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Overview

• WAsP
– Problem
– Solution
– Models of WAsP
– Complex terrain (RIX)
– New WAsP

• Flow in and near forests
• Meso-scale modelling
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The World according to WAsP
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The problem
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Linear interpolation
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European Wind Atlas
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Geostrophic winds
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Thermal winds
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Weibull distributions
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Annual variation
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Power production basics
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The WAsP Icon
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Screen lay-out
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WAsP-arithmetics

WAsP = OBS + ROU + ORO
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Obstacles
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What is an obstacle?

After Meroney (1977)
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Effects of an obstacle

Reduction of wind speed in per cent due to shelter by a two-dimensional
obstacle of zero porosity. Based on the expressions given by Perera (1981)

www.wasp.dk

Trees and shelter belts

Porosity
in per cent or as a
fraction

Open > 50%

Dense > 35%

Very dense < 35%

Solid = 0%
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Specifying obstacles in WAsP

Obstacles are specified as rectangular boxes relative to the site:
by two angles and two radii, their height, depth and porosity

www.wasp.dk

Obstacle viewed in WAsP
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Roughness
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Equations!
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Logarithmic profile
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Internal Boundary Layer (IBL)
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Orography
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Stream lines are compressed => wind speed-up!
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Stream lines and turbulence over a hill
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Mother of all flow-over-hill studies:
The Askervein Hill field experiment
(Benbecula Island, Outer Hebrides, Scotland) 

Askervein Hill Field Experiment

Wind measured on masts along a line across the hill
(mast distance 100 m) 

www.wasp.dk

Orography effects on wind speed profile

Askervein Hill velocity profile

Vertical profile
Horizontal profile
of speed-up

• Measurement
�   WAsP flow model
-- Other flow model
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Inside the BZ-flow-model of WAsP the orography 
is represented by a zooming polar grid.

BZ-model: Zooming Polar Grid

The grid is centered 
around the point in 
focus: met-station or 
wind turbine site.

The resolution is 
highest close to the 
point in focus, where 
high resolution 
matters. 

www.wasp.dk

Flow Separation
Ex.#1: Steep but smooth hill

Effect of a steep hill

The flow behaves - to some extent - as if moving over a
virtual hill with less steep sides  =>

smaller speed-up than calculated by WAsP

Ref: N.Wood, “The onset of flow separation in neutral, turbulent flow over hills”, Boundary-Layer 
Meteorology 76, 137-164.

-100 0 100

0

40

80

120 Virtual Hill
Steepness ~ 30%Steepness ~ 40%
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Complex terrain
and
RIX

www.wasp.dk

Outline

• Accumulation of orographic prediction errors
• WAsP basics in complex terrain

– The similarity principle

• Case study in Portugal
– Wind speed correlations
– Flow separation
– RIX and ∆RIX
– WAsP prediction errors
– RIX/∆RIX configuration
– Vertical wind profiles
– Improving WAsP predictions in complex terrain?
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Background

• European Wind Atlas, Vol. II: Measurements and Modelling in Complex 
Terrain. Multi-partner EU project from 1990-95.

• Bowen, A.J. and N.G. Mortensen (1996/2005). WAsP prediction errors due 
to site orography. Risø-R-995(EN). Risø National Laboratory, Roskilde. 65 
pp.

• Bowen, A.J. and N.G. Mortensen (1996). Exploring the limits of WAsP: the 
Wind Atlas Analysis and Application Program. Proc. 1996 European Union 
Wind Energy Conference, Göteborg, 584-587.

• Rathmann, O., N.G. Mortensen, L. Landberg and A. Bowen (1996). 
Assessing the accuracy of WAsP in non-simple terrain. Proc. 8th British 
Wind Energy Association Conference, Exeter, 413-418.

• Mortensen, N.G. and E.L. Petersen (1998). Influence of topographical input 
data on the accuracy of wind flow modelling in complex terrain. Proc. 1997 
European Wind Energy Conference, Dublin, 317-320.
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Accumulation of orographic prediction errors

• Application procedure
 UA + (∆U2 + E2) = UPe

• Analysis procedure
 URm – (∆U1 + E1) = UA

• Combined procedure, eliminating UA
 (URm – ∆U1 + ∆U2 ) + (E2 – E1) = UPe

• The correct estimation is then made up of
 UPm = URm – ∆U1 + ∆U2 (perfect prediction)
 UPe = UPm + (E2 – E1) (prediction error!)
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The similarity principle

The predictor and the predicted 
site should be as similar as 
possible

• Topographical setting
– Ruggedness index (RIX)
– Elevation and exposure
– Distance to significant 

roughness changes (coastline)
– Background roughness lengths

• Climatic conditions
– Same regional wind climate 

(synoptic and meso-scale)
– General forcing effects
– Atmospheric stability

This means that the basic input 
data should also be similar

• WAsP map
– Map size
– Contour interval
– Accuracy and detail
– Roughness classification
– …

www.wasp.dk

Case study in northern Portugal
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Cross-correlation of wind speeds
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The flow behaves – to some extent – as if moving over a virtual hill with 
less steep slopes than the actual hill =>

actual speed-up is smaller than calculated by WAsP

N. Wood (1995). “The onset of flow separation in neutral, turbulent flow 
over hills”, Boundary-Layer Meteorology 76, 137-164.

-100 0 100

0

40

80

120 Virtual Hill
Steepness ~ 30%Steepness ~ 40%

Effect of a steep hill – flow separation
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Complex terrain analysis

• Terrain steeper than θc is 
indicated by the thick red (radial) 
lines

• Ruggedness index, RIX
– fraction of terrain surface 

which is steeper than a 
critical slope θc

– Calculation radius ~ 3.5 km
– Critical slope θc ~ 0.3-0.4
– Onset of flow separation
– Performance envelope for 

WAsP is when RIX = 0

• Performance indicator, 
∆RIX
– ∆RIX = RIXWTG – RIXMET

– ∆RIX < 0 ⇒ under-prediction
– ∆RIX > 0 ⇒ over-prediction

www.wasp.dk

Prediction error vs. RIX difference
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“This performance indicator provides encouraging results…”
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The Ruggedness Index – revisited

• Reanalyses of the Portuguese data set
– Larger, more detailed and accurate maps (SRTM)
– Improved RIX calculation (WAsP or ME)
– More calculation radii: 72 rather than 12
– RIX configuration corresponds to WAsP BZ-model grid
– Both the prediction errors and ∆RIX change

• Data analysis and presentation
– Asymmetry in plot of speed error vs. ∆RIX

• speed error was defined as (Up/Um – 1)
• not obvious which trend line(s) to fit…

– Substitute log(Up/Um) for (Up/Um – 1)
– Easier to fit a trend line…?

www.wasp.dk

Maps for RIX calculation and test

• Hand-digitised map
– 8 by 8 km2

– 50- and 10-m cont.

• SRTM-derived map
– 20 km diameter
– 50-, 10- and 5-m 

height contours



23

www.wasp.dk

Wind speed error vs. ∆RIX 
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ln(Up/Um) vs. ∆RIX

y = 1.508x
R2 = 0.975
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Up = Um exp(α ∆RIX)

where α = 1.5

R = 3500 m and θc = 0.3



24

www.wasp.dk

Things to test…

• Wind speed prediction error is (almost) fixed…
– Number of sectors
– Modelling parameters

• RIX configuration can be varied easily
– Original configuration somewhat arbitrary
– Different calculation radii (3, 3.5, 4, and 5 km)
– Calculation radius that provides max. RIX?
– Different critical slopes (0.30, 0.35, 0.40, 0.45)
– Matrix of R2 (coefficient of determination) for 

different set-up’s
• Weighting RIX with wind rose frequencies

www.wasp.dk

Influence of radius and critical slope

Critical slope θcRadius
R [m]

0.9730.9790.9770.9695000

0.9790.9820.9780.9714000

0.9860.9840.9740.9723500

0.9730.9780.9670.9603000

0.450.400.350.30

R2 for different values of the calculation radius and critical slope.
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Recalculation – best fit values

y = 2.406x
R2 = 0.984
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Up = Um exp(α ∆RIX)

where α = 2.4

R = 3500 m and θc = 0.4
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Recalculation – weighted w. wind rose

y = 2.370x
R2 = 0.977
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Weighted with wind rose
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Measured Estimated
z 〈Um〉 〈Pm〉 〈Ue〉 〈Pe〉 Pe/Pm
[m] [m/s] [MWh] [m/s] [MWh]
10 9.8 2643 9.7 2532 0.97
20 9.6 2518 9.5 2504 0.99
30 9.8 2616 9.6 2529 0.97
40 9.6 2565 9.6 2565 1.00 (predictor)

Tetouan in northern Morocco, RIX = 16%

Vertical profile is predicted well because of the similarity in RIX:

∆RIX = RIXWTG – RIXMET = 0

Vertical profile in complex terrain

www.wasp.dk

Improvement of AEP predictions
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Conclusions

• The similarity principle
– WAsP analysis and application errors tend to cancel out
– The SP is the most important guiding principle for WAsP use
– WAsP inputs (maps) should also be similar, of course

• Ruggedness index RIX and performance indicator ∆RIX
– Concepts supported by new data and procedures

• Relation between WAsP prediction error and ∆RIX
– Linear relation between log(Up/Um) and ∆RIX
– Relation not very sensitive to calculation radius R, critical slope 

θc, or prediction height h
– ∆RIX weighted with the wind rose does not improve the relation 

between log(Up/Um) and ∆RIX

www.wasp.dk

Conclusions (cont’d)

• Extension of WAsP procedures outside operational envelope
– Requires two or more (non-similar) met. stations
– Linear relation between ln(Pp/Pm) and ∆RIX
– Case study AEP predictions improve significantly
– Linear fit before extended procedure:

• AEPP = -0.11 AEPM + 2.42
• R2 = 0.01

– Linear fit after extended procedure:

• AEPP = 1.01 AEPM

• R2 = 0.92
• Procedure can be applied with (2…n) met. stations
• Procedure should be tested with other data sets…
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AEP [GWh] = F(WAsP)
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AEP [GWh] = F(WAsP, ∆RIX)
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The New WAsP flow model

www.wasp.dk

Objective

• Micro-scale flow model better able to handle “steep” slopes
• current WAsP performs poorly over steep slopes 

(>30%)
• To replace/complement the current WAsP orography and 

roughness models
• Yet not too heavy computationally
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Ressource prediction

• Location of turbines ≠ location of met. Masts
• Different surroundings different wind climates: 

– Obstacles, orography, roughness

www.wasp.dk

The WAsP approach

Wind climate that 
would be observed 
on a flat surface

problem
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Requirements

The new flow model must be: 
• Quick: 

– A few hours on a PC for a predicted wind climate

• Easy to use: 
– Needs only limited user intervention
– User expertise on numerical methods not required
– Minimal number of user-input parameters

• Stable
– Convergence takes place without extensive fine-tuning

www.wasp.dk

Description of the model

• Governing equations
– RANS equations including Coriolis term, continuity
– Turbulence closure: variant of k-ε model
– Formulated in 

• General curvilinear coordinates
• Strong conservation form 

• Calculation domain
– Vertically: entire boundary layer (~100 km)
– Horizontally: ~ 20 km
– Terrain-following grid
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Example grid

• Horizontally periodic

• Flow driven by geostrophic
wind at top

• Lower BC 
– law-of-the-wall
– or no-slip when testing…

www.wasp.dk

New flow model for complex terrain

RANS equations
limited length-scale k-ε turb model

General curvilinear 
coordinates

Zero-order equations
horizontally homogeneous

Zero-order solution
(horizontally homogeneous)

First-order equations

Fractional step method: ensures P-V coupling

MSFD:
Horizontal Fourier transformation

Finite difference vertically

Discretised first-order equations

•Momentum transport

•Continuity

•Turbulent kinetic energy

•Dissipation of TKE

•Momentum transport w/o pressure

•Pressure Poisson

•Pressure correction on velocity

First-order solution
(three-dimensional)

Complete solution+ =

Linearisation:
Pertubation
expansion

Finite difference vertically

START

FINISH
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Results: flat terrain

• Comparison of turbulence models :

www.wasp.dk

Results – non-flat terrain

• First-order turbulence equations are not ready yet
• Still debugging first-order momentum solver

• Results presented are for “laminar” flow
– i.e. a uniform eddy viscosity is provided artificially
– lower boundary condition: no-slip

• In direction perpendicular to the screen:
– Grid is uniform, no driving
– 2D problem solved in 3D
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Streamwise velocity

Forcing

Zero-order solution First-order solution

Speed-up

Problem with BC

www.wasp.dk

Vertical velocity

Zero-order solution First-order solution
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Final solution

Streamwise velocity Vertical velocity

• Lean, mean, and, well… “room for improvement” in the accuracy department
• 512 (L)  x 64 (H)  x 4 (W) grid : calculation takes a few minutes

www.wasp.dk

Work ahead

• Debugging and testing of the first-order momentum solver
– Newly-discovered error in the upper/lower boundary conditions

of the Poisson and projection equations
– Re-writing terms of the first equation to include previously

neglected geometry terms
– And more…

• Debugging and testing of the turbulence closure
• Test cases, calculations, fine-tuning and analysis
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Forest and wind turbines

…. is generally a bad combination…

www.wasp.dk

Outline

• How is a forest different? 
• Forest model parameters
• Turbine/mast close to forest
• Turbine/mast not so close to forest
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How is a forest different 1? 

d

z       z - d  

www.wasp.dk

How is a forest different? 

d

inflection point
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How is a forest different? 

ln(z-d) 0u

u

The roughness sublayer effect

www.wasp.dk

How is a forest different? 
Displacement height => Forest edge effects

displacement height
Problem areas
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How is a forest different?

mzm
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How is a forest different, summary? 

• Introduction of displacement height – porous surface in tree crown
level

1. Roughness sublayer
2. Flow effects at forest edge

• Forests are aerodynamically much rougher than for example the sea
surface
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Roughness and zero displacement
height
Depends on
1. The mean height of the roughness elements (trees)
2. The density of the forest

- low roughness
- high zero displacement

- high roughness
- low zero displacement

DENSE SPARSE

www.wasp.dk

0u0u

The roughness sub-layer effect

ln(z-d)

SPARSE

ln(z-d)

DENSE

u
u
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Forest edge effects

dense

sparse

www.wasp.dk

Forest density 1

How is it parameterised?
Raupach (1992):







==

S
nbh

D
bh

2λ

b

D

h

S

n = 4

LAI

LAI
2

≈λ

leaf area index
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Forest density 2

λ
Displacement height

Roughness length

Height and wind
in roughness
sublayer

Forest edge effect

www.wasp.dk

Model by Raupach (1992, 1994, 1995)

How is forest flow parameterised ?

D
h
b

D
bh

2=λ

Tree breadth

Tree height

Distance 
between trees
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What is close? 

x

d

Close x < 20d
Not so close x > 20d

Forest edge effect should
be included

www.wasp.dk

Orographic effects of forest edge, 
mean wind

0u

0u/u

1

?

?

?
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uu /σ

Turbulent effects of forest edge

u high up

close to forest

www.wasp.dk

hi,smooth

hi,roughu

Internal boundary layers

Wind turbine not so close to a forest, x 
> 20d
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IBL structure
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(Dellwik and Jensen, 2000, WAsP)

www.wasp.dk

hi,smooth

hi,rough

u

Internal boundary layers

Wind turbine not so close to a forest, x 
> 20d
How far away from the forest is the
forest influence
of no consequence?

x
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Scary story – low turbine in small 
clearing
• high roughness, no effect of clearing

• orographic effect leads to a reduction in wind

• edge effects may cause a very turbulent environment

u

www.wasp.dk

New project: Wind Profiles and Forest

u

LIDAR

Masts for turbulence 
and mean wind speed 
measurements

LIDAR beam

Averaging disc
LIDAR cone

LIDAR beam

2

1
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Use in WAsP

• Estimate
• Calculate z0

• Calculate d
• Input z0 in WAsP map

– effect of high roughness taken into account
– effect of IBL growth taken into account

• Subtract d from all heights (mast and turbine)

• Turbines in forest do not necessarily ”see” a forest.
• Turbines outside a forest are likely to be influenced by the

forest if the forest is not very far away (take care at edge!)

λ

www.wasp.dk

The logarithmic profile
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The logarithmic profile

www.wasp.dk

KAMM/WAsP Methodology
- meso-scale modelling
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Numerical Wind Atlas Methodology

• useful when long-term measurement data unavailable
• uses the principle of statistical dynamical downscaling

small-scale meteorological conditions 

large-scale meteorological conditions

www.wasp.dk

Numerical Wind Atlas Methodology

Need : 
• tool to calculate how atmospheric flow modified by terrain

– mesoscale model

• information about large-scale meteorological conditions
• information about terrain 

– surface elevation (orography) 
– surface roughness
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KAMM – Mesoscale model 

Karlsruhe Atmospheric Mesoscale Model
non-hydrostatic, regular horizontal grid, stretched 
vertical coordinate (terrain following)

www.wasp.dk

Large-scale meteorological conditions

• NCEP/NCAR reanalysis data provides large-scale, long-
term atmospheric forcing.
– 2.5 x 2.5 degree resolution 
– 4 times daily
– 1948 to present 

Calculate profiles of 
• geostrophic wind 
• potential temperature
at 0, 1500, 3000, 5500 m (1965-1998)
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Terrain description

Orography
• United States Geological Survey (USGS), GTOPO30 data –

approx. 1km resolution. 

Surface roughness 
• USGS Global Land Cover Classification – approx. 1km 

resolution. 
• Land use surface roughness (via look-up table)

www.wasp.dk

Statistical-dynamical downscaling

• We could run KAMM using 30 years of 4 times daily data 
as large-scale forcing conditions

30*365*4 = 43800 integrations
A lot of work! …and also repetition.

• Instead we select around 100 representative conditions, 
called wind classes profiles.

• Statistical-dynamical downscaling
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KAMM / WAsP

www.wasp.dk

The WAsP part in KAMM/WAsP

Example: 
simulated wind 
wind corrected to standard conditions

flat terrain with homogeneous roughness

low roughness higher roughness

~30km

orographic speed-up
higher roughness +
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Egypt – case study

www.wasp.dk

Egypt calculation domains
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Large domains

•7.5 km resolution

•generalized wind 
class profiles

Smaller domains 

•5 km resolution

•location specific 
wind class profiles
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Eastern Egypt: orography & roughness

www.wasp.dk

Eastern Egypt: wind classes

Wind class rose 
• each x indicates a 

different forcing of the 
mesoscale model 

• frequency of 
occurrence of each 
wind varies within 
domain
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Eastern Egypt: example wind class

www.wasp.dk

Eastern Egypt: wind resource map

Mean simulated wind speed at 
50 m a.g.l.

Weighting of each wind class 
varies within domain.

Remember: resolution is 
7.5 km
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Eastern Egypt: wind atlas map

Mean generalized wind speed 
at 50 m a.g.l. above flat 
terrain with 0.0002 m 
surface roughness 

• channelling
• orographic barriers

www.wasp.dk

Egypt: wind resource map

Combine
East and
West Egypt
domains
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Egypt: wind atlas map

Combine
East and
West Egypt
domains

www.wasp.dk

Other domains
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KAMM / WAsP Numerical Wind Atlas
• many maps can be produced, i.e. 

– wind speed and wind speed at different heights
– Weibull A and k parameters at different heights

• output can also be used in WAsP

– WAsP .lib files can be generated

– for any location within domain

www.wasp.dk

KAMM / WAsP Numerical Wind Atlas
El-Hekma

WAsP display of generalized wind atlas

KAMM / WAsP Observation
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Verification
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Scatter plot for 
Western Desert

Wind speed at 25, 50, 
100, 200 m above flat 
surface, 0.03 m 
roughness 
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Verification

Domain mean absolute error on 50 m wind speed
Eastern Egypt 9.7 %
Western Egypt 12.9 %

North-eastern coast 5.5 %
(Western Egypt 13.6 %)

Western Desert 4.5 %   4.6 %
(W and E Egypt 9.7 %   6.2 %)

Gulf of Suez 7.5 %
(Eastern Egypt 6.4 %)

Red Sea 5.9 %
(Eastern Egypt 6.8 %)
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Conclusions

The KAMM / WAsP method has been used to create numerical wind 
atlases for Egypt.

• 2 large domains cover all of Egypt
– 7.5 km resolution

• 4 smaller domains cover specific regions of interest in more detail

– 5 km resolution
– location specific wind profiles

www.wasp.dk

Conclusions

• colour maps produced are just a graphical “slice” of the data 
generated by the method.

• .lib files are also generated  
• WAsP can then be used to determine local effects

• orographic speed up
• roughness change 

• Verification shows error to be around 5-10 % on wind speed.
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Summary

• Wind Atlas Methodology: industry-standard (rou, oro, obs)
• Complex terrain: RIX, new WAsP
• Forest (    )
• KAMM/WAsP (Egypt case)

λ

www.wasp.dk

Web-sites

• www.risoe.dk

• www.wasp.dk
• www.windatlas.dk
• www.prediktor.dk
• www.waspengineering.dk
• www.cleverfarm.com
• www.mesoscale.dk

• www.windpower.org


