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DK-4000 Roskilde, Denmark

(Dated: June 24, 2005)

Abstract

The transport of particles or heat against the driving gradient is studied by employing a probabilistic

transport model with a characteristic particle step length that depends on the local concentration and heat

gradient. When the gradient is larger than a prescribed critical value, the standard deviation of the step size is

large compared to its value when the gradient is below critical. For symmetric as well as asymmetric off-axis

fuelling, the model is capable of producing profiles peaking at the axis. Additionally, profile consistency is

obtained over a broad ranges of source strengths. These results supplement recent works by van Milligen et

al. (Phys. Plasmas 11, 3787 (2004)), which applied Lévy distributed step sizes in the case of super critical

gradients to obtain the up-gradient transport.
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The cross-field transport of particles and heat in magnetically confined hot plasmas is an out-

standing issue of high complexity in contemporary fusion plasma research and it is still far from

being understood. It is composed of several elements including classical and neo-classical col-

lisional diffusion and anomalous turbulent transport. Several “strange” features characterize the

latter including up-gradient transport (transport in the direction of the gradient), profile resilience

and consistency (the existence of stiff profiles that are only weakly dependent of the fuelling rate

and location), rapid transport phenomena (transient transport events that are significantly faster

than the diffusive transport derived from the background gradients). These features cannot consis-

tently be explained by simple “Fickian” diffusion, in which the transport is assumed to be governed

by diffusivities.

Recently, van Milligen et al.1,2 have proposed a probabilistic model for the description of the

transport and the evolution the particle density profile in plasmas with external sources. The model

is based on an explicit time and space dependent particle step size probability density function

(PDF). This PDF is assumed to depend on the local particle density gradient. When the gradient

is below a critical value, the PDF is a Gaussian distribution corresponding to a normal diffusive

process that mimics collisional diffusion. However, when the gradient is larger than this critical

value, turbulence is assumed to be dominating the transport. Van Milligen et al. argued that the

ensuing anomalous transport is dominated by a “super-diffusive” behavior, where the step length in

the process is not distributed according to a standard Gaussian distribution, but according to a Lévy

distribution. This distribution is characterized by a broad, algebraically decaying tail for large

events, implying that there is no characteristic length scale. It signals that long-range correlations

are inherent in the turbulent transport and implies that the confinement time will be proportional

to some power of the system size, which is not necessarily quadratic. Van Milligen et al.2 have

solved this model for different situations with various source distributions and have found that it

reproduces several of the “strange” features mentioned above. It was strongly emphasized that the

Lévy type particle step PDF is essential for the observed characteristics.

The model proposed by van Milligen and co-workers1,2 can be expressed in terms of a general

master equation, here governing the evolution of the particle density profile, n(x, t):

∂n(x, t)
∂t

= S(x)− n(x, t)
τD

+
∫ 1

0
P(x− x′,x′; t)

n(x′, t)
τD

dx′, (1)

where P(x− x′,x′; t) is the particle step probability density function, S(x) designates the source

of particles, τD is a typical diffusion time scale, and will be taken as τD = 1 (cf. Refs. 1,2). If
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P(x− x′,x′) is a Gaussian with a standard deviation σ much smaller than the size of the domain

in which it is considered, the master equation (1) is reduced to a standard diffusion equation in

the interior of the domain by using a Taylor expansion of the particle density around x′ = x (cf.

Ref. 1):
∂n(x, t)

∂t
=

σ2

τD

∂2n(x, t)
∂x2 +S(x), (2)

with the diffusion coefficient D = σ2/τD.

To invoke the critical gradient effect, van Milligen et al. chose P as composed of two different

distributions depending on whether the gradient is below or above the critical one, i.e.,

P(x− x′,x′; t) = ξ(x′, t)P1(x,x′)+(1−ξ(x′, t))P2(x,x′), (3)

where

ξ(x′, t) = Θ
(∣

∣

∣

∣

dn(x′, t)
dx

∣

∣

∣

∣

−κcrit

)

. (4)

Θ(x) is the standard Heaviside step function and ξ(x′, t) will be either one or zero depending on

the local value of the gradient with respect to a prescribed critical value κcrit above which the

diffusion is anomalous. Van Milligen et al. employed a Gaussian distribution for P2 and a Cauchy

distribution for P1, viz.

P1(x,x′) =
σ1

π[σ2
1 +(x− x′)2]

, P2(x,x′) =
1

2σ2
√

π
exp

[−(x− x′)2

4σ2
2

]

. (5)

We have examined the model of van Milligen et al. in order to investigate the sensitivity of the

results on the assumed particle step PDFs. In particular, we have considered the model where both

P1 and P2 are Gaussians, but with different standard deviations, σ1 > σ2. For this case the master

equation (1) may be reduced to the following diffusion equation [cf. Eq. (2)]

∂n(x, t)
∂t

=
1

τD

{

[1−ξ(x, t)]σ2
2 +ξ(x, t)σ2

1
} ∂2n(x, t)

∂x2 +S(x), (6)

where ξ(x, t) is defined in Eq. (4). Note that this equation resembles the critical gradient diffusion

model introduced by Imbeaux et al.3 that is often used in modelling the transport of heat as well

as particle density in magnetically confined plasmas (see e.g., Refs. 4,5 and works cited therein).

In these works it is argued that the diffusion coefficient is classical below a certain critical gradient

and an anomalous or turbulent component is added when the gradient surpasses the critical value.

The diffusivity of the anomalous component is assumed to increase with the departure of the gradi-

ent from the critical one, thus providing a strong anomalous contribution to the diffusive transport.
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Indeed, there are ample experimental evidence for the existence of such a critical gradient, see,

e.g., Refs. 6,7.

We have solved the master equation 1 on the bounded domain 0 ≤ x ≤ 1 with absorbing bound-

aries, i.e., a stationary profile may be achieved when the total particle flux through the boundaries

equals the integrated source rate. Here we will concentrate on the cases with off-axis sources. First

we consider two sources placed symmetrically with respect to the axis:

S(x) =
S0

2

[

1√
2πw

exp
(

−(x− x1)
2

2w2

)

+
1√
2πw

exp
(

−(x− x2)
2

2w2

)]

. (7)

We have used the parameters:

σ2 = 0.02, κcrit = 50, S0 = 0.2, w = 0.025, x1 = 0.3, x2 = 0.7,

while σ1 is varied. In Fig. 1 we show the particle density profile in the stationary state for different

particle step PDFs. In all cases the particle density profile is clearly peaked in the center signifying

up-gradient transport. However, for two Gaussian PDFs with σ1 = 2σ2 the profile is steeper

than the corresponding profile obtained with the Cauchy-Gauss distributions in Eq. (5) shown for

comparison. By increasing the value of σ1 we obtain a profile almost indistinguishable from the

one obtained by the Cauchy-Gauss distributions. We thus observe that the Lévy type distribution

is not necessary for providing up-gradient transport. The crucial ingredient is simply the existence

of two different step sizes in the transport peocess. Consistently, we do not observe peaking for

two distributions with the same standard deviation, as was also pointed out in Ref. 2.

For the case of two Gaussian distributions we can estimate the gradient of the profile by using

the diffusion equation (6) and balancing the flux in the anomalous channel with the source term:

∫ 1

0
D1

d2n(x, t)
dx2 dx = −

∫ 1

0
S(x)dx,

implying

2D1

∣

∣

∣

∣

dn(x, t)
dx

∣

∣

∣

∣

x=0,1
= S0, (8)

where D1 = σ2
1/τD. This results in |dn/dx| = 62.5 at the boundaries for the case in Fig. 1 with

σ1 = 2σ2, agreeing with the observed value and significantly larger than the prescribed critical

gradient κcrit = 50. From Eq. (8) we observe that the steady state gradient will decrease for a larger

step size standard deviation (σ1) or a smaller source. By decreasing the source we have indeed

observed a decrease in the gradient. However, for a sufficiently small value of S0 the up-gradient
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transport disappears. For a fixed fuelling rate we deduce from the preceding argumentation that a

consistent particle density profile may be obtained when the transport in the anomalous channel at

the critical particle density gradient exceeds the integrated source rate S0, i.e.,

2D1κcrit ≥ S0, (9)

The concentration gradient will then be close to κcrit. This is in agreement with the observation in

Fig. 1 for σ1 = 4σ2. When the requirement (9) is satisfied we may expect stiff profiles for varying

source rates, which will be demonstrated below. We should mention that these arguments agree

with the results from the so-called turbulent equipartition principle.8,9

We have also considered the case of one asymmetric particle source:

S(x) = S0
1√
2πw

exp
[

−(x− x1)
2

2w2

]

with S0 = 0.2, w = 0.05. The results for two different values of σ1 are presented in Fig. 2. Again

we observe up-gradient transport and particle density peaking. The detailed structure clearly de-

pends on the parameters, but only weakly on the source position, as long as it is well inside the

box. For σ1 = 2σ2 the profile is asymmetric, but by decreasing S0 or increasing σ1 to comply with

Eq. (9) we obtain a symmetric profile with the gradient close to κcrit.

The dynamical evolution of the profile when the off-axis symmetric sources are turned on at

t = 0 is shown in Fig. 3. We observe that that significant up-gradient transport sets in when

the steepest gradients have reached the critical value, κcrit. The profile then rapidly approaches the

peaked equilibrium profile. We further investigated the response of the steady state particle density

profile when it is perturbed by removing the particles for x < 0.25 instantaneously at τ = 0. The

subsequent evolution is shown in Fig. 4. We observe a very fast transmission of the perturbation

to the center of the profile and the peak is slightly shifted to higher x values. This behavior is in

close agreement with the similar investigation by van Milligen et al.1 using a Cauchy step size

distribution for the anomalous transport channel.

A characteristic experimental observation is the stiffness of the profile. This means that the

profile is only very weakly dependent on the source strength. In Fig. 5 we demonstrate the profile

consistency by plotting the central particle density, n(x = 0.5), for different source rates, S0, and

various particle step size distributions for the anomalous channel. It is observed that the peak

particle density is roughly constant over a broad range of source rates S0, for the case of Gaussian-

Cauchy distributions as well as for two Gaussians when σ1 > 2σ2. This is a signature of profile
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consistency. The gradient is close to the critical gradient in accordance with the discussion in

connection with Fig. 1. Note that we obtained a similar profile stiffness when using an asymmetric

off-axis fuelling as in Fig. 2.

In conclusion, we have demonstrated that the essential feature for obtaining profile peaking and

consistency in transport models is the existence of a step size PDF regulated by a critical gradient

and not the detailed functional shape of this PDF. Above the critical gradient, where the anomalous

transport channel operates, the effective step size must be substantially larger than the step size

of the classical transport channel effective below the critical gradient, where collisional transport

dominates. It is not necessary to have a Lévy type PDF for the anomalous transport channel as

emphasized in a recent work by van Milligen et al.1,2 It should be emphasized, however, that the

approach taken by van Milligen et al. indeed includes features not captured by Gaussian statistics,

as, e.g., confinement time scalings, and our results should thus be regarded as a supplement to

their work. Additionally, the formulation of the problem as a probabilistic model described by a

general master equation contains a much broader range of applicability than the diffusion equation

approach. It is obvious that the probabilistic model opens up for treating transport processes that

are governed by generalized step size distributions and additionally also allows for the investiga-

tions of non-Markovian memory effects. This approach may prove valuable for the development

of new transport codes providing better understanding of transport in magnetized plasmas and the

observed “strange” features of profile evolution.
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the Research Council of Norway.
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FIG. 1: (Color online) Solutions of the master equation (1) for the particle density profile with off-axis

fuelling for different step size distributions. Dashed line (black): Two Gaussian distributions with the step

sizes: σ1 = 0.04 and σ2 = 0.02. Solid line (blue): Two Gaussian distributions with σ1 = 0.08 and σ2 = 0.02.

Dashed-dotted line (red): A Cauchy distribution with σ1 = 0.04 and a Gaussian with σ2 = 0.02 (as used in

Ref. 2, Fig 3). The two sources are symmetrically placed and indicated by the thin black line.

FIG. 2: (Color online) The particle density profile for asymmetric forcing with the source, shown by the

thin black curve, placed at the left side. The parameters are the same as in Fig. 1, dashed line (black):

σ1 = 2σ2, and solid line (blue): σ1 = 4σ2.

FIG. 3: (Color online) Dynamical evolution of the particle density profile when the two sources, placed at

x = 0.3 and x = 0.7, are introduced at t = 0. The Gaussian step size distributions have σ1 = 2σ2 = 0.04,

and S0 = 0.2.

FIG. 4: (Color online) Response of the particle density profile to a “cooling” perturbation applied on the left

hand side to the steady state profile at τ = 0. Contours of constant particle density are plotted in the x− t-

plane with contour spacing = 1.5. The two symmetric off-axis sources are placed at x = 0.3 and x = 0.7.

The step size Gaussian distributions have σ1 = 2σ2 = 0.04, and S0 = 0.2.

FIG. 5: (Color online) Demonstration of profile “stiffness”, shown by the dependence of the central particle

density n(x = 0.5) on the source strength S0, for the cases where the anomalous transport channel is char-

acterized by a Cauchy distribution and the cases where it is characterized by a Gaussian with the values of

σ1 as shown in the legend and σ2 = 0.02
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