack lengths of 5 mm for epoxy,
and 3 mm for the polyester as indicated by the ”knee” in Figure 14.

6.3 Numerical bridging results with power-law increase
We proposed splitting the values of J0 and ∆Jss with this method as shown in Figure 12. Using
an iterative procedure with Eq. (56), (57) and (55) as explained previously, we get the following
input values for the bridging law:

Sizing A / epoxy:
∆u0 = 2 mm
α = 100
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∆Jss = 3300 J/m2

J0=300 J/m2 → ∆u2 = 0.048 mm, σ0 = 6.29 MPa and ∆Jss, adj=3906 J/m2

Sizing A / polyester:
∆u0 = 5.5 mm
α = 100
∆Jss = 4000 J/m2

J0=130 J/m2 → ∆u2 = 0.021 mm, σ0 = 6.29 MPa and ∆Jss, adj=4262 J/m2

The determined values for ∆u2 are small in comparison with ∆u0 (∆u0

∆u2

>20). It was there-
fore decided to keep ∆u0 constant.

Figure 15 shows the comparison between numerical and experimental data for the crack
growth resistance as a function of crack opening. It can be seen that the numerical predictions
for small crack openings fit better with the splitted damage energies than it did with method
(a).
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Figure 15. Comparison of crack growth resistance for method (b) with power-law increase

However, although the fit in Figure 15 seems nearly perfect with the proposed bridging law,
the crack length as a function of the crack opening still shows deviations between the numerical
and experimental results (see Figure 16). The current numerical crack length is determined from
a minimum positive node opening at the crack tip, which is now defined as the value of ∆u2,
and thereby corresponds to crack development after reaching the crack initiation energy of J0.
In the opinion of the author, this assumption has a physically more valid background than a
randomly chosen small threshold value: one can consider damage models where fracture is
caused by initial microvoids forming and growing together [15]. Upon reaching the value of
damage initiation J0, these microvoids will form a starting crack.

6.4 Adjustment of bridging law
The above examples showed that the bridging law shape can be further improved to provide a
better fit with the experimental data; especially with respect to the crack length as a function
of crack growth resistance. Previous trials with the above models were taken as the basis to
improve the fit. Based on the above results, the following conclusions are drawn:

• Splitting of the bridging law into an initial fracture (J0) and damage (∆Jss) controlled part
is of advantage based on the physical interpretation of the cohesive law parameters. For
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Figure 16. Comparison of crack growth development for method (b) with power-law increase

example, for a failure mode such as delamination between carbon / epoxy prepreg plies,
the initial fracture energy surpasses the damage energy; while the bridging phenomenon
of unidirectional glass fiber composites demonstrates the opposite material behaviour.

• Bridging law values should be derived from the experimental curves instead of being
subject to a wide-ranging trial-and-error exercise. It is therefore desirable to estimate the
value of ∆u2 from the experimental data directly. This would be even more important
if ∆u2 is not small compared to ∆u0, i.e. both J0 and ∆Jss have comparable order of
magnitude.

• For method (b) splitting of initial fracture (J0) and damage (∆Jss) fracture energy im-
proves the fit with the experimental data. However, the initial drop in the bridging law (for
values larger than ∆u2) is still too severe; thereby resulting in an overprediction of the
crack growth resistance for a certain crack length.

This changes to the bridging law shape are visualised in Figure 17. The shape is basically a
combination of the previously discussed shapes for method (a) and (b). For Kfac=1 and ∆u1=0
we reset the bridging law to the shape of method (b). The derivation of these values is explained
below.

Determination of ∆u2

Previously, the value for ∆u2 was derived with a nonlinear solving procedure. However, as the
value actually has a physical meaning as explained in the last section, the experimental curves
can be used to determine suitable values. This is shown in Figure 18.

The figure shows that prior to crack initiation, the experimental curves actually exhibit a
small displacement of the order of 10-20 µm. Upon reaching J0, these microvoids will start to
form the starting crack. The corresponding crack growth resistance is the value of J0 as used
previously (J0,epoxy=300 J/m2, J0,poly=130 J/m2).

The corresponding displacement value can be used for ∆u2. Based on Eq. (55), we can
then calculate a value for the required peak stress and thereby introduce a factor value Kfac in
comparison to the original peak stress:

Kfac =
J0

∆u2σ0

(

α + 1

α

)

(59)

Determination of ∆u1

To improve the fit with the experimental data further, the decreasing bridging law slope after
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reaching ∆u2 needs to be reduced. We therefore take over the previously introduced linear
decrease between ∆u2 and ∆u1 in this model.

This choice of an initially linear decrease is also based on previous numerical parameter
studies of bridging law shapes [4, 11]. Bridging laws with linear decrease then show an s-
shaped trend in the crack length development. Judging from the experimental data, where we
overpredict more in the initial crack development stages, this type of model would improve the
fit with the experimental data.

The value of ∆u1 now becomes the only adjustable value in the bridging law to be fitted to
the experimental data points.

Determination of σ0

σ0 can be calculated from the requirement of total energy update equal to ∆Jss as previously
with model (a), without including J0 as this part of the fracture energy is taken care of during
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the initial increase up to ∆u2.

σ0 =

3

2
∆Jss

(

∆u1

δ0

)
1

2

∆u1

(60)

Bridging law parameters
J0, ∆Jss, ∆u2 and ∆u0 can all be determined directly from the experimental data. The values
are summarised in Table 3. Again, the value of ∆u2 is small in comparison with ∆u0, so there
is no difference in the numerical prediction as to whether the length of the bridging law is given
by ∆u0 or ∆u0 + ∆u2.

Table 3. Numerical values for the bridging law for different composite systems

Composite system J0 ∆Jss Kfac ∆u0 ∆u2 ∆u1

[J/m2] [J/m2] [mm] [mm] [mm]
sizing A/epoxy 300 3300 8.0 2.0 0.01 1.0
sizing A/polyester 130 4000 9.0 5.5 0.008 2.5

Figure 19 shows the resulting fit for the crack growth resistance versus crack opening where
the value of ∆u1 has been adjusted to 1.0 and 2.5 mm for epoxy and polyester, respectively. In
both cases, this is about half the value of the total crack opening, ∆u0.
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Figure 19. Comparison of crack growth resistance

Figure 20 now shows the excellent fit between the numerical and experimental data for the
crack growth resistance versus crack length. The s-shaped crack length curve is now predicted
extremely well. For a further check of the proposed crack bridging shape, the predicted crack
profiles are studied together with the experimental predictions. This was undertaken for the
polyester specimens as seen in Figure 21.

The figure shows the crack opening profile for a crack length of 50 mm. For accuracy of
the experimental crack opening measurements, an opening of at least 0.2 mm must be given.
It can be seen that the bridging law also in this case leads to a very good agreement between
the two data sets. Additionally, the unbridged crack profile is shown in the figure. The bridging
stresses across the crack faces lead - as expected - to a decrease in the opening of the crack.
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for sizing A / polyester

The maximum opening at the crack notch is - for a length of 50 mm - reduced to 25% from 2.0
to 1.5 mm. This is quite a considerable effect of the bridging stresses.

Figure 22 shows the results from above together with the numerical predictions for sizing
A/epoxy at the same crack growth resistance of JR=3100 J/m2. It can be seen that the crack
opening and crack length for the same crack growth resistance are considerably smaller for
sizing A/epoxy. Including the bridging stresses also changes the crack opening shape in the
vicinity of the crack tip - however, this change is hard to determine correctly experimentally
due to the small crack opening values.

Figure 23 now shows the numerical predictions for the crack opening profiles for both the
sizing A/epoxy and sizing A/polyester system in comparison for the same crack opening. The
curves are plotted for two different crack opening values of 0.3 and 1.2 mm. For these crack
openings, sizing A/polyester gives the larger crack length together with a smaller crack growth
resistance.
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Unloading considerations
A possible procedure for unloading (i.e. crack closure during structural loading) was described
earlier in Section 4.1 (see Figure 6). Although the current problem situation does not require an
unloading procedure due to continually increasing crack opening, a theoretical consideration
is given here. The splitting of the two fracture parts, J0 and ∆Jss, can then also be used to
change the history for elastic unloading: if we consider fracture initiation completed once the
value of ∆u2 has been reached (void formation out of microvoids), elastic unloading to the
origin should only occur for openings larger than ∆u2. For smaller values, the path can simply
be reversed. This has not been investigated in detail as the current problem does not require
unloading.
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7 Summary

This report describes the implementation of a cohesive user element into the commercial FE
code ABAQUS. This element type proves to be a versatile tool in predicting opening, crack
length and crack profiles as a function of the crack growth resistance. In comparison with the
earlier implemented UINTER contact routine, the cohesive element has the distinct advantage
that a higher number of integration points can be used to improve the numerical performance
for a given mesh density. This reduces the computational time for the analysis greatly.

The experimentally measured bridging law was optimised with the help of the numerical
predictions. Experimental data such as crack length and crack profiles were found to give very
good agreement with the adjusted law. The parameters for the new law can mostly be deter-
mined from the experiments; only one parameter remains to be fitted.
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A Implementation of the plane interface element

A.1 Derivation of force vector and stiffness matrix
The derivation of the force vector and stiffness matrix for the plane interface element are analo-
geous to the linear element presented earlier.

The plane interface element has 48 (3x16) degrees of freedom. The nodal displacements in the
global coordinate system are given as:

dN =
(

d1

x d1

y d1

z d2

x d2

y d2

z . . . d16

x d16

y d16

z

)T
(A.1)

∆uN = ΦdN = (−I24×24 | I24×24) dN , (A.2)

where I24×24 denotes a unity matrix with 24 rows and columns.

Let Ni(ξ, η) be the shape functions for the node pair i (i = 1, . . . , 8), where ξ and η stand
for the local coordinates of the element with −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. The relative
displacement between the nodes for each point within the element is then given by:

∆u(ξ, η) =





∆ux(ξ , η)

∆uy(ξ, η)

∆uz(ξ, η)



 = H(ξ, η)∆uN , (A.3)

where H(ξ, η) is a 3x24 matrix containing the individual shape functions. It has the form

H(ξ, η) = (N1(ξ, η) I3x3 | N2(ξ, η) I3x3 | · · · N8(ξ, η) I3x3) . (A.4)

for plane interface elements.

As a result, we get

∆u(ξ, η) = HΦdN = BdN , (A.5)

where B is of the dimension 3x48 and ∆u of the dimension 3x1.

The coordinates of any specific reference position can be derived according to Eq. (A.3):

x
R(ξ, η) = H(ξ, η)xR

N (A.6)

The tangential plane is spanned by two vectors, vξ and vη . They are, at a given point, obtained
by differentiating the global position vector with respect to the local coordinates. Although
vξ and vη are generally not orthogonal to each other, their vector product defines the surface
normal. Therefore, the local normal vector is obtained by:

tn =
1

||∂x
R

∂ξ
× ∂x

R

∂η
||

(

∂x
R

∂ξ
× ∂x

R

∂η

)

(A.7)

The tangential coordinates are defined as:

t1 =
1

||∂x
R

∂ξ
||

∂x
R

∂ξ
(A.8)

t2 = tn × t1 (A.9)

The components t1, t2 and tn represent the direction cosines of the local coordinate system to
the global one, thus defining the 3 × 3 transformation tensor Θ:

Θ = (t1, t2, tn) . (A.10)

The local displacements are then obtained by

∆uloc = Θ
T ∆u. (A.11)
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The element stiffness matrix and the right hand side nodal force vector are required for the
UEL subroutine in ABAQUS.

The nodal force vector is defined as

f
el
N =

∫ 1

−1

∫ 1

−1

B
T
Θ

T
tloc det J dξdη, (A.12)

where tloc is the 3x1 vector defining the bridging stresses. The bridging stresses are connected
to the opening displacements by the cohesive law as derived previously. It should be noticed
that - for numerical purposes - the relationship can be expressed in various forms (analytical,
piecewise linear, etc).

det J is the Jacobian defined by the transformation of the current element coordinates (ξ, η) to
the global coordinates (x, y, z), and defined as

det J =
√

(det J1)2 + (det J2)2 + (det J3)3 with (A.13)

det J1 = ∂xR
ξ ∂yR

η − ∂xR
η ∂yR

ξ (A.14)

det J2 = ∂xR
ξ ∂zR

η − ∂xR
η ∂zR

ξ (A.15)

det J3 = ∂yR
ξ ∂zR

η − ∂yR
η ∂zR

ξ (A.16)

Note that depending on the orientation of the local to the global coordinate system, the compo-
nents det J1, det J2 and det J3 can be negative.

The tangent stiffness matrix (note sign convention for ABAQUS) is defined as

K
el = −∂f

el
N

∂del = −
∫

el
B

T
Θ

T
DlocΘB dSel (A.17)

K48×48 = −
∫ 1

−1

∫ 1

−1

B
T
Θ

T
DlocΘB dξdη (A.18)

A.2 State variables for the analysis
The number of state variables for each element depends on the chosen integration procedure.
At each integration point of the plane element, there are three state variables for the relative
displacement (x-, y- and z-direction) and the local stresses acting in the x-, y- and z-direction.
Furthermore, there is one value describing the current interaction state between the two surfaces
for the purpose of stability analysis and position tracking during the numerical procedure. For a
standard integration procedure with 9 integration points, this results in 63 (9x7) state variables
for the plane element. As ABAQUS will not terminate the analysis if an insufficient number of
state variables is provided for the chosen integration procedure, this user input error is checked
within the UEL subroutine.
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B Quadratic shape functions and derivatives

B.1 Line element
The three quadratic shape functions for line element are as follows:

N1(ξ) =
1

2
(−ξ + ξ2) (B.1)

N2(ξ) =
1

2
(ξ + ξ2) (B.2)

N3(ξ) = 1 − ξ2 (B.3)

Derivative of shape functions

N1,ξ(ξ) = −1

2
+ ξ (B.4)

N2,ξ(ξ) =
1

2
+ ξ (B.5)

N3,ξ(ξ) = −2ξ (B.6)

B.2 Plane element
The quadratic shape functions for the plane element are given below:

N1(ξ, η) =
1

4
(1 − ξ)(1 − η) − 1

2
(N5 + N8) (B.7)

N2(ξ, η) =
1

4
(1 + ξ)(1 − η) − 1

2
(N5 + N6) (B.8)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) − 1

2
(N6 + N7) (B.9)

N4(ξ, η) =
1

4
(1 − ξ)(1 + η) − 1

2
(N7 + N8) (B.10)

N5(ξ, η) =
1

2
(1 − ξ2)(1 − η) (B.11)

N6(ξ, η) =
1

2
(1 + ξ)(1 − η2) (B.12)

N7(ξ, η) =
1

2
(1 − ξ2)(1 + η) (B.13)

N8(ξ, η) =
1

2
(1 − ξ)(1 − η2) (B.14)
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Derivative of shape functions

N1,ξ = −1

4
(1 − η) − 1

2
(N5,ξ + N8,ξ) (B.15)

N2,ξ =
1

4
(1 − η) − 1

2
(N5,ξ + N6,ξ) (B.16)

N3,ξ =
1

4
(1 + η) − 1

2
(N6,ξ + N7,ξ) (B.17)

N4,ξ = −1

4
(1 + η) − 1

2
(N7,ξ + N8,ξ) (B.18)

N5,ξ = −ξ(1 − η) (B.19)

N6,ξ =
1

2
(1 − η2) (B.20)

N7,ξ = −ξ(1 + η) (B.21)

N8,ξ = −1

2
(1 − η2) (B.22)

N1,η = −1

4
(1 − ξ) − 1

2
(N5,η + N8,η) (B.23)

N2,η = −1

4
(1 + ξ) − 1

2
(N5,η + N6,η) (B.24)

N3,η =
1

4
(1 + ξ) − 1

2
(N6,η + N7,η) (B.25)

N4,η =
1

4
(1 − ξ) − 1

2
(N7,η + N8,η) (B.26)

N5,η = −1

2
(1 − ξ2) (B.27)

N6,η = −η(1 + ξ) (B.28)

N7,η =
1

2
(1 − ξ2) (B.29)

N8,η = −η(1 − ξ) (B.30)
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C Integration points and weights

C.1 Gauss integration point positions and weights

3 points

p1 = −
√

0.6 w1 = 0.555

p2 = 0.0 w2 = 0.888

p3 =
√

0.6 w3 = 0.555

6 points

p1 = −0.9324695142031520 w1 = 0.1713244923791709

p2 = −0.6612093864662646 w2 = 0.3607615730481379

p3 = −0.2386191860831968 w3 = 0.4679139345726913

p4 = 0.2386191860831968 w4 = 0.4679139345726913

p5 = 0.6612093864662646 w5 = 0.3607615730481379

p6 = 0.9324695142031520 w6 = 0.1713244923791709

12 points

p1 = −0.981560634246732 w1 = 0.04717533638647547

p2 = −0.904117256370452 w2 = 0.1069393259953637

p3 = −0.7699026741943177 w3 = 0.1600783285433586

p4 = −0.5873179542866143 w4 = 0.2031674267230672

p5 = −0.3678314989981804 w5 = 0.2334925365383534

p6 = −0.12523340851114688 w6 = 0.2491470458134027

p7 = 0.12523340851114688 w7 = 0.2491470458134027

p8 = 0.3678314989981804 w8 = 0.2334925365383534

p9 = 0.5873179542866143 w9 = 0.2031674267230672

p10 = 0.7699026741943177 w10 = 0.1600783285433586

p11 = 0.904117256370452 w11 = 0.1069393259953637

p12 = 0.981560634246732 w12 = 0.04717533638647547
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C.2 Newton-Cotes integration point positions and weights

3 points

p1 = −1.0 w1 = 0.333

p2 = 0.0 w2 = 1.333

p3 = 1.0 w3 = 0.333

6 points

p1 = −1.0 w1 = 19/144

p2 = −3/5 w2 = 75/144

p3 = −1/5 w3 = 50/144

p4 = 1/5 w4 = 50/144

p5 = 3/5 w5 = 75/144

p6 = 1.0 w6 = 19/144

12 points

p1 = −1.0 w1 = 2171465/43545600

p2 = −9/11 w2 = 13486539/43545600

p3 = −7/11 w3 = −3237113/43545600

p4 = −5/11 w4 = 25226685/43545600

p5 = −3/11 w5 = −9595542/43545600

p6 = −1/11 w6 = 15493566/43545600

p7 = 1/11 w7 = 15493566/43545600

p8 = 3/11 w8 = −9595542/43545600

p9 = 5/11 w9 = 25226685/43545600

p10 = 7/11 w10 = −3237113/43545600

p11 = 9/11 w11 = 13486539/43545600

p12 = 1.0 w12 = 2171465/43545600
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D ABAQUS coding for the quadratic line element

The following code will be compiled and linked when calling the ABAQUS job. For unix
systems, the command prompt will be as follows:

abaqus job=jobname user=interface

This syntax is of course dependent on the platform you are using. For further information see
the ABAQUS manuals. The following code for the user subroutine UEL is written in FOR-
TRAN 77 and saved as ’interface.f’.

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,

1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,

2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,

3 NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,

4 PERIOD)

C

INCLUDE ’ABA_PARAM.INC’

PARAMETER (ZERO = 0.D0, HALF=0.5D0, ONE= 1.0D0, TWO=2.0d0,

1 THREE= 3.0d0, TOL=-1E-5)

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),

1 SVARS(NSVARS),ENERGY(8),PROPS(*),COORDS(MCRD,NNODE),

2 U(NDOFEL),DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),

3 PARAMS(3),JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),

4 DDLMAG(MDLOAD,*),PREDEF(2,NPREDF,NNODE),LFLAGS(*),

5 JPROPS(*)

C GENERAL ELEMENT VALUES

DIMENSION STRESS(MCRD)

DIMENSION DDSDDR(MCRD,MCRD)

C GAUSS INTEGRATION VARIABLES (3 INTEG POINT)

DIMENSION GAUSS3(3), WEIGHT3(3), COTNEW(3), CWEIGHT(3)

DIMENSION GAUSS6(6), WEIGHT6(6), COTNEW6(6), CW6(6)

DIMENSION GAUSS12(12), WEIGHT12(12), COTNEW12(12), CW12(12)

C ARRAYS FOR QUADRATIC LINE ELEMENT

DIMENSION DNDXI(3), DELTA_U(6), DU_CONT(MCRD), DU_LOC(MCRD)

DIMENSION H(MCRD,6), C_COOR(MCRD,NNODE), PSI(6,NDOFEL)

DIMENSION B(MCRD, NDOFEL), BT(NDOFEL, MCRD)

DIMENSION A1(NDOFEL, MCRD), A2(NDOFEL, NDOFEL)

DIMENSION AV_COOR(MCRD, 3), V_XI(MCRD), V_N(MCRD)

DIMENSION THETA(MCRD, MCRD), STR_GLOB(MCRD)

DIMENSION D_GLOB(MCRD, MCRD), DD1(MCRD, MCRD)

data iuel/0/

save iuel

C

C QUADRATIC LINE ELEMENT

C SVARS - In 1, contains the lOpenClose identifier

C - In 3-4, contains the traction stiffness

C - In 5-6, contains the traction opening

C

C INITIALISATION: IMPORTANT!! FORTRAN DOES NOT PUT ZEROS IN THERE AUTOMATICALLY

CALL KASET2(AMATRX, NDOFEL, NDOFEL)

IF (NHRS.EQ.1) THEN

CALL KASET1(RHS, MLVARX)

ELSE

CALL KASET2(RHS, MLVARX, NRHS)

END IF

CALL KASET2(PSI, 6, NDOFEL)
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CALL KASET2(H, MCRD, 6)

CALL KASET2(AV_COOR, MCRD, 3)

CALL KASET1(V_XI, MCRD)

CALL KASET1(V_N, MCRD)

CALL KASET2(THETA, MCRD, MCRD)

CALL KASET2(DDSDDR, MCRD, MCRD)

CALL KASET2(D_GLOB, MCRD, MCRD)

CALL KASET1(STRESS, MCRD)

CALL KASET1(STR_GLOB, MCRD)

C REAL INPUT PROPERTIES

WIDTH = PROPS(7) ! Width of elements (same as solid section width for solid elements)

C INTEGER INPUT PROPERTIES

NINTP = JPROPS(1) ! Number of integration points

INTS = JPROPS(2) ! Integration point scheme (1: gauss, 2: newton cotes)

C INFORMATION OUTPUT AND CHECK

IF (iuel.EQ.0) THEN

OPEN(15,FILE=

1 ’/user/feih/abaqus/uel/verify.out’)

write(7,*) ’First call to UEL-----------------’

WRITE(7,*) ’DEGREES OF FREEDOM:’,NDOFEL

write(7,*) ’number of nodes:’, NNODE

write(7,*) ’number of integration points:’, NINTP

write(7,*) ’Integration scheme:’, INTS

write(7,*) ’maximum coords:’, MCRD

write(7,*) ’number of variables:’, NSVARS

write(7,*) ’number of real properties’, NPROPS

write(7,*) ’number of integer properties’, NJPROP

write(7,*) ’dimensioning parameter:’, MLVARX

write(7,*) ’KINC:’, KINC

write(7,*) ’LFLAGS(1)=’, LFLAGS(1)

write(7,*) ’LFLAGS(2)=’, LFLAGS(2)

write(7,*) ’LFLAGS(3)=’, LFLAGS(3)

write(7,*) ’LFLAGS(4)=’, LFLAGS(4)

write(7,*) ’LFLAGS(5)=’, LFLAGS(5)

C CHECKING FOR THE RIGHT NUMBER OF NODES

IF (NNODE.NE.6) THEN

CALL STDB_ABQERR(-3, ’6 nodes required for interface element:

1 specified number of nodes is incorrect’,0,0.0,’ ’)

END IF

C Checking for number of state variables

minnum = NINTP*5

IF (NSVARS.LT.minnum) THEN

CALL STDB_ABQERR(-3, ’Number of state variables too small for

1 chosen number of integration points!’,MINNUM,0.0,’ ’)

END IF

IUEL = 1

END IF

C WRITE(7,*) ’New call to UEL’

C do k=1, NDOFEL

C write(7,*) ’U’, U(k)

C end do
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call flush_(15)

C Calculate relation matrix

C Calculate relative opening at node pairs

C DEFINE DELTA_U=U_TOP - U_BOTTOM

DO 10 K = 1, NDOFEL/2

PSI(K, K) = -ONE

PSI(K, K+NDOFEL/2) = ONE

10 END DO

C Compute nodal coordinates in deformed state

C ADD PROPER COORDINATE TRANSFORMATION LATER

DO 20 I=1,MCRD

DO 30 J=1, NNODE

NN=I+(J-1)*MCRD

C_COOR(I,J)=COORDS(I,J) + U(NN)

30 END DO

20 END DO

c Reference coordinate system (midpoint averages)

DO 31 I=1, MCRD

DO 32 J=1, NNODE/2

AV_COOR(I,J)=ONE/TWO*(C_COOR(I,J)+C_COOR(I,J+NNODE/2))

32 END DO

31 END DO

c Gaussian integration (3 gauss points)

GAUSS3(1) = -SQRT(0.6)

GAUSS3(2) = ZERO

GAUSS3(3) = SQRT(0.6)

WEIGHT3(1) = 0.55555555555555

WEIGHT3(2) = 0.88888888888888

WEIGHT3(3) = 0.55555555555555

c Gaussian integration (6 gauss points)

GAUSS6(1) = -0.932469514203152

GAUSS6(2) = -0.6612093864662646

GAUSS6(3) = -0.2386191860831968

GAUSS6(4) = 0.2386191860831968

GAUSS6(5) = 0.6612093864662646

GAUSS6(6) = 0.932469514203152

WEIGHT6(1) = 0.1713244923791709

WEIGHT6(2) = 0.3607615730481379

WEIGHT6(3) = 0.4679139345726913

WEIGHT6(4) = 0.4679139345726913

WEIGHT6(5) = 0.3607615730481379

WEIGHT6(6) = 0.1713244923791709

c Gaussian integration (12 gauss points)

GAUSS12(1) = -0.981560634246732

GAUSS12(2) = -0.904117256370452

GAUSS12(3) = -0.7699026741943177

GAUSS12(4) = -0.5873179542866143

GAUSS12(5) = -0.3678314989981804

GAUSS12(6) = -0.12523340851114688

GAUSS12(7) = 0.12523340851114688

GAUSS12(8) = 0.3678314989981804
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GAUSS12(9) = 0.5873179542866143

GAUSS12(10) = 0.7699026741943177

GAUSS12(11) = 0.904117256370452

GAUSS12(12) = 0.981560634246732

WEIGHT12(1) = 0.04717533638647547

WEIGHT12(2) = 0.1069393259953637

WEIGHT12(3) = 0.1600783285433586

WEIGHT12(4) = 0.2031674267230672

WEIGHT12(5) = 0.2334925365383534

WEIGHT12(6) = 0.2491470458134027

WEIGHT12(7) = 0.2491470458134027

WEIGHT12(8) = 0.2334925365383534

WEIGHT12(9) = 0.2031674267230672

WEIGHT12(10) = 0.1600783285433586

WEIGHT12(11) = 0.1069393259953637

WEIGHT12(12) = 0.04717533638647547

c Newton Cotes integration (3 integration points)

COTNEW(1) = -ONE

COTNEW(2) = ZERO

COTNEW(3) = ONE

CWEIGHT(1) = ONE/THREE

CWEIGHT(2) = ONE + ONE/THREE

CWEIGHT(3) = ONE/THREE

c Newton Cotes integration (6 integration points)

COTNEW6(1) = -ONE

COTNEW6(2) = -3.0d0/5.0d0

COTNEW6(3) = -1.0d0/5.0d0

COTNEW6(4) = 1.0d0/5.0d0

COTNEW6(5) = 3.0d0/5.0d0

COTNEW6(6) = ONE

CW6(1) = 19.0d0/144.0d0

CW6(2) = 75.0d0/144.0d0

CW6(3) = 50.0d0/144.0d0

CW6(4) = 50.0d0/144.0d0

CW6(5) = 75.0d0/144.0d0

CW6(6) = 19.0d0/144.0d0

c Newton Cotes integration (12 integration points)

COTNEW12(1) = -ONE

COTNEW12(2) = -9.0d0/11.0d0

COTNEW12(3) = -7.0d0/11.0d0

COTNEW12(4) = -5.0d0/11.0d0

COTNEW12(5) = -3.0d0/11.0d0

COTNEW12(6) = -1.0d0/11.0d0

COTNEW12(7) = 1.0d0/11.0d0

COTNEW12(8) = 3.0d0/11.0d0

COTNEW12(9) = 5.0d0/11.0d0

COTNEW12(10) = 7.0d0/11.0d0

COTNEW12(11) = 9.0d0/11.0d0

COTNEW12(12) = ONE

CW12(1) = 2171465.0d0/43545600.0d0

CW12(2) = 13486539.0d0/43545600.0d0

CW12(3) = -3237113.0d0/43545600.0d0

CW12(4) = 25226685.0d0/43545600.0d0

CW12(5) = -9595542.0d0/43545600.0d0

CW12(6) = 15493566.0d0/43545600.0d0

CW12(7) = 15493566 .0d0/43545600.0d0

CW12(8) = -9595542.0d0/43545600.0d0

CW12(9) = 25226685.0d0/43545600.0d0

CW12(10) = -3237113.0d0/43545600.0d0

CW12(11) = 13486539.0d0/43545600.0d0

CW12(12) = 2171465.0d0/43545600.0d0
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C

IF (LFLAGS(3).EQ.1) THEN

C Normal incrementation (RHS and AMATRX required)

IF (LFLAGS(1).EQ.1.OR.LFLAGS(1).EQ.2) THEN

C *STATIC AND *STATIC, DIRECT

C LOOP OVER INTEGRATION POINTS

DO 100 IINTP = 1,NINTP

IF (NINTP.EQ.3.AND.INTS.EQ.1) THEN

POINT = GAUSS3(IINTP)

WEIGHT = WEIGHT3(IINTP)

ELSE IF (NINTP.EQ.6.AND.INTS.EQ.1) THEN

POINT = GAUSS6(IINTP)

WEIGHT = WEIGHT6(IINTP)

ELSE IF (NINTP.EQ.12.AND.INTS.EQ.1) THEN

POINT = GAUSS12(IINTP)

WEIGHT = WEIGHT12(IINTP)

ELSE IF (NINTP.EQ.3.AND.INTS.EQ.2) THEN

POINT = COTNEW(IINTP)

WEIGHT = CWEIGHT(IINTP)

ELSE IF (NINTP.EQ.6.AND.INTS.EQ.2) THEN

POINT = COTNEW6(IINTP)

WEIGHT = CW6(IINTP)

ELSE IF (NINTP.EQ.12.AND.INTS.EQ.2) THEN

POINT = COTNEW12(IINTP)

WEIGHT = CW12(IINTP)

ELSE

WRITE(7,*) ’Unspecified integration required’

CALL FLUSH_(7)

CALL XIT

END IF

C Shape function value

H1 = ONE/TWO*(-POINT + POINT**TWO)

H2 = ONE/TWO*( POINT + POINT**TWO)

H3 = ONE - POINT**TWO

C DERIVATIVE OF SHAPE FUNCTION VALUE (3X1 MATRIX)

DNDXI(1) = -ONE/TWO + POINT

DNDXI(2) = ONE/TWO + POINT

DNDXI(3) = -TWO*POINT

C H matrix

H(1,1) = H1

H(2,2) = H1

H(1,3) = H2

H(2,4) = H2

H(1,5) = H3

H(2,6) = H3

c write(7,*) ’Starting loop over integration points’
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c write(7,*) ’INTP POINT and WEIGHT’, IINTP, POINT, WEIGHT

C call flush_(7)

CALL KASET2(B, MCRD, NDOFEL)

DO 110 I=1, MCRD

DO 120 J=1, NDOFEL

DO 130 K=1, NDOFEL/2

B(I,J) = B(I,J) + H(I,K)*PSI(K,J)

130 END DO

120 END DO

110 END DO

C TRANSPOSED B MATRIX

DO 140 I=1, MCRD

DO 150 J=1, NDOFEL

BT(J,I) = B(I,J)

150 END DO

140 END DO

C CALCULATE GLOBAL DISPLACEMENT AT INTEGRATION POINT

C FROM CONTINUOUS DISPLACEMENT

CALL KASET1(DU_CONT, MCRD)

DO 160 I=1, MCRD

DO 170 J=1, NDOFEL

DU_CONT(I) = DU_CONT(I) + B(I,J)*U(J)

170 END DO

160 END DO

C LOCAL COORDINATE SYSTEM

C (USE AVERAGE OF DEFORMED X-POSITIONS OF TOP AND BOTTOM)

X_xi = ZERO

Y_xi = ZERO

DO 180 I=1,3

X_xi = X_xi +

1 DNDXI(I)*AV_COOR(1,I)

Y_xi = Y_xi +

1 DNDXI(I)*AV_COOR(2,I)

180 END DO

c Jacobian (vector length in xi-direction)

DETJ = sqrt(X_xi**TWO + Y_xi**TWO)

IF (DETJ.LT.ZERO) THEN

write(7,*) ’Negative Jacobian encountered!

1 Check element and nodal definition for elem’, JELEM

CALL XIT

END IF

C Local coordinate vector

V_XI(1) = X_XI/DETJ

V_XI(2) = Y_XI/DETJ

C Normal vector in 90 degree angle

V_N(1) = - V_XI(2)

V_N(2) = V_XI(1)
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c Rotational matrix

THETA(1,1) = V_XI(1)

THETA(2,1) = V_XI(2)

THETA(1,2) = V_N(1)

THETA(2,2) = V_N(2)

c Relative displacement in local coordinate system

CALL KASET1(DU_LOC, MCRD)

DO 181 I=1, MCRD

DO 182 J=1, MCRD

DU_LOC(I) = DU_LOC(I) + THETA(J,I)*DU_CONT(J)

182 END DO

181 END DO

c over-closure check (can be used as re-start criterion - see uinter)

IF (DU_LOC(2).LT.TOL) THEN

write(7,*) ’Over-closure at element’, JELEM

END IF

C write (7,*) ’DU_LOC:’, DU_LOC(1), DU_LOC(2), IINTP

C CALL FLUSH_(7)

C CALCULATE STRESS AND TRACTION STIFFNESS BASED ON RELATIVE DISPLACEMENT

CALL KTRACN(DU_LOC, PROPS, STRESS, DDSDDR,

1 MCRD, SVARS, NSVARS, IINTP, NINTP, KINC, JELEM)

c dummy stiffness for friction (no influence under mode I opening when coupled with equation)

c for accuracy there should be coupling terms,

c but again: no influence under mode I opening

DDSDDR(1,1) = 10000

C RHS ASSEMBLY

C CHECK FOR APPLIED LOADS ON STRUCTURE

IF (NDLOAD.NE.0) THEN

WRITE(7,*) ’Element loads not implemented’

CALL FLUSH_(7)

CALL XIT

END IF

C Stiffness matrix

c Transformation

CALL KASET2(DD1, MCRD, MCRD)

DO 183 I=1, MCRD

DO 184 J=1, MCRD

DO 185 K=1, MCRD

DD1(I,J) = DD1(I,J) + DDSDDR(I,K)*THETA(J,K)

185 END DO

184 END DO

183 END DO

CALL KASET2(D_GLOB, MCRD, MCRD)

DO 186 I=1, MCRD

DO 187 J=1, MCRD

DO 188 K=1, MCRD

D_GLOB(I,J) = D_GLOB(I,J) + THETA(I,K)*DD1(K,J)

188 END DO

187 END DO

186 END DO
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CALL KASET2 (A1, NDOFEL, MCRD)

DO 190 I=1, NDOFEL

DO 191 J=1, MCRD

DO 192 K=1, MCRD

A1(I,J) = A1(I,J) + BT(I,K)*D_GLOB(K,J)

192 END DO

191 END DO

190 END DO

CALL KASET2 (A2, NDOFEL, NDOFEL)

DO 195 I=1, NDOFEL

DO 196 J=1, NDOFEL

DO 197 K=1, MCRD

A2(I,J) = A2(I,J) + A1(I,K)*B(K,J)

197 END DO

196 END DO

195 END DO

DO 200 I=1, NDOFEL

DO 201 J=1, NDOFEL

AMATRX(I,J) = AMATRX(I,J) +

1 WIDTH*WEIGHT*DETJ*A2(I,J)

201 END DO

200 END DO

C Right hand side

C Transformation

CALL KASET1(STR_GLOB, MCRD)

DO 202 I=1, MCRD

DO 203 J=1, MCRD

STR_GLOB(I) = STR_GLOB(I) + THETA(I,J)*STRESS(J)

203 END DO

202 END DO

DO 230 I=1, NDOFEL

DO 240 K=1,MCRD

RHS(I,1) = RHS(I,1) +

1 DETJ*WIDTH*WEIGHT*BT(I,K)*STR_GLOB(K)

240 END DO

230 END DO

IF (NRHS.EQ.2) THEN

WRITE(7,*) ’Riks solution not supported by element’

CALL FLUSH_(7)

CALL XIT

END IF

IF (LFLAGS(4).EQ.1) THEN

C PERTURBATION STEP

WRITE(7,*) ’Perturbation step not supported by element’

CALL FLUSH_(7)
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CALL XIT

END IF

C SAVE OPENING AND STRESSES AT INTEGRATION POINT AS STATE VARIABLES

SVARS(IINTP+NINTP) = DU_LOC(1)

SVARS(IINTP+2*NINTP) = DU_LOC(2)

SVARS(IINTP+3*NINTP) = STRESS(1)

SVARS(IINTP+4*NINTP) = STRESS(2)

100 END DO

ELSE

WRITE(7,*) ’Only static procedure supported by element’

CALL FLUSH_(7)

CALL XIT

END IF

ELSE IF (LFLAGS(3).EQ.4) THEN

DO I=1, NDOFEL

AMATRX(I,I)= 1.0d0

END DO

ELSE

WRITE(7,*) ’Only normal incrementation supported by element’

CALL FLUSH_(7)

CALL XIT

END IF

RETURN

END

C-----------------------------------------------------------------------------------

subroutine ktracn(RDISP, PROPS, STRESS, DDSDDR, MCRD, SVARS,

1 NSVARS, IINTP, NINTP, KINC, JELEM)

INCLUDE ’ABA_PARAM.INC’

PARAMETER (ZERO = 0.D0, TWO=2.0D0, ONE= 1.0D0, THREE= 3.0d0)

DIMENSION PROPS(*), RDISP(MCRD), STRESS(MCRD), DDSDDR(MCRD, MCRD)

DIMENSION SVARS(NSVARS)

data ifirst/0/

data iopen/0/

data iclose/0/

save ifirst, nodefirst, iopen, iclose

c REAL INPUT PROPERTIES

dJss = props(1) !Increase in fracture toughness

deltac = props(2) !Max crack bridging opening

delta1 = props(3) !Initial linear decrease/increase, softening afterwards

dJ0 = props(4) !Value of J0 (from measurements)

fac1 = props(5) !Stress increase factor for power law

penalty = props(6) !Penalty factor on contact

sigma0 = 1.5d0*dJss/delta1*sqrt(delta1/deltac)

slope1 = -dJss/(delta1*deltac*sqrt(delta1/deltac))

fac = dJss/(two*sqrt(deltac))

sigma1 = fac/sqrt(delta1)

slope = sigma1/delta1

c J0 is included separately now

c with zero start power law
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alpha = 100.0

delta2 = dJ0/(sigma0*fac1)*(alpha+1)/alpha

c Code checks for change in opening status. If too many contact points change status,

c increment can be restarted

c Checks for opening/closing behaviour

C get values from state variables

iold = SVARS(IINTP)

stressold = SVARS(IINTP + 4*NINTP)

rdispold = SVARS(IINTP + 2*NINTP)

c Code checks for change in contact status. If too many contact points change status,

c increment can be restarted

c Checks for opening/closing behaviour

IF (ifirst.eq.0) THEN

ifirst = 1

NODEFIRST = NODE

c write(7,*) dJss, deltac, delta1, dJ0, fac1, penalty

c write(7,*) sigma0, sigma1, slope, slope1, delta2, fac

END IF

c new increment detection (includes restart) to count contact changes

IF (NODE.EQ.NODEFIRST.AND.KIT.EQ.1) THEN

iopen = 0

iclose = 0

END IF

c Check for increasing opening displacement (start in increment 2,

c once all contact points are closed)

c Only applies in opening stage (rdisp < 0)

c Not included right now (KINC.GE.1000)

IF (rdisp(2).LT.rdispold.AND.rdisp(2).GT.delta2.AND.

1 KINC.GE.1000) THEN

c Elastic unloading and reloading

stress(2) = stressold/rdispold*rdisp(2)

ddsddr(2,2) = stressold/rdispold

write(7,*) ’Elastic unloading encountered’

ELSE

c Check for penetration of surfaces and indicate status

if (rdisp(2).LT.zero) then

c

c write(7,*) ’Area I’

stress(2) = penalty*slope*rdisp(2)

ddsddr(2,2) = penalty*slope

lOpenClose = 0

c

c Check for opening of crack

c Stresses will be negative (tension)

c First slope bit (different from square root law)

else if (rdisp(2).GE.zero.and.rdisp(2).LT.delta2) then

c Initial increase

c write(7,*) ’Area II’

stress(2) = fac1*sigma0*

1 (1.0-((delta2-rdisp(2))/delta2)**alpha)

ddsddr(2,2) = fac1*alpha*sigma0/delta2*

1 (((delta2-rdisp(2))/delta2)**(alpha-1))

lOpenClose = 1
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c Softening behaviour

else if (rdisp(2).GE.delta2.and.

1 rdisp(2).LT.(delta1+delta2)) then

c write(7,*) ’Area III’

stress(2) = sigma0 + slope1*(rdisp(2)-delta2)

ddsddr(2,2) = slope1

lOpenClose = 2

else if (rdisp(2).GE.(delta1+delta2).

1 and.rdisp(2).LT.(deltac+delta2)) then

c write(7,*) ’Area IV’

stress(2) = fac/sqrt((rdisp(2)-delta2))

ddsddr(2,2) = -fac/2*((rdisp(2)-delta2))**(-3.d0/2.d0)

lOpenClose = 3

else if (rdisp(2).GT.(deltac+delta2)) then

c write(7,*) ’Area V’

stress(2) = 0

ddsddr(2,2) = 0

lOpenClose = 4

c

end if

END IF

IF (lOpenClose.NE.iold.AND.iold.EQ.0.AND.KINC.GT.3) THEN

c Restart if more than one contact pair opens (iold=0) in 2nd call

c IF (KIT.EQ.2) THEN

iopen = iopen + 1

c END IF

write(7,*) ’Status: iopen=’, iopen, ’at int point’, IINTP,

1 ’in element’, JELEM, ’and increment’, KINC

write(7,*) ’lOpenClose =’,lOpenclose,’iold=’,iold,’KIT=’, KIT

c Possible restart procedure

c IF (iopen.gt.1) THEN

c write(7,*) ’Too many contact openings: reduce increment’

c END IF

END IF

c Restart if one contact pair closes (iold=1/lOpenClose=0)

IF (lOpenClose.EQ.0.AND.iold.EQ.1.AND.KINC.GE.2) THEN

iclose = iclose + 1

write(7,*) ’Status: iclose=’, iclose, ’at int point’, IINTP,

1 ’in element’, JELEM, ’and increment’, KINC

write(7,*) ’lOpenClose =’,lOpenclose,’iold=’,iold,’KIT=’, KIT

IF (iclose.gt.0) THEN

write(7,*) ’Elastic unloading possible: reduce increment’

END IF

END IF

c Restart with PNEWDT (if PNEWDT less than 1)

IF (iclose.gt.0) THEN

PNEWDT = 1.0

ELSE IF (iopen.gt.4) THEN

PNEWDT = 1.0
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END IF

c Sign definition (bridging stress acts as closure stress on structure

c as in contact analysis)

c Stiffness matrix according to ABAQUS definition: -dF/du!!

stress(2) = - stress(2)

C State variable update

SVARS(IINTP) = lOpenClose

return

end

C-----------------------------------------------------------------------------------------

subroutine KASET1(DMATRIX, IDIMX)

INCLUDE ’ABA_PARAM.INC’

PARAMETER (ZERO = 0.0D0)

DIMENSION DMATRIX(IDIMX)

DO i=1, IDIMX

DMATRIX(i) = ZERO

END DO

RETURN

END

C-----------------------------------------------------------------------------------------

subroutine KASET2(DMATRIX, IDIMX, IDIMY)

INCLUDE ’ABA_PARAM.INC’

PARAMETER (ZERO = 0.0D0)

DIMENSION DMATRIX(IDIMX, IDIMY)

DO I = 1, IDIMX

DO J = 1, IDIMY

DMATRIX(I,J) = ZERO

END DO

END DO

RETURN

END

C-----------------------------------------------------------------------------------------
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E Cohesive element verification

E.1 Verification of the 2D element
Figure 24 shows the simple two element model comparing the previously written subroutine
UINTER [14] and the new user element. Both models give identical results. The nodes 1-6
for the user element initially coincide in their position: here they are plotted apart for a better
understanding of the node numbering.

Master surface

Slave surface

1 2

34

6

7

8

5

(a) 2D contact model

4 5

78

9

10

11

6

1 23

(b) 2D user element verification

Figure 24. 2D user element model

The input deck is simple and given in the following for the two-element problem. Note that
the element is under plane stress condition (element, type=CPS8) to give comparable results to
the 3D model with its boundary conditions.

*HEADING

*NODE

1, 0.0, 0.0

2, 1.0, 0.0

3, 0.5, 0.0

4, 0.0, 0.0

5, 1.0, 0.0

6, 0.5, 0.0

7, 1.0, 1.0

8, 0.0, 1.0

9, 1.0, 0.5

10, 0.5, 1.0

11, 0.0, 0.5

*NSET, NSET=ALL

8, 10, 9

*user element, type=U6, nodes=6, coordinates=2, i properties=2, properties=7, variables=15

1, 2

*ELEMENT, TYPE=U6, ELSET=ALL

1, 1, 2, 3, 4, 5, 6

*ELEMENT, TYPE=CPS8, ELSET=eall

2, 4, 5, 7, 8, 6, 9, 10, 11

*SOLID SECTION, ELSET=EALL, MATERIAL=MAT1, ORIENTATION=ORIENT1

1.0

*UEL PROPERTY, ELSET=ALL

1.65, 1.0, 0.5, 0.15, 1.0, 1000.0, 1.0, 3

1

*MATERIAL, name=mat1

*ELASTIC, TYPE=ENGINEERING CONSTANTS

41.5E3, 9.5E3, 9.5E3, 0.3, 0.3, 0.3, 15.8E3, 3.65E3

3.65E3
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*orientation, name=orient1

1.0, 0.0, 0.0, 0.0, 1.0, 0.0

1, 0.

*BOUNDARY

1, 1, 2

2, 2, 2

3, 2, 2

4, 1, 1

11, 1, 1

8, 1, 1

*STEP, INC=100, NLGEOM

*STATIC

0.01, 1.0,,0.01

*MONITOR, DOF=2, NODE=4

*CONTROLS, PARAMETERS=TIME INCREMENTATION

7, 10, 9, 16, 10, 4, 20, 10, 6

*BOUNDARY

8, 2, 2, 1.0

7, 2, 2, 1.0

10, 2, 2, 1.0

*OUTPUT, FIELD, FREQ=1

*ELEMENT OUTPUT

S,

E,

*NODE OUTPUT

U,

RF,

*OUTPUT, HISTORY, FREQ=1

*NODE OUTPUT, NSET=ALL

U2,

RF2

*end step

Figure 25 shows the results for the test case as created by ABAQUS/CAE. As the stiffness
of the top element is large compared to the bridging stress input, the stress distribution in
loading direction appears constant. The displacement field in x-direction, which is caused by
the Poisson’s effect, varies linearly. For the simple case of uniform deformation (the same
displacement boundary condition on all top nodes), the original bridging law is obtained from
the reaction forces, element area and the opening of the element.

U, U1

-6.098e-06
-5.590e-06
-5.082e-06
-4.574e-06
-4.065e-06
-3.557e-06
-3.049e-06
-2.541e-06
-2.033e-06
-1.525e-06
-1.016e-06
-5.082e-07
+0.00e+00

S, S22

+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01

(a) Contour plots (b) History plot

Figure 25. Verification of 2D user element
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E.2 Verification of the 3D element
The input deck is simple and given in the following for the two element test analogous to the
2D model:

*HEADING

*NODE

1, 0.0, 0.0, 1.0

2, 1.0, 0.0, 1.0

3, 1.0, 0.0, 0.0

4, 0.0, 0.0, 0.0

5, 0.5, 0.0, 1.0

6, 1.0, 0.0, 0.5

7, 0.5, 0.0, 0.0

8, 0.0, 0.0, 0.5

9, 0.0, 0.0, 1.0

10, 1.0, 0.0, 1.0

11, 1.0, 0.0, 0.0

12, 0.0, 0.0, 0.0

13, 0.5, 0.0, 1.0

14, 1.0, 0.0, 0.5

15, 0.5, 0.0, 0.0

16, 0.0, 0.0, 0.5

17, 0.0, 1.0, 1.0

18, 1.0, 1.0, 1.0

19, 1.0, 1.0, 0.0

20, 0.0, 1.0, 0.0

21, 0.5, 1.0, 1.0

22, 1.0, 1.0, 0.5

23, 0.5, 1.0, 0.0

24, 0.0, 1.0, 0.5

25, 0.0, 0.5, 1.0

26, 1.0, 0.5, 1.0

27, 1.0, 0.5, 0.0

28, 0.0, 0.5, 0.0

*NSET, NSET=ALL

8, 10, 9

*NSET, NSET=BOTTOM

1, 2, 3, 4, 5, 6, 7, 8

*NSET, NSET=TOP

17, 18, 19, 20, 21, 22, 23, 24

*NSET, NSET=SIDEX

1, 4, 8, 9, 12, 16, 17, 20, 24, 25, 28

*NSET, NSET=SIDEZ

1, 2, 5, 9, 10, 13, 17, 18, 21, 25, 26

*user element, type=U16, nodes=16, coordinates=3, i properties=2, properties=7, variables=63

1, 2, 3

*ELEMENT, TYPE=U16, ELSET=ALL

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16

*ELEMENT, TYPE=C3D20, ELSET=eall

2, 9, 10, 11, 12, 17, 18, 19, 20, 13, 14, 15, 16, 21, 22, 23,

24, 25, 26, 27, 28

*SOLID SECTION, ELSET=EALL, MATERIAL=MAT1, ORIENTATION=ORIENT1

*UEL PROPERTY, ELSET=ALL

1.65, 1.0, 0.5, 0.15, 1.0, 1000.0, 1.0, 3

1

*MATERIAL, name=mat1

*ELASTIC, TYPE=ENGINEERING CONSTANTS

41.5E3, 9.5E3, 9.5E3, 0.3, 0.3, 0.3, 15.8E3, 3.65E3

3.65E3

*orientation, name=orient1

1.0, 0.0, 0.0, 0.0, 1.0, 0.0

1, 0.

*BOUNDARY

BOTTOM, 2, , 0.0

SIDEX, 1, , 0.0

SIDEZ, 3, , 0.0

*STEP, INC=100, NLGEOM
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*STATIC

0.01, 1.0,

*MONITOR, DOF=2, NODE=9

*CONTROLS, PARAMETERS=TIME INCREMENTATION

7, 10, 9, 16, 10, 4, 20, 10, 6

*BOUNDARY

TOP, 2, 2, 1.0

*OUTPUT, FIELD, FREQ=1

*ELEMENT OUTPUT

S,

E,

*NODE OUTPUT

U,

RF,

*OUTPUT, HISTORY, FREQ=1

*NODE OUTPUT, NSET=ALL

U2,

RF2

*end step

The stress and displacement field are identical to the results presented for the 2D model in
the previous appendix. For the simple case of uniform deformation (the same displacement
boundary condition on all top nodes), the original bridging law is obtained by summing up all
reaction forces on the top of the element and recording the opening of the element.

S, S22

+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01
+8.435e-01

1

2

3
U, U1

-6.098e-06
-5.589e-06
-5.081e-06
-4.573e-06
-4.065e-06
-3.557e-06
-3.049e-06
-2.541e-06
-2.033e-06
-1.524e-06
-1.016e-06
-5.081e-07
+0.000e+00

(a) Contour plots (b) History plot

Figure 26. Verification of 3D user element
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