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is given by superposition of chordwise deflection mode shapes. It is shown from the ex-
pressions for the forces, that the influence from the shed vorticity in the wake is described
by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be
approximated using an indicial function approach, making the practical calculation of the
aerodynamic response numerically very efficient by use of Duhamel superposition. Fur-
thermore, the indicial function expressions for the time-lag terms are formulated in their
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The analytical expressions for the forces simplify to all previously known steady and
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Nomenclature

Roman Letters
A coefficint matrix of first-order matrix equation, Eq. (141) −
Ai unit response constant, Eq. (77) −
b airfoil half-chord length m

bi unit response time decay constant, Eq. (77) −
b0 amplitude of motion of thin swimming plate m

B10, B11 Bessel functions of the first kind −
B20, B21 Bessel functions of the second kind −
c non-dimensional chordwise coordinate −
C Theodorsen’s function −
D drag force N

D damping matrix −
d aeroelastic states −
Defli(t) temporal modal amplitude for modei −
EI bending stiffness Nm2

fy,i(c) deflection shape integral m

fdydε,i(c) deflection shape integral −
Fy,i deflection shape integral m

Fdydε,i deflection shape integral −
Gy,i deflection shape integral m

Gdydε,i deflection shape integral −
Hy,i deflection shape integral m

Hdydε,i deflection shape integral −
I identity matrix −
Ia moment of inertial aroundε = ab kg m2

Imodal,i integral, Equation 110 N/m

IMSy,i integral, Equation 109 kg

Imsi integral, Equation 127 kg

Insi integral, Equation 120 kg

K stiffness matrix −
K1(c), K2(c) helping functions, Eq. (49)/(B.9) and (B.10) −
Ky,i deflection shape integral m

Kdydε,i deflection shape integral −
k reduced frequency −
kx constant determining wavelength of swimming motion −
L lift force N

l cantilever beam length/vert. gust wave length m

LES leading edge suction force N

M moment Nm

M mass matrix −
MD damping moment Nm

ME elastic moment Nm

MI inertial moment Nm

Mtot total mass kg

m distributed mass kg/m

mi modal mass kg

Mp(c) partial moment at non-dim coordc, from c to the trailing-edge Nm

N normal force N

ND damping normal force N

NE elastic normal force N
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NI inertial normal force N

Np(c) partial normal force, from non-dim coordc to the trailing-edge N

Nterms number of terms −
p unsteady aerodynamic pressure pa

p̃ sum of distr. aerodyn. force and local inertial force pa

∆P pressure difference betw. lower and upper sides of airfoil pa

Pfict local fictitious inertial force from acc. of coord. syst. pa

PI1 − PI9 req. power deflection shape integrals
Pow power required to perform airfoil motion Nm/s

Q Equivalent flat plate three-quarter downwash, Eq. (38) m/s

s non-dimensional time −
T tangential force N

T mean thrust of swimming plate N

t time s

T I1 − TI9 tang. force deflection shape integrals
V free-stream velocity m/s

Vy velocity normal to the airfoil chord, vertical gust velocity m/s

W half-amplitude of vertical gust m/s

w local flow velocity m/s

X displ. of the airfoil(ε, y) coord-syst. in free-stream dir. m

x, x0, x1, x2 non-dimensional chordwise coordinate[−1..1] −
x̃ cantilever length parameter (clamped end 0, free end 1) −
y coordinate of airfoil camberline, dir. perp. to freestream m

ỹ localy-coordinate of a pitching, heaving and deflecting airfoil m

yi coordinate of deflection mode shapes, dir. perp. to freestream m

Y displ. of(ε, y) coord-syst. in dir. perp. to free-stream dir. (heave)m
zi aerodynamic state variable

Greek Letters
α pitching motion displacement (angle of attack) rad

γ distributed vortex strength (local vortex sheet strength)
δ Kronecker delta −
ε dimensional chordwise coordinate, pos. towards trailing edge m

η propulsive eficiency −
κ non-dimensional mass −
ν frequency of vertical gust rad

ξs structural damping ratio −
ρ fluid density kg/m3

σ distributed source strength
ϕ velocity potential
ω vibrational mode eigenfrequency rad

Γ concentrated point vortex strength
Φ circulatory force step response function −

Indices
c circulatory
Defl deflection

˙Defl deflection velocity
dydε variables obatained usingy′

hinge hinge point
LE leading edge
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lower lower side of airfoil
nc non-circulatory
p partial
upper upper side of airfoil
y variables obatained usingy
Y heaving
Ẏ heaving velocity
α pitching
α̇ pitching velocity

Differentation Notation
(̇) = ∂

∂t () partial differentation with respect to time
()′ = ∂

∂ε () partial differentation w. resp. to dimensional chordwise coord.
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1 Introduction

Previous analytical and numerical investigations of unsteady aerodynamic forces on de-
formable airfoils are for the majority based on the two-dimensional potential-flow aerody-
namic model of Theodorsen [20], which includes the aerodynamic effect of a flat trailing
edge flap on a flat airfoil. Such efforts are found in the works of Leishman [17] and Har-
iharan et al. [11]. Other works dealing with deformations ofthe airfoil which are not flat
trailing edge flaps have used more computational costly models, such as the discrete vor-
tex method of Katz et al. [14, 15] or even full Navier-Stokes methods as in van der Wall
et al. [21].

Another branch of investigations on the aerodynamic response for deformable thin
surfaces concern swimming of fish. Within this field analytical results for the force re-
sponse of harmonically waving 2D thin plates have been solved by Wu [22, 23]. In these
works, focus is on the mechanics of swimming of fish, i.e. the propulsive efficiency of the
harmonic motion, which include integrals over surface shape, pressure and leading edge
force singularity in time and space.

One application of deformable airfoils is within the field ofwind energy. It has been
shown that active load reduction for MW size wind turbines can alleviate load incre-
ments from non-homogenous inflow considerably [2, 3, 4, 16].With the development
of smart materials such as piezoelectric materials, it is becoming possible to have ac-
tive flow control by deformation of airfoil shapes. Up to now aerodynamic calculation of
such problems have only been possible with computationallyrather expensive methods,
rendering aeroelastic and aeroservoelastic computationsvery time consuming in these
cases. Recent two- and three-dimensional investigations using the present aerodynamic
model [1, 5] have shown that there is a big potential of fatigue load reduction on wind
turbines using airfoils with variable trailing edge geometry. The strength of variable ge-
ometry lies in the ability to obtain fast actuation speeds compared to the slower actuation
speeds of conventional pitching systems on wind turbines. Acontinuous deformation of
the airfoil trailing edge is aerodynamically more well behaved than a stiff trailing edge
flap due to the absence of discontinuities in the surface curvature. Moreover, the aerody-
namic noise generation using a continuously deformed airfoil is far lower than that of the
rigid flap case due to the discontinuity of the surface curvature in the rigid flap case.

One branch of 2D potential-flow models for airfoils is the thin-airfoil theory, in which
the airfoil is represented by its camberline. Despite the crude assumptions made in this
theory, the results compare well with what is observed on thin airfoils when the flow is
fully attached. Historic thin-airfoil works include Munk’s [18] solution of the general sta-
tionary thin-airfoil problem in 1922, where he derived the normal force and moment on a
thin airfoil of arbitrary shape. Milestones in unsteady thin-airfoil theory include the works
by Glauert [9] and Theodorsen [20], where the lift and momenton flat thin airfoils with
trailing edge flaps undergoing heaving and pitching motion were derived. The unsteady
leading edge suction force was treated by Garrick [7], whichmade it possible to inves-
tigate the propulsive efficiency of oscillatory heaving, pitching and TE-flapping motions
of a flat airfoil with a flat flap. Wu [22, 23] solved analytically the propulsive efficiency
of harmonically waving thin plates in order to study the basic principle of fish propulsion.

In the present work, analytical expressions for the unsteady 2D force distribution on
a variable geometry airfoil undergoing arbitrary motion isderived under the thin-airfoil
potential-flow assumption. The time-lag term associated with the unsteady wake can be
approximated using an indicial function approach, making the practical calculation of the
aerodynamic response numerically very efficient by use of Duhamel superposition. The
indicial function expressions can be restated in state-space form, as described by Hansen
et al. [10]. The indicial and state-space expressions of thepresent model will both be
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given in this report. It will be shown that the present model reduce to the expressions
of Munk [18] and Theodorsen [20] in the case of steady flow overan airfoil of arbitrary
shape and unsteady flow over a flat plate with a flat trailing edge flap, respectively. Com-
parisons of the propulsive efficiency predicted with the present algorithm is in excellent
agreement with the analytical results of Garrick [7] and Wu [22] for a heaving flat plate
and a progressing wave of given wavelength and phase velocity over the chord, respec-
tively.

2 Theoretical Model

The airfoil is represented by its camberline as in classic thin-airfoil theory, and the de-
flection of the airfoil is given by superposition of chordwise deflection mode shapes.
Furthermore, the airfoil can move in the direction of the oncoming flow. The derivation
of the analytic expressions for the distribution of unsteady aerodynamic forces in the di-
rection normal to the airfoil surface follows the lines of Theodorsen’s [20] classic work
from 1935. The singularity on the leading edge of the infinitely thin airfoil gives rise to
a leading edge suction force, which can be considered the limit of the physical suction
force for airfoil thickness going to zero. Using an analyticexpression for the leading edge
suction force, the airfoil tangential force and drag force are derived, integrating the con-
tributions of aerodynamic forces on the curved airfoil. Theapproach used for deriving
the tangential and drag forces is a generalization of the method used by Garrick [7]. The
expression for the force distribution show that the dynamicresponse of the system is cha-
racterized by certain integrals involving the mode shapes and mode shape slopes, which
can be calculated prior to time simulations.

It will be shown from the final expressions for the forces, that the influence from the
shed vorticity in the wake can be described by the same time-lag for all chordwise po-
sitions on the airfoil. This time-lag term can be approximated using an indicial function
approach, as first outlined by Von Karman et al. [13], making the practical calculation of
the aerodynamic response numerically very efficient by use of Duhamel superposition.
The indicial function expressions can be restated in state-space form, as described by
Hansen et. al. [10]. The state-space expressions for the present model are also given in
this report.

2.1 The Basics and Assumptions
The present model uses the usual 2D potential-flow assumptions, which are an incom-
pressible, irrotational, inviscid fluid and 2D flow. This corresponds to very high Reynolds
numbers, low mach-numbers and small angles of attack in reallife. In this work the usual
thin-airfoil approach is adopted. This means that the airfoil is represented by it’s cam-
berline only, and the thickness of the airfoil is therefore neglected. The free-stream flow
velocity,V , is constant, but the airfoil may move in the direction of thefree-stream.

The dimensional coordinates of the airfoil camberline are described in the (ε, y) co-
ordinate system. Theε-axis is parallel with the the free-stream velocity,V , and can be
translated in theε-direction. The translation is given byX , but as it shall turn out later,
only the first and the second order time derivatives of this quantity are needed in the
model. Since the model is restricted to small deformations,the projected length of the
airfoil on theε-axis can be considered constant. The coordinate system is situated such
that the airfoil mid-chord is atε = 0. Therefore the airfoil leading edge is atε = −b and
the airfoil trailing edge is atε = b, whereb is the airfoil half-chord length. In the deriva-
tions that follows, there will be frequent use of non-dimensional chordwise coordinates,
x, defined byx = ε/b. Figure 1 shows the coordinate systems used in the present work.

The unsteady forces in a 2D potential-flow problem are determined from the pressures,

Risø–R–1478(EN) 9



ε, x

y

V
x = −1
ε = −b

x = 1
ε = b

Figure 1:Definition of dimensional and non-dimensional coordinate systems used in the
present work.

given by the unsteady Bernoulli equation,

p = −ρ

(
w2

2
+ ϕ̇(x, t)

)
+ C. (1)

Herew is the local flow velocity,ρ is the fluid density, andC is a constant. The dot,̇(),
signifies differentation with respect to time,∂

∂t , andϕ is the velocity potential at the point
where the pressure is evaluated.

In the special case of an infinitely thin airfoil, the surfacevelocity potential of the upper
surface of the airfoil,ϕ, is a function of both time and chordwise position. The surface
velocity potential of the lower surface is equal in magnitude to the upper one, but with
opposite sign. The reason for this is apparent from the general derivation of the surface
velocity potential in Appendix A, which will be used later inthe derivation of the forces
on the airfoil. The local flow velocity is given by

w = V − Ẋ(t) + ϕ′(x, t), (2)

where the prime,()′, signifies differentation with respect to the dimensional chordwise
coordinate, ∂

∂ε . Ẋ(t) is the velocity of the airfoil coordinate system in the direction of
the free-stream, andV is the free-stream velocity. Substituting the local flow velocity,
Equation (2), into the unsteady Bernoulli Equation (1), results in the pressure difference
over the airfoil is obtained in Equation (3)

∆P(x ) = plower − pupper = 2 ρ
(

ϕ̇(x, t) + (V − Ẋ(t))ϕ′(x, t)
)

. (3)

In the derivation of the above relation, it was used that the surface velocity potential
on the upper and lower sides of the airfoil has opposite signs. The ordinary thin-airfoil
assumption and result, that| V |�| ϕ′ | and that the surface velocity potential on the
upper and lower sides of the airfoil has opposite signs, was used to arrive at Equation (3).
The pressure difference between the airfoil lower and uppersides results in a force which
is locally normal to the camberline. In the derivation of thenormal force on the airfoil to
follow, it is assumed that the local angle of the camberline with respect to the chordline
is small, such thaty′ � 1.

An additional force is present at the leading edge of the airfoil. The solution of the
normal force problem will show that there exist a singularity at the leading edge, cor-
responding to an infinitely low pressure. The force from thisleading edge singularity
corresponds to the limit of a pressure going toward infinity for a leading edge radius, and
hence projected area, tending to zero. In the following derivation assumptions are that
the influence from the airfoil on itself, and the influence from the unsteady wake on the
airfoil can be determined as if the airfoil and the wake lie ona straight line.

In Theodorsen’s [20] elegant derivation of the normal forces and moments acting on a
plane airfoil with a flat flap, the total forces are spilt into forces from position/motion of
the airfoil and forces from the velocity induced by the unsteady wake. These force terms
were termed circulatory and non-circulatory, respectively. This splitting of the problem is
used in the present work also.

10 Risø–R–1478(EN)



Since the deflection of the airfoil is given by superpositionof chordwise deflection
mode shapes, the motion perpendicular to the free-stream direction at any point on the
deformable airfoil can be described by a sum of these mode shapes

y(x, t) =

Ndefl∑

i=1

yi(x)Defli(t) (4)

The mode shapesyi(x) are a function of the chordwise coordinate only, whereas the
scaling of these are determined byDefli(t), which is a function of time only. The velocity
and acceleration of any point of the surface in the y-direction is obtained by differentation
of Equation (4) with respect to time

ẏ(x, t) =

Ndefl∑

i=1

yi(x) ˙Defl i(t) (5)

ÿ(x, t) =

Ndefl∑

i=1

yi(x) ¨Defl i(t) (6)

The number of deformation shapes are given byNdefl. Note that solid body translation
in the y-direction (heaving motion) and solid body rotation can be described in terms
of deflection shapes; by one mode shape each. In order to keep the present formulation
of the theory as short as possible, only the general form of the problem in terms of the
deflection shapes are given in the main report. Expressions explicitly involving heaving
motion,Y , and pitching (or rotational) motion,α, are given in Appendix B. Please note
in the derivations to follow, that bothx andx1 coordinates are dimensionless, such that
-1 and 1 correspond to the leading and trailing edges, respectively.

2.2 Non-Circulatory Normal Force and Moment
It is shown in Appendix A that a distributed sheet of sources with strengthσ(x1, t) on
the upper side of the airfoil, and a distributed sheet of sources of the opposite strength
(−σ(x1, t)) on the lower side of the infinitely thin airfoil correspondsto a surface velocity
potential

ϕ(x, t) =
b

4π

∫ 1

−1

σ(x1 , t) ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1 (7)

on the upper surface of the airfoil. The velocity normal to the airfoil induced by the
sheets of sources on the airfoil at chordwise coordinatex, is a function of the source/sink
strength atx only :

Vy(x , t) = −σ(x , t)

2
. (8)

The velocity component normal to the airfoil due to the free-stream and motion of the
airfoil in theX-direction is

Vy(x , t) = −
(
V − Ẋ(t)

) Ndefl∑

i=1

Defl i(t)y
′
i(x ) (9)

The velocity component normal to the airfoil due to the deflection of the airfoil itself is

Vy(x , t) =

Ndefl∑

i=1

yi(x) ˙Defl i(t) (10)

This means that the source/sink strength needed to enforce the Neumann boundary con-
dition at the airfoil corresponds to the surface velocity potential

ϕ(x, t) = ϕDefl (x, t) + ϕ ˙Defl (x, t) (11)

Risø–R–1478(EN) 11



ϕDefl (x, t) =
b

2π

(
V − Ẋ(t)

) Ndefl∑

i=1

Defl i(t)fdydε,i (x) (12)

ϕ ˙Defl
(x, t) =

b

2π

Ndefl∑

i=1

˙Defl i(t)fy,i(x) (13)

wherefy,i(x) andfdydε,i (x) are given by

fy,i (x) =

∫ 1

−1

yi(x1 ) ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1 (14)

fdydε,i (x) =

∫ 1

−1

y′
i(x1) ln

(
(x − x1 )2 +

(√
1 − x2 −

√
1 − x1

2
)2

(x − x1 )2 +
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1 (15)

Note thatfy,i (x) andfdydε,i (x) are integrals that only depend on the deflection shape and
the chordwise coordinatex. Therefore, they can be computed prior to a time simulation.
These types of integrals are in the following denoted deflection shape integrals.

The forces perpendicular to the surface of the airfoil due tothe motion of the air-
foil are determined by inserting the velocity potential, Equation (11), into the unsteady
Bernoulli equation applied to a thin airfoil, Equation (3).From this the integral partial
non-circulatory normal forces and moments can be integrated.

Np,nc(c) = b

∫ 1

c

∆P(x ) dx (16)

Mp,nc(c) = −b2

∫ 1

c

(x − c)∆P(x ) dx (17)

Note that the partial normal force correspond to the contributions from the non-dimensio-
nal coordinatec to the trailing edge. Analogous, the partial momentMp(c) is the moment
with respect to non-dimensional positionc from the distributed normal forces fromc to
the trailing edge. Note also that the moment is positive nose-up. The force coefficients
for the entire airfoil section is obtained by insertingc = −1 in the above equations:

N = Np(−1 ) (18)

MLE = Mp(−1 ) (19)

The moment above is taken with respect to the leading edge, but can be used to compute
the moment at any desired point given by the non-dimensionalcoordinatec because

M(c) = MLE + N b(1 + c) (20)

The general expressions for the non-circulatory forces areobtained by filling in the ex-
pressions for the potentials into the above relations, which after considerable but trivial
reduction yields

Np,nc(c) = −2 ρ b
(
V − Ẋ(t)

)
ϕ(c, t) + 2 ρ b

∫ 1

c

ϕ̇(x, t)dx

=
ρ b2

π

(Ndefl∑

i=1

¨Defl i(t)Fy,i (c) − Ẍ(t)

Ndefl∑

i=1

Defl i(t)Fdydε,i (c)

+
(
V − Ẋ(t)

)Ndefl∑

i=1

˙Defl i(t)Fdydε,i (c)

)

−ρ b

π

(
V − Ẋ(t)

)((
V − Ẋ(t)

)Ndefl∑

i=1

Defl i(t)fdydε,i (c)
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+

Ndefl∑

i=1

˙Defl i(t)fy,i (c)

)
(21)

Mp,nc(c) = −2 ρ b2

∫ 1

c

ϕ̇(x, t) (x − c) dx + 2 ρ b
(
V − Ẋ(t)

) ∫ 1

c

ϕ(x, t)dx

=
ρ b3

π
Ẍ(t)

Ndefl∑

i=1

Defl i(t) (Gdydε,i (c) − cFdydε,i (c))

−ρ b3

π

(
V − Ẋ(t)

)Ndefl∑

i=1

˙Defl i(t) (Gdydε,i (c) − cFdydε,i (c))

+
ρ b2

π

(
V − Ẋ(t)

)2
Ndefl∑

i=1

Defl i(t)Fdydε,i (c)

−ρ b3

π

Ndefl∑

i=1

˙Defl i(t) (Gy,i(c) − cFy,i(c))

+
ρ b2

π

(
V − Ẋ(t)

)Ndefl∑

i=1

˙Defl i(t)Fy,i(c) (22)

where the deflection shape integralsFy,i(c), Gy,i(c), Fdydε,i (c) andGdydε,i (c) are given
by

Fy,i(c) =

∫ 1

c

fy,i(x)dx (23)

Gy,i(c) =

∫ 1

c

xfy,i(x)dx (24)

Fdydε,i(c) =

∫ 1

c

fdydε,i (x)dx (25)

Gdydε,i (c) =

∫ 1

c

xfdydε,i (x)dx (26)

2.3 Circulatory Normal Force and Moment
The contribution of forces on a thin airfoil due to the unsteady wake was treated in
Theodorsen’s [20] classic work. The present treatment of the circulatory normal force
and moment can be considered a generalization of Theodorsen’s work.

There is at least two key elements in any potential-flow airfoil solution. The first el-
ement is the Neumann boundary condition, which state that there should be no flow
through the airfoil surface. This element has already been used previously in the deriva-
tion of the non-circulatory forces, and is used in the derivation of the circulatory forces
as well. The other key element in any potential-flow airfoil theory for attached flow is the
Kutta condition, which requires that the trailing edge should not be a singularity. This can
be considered an enforcement of a virtual viscosity at the trailing edge. In this case, the
Kutta condition is equivalent to enforcing

lim
x→b

|∂ϕ(x, t)/∂x| < ∞ (27)

For unsteady potential-flow solutions, there is one more keyelement, the Kelvin theo-
rem, which states that the sum of the circulation in the two-dimensional universe should
be zero. This means that any change in the circulation bound on the airfoil, the so called
bound circulation, is reflected in the airfoil wake, where the opposite amount of circula-
tion is shed from the trailing edge. As the airfoil in this case can move in the free-stream
direction, the relative velocity of the vortex sheet with respect to the airfoil isV − Ẋ(t).
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Since the derivation below follows closely Theodorsen’s [20] classic derivation, the
details are only briefly summarized here, and the interestedreader is encouraged to con-
sult Theodorsen’s original work. As shown by Theodorsen, the velocity potential at non-
dimensionalx-coordinatex due to a concentrated vortex of strength−∆Γ located at the
ε-coordinatebx0 is

ϕx0
(x) = −∆Γ

2π
arctan

(√
1 − x2

√
1 − x2

0

1 − xx0

)
(28)

Since the relative velocity of the wake vorticity with respect to the airfoil isV − Ẋ(t),
the time derivative of the velocity potential can be expressed

∂ϕ

∂t
=

∂ϕ

∂x0
(V − Ẋ(t)) (29)

Upon insertion into Equation (3), the corresponding pressure difference over the airfoil
becomes

∆P(x ) = 2 ρ(V − Ẋ(t))

(
∂ϕΓ

∂x
+

∂ϕΓ

∂x0

)
. (30)

Theodorsen [20] further showed, that

∂ϕΓ

∂x
=

∆Γ

2π

√
x2

0 − 1

1 − x2

(
1

x0 − x

)
(31)

and

∂ϕΓ

∂x0
=

∆Γ

2π

√
x2

0 − 1

1 − x2

(
1

x0 − x

)
(32)

Combining Equations (31) and (32), the following relation is obtained

∂ϕΓ

∂x
+

∂ϕΓ

∂x0
=

∆Γ

2π

x + x0√
1 − x2

√
1 − x2

0

(33)

By inserting Equation (33) into Equation (30) and integrating from non-dimensional co-
ordinatex = c to the trailing edgex = 1, the partial circulatory normal force due to the
concentrated wake vortex is obtained after some reduction

∆Np,c(c) = ρ(V − Ẋ(t))b
∆Γ

2π

[
x0√

x2
0 − 1

(
arccos(c) −

√
1 − c2

)

+

√
x0 + 1√
x0 − 1

√
1 − c2

]
(34)

If γ(x0) is the strength of the distributed vorticity in the wake at non-dimensional position
x0, then the partial normal force due to the whole wake is obtained from integration of
Equation (34) by setting∆Γ = bγ(x0)dx0,

Np,c(c) =

∫ ∞

1

∆Np,c(c)dx0

=
ρ(V − Ẋ(t))b

π

[ (
arccos(c) −

√
1 − c2

)∫ ∞

1

x0√
x2

0 − 1
γ(x0)dx0

+
√

1 − c2

∫ ∞

1

√
x0 + 1√
x0 − 1

γ(x0)dx0

]
(35)

The derivation of the partial circulatory moment is analog to the derivation of the partial
circulatory normal force. The partial moment is

Mp,c = −ρ(V − Ẋ(t))b2

π
×
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[(√
1 − c2(1 + c/2)− arccos(c)(c + 1/2)

)∫ ∞

1

x0√
x2

0 − 1
γ(x0)dx0

+1/2

(
arccos(c) − c

√
1 − c2

)∫ ∞

1

√
x0 + 1√
x0 − 1

γ(x0)dx0

]
(36)

In order to arrive at something more directly useful, the Kutta condition is employed.
For this use, the circulatory velocity potential shall be needed. This is obtained from
integration of Equation (31)

∂ϕΓ

∂x
=

1

2π

∫ ∞

1

√
x2

0 − 1

1 − x2

(
1

x0 − x

)
(V − ẋ) dx0 (37)

Inserting the non-circulatory velocity potential, Equation (11), and the circulatory ve-
locity potential, Equation (37), into the Kutta condition,Equation (27), the important
relation is obtained

Q =
1

2π

∫ ∞

1

√
x0 + 1√
x0 − 1

γ(x0)dx0 = − 1

2π

(
V − Ẋ(t)

)Ndefl∑

i=1

Defl i(t)Hdydε,i

− 1

2π

Ndefl∑

i=1

˙Defl i(t)Hy,i (38)

Q can be interpreted as an equivalent flat plate three-quarterdownwash, because if mode
shapes corresponding to heave and pitching motion of a flat airfoil is inserted into Equa-
tion (38),Q is recognized as the downwash in the three-quarter-chord point on the airfoil;
a quantity which is essential for computation of the unsteady aerodynamic response for
rigid airfoils. The deflection shape integralsHy,i andHdydε,i are given by

Hy,i = −2

∫ 1

−1

yi(x1 )
√

1 − x1
2

x1 − 1
dx1 (39)

Hdydε,i = −2

∫ 1

−1

y′
i(ε)

√
1 − x1

2

x1 − 1
dx1 (40)

Using Equation (38), which links the wake vorticity distribution to the airfoil deformation
states, the partial circulatory normal force and moment, Equations (35) and (36) can be
rewritten into a more convenient form

Np,c(c) = 2 bρ
(
V − Ẋ(t)

)(
arccos(c) −

√
1 − c2

)
QC

+2 bρ
(
V − Ẋ(t)

)(
− 1

2π

(
V − Ẋ(t)

)Ndefl∑

i=1

Defl i(t)Hdydε,i

− 1

2π

Ndefl∑

i=1

˙Defl i(t)Hy,i

)
√

1 − c2 (41)

Mp,c(c) = −2 b2ρ
(
V − Ẋ(t)

)(√
1 − c2 (1 + 1/2 c)

− arccos(c) (c + 1/2)
)
QC

−2 b2ρ
(
V − Ẋ(t)

)(
1/2 arccos(c) − 1/2 c

√
1 − c2

)
Q (42)

In the equations above,C is Theodorsen’s [20] function,

C =

∫∞
1

x√
x2−1

γ(x)dx
∫∞
1

x+1√
x2−1

γ(x)dx
(43)

which can be considered a renormalization function to take into account the effect of
the unsteady wake. As previously, the total circulatory normal force and moment can be
obtained by settingc = −1 in the expressions.
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2.4 Total Normal Force and Moment
The total partial normal force is obtained by adding the non-circulatory and circulatory
parts, Equations (21) and (41). The result is

Np(c) =
ρ b2

π

(
Ndefl∑

i=1

¨Defl i(t)Fy,i (c) − Ẍ(t)

Ndefl∑

i=1

Defl i(t)Fdydε,i (c)

+
(
V − Ẋ(t)

)Ndefl∑

i=1

˙Defli(t)Fdydε,i (c)

)

+2 bρ
(
V − Ẋ(t)

)(
arccos(c) −

√
1 − c2

)
QC

−bρ
√

1 − c2
(
V − Ẋ(t)

)(
(
V − Ẋ(t)

)∑Ndefl

i=1 Defl i(t)Hdydε,i

π

+

∑Ndefl

i=1
˙Defli(t)Hy,i

π

)

−ρ b
(
V − Ẋ(t)

)(
(
V − Ẋ(t)

)∑Ndefl

i=1 Defl i(t)fdydε,i (c)

π

+

∑Ndefl

i=1
˙Defli(t)fy,i (c)

π

)
(44)

The full integral normal force is obtained by settingc = −1 in the equation above

N =
ρb2

π

Ndefl∑

i=1

(
¨Defli(t)Fy,i (−1 ) − ẌDefli(t)Fdydε,i (−1 )

+(V − Ẋ) ˙Defli(t)Fdydε,i (−1 )
)

+2πρb(V − Ẋ) · QC (45)

The total partial moment with respect toc is obtained by adding Equations (22) and (42).

Mp(c) = ρb3 1

π
Ẍ(t)

Ndefl∑

i=1

Defl i(t) (Gdydε,i (c) − cFdydε,i (c))

+ρb2 1

π
(V − Ẋ(t))2

Ndefl∑

i=1

Defli(t)Fdydε,i(c)

+ρb2(V − Ẋ(t))2
K1(c)

2π

Ndefl∑

i=1

DefliHdydε,i

−ρb3 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)(Gdydε,i(c) − cFdydε,i(c))

+ρb2 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)Fy,i(c)

+ρb2(V − Ẋ(t))
K1(c)

2π

Ndefl∑

i=1

˙Defli(t)Hy,i

−ρb3 1

π

Ndefl∑

i=1

¨Defli(t)(Gy,i(c) − cFy,i(c)) (46)
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+2ρb2(V − Ẋ(t))
(
(c + 1/2) arccos(c) − (1 + c/2)

√
1 − c2

)
QC

The moment from the whole airfoil acting around the point defined by the non-dimensional
chordwise coordinatex = a is

M = Mc(−1) − (a + 1)bN (47)

This results for the integral moment around the point definedby the non-dimensional
chordwise coordinatex = a

M = ρb3 1

π
Ẍ(t)

Ndefl∑

i=1

Defl i(t) (Gdydε,i (−1) − aFdydε,i(−1))

+ρb2 1

π
(V − Ẋ(t))2

Ndefl∑

i=1

Defli(t)Fdydε,i(−1)

+ρb2(V − Ẋ(t))2
1

2

Ndefl∑

i=1

DefliHdydε,i

−ρb3 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)(Gdydε,i(−1) − aFdydε,i(−1))

+ρb2 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)Fy,i(−1)

+ρb2(V − Ẋ(t))
1

2

Ndefl∑

i=1

˙Defli(t)Hy,i

−ρb3 1

π

Ndefl∑

i=1

¨Defli(t)(Gy,i(−1) − aFy,i(−1)) (48)

+2πρb2(V − Ẋ(t))(1/2 + a)QC

Where the functionK1(c) is given by

K1(c) = π/2 − c
√

1 − c2 − arcsin c = arccos(c) − c
√

1 − c2 (49)

All the integrals involved in the expressions are constant in time, and can be computed
prior to time simulations, thus making the computations numerically efficient.

2.5 Local Pressure Difference Over the Airfoil
The local pressure difference over the airfoil can be obtained from differentation of the
partial normal force with respect to the evaluation pointc.

Nc(c) = b

∫ 1

c

∆P (x1)dx1

m
∂Nc(c)

∂c
= −b∆P (c)

m

∆P (c) = −1/b
∂Nc(c)

dc
(50)

This results in the following local pressure difference over the airfoil

∆P (c) = ρb
1

π

(
Ndefl∑

i=1

¨Defli(t)fy,i(c)
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−Ẍ(t)

Ndefl∑

i=1

Defli(t)fdydε,i(c)

+(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)fdydε,i(c)

)

−2ρ(V − Ẋ(t))
c − 1√
1 − c2

QC (51)

−ρ
1

π
(V − Ẋ(t))2

(
c√

1 − c2

Ndefl∑

i=1

Defli(t)Hdydε,i

−
Ndefl∑

i=1

Defli(t)
∂fdydε,i(c)

∂c

)

−ρ
1

π
(V − Ẋ(t))

(
c√

1 − c2

Ndefl∑

i=1

˙Defli(t)Hy,i

−
Ndefl∑

i=1

˙Defli(t)
∂fy,i(c)

∂c

)

Note that the time-lag effect from the wake is described by the same quantity,QC, on
all points on the airfoil. This enables very efficient computations of unsteady pressure
differences for the deformable airfoil.

2.6 Leading Edge Suction Force
It is seen from the expression for the pressure difference over the airfoil, Equation (51),
that there exist a singularity at the leading edge of the airfoil. This singularity on the
infinitely thin airfoil gives rise to an infinitely low pressure at the leading edge. Athough
clearly not physical, this can be considered the limit of thephysical suction force for
airfoil thickness going to zero. Garrick [7] treated this problem for the flat airfoil with
a flat flap. The present treatment of the leading edge suction force can be considered a
generalization of his work. In Durand [6], the limit value ofthe suction force for the
thickness approaching zero is given as

LES = πρS2 (52)

S = lim
x→−1+

(√
b

2

√
x + 1 γ(x)

)
(53)

In Equation (53) above,γ(x) is the vorticity distribution on the thin airfoil, which in terms
of the surface velocity potential used in this work corresponds to2ϕ′(x). As previously,
the prime,()′, signifies differentation with respect to the dimensional chordwise coordi-
nate. The value ofS is finite, since it can be shown thatϕ′(x) is infinite in the order of
1/

√
1 + x at the leading edge,x = −1. Using the relation

γ(x) = 2ϕ′(x) =
2

b

∂ϕ(x)

∂x

in combination with the expressions for the potential, Equations (11) and (37), the equiv-
alent flat plate three-quarter downwash, Equation (38), andthe definition of Theodorsen’s
renormalization function, Equation (43), one obtains after reduction

S =

√
b

2

(
2 QC +

V − Ẋ(t)

2π

Ndefl∑

i=1

Defl i(t) (Kdydε,i + Hdydε,i)
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+
1

2π

Ndefl∑

i=1

˙Defl i(t) (Ky,i + Hy,i)

)
(54)

The deflection shape integralsKy,i andKdydε,i are given by

Ky,i = −2

∫ 1

−1

yi(x1 )
√

1 − x1
2

x1 + 1
dx1 (55)

Kdydε,i = −2

∫ 1

−1

y′
i(x1 )

√
1 − x1

2

x1 + 1
dx1 (56)

The final expression for the leading edge suction force is obtained by inserting Equa-
tion (54) into Equation (52). The final result is for the leading edge suction force is

LES =
π

2
ρb

(
2QC +

V − Ẋ(t)

2π

Ndefl∑

i=1

Defli(t)(Kdydε,i + Hdydε,i)

+
1

2π

Ndefl∑

i=1

˙Defli(t)(Ky,i + Hy,i)

)2

(57)

2.7 Tangential Force
The tangential force consists of a contribution from the leading edge suction force and
a contribution from the pressure difference over the airfoil projected onto the tangential
force direction.

T = LES +

Ndefl∑

i=1

Defli

∫ 1

−1

b ∆P (x1)
∂yi

∂ε
(x1)dx1 (58)

The result is, after reduction

T =
π

2
ρb

(
2QC +

V − Ẋ(t)

2π

Ndefl∑

i=1

Defli(t)(Kdydε,i + Hdydε,i)

+
1

2π

Ndefl∑

i=1

˙Defli(t)(Ky,i + Hy,i)

)2

+ρb2 1

π

(Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ¨Deflj(t)TI2i,j

−Ẍ(t)

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)TI3i,j

+(V − Ẋ(t))

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)TI3i,j

)

− 2bρ(V − Ẋ(t))QC
Ndefl∑

i=1

Defli(t)TI5i

− 2ρb(V − Ẋ(t))

(
(V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)Hdydε,jTI7i

− (V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)TI8i,j
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+
1

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)Hy,jTI7i

− 1

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)TI9i,j

)
(59)

Where the deflection shape integrals corresponding to the tangential force are

TI2i,j =

∫ 1

−1

fy,j(x1) y′
i(x1)dx1 (60)

TI3i,j =

∫ 1

−1

fdydε,j(x1) y′
i(x1)dx1 (61)

TI5i =

∫ 1

−1

x1 − 1√
1 − x2

1

y′
i(x1)dx1 (62)

TI7i =

∫ 1

−1

x1√
1 − x2

1

y′
i(x1)dx1 (63)

TI8i,j =

∫ 1

−1

∂fdydε,j

∂x
(x1) y′

i(x1)dx1 (64)

TI9i,j =

∫ 1

−1

∂fy,j

∂x
(x1) y′

i(x1)dx1 (65)

Note that the numbering of the indexing on theTI-terms were developed with heave
and pitching motion included explicitly in the formulation, which explains the peculiar
numbering of the shownTI-terms in this shorter version of the formulation. The formu-
lation of the forces with heave and pitch explicitly included in the equations are given in
Appendix B. This is explained in Section 2.9.

2.8 Power Required to Move the Airfoil
The power required to perform any given motion of the airfoilcan be computed. The ex-
ternal forces needed are equal and opposite to the pressure force across the plate. There-
fore the power required to perform any motion is

Pow(t) = −
∫ b

−b

∆P (ε/b)ẏ(ε/b, t)dε (66)

Upon substituting non-dimensional coordinates and the mode shape formulation of the
deflection velocity, Equation (5), the power required is

Pow(t) = −b

∫ 1

−1

∆P (x)

Ndefl∑

i=1

yi(x) ˙Defli(t)dx

= −b

Ndefl∑

i=1

˙Defli(t)

∫ 1

−1

∆P (x)yi(x)dx (67)

After inserting the expression for the pressure differenceover the plate, Equation (51),
and rearranging, the final expression of the power required to move the airfoil reads

Pow = −ρb2 1

π

(Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
¨Deflj(t)PI2i,j

−Ẍ(t)

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)PI3i,j
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+(V − Ẋ(t))

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)PI3i,j

)

+ 2bρ(V − Ẋ(t))QC
Ndefl∑

i=1

˙Defli(t)PI5i

+ 2ρb(V − Ẋ(t))

(
(V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)Hdydε,jPI7i

− (V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)PI8i,j

+
1

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)Hy,jPI7i

− 1

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)PI9i,j

)
(68)

The corresponding deflection shape integrals are analog to the tangential force deflection
shape integrals withy′

i(x1) replaced byyi(x1)

PI2i,j =

∫ 1

−1

fy,j(x1) yi(x1)dx1 (69)

PI3i,j =

∫ 1

−1

fdydε,j(x1) yi(x1)dx1 (70)

PI5i =

∫ 1

−1

x1 − 1√
1 − x2

1

yi(x1)dx1 (71)

PI7i =

∫ 1

−1

x1√
1 − x2

1

yi(x1)dx1 (72)

PI8i,j =

∫ 1

−1

∂fdydε,j

∂x
(x1) yi(x1)dx1 (73)

PI9i,j =

∫ 1

−1

∂fy,j

∂x
(x1) yi(x1)dx1 (74)

2.9 Formulation Including Heaving and Pitching Motion
The formulation of the theory so far has been kept in a generalformulation using the con-
cept of deformation mode shapes. Most problems of interest within airfoil aerodynamics
very often deal with heave and pitching motion, which very conveniently can be expressed
in terms of deformation mode shapes. The deformation mode shape corresponding to a
unit heaving motion is

yY (x) = 1

In this case the mode shape scaling coefficient is identical to the heaving coordinate
DeflY (t) = Y (t). If the pitching axis is given by the non-dimensional coordinatea,
such thata = −1 anda = 1 corresponds to the leading and trailing edges, respectively,
the (nose-up positive) unit deformation mode is

yα(x) = ba − x

For this caseDeflα(t) = α(t). The velocity potentials corresponding to deflection and
deflection velocity of these deformation mode shapes can be computed analytically from
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Equations (12) and (13). The result is

ϕY (x) = 0

ϕẎ (x) = −Ẏ b
√

1 − x2

ϕα(x) = (V − Ẋ)αb
√

1 − x2

ϕα̇(x) = α̇b2(
1

2
x − a)

√
1 − x2

If these are inserted explicitly in all equations up to this chapter, the result is formulations
explicitly including heaving and pitching motion. These are listed in Appendix B. In the
derivations of these, the analytical values of some of the integrals given in Appendix D
were used. The lift and drag values can be computed from the normal and tangential
forces given in the appendix using the standard thin-airfoil assumptionsα � 1 and
D � L.

L = N (75)

D = −T + αN (76)

3 Determination of Unsteady Wake Ef-
fects

It was shown in the classic Von Karman and Sears paper [13], that it is possible to express
terms of the typeQC in Equation (45) by superposition of step responses. In the case that
the step response can be approximated by an exponential expression,

Φ = 1 −
Nterms∑

i=1

Ai exp (−bis) (77)

s = 1/b

∫ t

0

(V − Ẋ(t))dt, (78)

this response can be computed numerically very efficiently.This is known as the indicial
function concept, and results in the following equations for determination ofQC

QC = Q(t)

(
1 −

∑

i

Ai

)
+
∑

i

zi (79)

where

zi(t) =
biAi

b

∫ t

0

Q(t′)(V − Ẋ(t′)) exp

(
−bi

b

∫ t

t′
V − Ẋ(τ)dτ

)
dt′. (80)

From the equation above, it can be seen that

zi(t + ∆t) = exp(−bi∆s) · zi(t) (81)

+
biAi

b

∫ t+∆t

t

Q(t′)(V − Ẋ(t′)) exp

(
−bi

b

∫ t+∆t

t′

(
V − Ẋ(τ)

)
dτ

)
dt′

where

∆s =
1

b

∫ t+∆t

t

(V − Ẋ(t′))dt′. (82)

This means that each of the state variableszi at any time is the value at the previous
timestep multiplied by a decay factor plus an increment, a very cheap operation compared
to a direct numerical integration of the integral it approximates. The accuracy of the
method can be increased by using more than the commonly used two terms. For most
tasks of engineering interest, however, a two-term approximation is sufficiently accyrate.
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3.1 Equivalent State-Space Formulation
As shown by Hansen et.al. [10], it is possible to reformulatean indicial model such as the
one described above in a state-space formulation. By differentation of Equation (80) with
respect to time, it is seen that

żi + bi
1

b
(V − Ẋ(t))zi = biAi

1

b
(V − Ẋ(t))Q(t). (83)

This is the state-space model equivalent to the indicial function approximation of the
unsteady aerodynamics, which is used in combination with Equation (79) to determine
the time-lag effect due to the unsteady wake.

4 Discussion

The two main advantages of the model for the unsteady forces on a deforming airfoil
presented in this work is its computational efficiency for time domain computations and
the possibility to use the model directly in stability analysis because it can be formulated
in a state-space representation. It is seen from the expressions for the forces on the airfoil
that the time-lag effect associated with the wake vorticitycan be expressed in terms of
the termQC on all forces, both local and integrated. The indicial function formulation of
the unsteady wake effects combined with the evaluation of the deflection shape integrals
prior to the time simulation loops makes time simulations with the present theory compu-
tationally very efficient. A rough comparison with the unsteady panel code of Gaunaa [8]
showed that the present model is more than two orders of magnitude faster than the panel
code for a time simulation with 1000 time steps. This ratio increases with the number of
time steps, as the computational cost per timestep due to thesummation over the wake
vortices increases with the number of timesteps simulated.Since some of the deflection
shape integrals require integration over singular expressions, calculation of these require
special attention in order to limit numerical errors. One approach is to assume piece-
wise linear deflection shapes. This way the integrals can be computed from elementary
solutions for linear deflection shapes. This method is elaborated in Appendix C.

The current theory is used in a more practical application byBuhl et al. [5] and Ander-
sen [1], for assessment of the load reduction potential using airfoils with variable trailing
edge geometry. Apart from the obvious applications within active load reduction, the
current theory can be used for various applications, such asfor instance investigation of
airfoil softness on stability limits on the classical flutter case, which up to now have been
possible only using much more computational costly methods.

In the following section, the present model is compared withprevious work, after
which two sections highlighting the versailty of the developed theory are found: Propul-
sive performance of a soft heaving propulsor, and influence of airfoil camberline elasticity
on flutter limits.

4.1 Comparison with Previous Work
The present theory will be compared with earlier potential-flow thin-airfoil models which
can be considered a simplification of the present model. Furthermore, results from an
implementation of the model in Matlab will be compared to other models.

The expressions for normal force and moment will be comparedwith Munk’s [18]
expressions in the steady case. For the unsteady case with a flat airfoil with a flat flap,
Theodorsen’s [20] expressions are used as a reference. d’Alembert’s paradox, zero drag
for any steady two-dimensional potential-flow solution, isinvestigated, after which com-
putational results for the propulsive efficiency of a heaving plate are compared with Gar-
rick’s [7] analytical results. Sears’ [19] results are usedto investigate how the present
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model can handle a harmonic velocity gust in the direction perpendicular to the free-
stream. As the last, and most complex test case, the results of Wu[22, 23] for the propul-
sive efficiency of a swimming plate will be used to compare howwell the present model
predicts the unsteady distributed forces, power, and leading edge suction force, since
Wu’s analytical work covered all these areas. Let’s first proceed to the comparison with
Munk’s expressions for the normal force and moment for a steady thin airfoil of arbitrary
shape.

Steady lift and moment, Munk’s equations

The derived general expressions for normal forces and moments can be shown to reduce
to Munk’s [18] results in the steady case. The steady versionof the normal force and
moment, Equations (45) and (48) is

N = −ρbV 2

Ndefl∑

i=1

Defl i(t)Hdydε,i (84)

M = ρb2V 2 1

π

Ndefl∑

i=1

Defli(t)Fdydε,i(−1)

+ρb2V 2 1

2

Ndefl∑

i=1

DefliHdydε,i

+b(1/2 + a)N (85)

If now the shape of the airfoil is expressed as only one singledeformation shape deformed
toDefl1 = 1, and the moment around the mid-chord,a = 0, is sought, then the equations
further simplify to

N = −ρbV 2Hdydε (86)

M = ρb2V 2 1

π
Fdydε(−1), (87)

whereHdydε andFdydε(−1) are

Hdydε = −2

∫ 1

−1

y′(x1 )
√

1 − x1
2

x1 − 1
dx1 (88)

Fdydε(−1) =

∫ 1

−1

∫ 1

−1

y′(x2) ln

(
(x1 − x2 )

2
+
(√

1 − x1
2 −

√
1 − x2

2
)2

(x1 − x2 )
2

+
(√

1 − x1
2 +

√
1 − x2

2
)2

)
dx2 dx1

(89)

By use of the relation
√

1 − x2/(x−1) = −(x+1)/ sin(arccos(x)) and the substitution
x = cos(τ) in combination with partial integration, the normal force can be rewritten to

N = 2ρV 2

∫ 1

−1

y(z)

(1 − z)
√

1 − z2
dz, (90)

which is exactly the formulation used by Munk. Likewise, it can be shown, that

Fdydε(−1) = −2π

b

∫ 1

−1

∂y

∂x1

√
1 − x2

1dx1 (91)

As was the case for the normal force, this can be used with partial integration to recast
the expression for the moment into

M = −2ρV 2b

∫ 1

−1

y(z)z√
1 − z2

dz, (92)
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which was the exact formulation of Munk. Thus, the present theory reduces to Munk’s
expressions for normal force and moment for steady conditions.

Lift and moment on unsteady flat airfoil with a flat flap, Theodorsen’s results

The classic investigation of the flutter phenomenon by Theodorsen [20] included determi-
nation of the unsteady aerodynamic lift, moment and flap moment for heaving, pitching
and trailing edge flap motion. The velocity potentials corresponding to the heaving and
pitching motions were described in Chapter 2.9. The velocity potential due to the motion
of the trailing edge flap can be computed from Equations (12) and (13). This was done
analytically by Theodorsen [20], and the results can be found in Appendix D. As the
present theory builds on small deflections (includingα), and therefore that| N |�| T |,
the lift can be expressed asL = N . The normal force for the case including heave and
pitch can be found from Equation (B.2) in Appendix B. Likewise, the moment and flap
moment can be found from Equations (B.4) and (B.3). Upon insertion of the velocity
potential due to the motion of the flat trailing edge flap, the forces can be found by help
of the analytical integrals given in Appendix D. The result from this is identical to the
results given by Theodorsen [20].

Zero steady drag, d’Alembert’s paradox

It can be shown analytically by using the integrals given in Appendix D, that d’Alembert’s
paradox, zero drag for all steady potential flows, holds truefor an uncambered airfoil with
a flat trailing edge flap. However, the author has not yet been able to prove generally that
the steady drag is zero using the present theory.

Propulsive efficiency of a heaving plate

Figure 2 shows a comparison between Garricks’s [7] analytical results for the propulsive
efficiency of the heaving plate,η = V T/Pow, and the results for the same problem
computed with the present method1. It is seen that the agreement is very good. The slight
difference between the present model and the analytical results is explained by the ex-
ponential step response function approximation, which in this case consist of only two
terms. Higher accuracy is achievable with more terms. Two terms, however, are sufficient
for most problems of engineering interest. The present results were computed using mean
values over the last of 10 simulated oscillation periods with a temporal discretization of
100 time steps per oscillation period.

Sinusoidal vertical gust, Sears’ function

The analytical solution to the sinusoidal vertical gust problem was solved by Sears [19].
It is possible to numerically solve the response for a vertical gust of arbitrary shape using
a slightly modified version of the present model. The drivingmechanism in all thin-
airfoil potential-flow models is the flow normal to the airfoil camberline, so ifN unit
mode shapes corresponding to unit displacement velocitiesatN collocation points on the
airfoil surface, respectively, and all terms corresponding to the slope of the airfoil is set to
zero (fdydε = Fdydε = Gdydε = Hdydε = Kdydε = TI1−9 = 0), the force output from
the present theory corresponds to the forces due to an arbitrary forcing. The input to this
model is theN vertical gust timeseries corresponding to the chordwise collocation point
positions. Setting the vertical gust velocities to the realpart of

Vy(x, t) = Weiν(t−x/V )

1Note that the overlines in the definition ofη refer to mean values over the oscillation period after the initial
transients have subsided
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Figure 2:Comparison of the analytical results of Garrick [7] (line) with results obtained
using the present theory (stars) for a heaving flat plate. Propulsive efficiency,η,
versus inverse wave number,1/k.
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using the present theory (x) for a flat plate . Imaginary versus real part of the
functionF (k) (Equation (93)). The numbers on the figure signify the reduced
frequency,k = νb/V , of the sinusoidal gust.
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corresponds to a sinusoidal vertical gust with amplitude2W moving past the airfoil with
the free-stream velocity,V . If the wave length of the gusts isl, the frequency,ν, with
which the waves pass any point of the airfoil is

ν = 2πV l

Sears’ analytical solution to the problem is

L = 2πρbV WeiνtF (k)

F (k) =
B10(k)B21(ik) + i B11(k)B20(ik)

B21(ik) + B20(ik)
, (93)

wherek = νb/V is the reduced frequency,i is the imaginaty unit, andB1 andB2 are
Bessel functions of first and second kind, respectively. Using an equidistant chordwise
resolution ofN = 100 produces the result in Figure 3, where also the analytical solution
of Sears [19] is shown. For each value ofk, a vector drawn from the origin to the curve
in the figure represents the lift in both magnitude and phase.A horizontal vector directed
to the right is in phase with the gust velocity at the midpointof the airfoil. It is seen
that the results from the present method is in good agreementwith those of Sears [19].
The explanation for the small difference between the present method and Sears’ results is
again attributed to the exponential response function approximantion. The present results
are computed with the classic two-term approximation suggested by Jones [12].

Swimming of a thin plate

The analytical solution to the response to a deformation of the plate

y(x, t) = b0 cos(ωt − kxx), −1 < x < 1. (94)

was derived by Wu [22]. The equivalent mode shape representation of this is

y(x, t) =

2∑

i=1

yi(x)Defli(t), (95)

where the mode shapes and deflection terms are

y1(x) = cos(kxx) (96)

y2(x) = sin(kxx) (97)

Defl1(t) = b0 cos(ωt) (98)

Defl2(t) = b0 cos(ωt − π/2) (99)

Wu’s analytic solution showed that the mean values of thrustproduced and power re-
quired to perform the motion is

T = πρV 2b2
0T1(k, kx) (100)

Pow = πρV 3b2
0P1(k, kx) (101)

for the swimming plate where the half-chord length isb = 1. The functionsT1 andP1

were derived by Wu [22], and are functions of reduced frequency, k, andkx. Figure 4
shows a comparison between Wu’s analytical results for the waving plate and the results
for the same problem computed with the present method. The non-dimensional frequency,
k is

k =
ωb

V
. (102)

and the swimming efficiency is defined as in the case of the heaving plate

η = V
T

Pow
. (103)
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It is seen from Figure 4 that the agreement with the analytical results for thrust, required
power and swimming efficiency is excellent. The present results were obtained with a
chordwise discretization of 101 points evenly spaced, 20 oscillation periods simulated,
and 100 time steps per oscillation period. Note that when thevelocity with which the
deformation shape moves over the airfoil is equal to the relative flow velocity, corre-
sponding tok = kx, the forces on the airfoil are zero. This is due to the flow being
undisturbed by the infinitely thin airfoil, corresponding to the zero angle of attack case in
classic thin-airfoil theory.

4.2 Computational Example: Propulsive Performance of
a Soft Heaving Propulsor
A computation of the aeroelastic response of an elastic thinheaving airfoil will be shown
as an example of the possibilities presented by the present theory. Up to now fully aeroe-
lastic analysis involving aeroelastic deformations of thelifting surface such as this has
been possible only using much more computationally heavy methods such as for instance
panel methods or full Navier-Stokes methods.

The heaving thin airfoil is actuated by an external force such that the angle of the
leading edge is kept equal to zero, while the heave coordinate,Y , is varied harmonically
in time. The equation for the deformation of an elastic two-dimensional plate is

∂2

∂ε2

[
EI(ε)

∂2y(ε/b, t)

∂ε2

]
+ m(ε)

∂2y(ε/b, t)

∂t2
+ c

∂y(ε/b, t)

∂t
= p̃(ε), (104)

where the distributed forcẽp(ε) is the sum of the distributed aerodynamic force, Equa-
tion (B.5), and the fictitious forces from the acceleration of the coordinate system in
which the equation for the deformation of the elastic body isdescribed.

p̃(ε) = ∆P (ε/b) − Ÿ (t)m(ε) (105)

If the free vibration mode shapes corresponding to a cantilever beam is used to express
the deformation of the plate, Equation (4), standard modal decomposition techniques can
be used to express the elastic response of the system, Equation (104), as

mi
¨Defli + 2miωiξs

˙Defli + miω
2
i Defli =

∫ b

−b

yi(ε/b)p̃(ε)dx, (106)

where the modal massmi is

mi =

∫ b

−b

yi(ε/b)2m(ε)dx (107)

Note thatyi(ε/b) andωi are the vibrational modes and their corresponding eigenfrequen-
cies, andξs is the structural damping ratio. Upon insertingẊ = Ẍ = α = α̇ = α̈ = 0,
Equation (105) and Equation (B.5) into the integral in Equation (106) and performing the
integration, it is seen that

mi
¨Defli + 2miωiξs

˙Defli + miω
2
i Defli

= b

Ndefl∑

i=1

(DefliImodal,i) − b IMSy,i Ÿ , (108)

IMSy,i andImodal,i are expressed as

IMSy,i =

∫ 1

−1

yix1mx1dx1 (109)

Imodal,i =

∫ 1

−1

∆P (x1)yi(x1)dx1
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Figure 5:Influence of reduced frequency on propulsive efficiency,η, (upper graph) and
thrust (lower graph) for different stiffness coefficients,ζ, of the plate. The non-
dimensional mass isκ = Mtot/(πρb2) = 0.1. b0 is the amplitude of the heaving
motion. The results forη = ∞ is Garrick’s [7] analytical solution.

= −2ρbŸ PI1i − 2ρV QC PI5i

+ρb
1

π

(Ndefl∑

j=1

¨Deflj(t)PI2i,j + V

Ndefl∑

j=1

˙Deflj(t)PI3i,j

)

−2ρV

(
V

2π

Ndefl∑

j=1

Deflj(t)(Hdydε,jPI7i − PI8i,j)

+
1

2π

Ndefl∑

j=1

˙Deflj(t)(Hy,jPI7i − PI9i,j)

)
(110)

Note that the Integrals inImodal,i are the same as in the expressions for computation
of the power. TheNdefl second order differential equations describing the modal de-
flections due to the heave forcing can be rewritten to2 · Ndefl first order differential
equations, which can be solved in a straightforward way using standard ODE techniques.
The shown results are obtained using theODE45function in Matlab.
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Figure 5 show the effect of the frequency, in terms of reducedfrequencyk = ωb/V ,
and the stiffness, in terms of the non-dimensional parameter ζ = EI/(MtotV

2b2), on the
propulsive efficiency,η = V T/Pow, and thrust produced. The non-dimensional mass in
the example isκ = Mtot/(πρb2) = 0.1. Only the first two deflection modes was used in
the computations since the relative difference in propulsive efficiency from two to three
deflection modes was below 0.5 percent for the softest case considered. The results were
obtained by simulating 10 oscillation periods and using themean values from the last pe-
riod. It is seen that the results tend to the rigid plate results of Garrick [7] as the stiffness
is increased. In agreement with the computations of Katz andWeihs [14] on large ampli-
tude motion, a softer plate increases the propulsive efficiency and decreases the thrust for
all frequencies.

Since the model for the forces, moments and modal forces is a linear system if the
motion in the direction of the free-stream flow is neglected,the present theory makes
possible stability investigations using the eigenvalue approach. Therefore, investigations
of the effect of airfoil chordwise deformability on the flutter limits of a thin airfoil can
be investigated if the airfoil is locked in the direction of the oncoming flow. This case is
investigated in the next section.

4.3 Computational Example: Influence of Airfoil Cam-
berline Elasticity on Flutter Limits
In this section the influence of airfoil softness on the flutter velocity is investigated. As in
the previous section, the computations of this type have been possible only using compu-
tationally much heavier methods.

The classic flutter problem consists of a thin airfoil extending from ε = −b to ε = b.
The thin airfoil is hinged to a linear spring-damper system in heave and torsion atε =

ab, and has massMtot and moment of intertiaIa aroundε = ab. This was solved by
Theodorsen [20] in 1936, and is treated in detail in many textbooks on aeroelasticity.

Consider now the corresponding case where the thin airfoil is flexible. Approximat-
ing the small deformations of the airfoil by a modal expansion of the firstNdefl or-
thogonal free vibration shapes of a flexible airfoil clampedat ε = ab (corresponding to
non-dimensional coordinatex = a)

y(x, t) =

Ndefl∑

i=1

yi(x)Defli(t) (111)

ẏ(x, t) =

Ndefl∑

i=1

yi(x) ˙Defl i(t) (112)

ÿ(x, t) =

Ndefl∑

i=1

yi(x) ¨Defl i(t), (113)

the motion of any point on the airfoil in the direction perpendicular to the free-stream
velocity can be expressed in terms of the heave coordinate,Y , and the torsion coordinate
α at the hinge pointεhinge = ab.

ỹ(ε, t) = Y (t) − α(t)(ε − ab) +

Ndefl∑

i=1

yi(ε/b)Defli(t) (114)

˙̃y(ε, t) = Ẏ (t) − α̇(t)(ε − ab) +

Ndefl∑

i=1

yi(ε/b) ˙Defl i(t) (115)
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¨̃y(ε, t) = Ÿ (t) − α̈(t)(ε − ab) +

Ndefl∑

i=1

yi(ε/b)D̈efl i(t) (116)

Again, the torsion coordinate is assumed small. Alternatively, the heave and torsion co-
ordinates could have been expressed in terms of their unit deflection terms, and the total
motion of the system be cast into the general form of Equations (111) to (113). This
would, however, make the following less transparent, so it is proceeded here using Equa-
tions (114) to (116).

Heaving motion equation

The equation for the heaving motion is derived from the normal force balance between
inertial, elastic, damping and aerodynamic forces. The local inertial normal forces are
given by

dNI(ε) = −m(ε)¨̃y(ε, t) (117)

Wherem(ε) is the local mass per unit depth. Integrating Equation (117)over the airfoil
yields the integral inertial normal force

NI =

∫ b

−b

−m(ε)¨̃y(ε, t)dε

= −MtotŸ (t) − Mtotα̈(t)(ab − εcg) − b

Ndefl∑

i=1

¨Defli(t)Insi (118)

where the integralsεcg (theε-coordinate of the center of gravity) andInsi are given by

εcg = 1/Mtot

∫ b

−b

εm(ε)dε (119)

Insi = 1/b

∫ b

−b

yi(ε/b)m(ε)dε =

∫ 1

−1

yi(x)m(xb)dx (120)

The elastic and damping forces in the heaving direction are

NE = −KyY (t) (121)

ND = −CyẎ (t), (122)

and the external normal force, which in this case is the aerodynamic normal force,N ,
is given by Equation (45) withẊ = Ẍ = 0. Alternatively, the heave (Y ) and pitch (α)
motions can be explicitly included in the formulation usingEquation (B.2) in Appendix B
in stead of Equation (45). The normal forces should be in equilibrium with each other

NI + NE + ND + N = 0

m
MtotŸ + CyẎ + KyY + Mtot(ab − εcg)α̈ − Nfict − N = 0 (123)

where the normal forces due to the deformation of the airfoil, Nfict, is

Nfict = −b

Ndefl∑

i=1

(
¨Defli(t)Insi

)
(124)
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Pitching motion equation

Analogous to the equations for the heaving motion, the equations for the pitching motion
is derived from the moment balance between inertial, elastic, damping and aerodynamic
forces. In this case the moment is taken with respect to the elastic hinge pointx = ab.
The moment from the inertial forces are obtained from the distributed normal forces,
Equation (117), as follows

MI =

∫ b

−b

dMI

=

∫ b

−b

(ab − ε)dNI

= −
∫ b

−b

(ab − ε)m(ε) ¨̃
Y (ε/b, t)dε

= −Mtot(ab − εcg)Ÿ − Iaα̈ + abNfict + b2

Ndefl∑

i=1

¨DefliImsi (125)

HereIa, the inertial moment around the hinge pointε = ab, andImsi are

Ia =

∫ b

−b

(ε − ab)2m(ε)dε (126)

Imsi = 1/b2

∫ b

−b

yi(ε/b)m(ε)εdε =

∫ 1

−1

yi(x)m(xb)xdx (127)

The elastic and damping moments are

ME = −Kαα(t) (128)

MD = −Cαα̇(t), (129)

and the external moment, the aerodynamic moment,M , is given by Equation (48) with
Ẋ = Ẍ = 0, or with the heave (Y ) and pitching (α) motion explicitly included in
the formulation, Equation (B.4) in Appendix B. As in the caseof the normal force, the
moments should be in equilibrium with each other

MI + ME + MD + M = 0

m
Mtot(ab − εcg)Ÿ + Iaα̈ + Cαα̇ + Kαα − Mfict − M = 0 (130)

where the moment due to the deformation of the airfoil,Mfict, is

Mfict = abNfict + b2

Ndefl∑

i=1

¨DefliImsi (131)

Deformation motion equations

The differential equation governing the deformation of theairfoil is

∂2

∂ε2

[
EI

∂2y

∂ε2
+ csI

∂3y

∂ε2∂t

]
+ m

∂2y

∂t2
+ c

∂y

∂t
= ∆P (ε/b) + Pfict (132)

The local aerodynamic force,∆P (ε/b), is given in Equation (51) (or the version with the
heave and pitching motions stated explicitly, Equation (B.5), in the Appendix B).Pfict
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is the local fictitious inertia force from the acceleration of the airfoil coordinate system.
The acceleration of the airfoil coordinate system is

Y ∗(ε, t) = Y (t) + (ab − ε)α(t)

m
Ÿ ∗(ε, t) = Ÿ (t) + (ab − ε)α̈(t), (133)

which leads to

Pfict = −Ÿ ∗(ε, t)m(ε) = −
(
Ÿ (t) + (ab − ε)α̈(t)

)
m(ε), (134)

The free vibrational modes,yi, and corresponding eigenfrequencies,ωi, are determined
from the eigenvalue problem

∂2

∂ε2

[
EI

∂2yi

∂ε2

]
− ω2

i myi = 0. (135)

Using the free vibration modes,yi, of the elastic airfoil clamped atε = ab, the equation
of motion for the deformation of the airfoil, Equation (130), is formulated in terms of the
free vibration modes with the modal amplitude functions,Defli, as generalized coordi-
nates, i.e. using the modal decomposition in Equation (111). The vibrational modes are
orthogonal, meaning that

∫ b

−b

yimyjdε = miδi,j , (136)

wheremi are modal masses, andδi,j is the Kronecker delta. By introducing the modal de-
composition, Equation (111), into the differential equation governing the deformation of
the airfoil, Equation (132), and integrating the result multiplied byyi over the airfoil, we
obtain with the aid of Equation (136), Equation (135) and theassumption of orthogonal
damping

mi
¨Defli + mi2ωiξs

˙Defli + miω
2
i Defli − MFi −

∫ b

−b

yi∆P (ε/b)dx = 0

(137)

In Equation (137),ξs is the structural damping ratio, andMFi are the fictitious modal
forces from the heave and pitching acceleration, given by

MFi =

∫ b

−b

yiPfictdε

= −
∫ b

−b

yi(ε/b)
(
Ÿ + (ab − ε)α̈

)
m(ε)dε

= −b(Ÿ + abα̈)Insi + α̈b2Imsi (138)

The integral over the fluid forces is somewhat more elaborate, but quite straightforward.
The deflection shape integrals in the expression turns out tobe identical to those in the
equations for the power, Equations (68) or (B.7) in the appendix. The result is

∫ b

−b

yi∆P (ε/b)dx = 2ρ
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)
PI1i

+ρb
1

π

(Ndefl∑

j=1

¨Deflj(t)PI2i,j

−Ẍ(t)

Ndefl∑

j=1

Deflj(t)PI3i,j
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+(V − Ẋ(t))

Ndefl∑

j=1

˙Deflj(t)PI3i,j

)

+ρb2α̈P I4i − 2ρ(V − Ẋ(t))QCPI5i

−2ρ(V − Ẋ(t))

(
b

2
α̇P I6i

+
(V − Ẋ(t))

2π

Ndefl∑

j=1

Deflj(t)Hdydε,jPI7i

− (V − Ẋ(t))

2π

Ndefl∑

j=1

Deflj(t)PI8i,j

+
1

2π

Ndefl∑

j=1

˙Deflj(t)Hy,jPI7i

− 1

2π

Ndefl∑

j=1

˙Deflj(t)PI9i,j

)
(139)

Determination of stability

Since the equations for the motion of the airfoil in the heaving (Equation (123)) and
pitching directions (Equation (130)), the deformation of the airfoil (Equation (137)), and
the equations for the aerodynamic state variables (Equation (83)), are all linear forẊ =

Ẍ = 0 it is possible to express the full linear system as a matrix equation

M d̈ + C ḋ + K d = 0 (140)

whered = [Y ; α; Defl1; ...DeflNdefl; z1; ...zNaero]
T . Since the aerodynamic state vari-

ableszi are not dependent on any second order derivatives of time, Equation (140) can be
rewritten to a first order matrix equation

˙̃d = A d̃ (141)

whered̃ = [Ẏ ; α̇; ˙Defl1; ... ˙DeflNdefl; Y ; α; Defl1; ...DeflNdefl; z1; ...zNaero]
T . The

stability of the system is determined by inserting the solution

d̃ = d̂eλt (142)

into Equation (141). This yields
(
A − λI

)
d̂eλt = 0 (143)

The nontrivial solution to this problem is

det
(
A − λI

)
= 0, (144)

which is a polynomium in the complex variableλ. This can be solved using any standard
eigenvalue problem solver, and the solutions inλ are called eigenvalues. From Equa-
tion (142) it is seen that the system is stable if the greatestreal part of the eigenvalues is
negative.

Computational example

Consider an airfoil with constant camberline bending stiffnessEI and constant distri-
buted mass,m = Mtot/(2b). The moment of inertia around a pointε = ab of the stiff
airfoil is Ia = Mtotb

2(1/3 + a2). The undamped vibration modes and frequencies of an
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Figure 6:Non-dimensional flutter limits for airfoil of different uniform chordwise stiff-
ness as function of the undamped heave to pitch frequency ratio. ωD is the
lowest eigenfrequency of the undamped elastic airfoil clamped atε = ab. The
nondimensional elastic hinge point isa = −0.4.

elastic 2D plate clamped atε = ab consists of uniform cantilever beam vibration modes
and frequencies for each end,−b to ab andab to b. The modal vibration frequencies of
an uniform cantilever beam of lengthl are found by solving the transendental equation

cos(l
√

ω/a) = − 1

cosh(l
√

ω/a)
. (145)

wherea2 = EI/m. The corresponding vibrational modes are found by inserting the
found frequencies,ω1, ω2, ... ωn into

ŷi(x̃) =
sin(l

√
ωi/a) − sinh(l

√
ωi/a)

cos(l
√

ωi/a) + cosh(l
√

ωi/a)

(
sinh(x̃

√
ωi/a) − sin(x̃

√
ωi/a)

)

+
(
cosh(x̃

√
ωi/a) − cos(x̃

√
ωi/a)

)
. (146)

wherex̃ is a length parameter, going from zero at the clamped position to l at the free
end.

Figure 6 show the non-dimensional flutter limits versus structural frequency ratios
ωY /ωα for elastically hinged 2D airfoils of different camberlinestiffness. For flow veloc-
ities below the flutter limit,VF , oscillations are damped out, whereas they are increased
for flow velocities aboveVF . The non-dimensional hinge point isa = −0.4, and the
mass ratio isMtot/(πρb2) = 20. The chordwise stiffness is expressed non-dimensionally
in terms of the frequency ratioωD/ωα, whereωD is the lowest eigenfrequency of the
undamped elastic airfoil clamped atε = ab, which in this case is the lowest eigenfre-
quency of the downwind end of lengthb − ab. The results in the figure are computed
using two upwind and three downwind vibration modes. The results using one upwind
and two downwind deflection mode shapes are only marginally different from the ones
with the finer resolution. The maximum absolute difference in non-dimensional flutter
velocity is below 0.02 and the mean absolute change is below 0.0025.
As expected, Figure 6 show that the flutter velocities tend tothe classical flutter results as
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the stiffness is increased,ωD → ∞. Furthermore, it is seen that flutter velocities decrease
as the airfoil stiffness is decreased. The airfoils used in both aeronautical and wind energy
applications have chordwise deformations with very high eigenfrequencies compared to
the eigenfrequency of the pitching motion, so the ordinary rigid theory is fully adequate in
those cases. However, for applications within soft propulsors for hydrodynamic devices,
camberline elasticity may change the flutter velocity considerably compared to classic
rigid airfoil theory.
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5 Conclusions

In the present report analytical expressions for distributed and integral unsteady 2D forces
on a variable geometry thin airfoil undergoing arbitrary motion were derived under the
assumption of incompressible, irrotational, inviscid flow. It was shown from the expres-
sions for the forces, that the influence from the shed vorticity in the wake is described
by the same time-lag for all chordwise positions on the airfoil. This time-lag term was
approximated using an indicial function approach, allowing for numerically very efficient
computation of the aerodynamic response by use of Duhamel superposition. Furthermore,
the indicial function expressions for the time-lag terms were formulated in their equiva-
lent state-space form, allowing for use of the present theory in problems employing the
eigenvalue approach, such as stability analysis.
The analytical expressions for the forces simplify to the thin-airfoil results by Munk [18]
in case of steady flow, and Theodorsen [20] in case of unsteadyflow over a flat airfoil
with a flat flap. Comparisons of the thrust predicted with the present algorithm is in ex-
cellent agreement with the analytical results of Garrick [7] and Wu [22] for a heaving
flat plate and a progressing wave of given wavelength and phase velocity over the chord,
respectively. Furthermore, it was shown how the present theory could be used to predict
an arbitrary forcing from vertical gusts, and this method was verified by comparison with
Sears function [19].
The current theory can be used for various applications which up to now have been pos-
sible only using much more computational costly methods. The propulsive performance
of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flut-
ter limit are two computational examples given in the reportthat highlight this feature.
The conclusions from the computations on the soft heaving propulsor computations agree
with classical results: thrust decrease, and propulsive efficiency increase as the propulsor
stiffness is decreased. The results from the predictions ofthe influence of airfoil cam-
berline elasticity on the flutter limit show that the ordinary rigid airfoil theory is fully
adequate for the airfoils on aeroplanes and wind turbines.
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A General Surface Velocity Potential

The resulting velocity potential of a source of strengthdS in the complex plane atξ =

ξ1s + i · ξ2s and a source of opposite strength (drain)−dS at ξ = ξ1s − i · ξ2s is

ϕsdξ(ξ, ξs) =
dS

4π
ln

(
(ξ1 − ξ1s)

2 + (ξ2 − ξ2s)
2

(ξ1 − ξ1s)
2

+ (ξ2 + ξ2s)
2

)
(A.1)

Placing the source/drain pair on a circle of radiusb/2 with centrum inξ = 0 in the ξ

plane, and considering only points on the same circle, the result is

ξ2 =
√

b2/4 − ξ1 (A.2)

ξ2s =
√

b2/4 − ξ1s, (A.3)

which inserted into (A.1) yield the surface velocity potential of the source/drain pair in
theξ plane

ϕsdξ(ξ1, ξ1s) =
dS

4π
ln




(ξ1 − ξ1s)

2
+
(√

b2/4 − ξ1 −
√

b2/4 − ξ1s

)2

(ξ1 − ξ1s)
2

+
(√

b2/4 − ξ1 +
√

b2/4 − ξ1s

)2





(A.4)

The well known Joukowski transformation

z = ξ +
b2

4 ξ
(A.5)

maps the circleξ = ξ1 + i ·
√

b2/4 − ξ2
1 , −b/2 ≤ ξ1 ≤ b/2 onto the real axis in thez

planez = z1 + i · z2 = 2ξ1 + i · 0. Therefore, the surface velocity potential in thez-plane
is obtained by insertingξ1 = 1/2 z1 andξ1s = 1/2 z1s into Equation (A.4)

ϕsdz(z1, z1s) =
dS

4π
ln

(
(z1 − z1s)

2
+
(√

b2 − z1 −
√

b2 − z1s

)2

(z1 − z1s)
2
+
(√

b2 − z1 +
√

b2 − z1s

)2

)
(A.6)

Converting the from dimensional to non-dimensional coordinates by insertion ofxb = z1

andx1b = z1s yield

ϕsd(x, x1) =
dS

4π
ln

(
(x − x1)

2 +
(√

b2 − x −
√

b2 − x1

)2

(x − x1)
2 +

(√
b2 − x +

√
b2 − x1

)2

)
(A.7)

The surface velocity potential of a distributed sheet of sources with strengthσ(x1, t) on
the upper side of the airfoil, and a distributed sheet of sources of the opposite strength
(−σ(x1, t)) on the lower side of the airfoil can be obtained by integration. Since

dS |x=x1
= σ(x1, t)b dx1 (A.8)

the surface velocity potential is obtained by integration

ϕ(x, t) =
b

4π

∫ 1

−1

σ(x1 , t) ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1

(A.9)
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B Full Force Expressions

For airfoil computations it may sometimes be convenient to have the expressions for
the forces on the airfoil with the heaving and pitching deflection mode explicitly given.
For heaving motion, the deformation mode shape isyY (x) = 1 and the derivative is
∂yY (x)/∂ε = 0, and for pitching motion with non-dimensional center of rotation at
x = a the deformation mode shape isyα(x) = b(a− x) and the derivative∂yα(x)/∂ε =

−1. Upon inserting the velocity potentials corresponding to these deformation shapes,
listed in Appendix D, the full force expressions, includingthe heave and pitch degrees of
freedom explicitly, can be stated. Note that in this case, the normal and tangential forces,
N andT , are the forces in the direction normal and tangential (positive from trailing
edge to leading edge) to the airfoil coordinate system: thatis, it is rotated the angleα
(in the clockwise direction) compared to the normal and tangential force in the general
formulation given in the main report, Equations (45) and (59).

Nc(c) = ρb2K1(c)
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)

+
ρ b2

π

(
Ndefl∑

i=1

D̈efl i(t)Fy,i (c) − Ẍ(t)

Ndefl∑

i=1

Defl i(t)Fdydε,i (c)

+
(
V − Ẋ(t)

)Ndefl∑

i=1

˙Defli(t)Fdydε,i (c)

)

+ ρb3K2(c)α̈

+ 2 bρ
(
V − Ẋ(t)

)(
arccos(c) −

√
1 − c2

)
QC

− bρ
√

1 − c2
(
V − Ẋ(t)

)(
(
V − Ẋ(t)

)∑Ndefl

i=1 Defl i(t)Hdydε,i

π

+

∑Ndefl

i=1
˙Defli(t)Hy,i

π
− b(1 − c)α̇

)

− ρ b
(
V − Ẋ(t)

)(
(
V − Ẋ(t)

)∑Ndefl

i=1 Defl i(t)fdydε,i (c)

π

+

∑Ndefl

i=1
˙Defli(t)fy,i (c)

π

)
(B.1)

N = ρb2π
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)

+
ρb2

π

Ndefl∑

i=1

(
¨Defli(t)Fy,i(−1) − ẌDefli(t)Fdydε,i (−1)

+(V − Ẋ) ˙Defli(t)Fdydε,i (−1)

)

+2πρb(V − Ẋ) · QC (B.2)

Mc(c) = ρ ((−ac − 1/8)K1(c) + 2(a + c/8)K2(c)) b4α̈

+ρ ((c − 1/2)K1(c) − K2(c)) (V − Ẋ)b3α̇
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+ρb3(−K1(c) c + 2K2(c))Ẍα + ρb3(−K1(c) c + 2K2(c))Ÿ

+ρb3 1

π
Ẍ(t)

Ndefl∑

i=1

Defl i(t) (Gdydε,i (c) − cFdydε,i(c))

+ρb2 1

π
(V − Ẋ(t))2

Ndefl∑

i=1

Defli(t)Fdydε,i(c)

+ρb2(V − Ẋ(t))2
K1(c)

2π

Ndefl∑

i=1

DefliHdydε,i

−ρb3 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)(Gdydε,i(c) − cFdydε,i(c))

+ρb2 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)Fy,i(c)

+ρb2(V − Ẋ(t))
K1(c)

2π

Ndefl∑

i=1

˙Defli(t)Hy,i

−ρb3 1

π

Ndefl∑

i=1

¨Defli(t)(Gy,i(c) − cFy,i(c)) (B.3)

+2ρb2(V − Ẋ(t))
(
(c + 1/2) arccos(c) − (1 + c/2)

√
1 − c2

)
QC

M = ρπ(−1/8 − a2)b4α̈ − πb3ρ(V − Ẋ)(1/2 − a)α̇ − ρπb3aẌα − ρπab3Ÿ

+ρb3 1

π
Ẍ(t)

Ndefl∑

i=1

Defl i(t) (Gdydε,i (−1) − aFdydε,i (−1))

+ρb2 1

π
(V − Ẋ(t))2

Ndefl∑

i=1

Defli(t)Fdydε,i(−1)

+ρb2(V − Ẋ(t))2
1

2

Ndefl∑

i=1

DefliHdydε,i

−ρb3 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)(Gdydε,i(−1) − aFdydε,i(−1))

+ρb2 1

π
(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)Fy,i(−1)

+ρb2(V − Ẋ(t))
1

2

Ndefl∑

i=1

˙Defli(t)Hy,i

−ρb3 1

π

Ndefl∑

i=1

¨Defli(t)(Gy,i(−1) − aFy,i(−1)) (B.4)

+2πρb2(V − Ẋ(t))(1/2 + a)QC

∆P (c) = ρb2
√

1 − c2
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)
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+ρb2c
√

1 − c2α̈ − ρb(V − Ẋ)
(2c + 1)(c − 1)√

1 − c2
α̇

+ρb
1

π

(
Ndefl∑

i=1

¨Defli(t)fy,i(c)

−Ẍ(t)

Ndefl∑

i=1

Defli(t)fdydε,i(c)

+(V − Ẋ(t))

Ndefl∑

i=1

˙Defli(t)fdydε,i(c)

)

−2ρ(V − Ẋ(t))
c − 1√
1 − c2

QC

−ρ
1

π
(V − Ẋ(t))2

(
c√

1 − c2

Ndefl∑

i=1

Defli(t)Hdydε,i

−
Ndefl∑

i=1

Defli(t)
∂fdydε,i(c)

∂c

)

−ρ
1

π
(V − Ẋ(t))

(
c√

1 − c2

Ndefl∑

i=1

˙Defli(t)Hy,i

−
Ndefl∑

i=1

˙Defli(t)
∂fy,i(c)

∂c

)
(B.5)

T =
π

2
ρb

(
2QC − α̇b +

V − Ẋ(t)

2π

Ndefl∑

i=1

Defli(t)(Kdydε,i + Hdydε,i)

+
1

2π

Ndefl∑

i=1

˙Defli(t)(Ky,i + Hy,i)

)2

+2ρb2
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)Ndefl∑

i=1

Defli(t)TI1i

+ρb2 1

π

(Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ¨Deflj(t)TI2i,j

−Ẍ(t)

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)TI3i,j

+(V − Ẋ(t))

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)TI3i,j

)

+ρb3α̈

Ndefl∑

i=1

Defli(t)TI4i − 2bρ(V − Ẋ(t))QC
Ndefl∑

i=1

Defli(t)TI5i

−2ρb(V − Ẋ(t))

(
b

2
α̇

Ndefl∑

i=1

Defli(t)TI6i

+
(V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)Hdydε,jTI7i
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− (V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t)Deflj(t)TI8i,j

+
1

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)Hy,jTI7i

− 1

2π

Ndefl∑

i=1

Ndefl∑

j=1

Defli(t) ˙Deflj(t)TI9i,j

)
(B.6)

Pow = −2ρb2
(
−Ẍα + (V − Ẋ)α̇ − Ÿ − abα̈

)Ndefl∑

i=1

˙Defli(t)PI1i

−ρb2 1

π

(Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
¨Deflj(t)PI2i,j

−Ẍ(t)

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)PI3i,j

+(V − Ẋ(t))

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)PI3i,j

)

−ρb3α̈

Ndefl∑

i=1

˙Defli(t)PI4i + 2bρ(V − Ẋ(t))QC
Ndefl∑

i=1

˙Defli(t)PI5i

+2ρb(V − Ẋ(t))

(
b

2
α̇

Ndefl∑

i=1

˙Defli(t)PI6i

+
(V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)Hdydε,jPI7i

− (V − Ẋ(t))

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)Deflj(t)PI8i,j

+
1

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)Hy,jPI7i

− 1

2π

Ndefl∑

i=1

Ndefl∑

j=1

˙Defli(t)
˙Deflj(t)PI9i,j

)

−NẎ − Mα̇ (B.7)

The equivalent flat plate three-quarter downwash is in the full explicit case

Q = (V − Ẋ)α − Ẏ + (1/2 − a)bα̇

− 1

2π

(
V − Ẋ(t)

)Ndefl∑

i=1

Defl i(t)Hdydε,i

− 1

2π

Ndefl∑

i=1

˙Defl i(t)Hy,i (B.8)

The constants and deflection shape integrals in the force expressions are listed below

K1(c) = π/2 − c
√

1 − c2 − arcsin c = arccos(c) − c
√

1 − c2 (B.9)
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K2(c) = 1/3(1 − c2)3/2 (B.10)

fy,i(x) =

∫ 1

−1

yi(x1 ) ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1

(B.11)

fdydε,i (x) =

∫ 1

−1

y′
i(x1 ) ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1

(B.12)

Fy,i(c) =

∫ 1

c

fy,i(x)dx (B.13)

Gy,i(c) =

∫ 1

c

xfy,i(x)dx (B.14)

Fdydε,i(c) =

∫ 1

c

fdydε,i (x)dx (B.15)

Gdydε,i (c) =

∫ 1

c

xfdydε,i (x)dx (B.16)

Hy,i = −2

∫ 1

−1

yi(x1 )
√

1 − x1
2

x1 − 1
dx1 (B.17)

Hdydε,i = −2

∫ 1

−1

y′
i(x1 )

√
1 − x1

2

x1 − 1
dx1 (B.18)

Ky,i = −2

∫ 1

−1

yi(x1 )
√

1 − x1
2

x1 + 1
dx1 (B.19)

Kdydε,i = −2

∫ 1

−1

y′
i(x1 )

√
1 − x1

2

x1 + 1
dx1 (B.20)

TI1i =

∫ 1

−1

√
1 − x2

1 y′
i(x1) dx1 (B.21)

TI2i,j =

∫ 1

−1

fy,j(x1) y′
i(x1) dx1 (B.22)

TI3i,j =

∫ 1

−1

fdydε,j(x1) y′
i(x1) dx1 (B.23)

TI4i =

∫ 1

−1

x1

√
1 − x2

1 y′
i(x1) dx1 (B.24)

TI5i =

∫ 1

−1

x1 − 1√
1 − x2

1

y′
i(x1) dx1 (B.25)

TI6i =

∫ 1

−1

(2x1 + 1)(x1 − 1)√
1 − x2

1

y′
i(x1) dx1 = −2TI1i − TI5i (B.26)

TI7i =

∫ 1

−1

x1√
1 − x2

1

y′
i(x1) dx1 (B.27)

TI8i,j =

∫ 1

−1

∂fdydε,j

∂x
(x1) y′

i(x1) dx1 (B.28)

TI9i,j =

∫ 1

−1

∂fy,j

∂x
(x1) y′

i(x1) dx1 (B.29)
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PI1i =

∫ 1

−1

√
1 − x2

1 yi(x1) dx1 (B.30)

PI2i,j =

∫ 1

−1

fy,j(x1) yi(x1) dx1 (B.31)

PI3i,j =

∫ 1

−1

fdydε,j(x1) yi(x1) dx1 (B.32)

PI4i =

∫ 1

−1

x1

√
1 − x2

1 yi(x1) dx1 (B.33)

PI5i =

∫ 1

−1

x1 − 1√
1 − x2

1

yi(x1) dx1 (B.34)

PI6i =

∫ 1

−1

(2x1 + 1)(x1 − 1)√
1 − x2

1

yi(x1) dx1 = −2PI1i − PI5i (B.35)

PI7i =

∫ 1

−1

x1√
1 − x2

1

yi(x1) dx1 (B.36)

PI8i,j =

∫ 1

−1

∂fdydε,j

∂x
(x1) yi(x1) dx1 (B.37)

PI9i,j =

∫ 1

−1

∂fy,j

∂x
(x1) yi(x1) dx1 (B.38)

Please note thatTI6i can be computed fromTI1i andTI5i, and thatPI6i can be com-
puted fromPI1i andPI5i. The present nomenclature was kept to preserve clarity in the
presentation of the results.

The memory term associated with the vorticity shed in the wake can be expressed in
an approximative state-space reperesentation

QC = Q(t)

(
1 −

∑

i

Ai

)
+
∑

i

zi (B.39)

żi + bi
1

b
(V − Ẋ(t))zi = biAi

1

b
(V − Ẋ(t))Q(t). (B.40)
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C Computation of the Deflection Shape
Integrals

Since some of the deflection shape integrals requires integration over expressions that are
singular, calculation of these require special attention.

fy,i(x) and fdydε,i(x) deflection integrals

The evaluation of thefy,i(x) andfdydε,i(x) deflection integrals require integration with
respect tox1 over the mode shape or mode shape derivative multiplied by

ln

(
(x − x1 )

2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2

+
(√

1 − x2 +
√

1 − x1
2
)2

)
.

This expression goes toward−∞ for x1 → x. However, the integral over this singularity
is non-singular. The integrals are can be evaluated using the analytical integrals given in
the work by Theodorsen [20]

II1(x, xa, xb) =

∫ xb

xa

ln

(
(x − x1 )2 +

(√
1 − x2 −

√
1 − x1

2
)2

(x − x1 )
2
+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1

= 2(x − xa) lnNa − 2
√

1 − x2 arccos(xa)

−2(x − xb) lnNb + 2
√

1 − x2 arccos(xb) (C.1)

II2(x, xa, xb) =

∫ xb

xa

ln

(
x1

(x − x1 )
2
+
(√

1 − x2 −
√

1 − x1
2
)2

(x − x1 )
2
+
(√

1 − x2 +
√

1 − x1
2
)2

)
dx1

= −
√

1 − x2
a

√
1 − x2 − x arccos(xa)

√
1 − x2 + (x2 − x2

a) lnNa

+
√

1 − x2
b

√
1 − x2 + x arccos(xb)

√
1 − x2 − (x2 − x2

b) lnNb, (C.2)

whereNa andNb are

Na =
1 − xax −

√
1 − x2

√
1 − x2

a

|x − xa|
(C.3)

Nb =
1 − xbx −

√
1 − x2

√
1 − x2

b

|x − xb|
. (C.4)

If the values ofyi used in the computation offy,i(x) are approximated by piecewise
linear functions, thenfy,i(x) can be approximated by

fy,i(x) ≈
Nx−1∑

j=1

(Ai,jII1(x, xj , xj+1) + Bi,jII2(x, xj , xj+1)) (C.5)

Ai,j = yi(xj) − xj
yi(xj+1) − yi(xj)

xj+1 − xj

Bi,j =
yi(xj+1) − yi(xj)

xj+1 − xj

The evaluation offdydε,i(x) is analogous to the evaluation offy,i(x). In this case the
deflection shape values,yi(x), are interchanged with deflection slope values,y′

i(x ).
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∂fy,i(x)
∂x and ∂fdydε,i(x)

∂x deflection integral derivatives

The deflection integral derivative∂fy,i(x)
∂x is found by differentiation of Equation (C.5).

∂fy,i(x)

∂x
≈

Nx−1∑

j=1

(
Ai,j

∂II1(x, xj , xj+1)

∂x
+ Bi,j

∂II2(x, xj , xj+1)

∂x

)
(C.6)

The value of∂fdydε,i(x)
∂x is computed analogously.

Fy,i(c) and Fdydε,i(c) deflection integrals

The values ofFy,i(c) andFdydε,i(c) can be obtained by a suitable type of numerical
integration of the previously computed values offy,i(x) andfdydε,i(x) from x = c to
x = 1.

Gy,i(c) and Gdydε,i(c) deflection integrals

The values ofGy,i(c) andGdydε,i(c) can be obtained fromfy,i(x) andfdydε,i(x) by a
suitable type of numerical integration. One possibility isto assume a piecewise linear
variation offy,i(x) andfdydε,i(x) with respect tox. With this assumption, the result is

Gy,i(c) ≈
Nxc−1∑

j=1

(
1/2(x2

j+1 − x2
j )Ai,j + 1/3(x3

j+1 − x3
j )Bi,j

)
(C.7)

Ai,j = fy,i(xj) − xj
fy,i(xj+1) − fy,i(xj)

xj+1 − xj

Bi,j =
fy,i(xj+1) − fy,i(xj)

xj+1 − xj
.

Again, the evaluation ofGdydε,i(c) is analogous to the evaluation ofGy,i(c). In this case
the deflection shape values,yi(x), are interchanged with deflection slope values,d

dεyi(x ).

Hy,i and Hdydε,i deflection integrals

As in the cases above, a numerical approximation to theHy,i andHdydε,i integrals can be
found employing a piecewise linear approximation ofyi anddyi/dε using the analytical
integrals

∫ √
1 − x2

1

x1 − 1
dx1 =

√
1 − x2

1 − arcsin(x1) (C.8)

∫
x1

√
1 − x2

1

x1 − 1
dx1 = (

1

2
x1 + 1)

√
1 − x2

1 −
1

2
arcsin(x1) (C.9)

Ky,i and Kdydε,i deflection integrals

Numerical approximations to these can be found as above withthe help of the following
integrals

∫ √
1 − x2

1

x1 + 1
dx1 =

√
1 − x2

1 + arcsin(x1) (C.10)

∫
x1

√
1 − x2

1

x1 + 1
dx1 = (

1

2
x1 + 1)

√
1 − x2

1 −
1

2
arcsin(x1) (C.11)
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TI1i, TI4i, TI5i, TI6i and TI7i deflection integrals

These deflection integrals may be again computed as the previous, employing the piece-
wise linear assumption ofyi anddyi/dε, with the help of the following analytic integrals

∫ √
1 − x2

1dx1 =
1

2
x1

√
1 − x2

1 +
1

2
arcsin(x1) (C.12)

∫
x1

√
1 − x2

1dx1 = −1

3
(1 − x2

1)
3/2 (C.13)

∫
x2

1

√
1 − x2

1dx1 = −1

4
x1(1 − x2

1)
3/2 +

1

8
x1

√
1 − x2

1 +
1

8
arcsin(x1)

(C.14)
∫

1√
1 − x2

1

dx1 = arcsin(x1) (C.15)

∫
x1√

1 − x2
1

dx1 = −
√

1 − x2
1 (C.16)

∫
x2

1√
1 − x2

1

dx1 = −1

2
x1

√
1 − x2

1 +
1

2
arcsin(x1) (C.17)

TI2i,j, TI3i,j, TI8i,j and TI9i,j deflection integrals

Since the values offy,i(x), fdydε,i(x) and their derivatives with respect tox can be de-
termined as outlined previously, the integralsTI2i,j, TI3i,j, TI8i,j andTI9i,jcan be
computed using any suitable numerical integration.

PI deflection integrals

The computation of thePI-integrals, the deflection shape integrals for the computation
of the power and modal forces, are analogous to the computation of theTI-integrals. The
only difference is that the the slopes of the deflection shapes,y′

i, in theTI-integrals are
interchanged with the deflection shapes themselves,yi.
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D Velocity Potentials and Analytical Val-
ues of the Integrals Used for Computing
Deflection Integrals for a Flat Plate With
a Flap

The following velocity potentials and integrals can be found in Theodorsen’s classic
work [20]. Note that the heave coordinate used in the original work, h, which is posi-
tive down, is replaced with the heave coordinate used in the present work,Y , which is
positive upward.

Velocity Potentials

ϕα(x) = V αb
√

1 − x2 (D.1)

ϕẎ (x) = −Ẏ b
√

1 − x2 (D.2)

ϕα̇(x) = α̇b2(
1

2
x − a)

√
1 − x2 (D.3)

ϕβ(x) =
1

π
V βb

(√
1 − x2 arccos(c) − (x − c) ln(N)

)
(D.4)

ϕβ̇(x) =
1

2π
β̇b2

(√
1 − c2

√
1 − x2

+(x − 2c)
√

1 − x2 arccos(c) − (x − c)2 ln(N)

)
(D.5)

where

N =
1 − cx −

√
1 − x2

√
1 − c2

x − c

Analytical Integrals

∫ 1

c

√
1 − x2dx =

1

2
arccos(c) − 1

2
c
√

1 − c2

∫ 1

c

√
1 − x2(x − c)dx =

1

6

√
1 − c2(2 + c2) − 1

2
c arccos(c)

∫ 1

−1

√
1 − x2(x − c)dx = −π

2
c

∫ 1

c

(
1

2
x − a)

√
1 − x2dx =

1

6
(1 − c2)3/2 + a

(
1

4
arccos(c) − 1

4
c
√

1 − c2

)

∫ 1

c

(
1

2
x − a)

√
1 − x2(x − c)dx =

1

2
(
1

8
+ c2) arccos(c) − 1

16
c
√

1 − c2(7 + 2c2)

+
1

2
(c − a)

(
1

3

√
1 − c2(2 + c2) − c arccos(c)

)

∫ 1

−1

(
1

2
x − a)

√
1 − x2(x − c)dx =

π

16
+

π

2
ac

∫ 1

c

√
1 − x2 arccos(c) − (x − c) ln(N)dx =

1

2
(1 − c2) +

1

2
arccos2(c) − c

√
1 − c2 arccos(c)
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∫ 1

c

(√
1 − x2 arccos(c) − (x − c) ln(N)

)
(x − c)dx = −1

2
c(1 − c2) +

1

2

√
1 − c2(1 + c2) arccos(c)

−c
1

2
arccos2(c)

∫ 1

−1

(√
1 − x2 arccos(c) − (x − c) ln(N)

)
(x − c)dx =

π

6

√
1 − c2(2c2 + 1) − c

π

2
arccos(c)

∫ 1

c

√
1 − c2

√
1 − x2 + (x − 2c)

√
1 − x2 arccos(c) − (x − c)2 ln(N) dx

= −c(1 − c2) +
√

1 − c2(1 + c2) arccos(c) − c arccos2(c)
∫ 1

c

(√
1 − c2

√
1 − x2 + (x − 2c)

√
1 − x2 arccos(c) − (x − c)2 ln(N)

)
(x − c) dx

= (
1

8
+ c2) arccos2(c) − 1

4
c
√

1 − c2 arccos(c)(7 + 2c2) +
1

8
(1 − c2)(5c2 + 4)

∫ 1

−1

(√
1 − c2

√
1 − x2 + (x − 2c)

√
1 − x2 arccos(c) − (x − c)2 ln(N)

)
(x − c) dx =

−π(
1

8
+ c2) arccos(c) + π

1

8
c
√

1 − c2(7 + 2c2)
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all chordwise positions on the airfoil. This time-lag term can be approximated using an
indicial function approach, making the practical calculation of the aerodynamic response
numerically very efficient by use of Duhamel superposition.Furthermore, the indicial
function expressions for the time-lag terms are formulatedin their equivalent state-space
form, allowing for use of the present theory in problems employing the eigenvalue ap-
proach, such as stability analysis.
The analytical expressions for the forces simplify to all previously known steady and
unsteady thin-airfoil solutions.
Apart from the obvious applications within active load control/reduction, the current the-
ory can be used for various applications which up to now have been possible only using
much more computational costly methods. The propulsive performance of a soft heaving
propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two
computational examples given in the report that highlight this feature.
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