Technical University of Denmark



#### An intercomparison on radionuclides in environmental samples, Baltic-Danish cooperation project on radiation protection 2001-2003.

Nielsen, Sven Poul

Publication date: 2004

Document Version Publisher's PDF, also known as Version of record

#### Link back to DTU Orbit

Citation (APA):

Nielsen, S. P. (2004). An intercomparison on radionuclides in environmental samples, Baltic-Danish cooperation project on radiation protection 2001-2003. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1467(EN)).

### DTU Library Technical Information Center of Denmark

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



Risø-R-1467(EN)

# An Intercomparison on Radionuclides in Environmental Samples

Baltic-Danish Co-operation Project on Radiation Protection 2001-2003

Sven P. Nielsen

Risø National Laboratory Roskilde Denmark July 2004

Risø-R-1467(EN)

# An Intercomparison on Radionuclides in Environmental Samples

Baltic-Danish Co-operation Project on Radiation Protection 2001-2003

Sven P. Nielsen

Risø National Laboratory Roskilde Denmark July 2004 Author: Sven P. Nielsen Title: An Intercomparison on Radionuclides in Environmental Samples, Baltic-Danish Co-operation Project on Radiation Protection 2001-2003

#### Abstract (max. 2000 char.):

Sixteen laboratories participated in an intercomparison exercise carried out in 2003 on laboratory analyses of radionuclides in environmental samples. The sample types included seawater, lake water, soil, dry milk and seaweed and the exercise involved the radionuclides <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co,  $^{239,240}$ Pu,  $^{241}$ Am,  $^{226}$ Ra,  $^{232}$ Th and  $^{40}$ K. The evaluation of analytical performance was based on comparison with median values, a 10% target standard deviation and statistical tests at the 99% level. For <sup>137</sup>Cs the results from 10 out of 16 laboratories passed the evaluation tests. For <sup>90</sup>Sr the results from 5 out of 12 laboratories passed the evaluation tests. For <sup>60</sup>Co, <sup>239,240</sup>Pu and <sup>241</sup>Am two laboratories submitted results and both passed the tests. For the natural radionuclides  $^{\rm 226} \rm Ra,$ <sup>232</sup>Th and <sup>40</sup>K, only a few laboratories did not pass the tests. For all radionuclides combined, the results from 6 out of 16 laboratories passed the evaluation tests. The results indicate that for several of the laboratories there is room to improve the analytical quality on radionuclides in environmental samples to match an uncertainty corresponding to a relative standard deviation of 10%.

Risø-R-1467 (EN) July 2004

ISSN 0106-2840 ISBN 87-550-3346-6(Internet)

Contract no.:

**Group's own reg. no.:** 1400104-11

**Sponsorship:** Danish Emergency Management Agency

Cover :

Pages: 27 Tables: References:

Risø National Laboratory Information Service Department P.O.Box 49 DK-4000 Roskilde Denmark Telephone +45 46774004 <u>bibl@risoe.dk</u> Fax +45 46774013 <u>www.risoe.dk</u>

### Contents

## Page

| Introduction                                             |
|----------------------------------------------------------|
| Participants                                             |
| Sample Materials                                         |
| Analytical Results                                       |
| Evaluation                                               |
| Conclusions10                                            |
| Acknowledgement                                          |
| Appendix A. Graphical presentation of analytical results |
| Dry Milk 11                                              |
| Soil                                                     |
| Seaweed14                                                |
| Seawater                                                 |
| Lake Water17                                             |
| Appendix B. Statistical evaluation                       |
| Caesium-137 19                                           |
| Strontium-90                                             |
| Cobalt-60                                                |
| Plutonium-239,240                                        |
| Americium-241                                            |
| Radium-226                                               |
| Thorium-232                                              |
| Potassium-40                                             |
| Radionuclides combined                                   |

#### Introduction

The Danish Emergency Management Agency and Risø National Laboratory agreed in 2001 on a project covering co-operation with Poland, Estonia, Latvia and Lithuania in the field of radiation protection with emphasis on environmental monitoring and radioecological studies (Baltic-Danish Co-operation Project on Radiation Protection, 2001-2003). In connection with this co-operation, Risø National Laboratory organised an intercomparison exercise on laboratory analyses of radionuclides in environmental samples.

### **Participants**

Fifteen organisations from Germany, Denmark, Estonia, Finland, Lithuania, Latvia and Poland participated in the intercomparison as listed in Table 1. Each organisation participated with one laboratory except for one organisation, which participated with two laboratories.

| TT 1 1 1  | $\circ$ · ·    |                      | • .                | •         |
|-----------|----------------|----------------------|--------------------|-----------|
| Table I   | ()rganisations | narticinating in th  | ne intercomparison | exercise  |
| 1 4010 1. | organisations  | purileipuillis III u | ie mereompunson    | excicibe. |

| Institute                                                                  | Country |
|----------------------------------------------------------------------------|---------|
| Federal Maritime and Hydrographic Agency, Hamburg                          | DE      |
| Risø National Laboratory, Roskilde                                         | DK      |
| Estonian Radiation Protection Centre, Tallinn                              | EE      |
| Institute of Physics, University of Tartu, Tartu                           | EE      |
| Radiation and Nuclear Safety Authority, STUK, Helsinki                     | FI      |
| Ignalina Nuclear Power Plant, Visaginas                                    | LT      |
| Institute of Physics, Vilnius                                              | LT      |
| Ministry of Environment, Radiological Laboratory of Joint Research Centre, |         |
| Vilnius                                                                    | LT      |
| Nuclear Hydrophysics Laboratory, Vilnius Gediminas Technical University    | LT      |
| Radiation Protection Centre, Vilnius                                       | LT      |
| Latvian Environment Agency, Laboratory Department, Jurmala                 | LV      |
| Radiation Safety Centre, Riga                                              | LV      |
| State Limited Liability Company "RAPA", Salaspils                          | LV      |
| Central Laboratory for Radiological Protection Warsaw                      | PL      |
| Institute of Meteorology and Water Mangement, Maritime Branch, Gdynia      | PL      |

#### **Sample Materials**

The sample types involved seawater, seaweed, lake water, soil and dry milk. Sample materials of dry milk, soil, seaweed and seawater were collected from the Danish environment. The lake water was obtained from a location in Sweden with Chernobyl fallout significantly higher than in Denmark.

The seaweed and soil materials were dried and mixed thoroughly. A number of aliquots were selected from the different materials and analysed by gamma spectrometry to test the homogeneity. For all sample types the gamma emitting radionuclides detected were homogeneously distributed within the statistical counting uncertainty, which ranged from 1 to 6%. Samples were distributed to the participants in spring 2003 as specified in Table 2, which also lists the radionuclides suggested for analysis. Results of laboratory analyses were received by June 2003.

| Sample types | Sample amounts | Radionuclides suggested for analysis                                                                    |
|--------------|----------------|---------------------------------------------------------------------------------------------------------|
| Seawater     | 50 L           | <sup>137</sup> Cs, <sup>90</sup> Sr, <sup>99</sup> Tc                                                   |
| Lake water   | 25 L           | <sup>137</sup> Cs, <sup>90</sup> Sr                                                                     |
| Soil         | 0.2 kg         | <sup>137</sup> Cs, <sup>90</sup> Sr, <sup>232</sup> Th-series, <sup>238</sup> U-series, <sup>40</sup> K |
| Dry milk     | 1.8 kg         | <sup>137</sup> Cs, <sup>90</sup> Sr, <sup>40</sup> K                                                    |
| Seaweed      | 0.3 kg         | <sup>137</sup> Cs, <sup>90</sup> Sr, <sup>99</sup> Tc, <sup>40</sup> K                                  |

Table 2. Samples distributed for the intercomparison exercise.

### **Analytical Results**

All laboratories receiving samples except for one submitted analytical results. Results were received on more than 10 different radionuclides. For 8 radionuclides (<sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co, <sup>239,240</sup>Pu, <sup>241</sup>Am, <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K) results were received from two or more participants per nuclide and sample type and this was considered sufficient for the intercomparison purpose. Each participant was assigned a code number to ensure anonymity. The analytical results and uncertainties are shown in the Tables 3-7, which also give the median values of the radionuclide concentrations for each sample. The results are furthermore shown in column charts by radionuclide and sample type in Appendix A with error bars showing reported uncertainties at one standard deviation.

| Lab    | <sup>137</sup> ( | Cs    | 90    | Sr    | 40    | ĸ    |
|--------|------------------|-------|-------|-------|-------|------|
| No.    | Bq/kg            | 1 SD  | Bq/kg | 1 SD  | Bq/kg | 1 SD |
| 1      |                  |       | 0.41  | 0.025 |       |      |
| 2      | 0.38             | 0.08  |       |       | 357   | 20   |
| 3      | 0.35             | 0.02  | 0.26  | 0.03  | 400   | 40   |
| 4      | 0.35             | 0.07  | 0.40  | 0.26  | 441.5 | 82.8 |
| 5      | 0.36             | 0.05  | 0.31  | 0.09  | 370   | 8    |
| 6      |                  |       | 0.38  | 0.06  |       |      |
| 7      | 0.35             | 0.06  | 0.16  | 0.01  | 351   | 62   |
| 13     | 0.88             | 0.20  |       |       | 443.4 | 2.6  |
| 14     | 0.36             | 0.054 | 0.27  | 0.014 | 370   | 22.2 |
| 16     | 0.47             | 0.06  |       |       | 423.2 | 11.8 |
| 17     | 0.434            | 0.071 |       |       | 461   | 15   |
| Median | 0.36             |       | 0.31  |       | 400   |      |

Table 3. Results reported on radionuclides in dry milk.

|      | 137 .            |      | 90.           |      | 40    |      | 226              |      | 222   |      | 230 24  | )    | 241 -            |      |
|------|------------------|------|---------------|------|-------|------|------------------|------|-------|------|---------|------|------------------|------|
| Lab  | <sup>137</sup> C | Cs   | <sup>90</sup> |      |       | K    | <sup>226</sup> F |      | 232-  |      | 239,240 |      | <sup>241</sup> A |      |
| No.  | Bq/kg            | 1 SD | Bq/kg         | 1 SD | Bq/kg | 1 SD | Bq/kg            | 1 SD | Bq/kg | 1 SD | Bq/kg   | 1 SD | Bq/kg            | 1 SD |
| 1    |                  |      | 2.3           | 0.16 |       |      |                  |      |       |      |         |      |                  |      |
| 2    | 13.0             | 0.9  |               |      | 436   | 25   | 16.8             | 0.9  | 17.5  | 1.8  |         |      |                  |      |
| 3    | 13.2             | 0.8  | 1.28          | 0.13 | 454   | 45   | 17.5             | 1.8  | 18.2  | 1.8  | 0.22    | 0.03 | 0.082            | 0.01 |
| 4    | 10.9             | 1.2  | 1.57          | 0.69 | 374   | 64   |                  |      |       |      |         |      |                  |      |
| 5    | 13.1             | 0.9  | 1.29          | 0.21 | 455   | 23   | 17.3             | 1.3  | 17.2  | 1.5  |         |      |                  |      |
| 6    | 13.4             | 1.2  | 1.39          | 0.17 | 566   | 33   |                  |      |       |      |         |      |                  |      |
| 7    | 12.1             | 1.3  | 0.97          | 0.10 | 428   | 55   | 35               | 7    | 16.1  | 1.6  |         |      |                  |      |
| 10   | 11.2             | 0.3  |               |      | 384   | 23   | 13.3             | 0.9  | 13.8  | 0.8  |         |      |                  |      |
| 11   | 12.6             | 1.0  | 1.6           | 0.3  |       |      |                  |      |       |      | 0.16    | 0.03 | 0.10             | 0.03 |
| 12   | 13.1             | 0.6  |               |      |       |      |                  |      |       |      |         |      |                  |      |
| 13   | 16.6             | 0.93 |               |      | 750.9 | 10.5 |                  |      |       |      |         |      |                  |      |
| 14   | 13.1             | 0.52 |               |      | 440   | 22   | 16.3             | 1.63 | 17.4  | 1.74 |         |      |                  |      |
| 16   | 13.0             | 0.27 |               |      | 483   | 21.5 | 16.7             | 0.66 | 14.1  | 0.58 |         |      |                  |      |
| 17   | 12.6             | 0.65 |               |      | 407   | 13   |                  |      |       |      |         |      |                  |      |
| Me-  |                  |      |               |      |       |      |                  |      |       |      |         |      |                  |      |
| dian | 13.0             |      | 1.39          |      | 440   |      | 16.8             |      | 17.2  |      | 0.19    |      | 0.091            |      |

Table 4. Results reported on radionuclides in soil.

Table 5. Results reported on radionuclides in seaweed.

|        | <sup>137</sup> C | S    | <sup>90</sup> ¢ | Sr   | 40    | ĸ     | <sup>60</sup> C | ò    | <sup>226</sup> R | la   | <sup>232</sup> T | ĥ    |
|--------|------------------|------|-----------------|------|-------|-------|-----------------|------|------------------|------|------------------|------|
| Lab    | Bq/kg            | 1 SD | Bq/kg           | 1 SD | Bq/kg | 1 SD  | Bq/kg           | 1 SD | Bq/kg            |      |                  |      |
| No.    |                  |      |                 |      |       |       |                 |      |                  | 1 SD | Bq/kg            | 1 SD |
| 1      |                  |      | 2.4             | 0.17 |       |       |                 |      |                  |      |                  |      |
| 2      | 7.6              | 1.0  |                 |      | 917   | 22    |                 |      | 8.1              | 1.0  | 10.4             | 1.9  |
| 3      | 7.37             | 0.37 | 1.36            | 0.14 | 990   | 99    | 0.46            | 0.05 | 7.8              | 0.8  | 10.8             | 1.1  |
| 4      | 5.73             | 0.83 | 1.56            | 0.69 | 657   | 115.3 |                 |      |                  |      |                  |      |
| 5      | 8.09             | 0.40 | 0.95            | 0.16 | 983   | 32    |                 |      |                  |      |                  |      |
| 6      | 9.45             | 1.70 | 5.65            | 0.55 |       |       |                 |      |                  |      |                  |      |
| 7      | 7.0              | 1.0  |                 |      | 960   | 113   |                 |      |                  |      |                  |      |
| 10     | 6.1              | 0.2  |                 |      | 848   | 51    |                 |      | 8                | 0.6  | 7.3              | 0.4  |
| 11     | 6.9              | 0.6  | 1.3             | 0.3  |       |       |                 |      |                  |      |                  |      |
| 12     | 7.8              | 0.4  |                 |      |       |       |                 |      |                  |      |                  |      |
| 13     | 8.4              | 0.6  |                 |      | 862   | 50    |                 |      | 5.2              | 0.6  | 9.44             | 0.4  |
| 14     | 7.40             | 0.37 | 1.43            | 0.11 | 880   | 44    |                 |      |                  |      |                  |      |
| 15     | 7.00             | 0.15 |                 |      | 856   | 5.4   | 0.50            | 0.15 |                  |      |                  |      |
| 17     | 7.45             | 0.45 |                 |      | 935   | 30    |                 |      |                  |      |                  |      |
| Median | 7.43             |      | 1.50            |      | 899   |       | 0.48            |      | 7.9              |      | 9.9              |      |

| Lab    | <sup>137</sup> C | s    | 90    | Sr   |
|--------|------------------|------|-------|------|
| No.    | Bq/m³            | 1 SD | Bq/m³ | 1 SD |
| 1      | 52               | 2    | 12.6  | 0.50 |
| 3      | 55.4             | 2.8  | 12.2  | 1.2  |
| 4      | 71               | 25   | 16.8  | 14.0 |
| 5      | 67.4             | 2.8  |       |      |
| 6      | 76.5             | 5.0  | 10.6  | 1.7  |
| 7      | 56.0             | 7.0  | 2     | 0.2  |
| 9      | 57.4             | 0.6  | 12.1  | 0.6  |
| 11     | 59.4             | 5.3  | 10.5  | 2.6  |
| 12     | 50               | 5    | 17    | 3    |
| 13     | 53.99            | 4.00 |       |      |
| 15     | 58.2             | 0.94 | 11.9  | 0.27 |
| 16     | 58               | 0.64 |       |      |
| 17     | 52               | 3.4  |       |      |
| Median | 56.7             |      | 12.2  |      |

Table 6. Results reported on radionuclides in seawater.

Table 7. Results reported on radionuclides in lake water.

| Lab    | <sup>137</sup> C | s    | <sup>90</sup> c | Sr   |
|--------|------------------|------|-----------------|------|
| No.    | Bq/m³            | 1 SD | Bq/m³           | 1 SD |
| 1      | 147              | 4    | 17.8            | 0.7  |
| 3      | 169              | 8    | 14.9            | 1.5  |
| 4      | 150              | 30   | 17              | 14   |
| 5      | 90.2             | 3.1  | 9.18            | 0.35 |
| 6      | 249              | 13   | 18              | 2    |
| 7      | 110              | 10   | 12              | 1    |
| 9      | 167.3            | 1.8  | 44.9            | 3.3  |
| 11     | 163              | 14.6 | 12.5            | 3.2  |
| 12     | 164              | 16   | 25              | 4    |
| 13     | 124.2            | 2.5  |                 |      |
| 15     | 156.7            | 1.8  | 15.3            | 0.35 |
| 16     | 159.7            | 6.5  | 11.1            | 0.27 |
| 17     | 156.9            | 10.4 |                 |      |
| Median | 157              |      | 16.2            |      |

#### Evaluation

The evaluation procedure involves a comparison of the result x from each participant (radionuclide activity concentration) for a single radionuclide and sample type with the median of the results  $x_m$  across laboratories. From this a z-score value is calculated according to  $z = (x-x_m)/\sigma$ , where  $\sigma$  is a target standard deviation, for which a value of 10% has been assumed throughout for this intercomparison. Values of z-

scores are combined across sample types into rescaled sums of z-scores according to  $RSZ = (\Sigma z)/n^{\frac{1}{2}}$ , where n is the number of sample types. The RSZ-value is an indicator of analytical bias for the radionuclide in question and used for a test in the normal distribution. When tested at a 99% level of significance, values of RSZ lower than -2.6 indicate analytical bias on the low side exceeding the target standard deviation of 10% and RSZ values higher than 2.6 indicate analytical bias on the high side larger than 10%.

Furthermore, values of z-scores are combined across sample types into sums of squares of z-scores according to  $SSZ = \Sigma z^2$ . The SSZ-value is an indicator of analytical accuracy and used for a test in the chi-square distribution. If tested at the 99% significance level and in case that a participant has submitted results on concentrations of a certain radionuclide in 4 sample types, SSZ values in the range from 0.2 to 14.9 indicate that the analytical accuracy is consistent with the assumption of an analytical uncertainty corresponding to a 10% standard deviation. If the SSZ-value is lower than 0.2, this indicates that the accuracy corresponds to an analytical uncertainty smaller than 10%. Correspondingly, if the SSZ-value is higher than 14.9, this indicates that the accuracy corresponds to an analytical uncertainty, which is greater than 10%.

The results of the tests are summarised by radionuclide across sample types in Table 8 listing the number of participants submitting analytical results, the number of those whose performance matches the target standard deviation or better, and the number of those who do not. The tests were made at the 99% significance level.

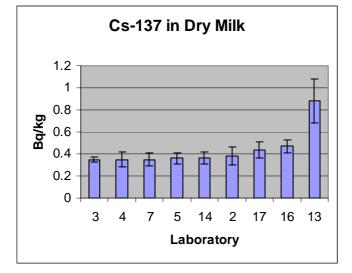
| Radionuclide          | Number of    | Number of par-    | Number of partici-   |
|-----------------------|--------------|-------------------|----------------------|
|                       | participants | ticipants for     | pants for which the  |
|                       | submitting   | which the results | results did not pass |
|                       | results      | passed the tests  | the tests            |
| <sup>137</sup> Cs     | 16           | 10                | 6                    |
| <sup>90</sup> Sr      | 12           | 5                 | 7                    |
| <sup>60</sup> Co      | 2            | 2                 | 0                    |
| <sup>239,240</sup> Pu | 2            | 2                 | 0                    |
| <sup>241</sup> Am     | 2            | 2                 | 0                    |
| <sup>226</sup> Ra     | 8            | 6                 | 2                    |
| <sup>232</sup> Th     | 7            | 7                 | 0                    |
| <sup>40</sup> K       | 12           | 10                | 2                    |
| Radionuclides         | 16           | 6                 | 10                   |
| combined              |              |                   |                      |

Table 8. Summary of the performance tests for the participants by radionuclide across sample types.

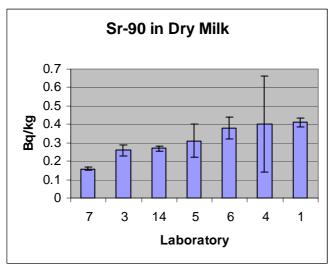
The detailed results of the evaluation are shown in Appendix B, which lists the test parameters and significance levels for the radionuclides <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co, <sup>239,240</sup>Pu, <sup>241</sup>Am, <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K across sample types for each laboratory. In addition graphs show column charts for each radionuclide of the sums of z-scores for each participant with information on contributions from each sample type. Test parameters and significance levels are also given for all radionuclides combined.

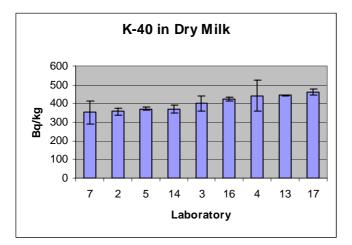
#### Conclusions

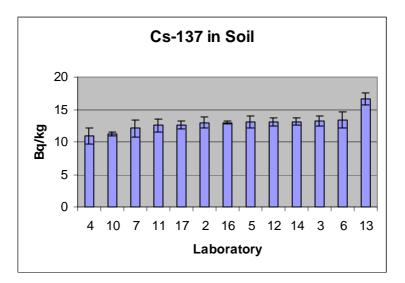
Sixteen laboratories participated in an intercomparison exercise carried out in 2003 on laboratory analyses of radionuclides in environmental samples. The sample types included seawater, lake water, soil, dry milk and seaweed and the exercise involved the radionuclides <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>60</sup>Co, <sup>239,240</sup>Pu, <sup>241</sup>Am, <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K.

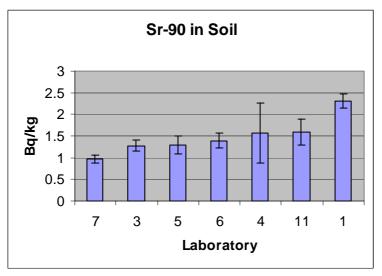

The evaluation of analytical performance was based on comparison with median values, a 10% target standard deviation and statistical tests at the 99% level. For <sup>137</sup>Cs the results from 10 out of 16 laboratories passed the evaluation tests. For <sup>90</sup>Sr the results from 5 out of 12 laboratories passed the evaluation tests. For <sup>60</sup>Co, <sup>239,240</sup>Pu and <sup>241</sup>Am two laboratories submitted results and both passed the tests. For the natural radionuclides <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K, only a few laboratories did not pass the tests. For all radionuclides combined, the results from 6 out of 16 laboratories passed the evaluation tests. The results indicate that for several of the laboratories there is room to improve the analytical quality on radionuclides in environmental samples to match an uncertainty corresponding to a relative standard deviation of 10%.

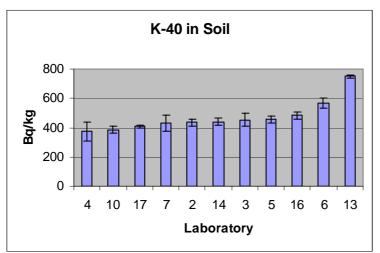
It is important, however, to recognise two subjective components of the evaluation:

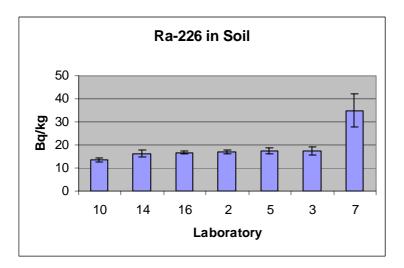

- the choice of a target standard deviation of 10%
- the choice of using median values to represent the true values.

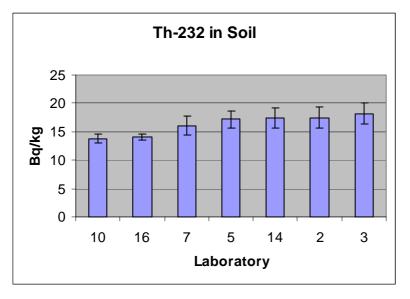

#### Acknowledgement

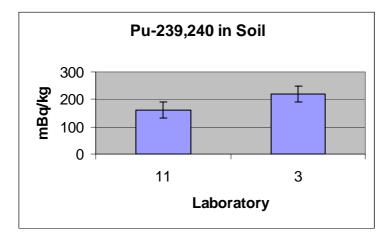

This work was sponsored by the Danish Emergency Management Agency.

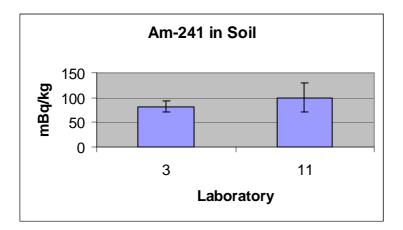




# Dry Milk

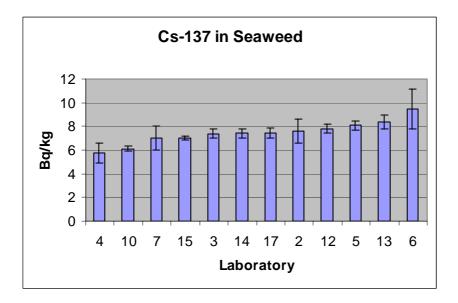


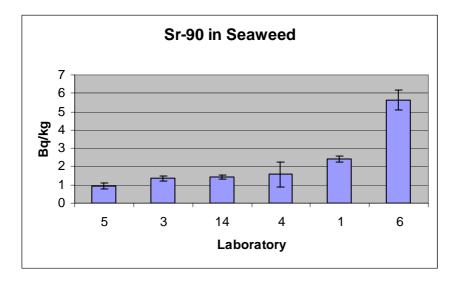



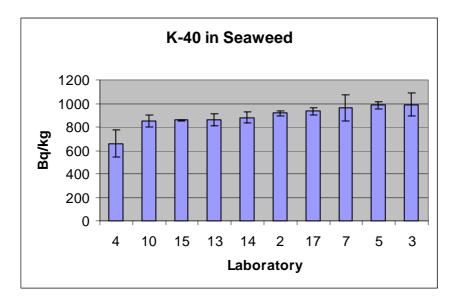



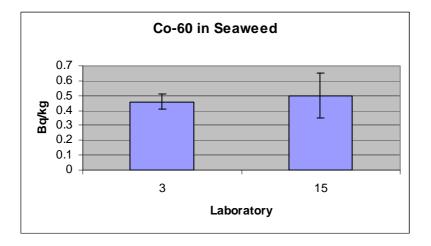


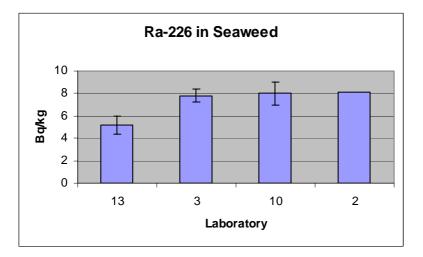



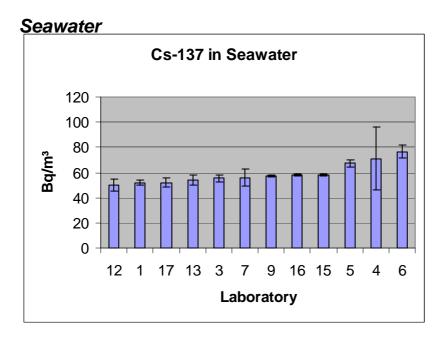


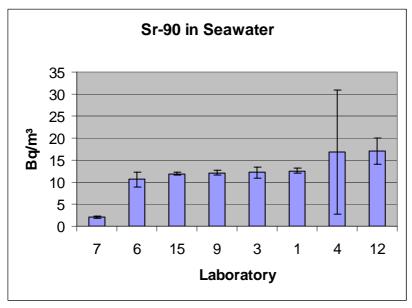





## Seaweed

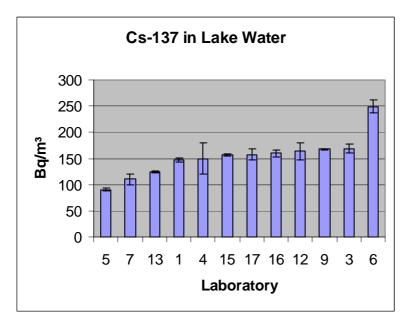


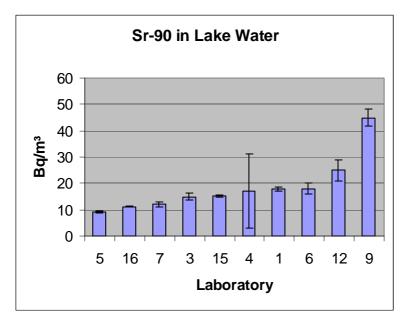




Risø-R-1467(EN)







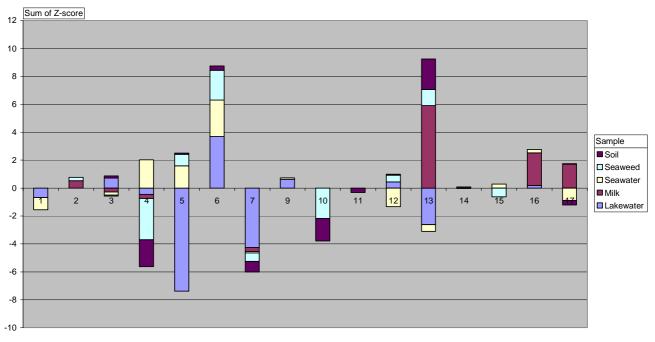



### Lake Water





#### Appendix B. Statistical evaluation


The evaluation of the results from each participant is shown in the following tables and graphs for individual radionuclides across samples and for all radionuclides combined. The evaluation is based on the methods described previously, where n indicates the number of results submitted, RSZ the rescaled sum of z-scores, SSZ the sum of squares of z-scores, Perc the percentiles from the statistical tests, and Sign the associated levels of significance ("ns" denotes not significant, "\*" significant at the 95% level, "\*\*" significant at the 99% level, and "\*\*\*" significant at the 99.9% level).

### Caesium-137

| ·       |   |      |        | -    |      |        |      |
|---------|---|------|--------|------|------|--------|------|
| Lab No. | n | RSZ  | Perc   | Sign | SSZ  | Perc   | Sign |
| 1       | 2 | -1.1 | 0.1363 | ns   | 1.2  | 0.5415 | ns   |
| 2       | 3 | 0.4  | 0.6689 | ns   | 0.3  | 0.9543 | *    |
| 3       | 5 | 0.1  | 0.5527 | ns   | 0.7  | 0.9841 | *    |
| 4       | 5 | -1.6 | 0.0539 | ns   | 16.9 | 0.0048 | **   |
| 5       | 5 | -2.2 | 0.0145 | *    | 57.8 | 0.0000 | ***  |
| 6       | 4 | 4.4  | 1.0000 | ***  | 25.2 | 0.0000 | ***  |
| 7       | 5 | -2.7 | 0.0037 | **   | 19.1 | 0.0018 | **   |
| 9       | 2 | 0.5  | 0.6978 | ns   | 0.4  | 0.8167 | ns   |
| 10      | 2 | -2.7 | 0.0038 | **   | 7.3  | 0.0260 | ns   |
| 11      | 1 | -0.3 | 0.3754 | ns   | 0.1  | 0.7509 | ns   |
| 12      | 4 | -0.2 | 0.4357 | ns   | 2.2  | 0.7041 | ns   |
| 13      | 5 | 2.7  | 0.9969 | **   | 48.1 | 0.0000 | ***  |
| 14      | 3 | 0.0  | 0.5098 | ns   | 0.0  | 0.9998 | ***  |
| 15      | 3 | -0.2 | 0.4225 | ns   | 0.4  | 0.9310 | ns   |
| 16      | 4 | 1.4  | 0.9165 | ns   | 5.6  | 0.2337 | ns   |
| 17      | 5 | 0.2  | 0.5959 | ns   | 3.8  | 0.5798 | ns   |

Table B1. Statistical evaluation of results for <sup>137</sup>Cs.

#### Nuclide Cs137





### Strontium-90

| Lab No. | n | RSZ   | Perc    | Sign | SSZ    | Perc   | Sign |
|---------|---|-------|---------|------|--------|--------|------|
| 1       | 5 | 3.3   | 0.99945 | **   | 22.7   | 0.0004 | ***  |
| 3       | 5 | -1.5  | 0.0637  | ns   | 5.0    | 0.4115 | ns   |
| 4       | 5 | 3.0   | 0.9985  | **   | 14.3   | 0.0139 | *    |
| 5       | 4 | -3.9  | 0.0000  | ***  | 58.6   | 0.0000 | ***  |
| 6       | 5 | 0.3   | 0.6182  | ns   | 7.1    | 0.2112 | ns   |
| 7       | 4 | -34.0 | 0.0000  | ***  | 2694.2 | 0.0000 | ***  |
| 9       | 2 | 4.5   | 1.0000  | ***  | 41.0   | 0.0000 | ***  |
| 11      | 1 | 1.3   | 0.9053  | ns   | 1.7    | 0.1894 | ns   |
| 12      | 2 | 4.5   | 1.0000  | ***  | 20.7   | 0.0000 | ***  |
| 14      | 2 | -1.0  | 0.1550  | ns   | 2.2    | 0.3334 | ns   |
| 15      | 2 | -0.5  | 0.2941  | ns   | 0.4    | 0.8383 | Ns   |
| 16      | 1 | -4.5  | 0.0000  | ***  | 20.7   | 0.0000 | ***  |

Table B2. Statistical evaluation of results for <sup>90</sup>Sr.

Nuclide Sr90

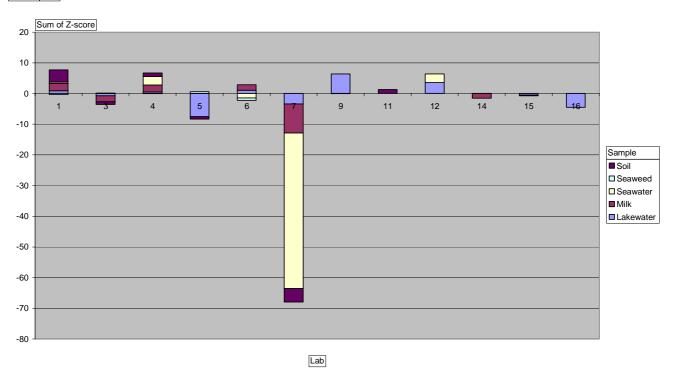



Fig B2. Column diagram of sum of z-scores for <sup>90</sup>Sr results showing contributions from individual samples.

### Cobalt-60

Table B3. Statistical evaluation of results for <sup>60</sup>Co.

| Lab No. | n | RSZ  | Perc   | Sign | SSZ | Perc   | Sign |
|---------|---|------|--------|------|-----|--------|------|
| 3       | 1 | -0.4 | 0.3319 | ns   | 0.2 | 0.6637 | Ns   |
| 15      | 1 | 0.4  | 0.6554 | ns   | 0.2 | 0.6892 | Ns   |

Nuclide Co60

Seaweed

Fig B3. Column diagram of sum of z-scores for <sup>60</sup>Co results.

# Plutonium-239,240

| Table B4. Statistical evaluation of results for <sup>239,240</sup> | Pu. |
|--------------------------------------------------------------------|-----|
|--------------------------------------------------------------------|-----|

| Lab No. | n | RSZ  | Perc   | Sign | SSZ | Perc   | Sign |
|---------|---|------|--------|------|-----|--------|------|
| 3       | 1 | 1.4  | 0.9137 | ns   | 1.9 | 0.1727 | ns   |
| 11      | 1 | -1.9 | 0.0304 | ns   | 3.5 | 0.0608 | ns   |

Nuclide Pu239,240

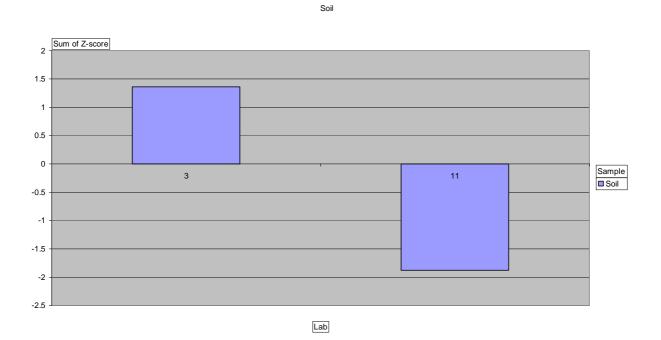



Fig B4. Column diagram of sum of z-scores for <sup>239,240</sup>Pu results.

## Americium-241

| Table <b>B</b> 5 | Statistical | evaluation | of results | for $^2$ | <sup>41</sup> Am |
|------------------|-------------|------------|------------|----------|------------------|
| Table DJ.        | Statistical | evaluation | of results | 101      | AIII.            |

| Lab No. | n | RSZ  | Perc   | Sign | SSZ | Perc   | Sign |
|---------|---|------|--------|------|-----|--------|------|
| 3       | 1 | -1.1 | 0.1362 | ns   | 1.2 | 0.2724 | ns   |
| 11      | 1 | 0.9  | 0.8159 | ns   | 0.8 | 0.3681 | ns   |

Nuclide Am241

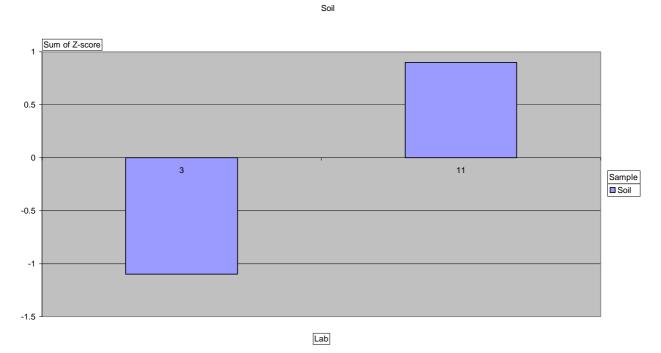


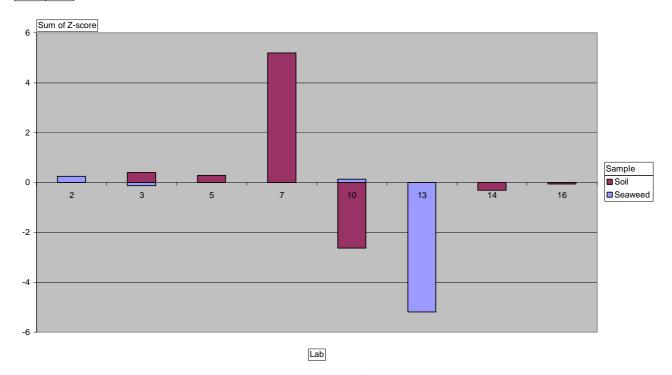

Fig B5. Column diagram of sum of z-scores for <sup>241</sup>Am results.

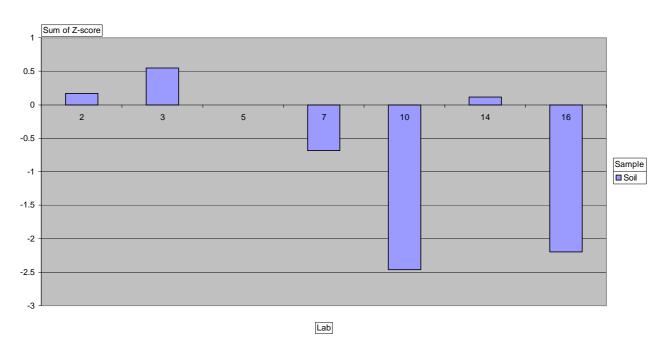
### Radium-226

| Lab No. | n | RSZ  | Perc   | Sign | SSZ  | Perc   | Sign |
|---------|---|------|--------|------|------|--------|------|
| 2       | 2 | 0.2  | 0.5693 | ns   | 0.1  | 0.9700 | ns   |
| 3       | 2 | 0.2  | 0.5762 | ns   | 0.2  | 0.9156 | ns   |
| 5       | 1 | 0.3  | 0.6137 | ns   | 0.1  | 0.7726 | ns   |
| 7       | 1 | 5.2  | 1.0000 | ***  | 27.0 | 0.0000 | ***  |
| 10      | 2 | -1.8 | 0.0382 | ns   | 6.9  | 0.0311 | ns   |
| 13      | 1 | -5.2 | 0.0000 | ***  | 27.0 | 0.0000 | ***  |
| 14      | 1 | -0.3 | 0.3795 | ns   | 0.1  | 0.7590 | ns   |
| 16      | 1 | -0.1 | 0.4761 | ns   | 0.0  | 0.9523 | ns   |

Table B6. Statistical evaluation of results for <sup>226</sup>Ra.

Nuclide Ra226





Fig B6. Column diagram of sum of z-scores for <sup>226</sup>Ra results showing contributions from individual samples.

# Thorium-232

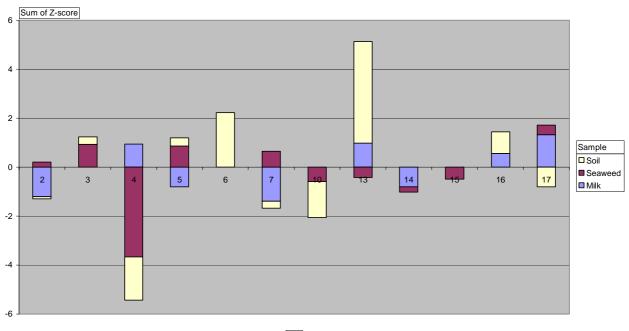
| Lab No. | n | RSZ  | Perc   | Sign | SSZ | Perc   | Sign |
|---------|---|------|--------|------|-----|--------|------|
| 2       | 1 | 0.2  | 0.5681 | ns   | 0.0 | 0.8639 | Ns   |
| 3       | 1 | 0.5  | 0.7087 | ns   | 0.3 | 0.5827 | Ns   |
| 5       | 1 | 0.0  | 0.5000 | ns   | 0.0 | 1.0000 | ***  |
| 7       | 1 | -0.7 | 0.2472 | ns   | 0.5 | 0.4945 | Ns   |
| 10      | 1 | -2.5 | 0.0069 | *    | 6.1 | 0.0137 | *    |
| 14      | 1 | 0.1  | 0.5458 | ns   | 0.0 | 0.9085 | Ns   |
| 16      | 1 | -2.2 | 0.0140 | *    | 4.8 | 0.0279 | Ns   |

Table B7. Statistical evaluation of results for <sup>232</sup>Th.

Nuclide Th232



Soil


Fig B7. Column diagram of sum of z-scores for <sup>232</sup>Th results showing contributions from individual samples.

### Potassium-40

| Lab No. | n | RSZ  | Perc   | Sign | SSZ  | Perc   | Sign |
|---------|---|------|--------|------|------|--------|------|
| 2       | 3 | -0.6 | 0.2637 | ns   | 1.5  | 0.6823 | Ns   |
| 3       | 3 | 0.7  | 0.7617 | ns   | 0.9  | 0.8135 | Ns   |
| 4       | 3 | -2.6 | 0.0047 | **   | 17.5 | 0.0006 | **   |
| 5       | 3 | 0.2  | 0.5865 | ns   | 1.5  | 0.6811 | Ns   |
| 6       | 1 | 2.2  | 0.9870 | *    | 5.0  | 0.0260 | Ns   |
| 7       | 3 | -0.6 | 0.2749 | ns   | 2.4  | 0.4866 | Ns   |
| 10      | 2 | -1.5 | 0.0732 | ns   | 2.5  | 0.2892 | Ns   |
| 13      | 3 | 2.7  | 0.9966 | **   | 18.3 | 0.0004 | ***  |
| 14      | 3 | -0.6 | 0.2778 | ns   | 0.7  | 0.8728 | Ns   |
| 15      | 1 | -0.5 | 0.3106 | ns   | 0.2  | 0.6213 | Ns   |
| 16      | 2 | 1.0  | 0.8455 | ns   | 1.1  | 0.5789 | Ns   |
| 17      | 3 | 0.5  | 0.6989 | ns   | 2.6  | 0.4644 | Ns   |

Table B8. Statistical evaluation of results for  $^{40}$ K.

#### Nuclide K40



Lab

Fig B8. Column diagram of sum of z-scores for  ${}^{40}$ K results showing contributions from individual samples.

# Radionuclides combined

|         |    |       |        | -    |        |        |      |
|---------|----|-------|--------|------|--------|--------|------|
| Lab No. | n  | RSZ   | Perc   | Sign | SSZ    | Perc   | Sign |
| 1       | 7  | 2.6   | 0.9949 | *    | 24.0   | 0.0012 | **   |
| 2       | 9  | 0.0   | 0.5185 | ns   | 1.9    | 0.9927 | *    |
| 3       | 19 | -0.5  | 0.2916 | ns   | 10.4   | 0.9425 | Ns   |
| 4       | 13 | -0.7  | 0.2559 | ns   | 48.6   | 0.0000 | ***  |
| 5       | 14 | -5.4  | 0.0000 | ***  | 117.9  | 0.0000 | ***  |
| 6       | 10 | 5.2   | 1.0000 | ***  | 37.2   | 0.0001 | ***  |
| 7       | 14 | -31.5 | 0.0000 | ***  | 2743.2 | 0.0000 | ***  |
| 9       | 4  | 5.0   | 1.0000 | ***  | 41.4   | 0.0000 | ***  |
| 10      | 7  | -7.6  | 0.0000 | ***  | 22.8   | 0.0019 | **   |
| 11      | 4  | 0.0   | 0.5080 | ns   | 6.1    | 0.1883 | Ns   |
| 12      | 6  | 3.0   | 0.9988 | **   | 22.8   | 0.0009 | ***  |
| 13      | 9  | 2.5   | 0.9941 | *    | 93.3   | 0.0000 | ***  |
| 14      | 10 | -1.5  | 0.0662 | ns   | 3.0    | 0.9811 | *    |
| 15      | 7  | -0.7  | 0.2445 | ns   | 1.2    | 0.9909 | *    |
| 16      | 9  | -1.3  | 0.0963 | ns   | 32.2   | 0.0002 | ***  |
| 17      | 8  | 0.6   | 0.7410 | ns   | 6.4    | 0.6078 | Ns   |

Table B9. Statistical evaluation of results for all radionuclides combined.

Nuclide (All)

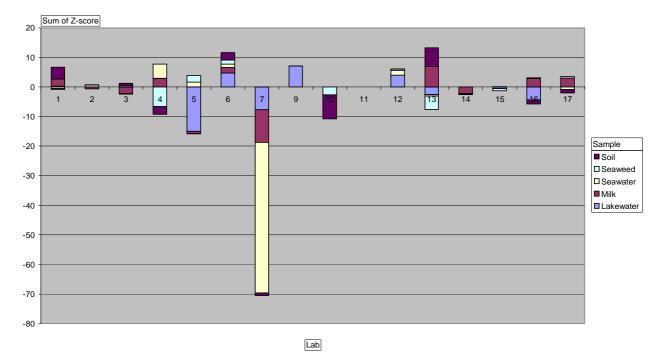



Fig B9. Column diagram of sum of z-scores for results from all radionuclides combined showing contributions from individual samples.

#### Mission

To promote an innovative and environmentally sustainable technological development within the areas of energy, industrial technology and bioproduction through research, innovation and advisory services.

#### Vision

Risø's research **shall extend the boundaries** for the understanding of nature's processes and interactions right down to the molecular nanoscale.

The results obtained shall **set new trends** for the development of sustainable technologies within the fields of energy, industrial technology and biotechnology.

The efforts made **shall benefit** Danish society and lead to the development of new multi-billion industries.