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Abstract The goal of this brief report is to express the model equations for an
incompressible flow which is horizontally homogeneous. It is intended as a com-
putationally inexpensive starting point of a more complete solution for neutral
atmospheric flow over complex terrain. This idea was set forth by Ayotte and
Taylor (1995) and in the work of Beljaars, Walmsley and Taylor (1987). Unlike
the previous models, the present work uses general orthogonal coordinates. Strong
conservation form of the model equations is employed to allow a robust and con-
sistent numerical procedure. An invariant tensor form of the model equations is
utilized expressing the flow variables in a transformed coordinate system in which
they are horizontally homogeneous. The model utilizes the k — ¢ model with lim-
ited mixing length by Apsley and Castro (1997). This turbulence closure reflects
the fact that the atmosphere is only neutral up to a certain height. The horizon-
tally homogeneous flow model is a part of a pertubation solver under development
which is hoped to be more accurate than the current standard program WAsP by
Troen and Petersen (1989) while achieving a high speed of execution.
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1 Introduction

What is the purpose of solving for a horizontally homogeneous flow? As a starting
point for a more complete incompressible flow solution it is useful to consider a
solution for a horizontally homogenous flow. It is computationally inexpensive to
obtain because it is a one-dimensional solution instead of three-dimensional. It
is of course an advantage that the one-dimensional solution becomes as close as
possible to the three-dimensional solution. Hence, it is to be found in a transformed
coordinate system. As a consequence, horizontal is to be understood as horizontal
in the transformed coordinate system.

The present work is intended for a model of the incompressible flow over complex
terrain. It was inspired by the Mixed Spectral Finite-Difference model of Ayotte
and Taylor (1995) and the work of Beljaars et al. (1987). The idea is the same of
finding a simple solution which may be used as a starting point for a pertubation
solver. The solution may also be used as an initial condition for a more general flow
solver. It is the hope that the pertubation solver, which is under development, may
result in a flow model which is more accurate than the current flow model of the
industry standard program WAsP described in Troen and Petersen (1989) while it
should achieve a reasonably high speed of execution. Unlike the previous models,
the present work uses general orthogonal coordinates. Strong conservation form
of the model equations is employed in order to allow the development of a robust
and consistent numerical procedure based on Finite Differences (FD). The tensor
notation applied and the general equations are explained in Jorgensen (2003). It
would be out of scope to explain the details related to tensor calculus here. The
use of general coordinates and strong conservation form was inspired by the CFD
code EllipSys which is described in Michelsen (1989), Michelsen (1992), Michelsen
(1994) and Sgrensen (1995). Vivand (1974) developed strong conservation form in
2D. However, EllipSys utilizes the flow variables in the physical coordinate system.
In the present work, an invariant tensor form of the model equations is utilized
expressing the flow variables in the transformed coordinate system in which they
are horizontally homogeneous. This form is included in Jgrgensen (2003).

Although the flow is actually solved in orthogonal general coordinates, it can
still be corrected into an initial solution in general coordinates via a pressure
correction of a Fractional Step method utilizing Rhie-Chow interpolation. An
appropriate Fractional Step method is described in Jgrgensen (in preparation).
However, it requires the general coordinate system to be nearly orthogonal. The
collocation points describing such a coordinate system can be generated efficiently
by employing hyperbolic grid generation. A set of coefficients for the coordinate
transformation needed for the horizontally homogeneous flow solver can be gener-
ated from the general coordinates by optimization utilizing Lagrange Multipliers.
This procedure mimicks an orthogonal coordinate system allowing the horizon-
tally homogeneous flow solver to find a solution. In the case of a pertubation
solver, small deviations from orthogonality can be treated as pertubations. The
solution can be advanced by using an appropriate Fractional Step method such as
the method of Jergensen (in preparation). The implementation of the generation
procedure, the use of the resulting coefficients in the horizontally homogeneous
flow solver and the subsequent use of the solution are subjects of future work. Of
course, the horizontally homogeneous flow solver can also be applied for a general
orthogonal grid, provided that such a grid can be generated.

Because the present model is intended for atmospheric flow over complex terrain,
it utilizes a turbulence model which is the £ — € model with limited mixing length
by Apsley and Castro (1997). In this model, the limitation of the mixing length is
obtained by a modification of the scale determining equation, i.e. the dissipation
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transport equation. This reflects the fact that the real atmosphere is only neutral
up to a certain height. Apart from this, the model assumes a neutral flow. Hence,
no transport equation is included for temperature.

2 Horizontal homogeneity

In the following, a few basic concepts are described. Then, in the next sections,
the model equations are derived.

2.1 The tangent in a transformed coordinate sys-
tem
By horizontally homogeneous, it is meant that any horizontal tangent of the so-

lution gradient in the transformed coordinate system is zero. The gradient of a
tensor,

(97u")); e (1)
becomes, in the transformed system,
(§4d")); & (2)
The tangential components of the gradient are,
(§74"))j & - éa = (§90"))j gia = f; 0] = ify; a=1,2 )

However, as dlka must be understood as the k’th component of the covariant deriva-
tive, the concept of horizontal homogeneity would be too restrictive if including
k = 3. This will become clear later. Thus, horizontal homogeneity is formulated
by

F=0;, a=1,2;, k=12 (4)

3 The continuity equation

Stating the continuity equation for incompressible flow as

Ul =0 (5)
Because of horizontal homogeneity,
Thus,
ie. s
8U 3 i
7 Hl5HU =0 (8)
Agssuming orthogonality,
gij =0 for i # 7, (9)
it is obtained that o
ou 0 —
%+@(log\/933) Ur=0 (10)

which can be rewritten as

ouU? 1 9 .
— + ——(\/§ ' = 11
8:133 + \/g’g_gai'l( g33) U 0 ( )
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Multiplying by 1/g33 and collecting terms,

o — 0  — 0
%(v g3 U?) + @(v G33)U" + @(v 433)U> =0 (12)

Assuming also that
9 . 9 .
571 (g33) =0, 972 (g33) =0 (13)

it is obtained that

o
575 (Vs U?) =0 (14)

Since U® = 0 at the lower and upper boundaries, the horizontally homogeneous
flow has
U? =0 everywhere. (15)

4 The equation of motion

4.1 The equation of motion in the transformed sys-
tem

Like in Jgrgensen (2003) the equation of motion is stated on the form

o . oy » i
=5 (0U7) + (U0 = =(§7 P)js + 5] + P (16)
For an isotropic fluid with constant density, p, the viscous tensor in the trans-

formed coordinate system (£%) is restated

B9 = p(@" U + 4707, = wlg" Uy + 6707 (17)

It is quickly obtained that the convection terms are zero for the horizontal
equations. Because of continuity and horizontal homogeneity, for j = 1, 2,

U7

U0+ 007
= U0}, + U0}, + U°UY,
=0 (18)

4.2 Diffusion terms

In order to find the horizontal equations of motion, the viscous tensor a(17) and
its covariant derivatives are evaluated. Assume orthogonality (g;; = 0 for i # j).
For j =1,
1.

;z“ = v(g"U" + 4" 0" = 20§ U} =0 (19)
1 H21
5 =0 (20)
1. . .
5231 = v(g®Us+4¢"'Uj)
1 a - - 1 o .- -
— = Ul 1 Ur i U3 3 Ur
Vg'33 (8:&3( )+ {5} >+Vg11 <(%1( )+ )
1 0 .. ‘. 1 ‘.
- v— (= (! L1t — {2} U! 21
Vg'33 (61‘3( )+ {50} >+ng11{11} (21)
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Because of orthogonality, for j = 1,2 (without summation over j),

. 1 0
Il = (g 22
{di} = 5550 i) (22)
’ 1 9
3 — .
{jj} = _%%(gn) (23)
Hence
1. 1 /0 . 1 9 . 1 1 9 .
_231 — = —U1 - ’ Ul s - , Ul
P = <aaf3( )+ 2 o 91 Y our 2 0 1)
1 0 .
= yv— (Ut 24
Vg,ggafg( ) (24)
Similarly,
1.
-x2 =0 (25)
P
Iy = (26)
P
1. 1 0
-2 = y——(U? 27
p 9333563( ) 27)
and
1. 1 0 .
-y = y——_(U! 28
p gggaxg( ) (28)
1. 1 0 .
-3 = y——_(U? 29
p gggaxg( ) (29)
1.
-yB =0 30
p (30)

The last equation is a consequence of continuity, i.e. because U‘33 = 0. Thus, since

Vi o = o (VA SET) 4 VA () (31)

it is obtained (without summation over j) for j = 1,2 that
0 1o, NS
[ A— 3j —yi3 J L Zy3g
Vi = g (Vi) i ({ Jpe ()
1 ‘s
= —33 =i 32
(\/_ > + \/_ iis amg (94) (32)

p

Multiplying by §;; (w1th0ut summation over j) and collecting, for j = 1,2 the
diffusion terms are obtained on the form,

i 6 7z 1455
\/_ gJJ E 7= = 043 <\/§ gjj;E%) (33)

Inserting
1., 1 0 .
—23] =V5— %= U’ 34
p T 4
the diffusion terms become
% 19
\/_ gJJ \Z = 543 <\/_ g gjiv Ga3 93 (U])> (35)
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4.3 Pressure gradient

Using horizontal homogeneity, the pressure gradient reduces,

—(¢" P)i = —(§* P)js (36)
As before, assuming orthogonality,
Gy =0 fori#j, (37)
it is obtained that
—(@"P)i = —(¢*'P)z=0 (38)
—(¢?P)i = —(¢*P)3=0 (39)

Thus, the horizontal pressure gradient is zero.

4.4 Coriolis force

The Coriolis force in the physical coordinate system is expressed as

1
= _pfc\/_ggzmngnrgiqsr(Uq - qu) (40)
where
5" =6 (41)
Thus, in the transformed coordinate system,
;F] = —f. ™3, (U* — U;)ﬂg ad, (42)
= [ (=Brag + Bra))(U* - Uy) (43)

In order that the Coriolis force term is horizontally homogeneous, special treat-
ment is required, for instance by horizontal averageing. Defining,

1 : o
Bf,:f/,—%o/+ raf) dA 44
F= A( Bros + Brai) (44)
the Coriolis force term is modified as,
1. i .
BT = [0 - Uy) (45)

4.5 Resulting equation of motion

Now, the evaluated terms are inserted into Equation (16) multiplied by \/5 djj
and divided by p and the equation of motion for horizontally homogeneous flow
is obtained for j = 1,2 (no summation over j),

Vi g'jj%(m)
0 -, 1 0 .. -, P ke
= o5 (VB v 5 O9) + VE G BUCH - U0 )
where By, is given by
Bl = ¢ [, (~Phai+ sial) ak (47)
It must be required that

9 )
@(933) =0 forj=1,2 (48)
in addition to the requirement of orthogonality

gij =0 for i 75 ] (49)
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4.6 The vertical equation of motion

For 5 = 3, the convection terms do not in general reduce to zero. Instead, since
U3 = 0 (because of continuity),

O {2} 0+ 07 {5} 07

. 1 0 , 1771 0 ’ 27172
= 2g'33 <8[fj3 (gll)U U + 8563 (922)U U (50)
where it has been used that,
o ., a
@(933) =0, @(933) =0, (51)

in addition to the requirement of orthogonality (g;; = 0 for i # j).
The divergence of the viscous tensor reduces to zero because of horizontal ho-
mogeneity, since

>l 0 il BT 0 il B

- 1. 1. 1. 1.
+\/§ <{133} ;Els+ {331} 5231 +{233} 5223 +{332} 5232>

= 0 (52)
where for j =1,2
’ 1 0
3 ,
{5} = 3557 (09 (53)
Horizontal homogeneity also causes the pressure terms to reduce,
—-(¢"PP)p = 0 (54)
—(g*P)s = 0 (55)
Hence,
oP oP
= _ - = 56
Of! T 042 (56)
Inserting in the equation of motion (16) for j = 3 and rewriting,
or s3p3 , P[0 i 9 . oo
— = F°+ - — UU +— uv 57
523 g 5 523 (g11) + 943 (g22) (57)

where the Coriolis force term is given by (45). Equation (57) can be utilized to
find the pressure once U' and U? have been determined. This is most conveniently
carried out by solving the vertical derivative of the equation for the pressure,

2P 9 , o [0 s B s
- (g33F3)+p ( (gn)UlU1+—(g22)U2U2> (58)

073013 O3 2043 \ 053 073

5 The turbulence closure

As a turbulence closure model, consider the k-e model with limited mixing length
by Apsley and Castro (1997). Denoting the turbulent kinetic energy by E, the
model is formulated in the transformed coordinate system,

0

FOHCB = (@) +1-c (59)

OFE
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0 v l €
GO+ = (@) +(ca+(ca—ca) ) £
€ | max
2
€
CEQE (60)
= (g U™ + g™ U*) U g (61)
E2
Turbulent viscosity: v o= c¢y—
€
Mixing length: Il = ci .
h
Maximum mixing length: I, = 3 (neutral conditions)

Height of boundary layer: h
The treatment of the E-equation and the e-equation is similar. Because of con-
tinuity and horizontal homogeneity, the convection terms disappear,

(U'E); =UE+U'Ey + U’E;y + U’E;3 =0 (62)

Because of horizontal homogeneity and orthogonality, ¢/ = 0 for i # j, the
diffusion terms become,

<U’;( B}y >|i - <églj%(E)>li

0 v ,.. 0
Vo
- <\/§—0E9 957 (E)>

Thus, the transport equations for the turbulence closure become,

Vige) = o5 (Vigrgn®)+Vin-vic o

J33 OR 5563

Vig = 5 (Vi Lone)

g3z 0 O3

> [ € ~ €2
+\/§ (Cd + (ce2 — Cd)l > EH “VYclag (65)

The production evaluates to,

0= w0 + V(" U*) 0O

= Mg U T + (@20 U e
(G0 50 ss + (37 U) 50 s
+ [ U T s + (G2 U U s

+V(é33U1)\3U\13§11 + V(é33U2)|3U|23é22]

v 0 ,,
—%@(911 \/gTa e (ViU

v 0 2
_%%(922 \/976 3 \/92 U

v 1 0 0 1 0
- UtUt +
{4 a3 g1 O3 (911)8 5 () 4 33 Gz OE3

o s
(922)%(922)[]2[]2
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WA S (VT v Dt Dt

Y Gz 08 g3 OF3
(66)
Reorganizing the terms, the production reduces to
v 1 0
n= —|(-——— W'+ —= (/411 U")
33 ( 2\/g1; 013 (Gu1) gu >
v 1 0
- 1/ U2
+g33 ( 5 ,—92 943 (922 922 >
gu 0 o4y 0 oy g22 0 oy O p
= U')=—U U*)—U 67
v (0 5 >+”g333ms< )o@ (6]

6 Boundary conditions for a rough
surface using the wall law

6.1 Surface distance

The wall law for a rough surface depends on the distance to the surface in the
physical coordinate system. Define the position on the surface by h. Choosing the
transformed coordinate system (%) so that #> = 0 coincides with the lower surface,
the surface distance is given by

n-r = n-(x—h)
= nge’ e, (z™ —n™)

= 116t &)

= 1iig; ¢4 (68)
Since the normal vector satisfies
fir =0, s = 0, 1ig = \/% (69)
the following surface distance is obtained
n-r = 1 (70)

For the implementation of the wall law, the lower boundary is placed at a sur-
face distance equivalent to the roughness length, zo. However, as this creates a
discontinuous boundary at the roughness changes, the actual surface is depressed
so that the surface distance is increased by zy. This has very little effect on the
geometry of the surface and is assumed to have negligible influence on the flow.
The surface displacement is achieved internally in the flow model by adding zp to
the surface distance,

1 .
nr+z = ———§,;6%% + 2 (71)

R /g33

For the horizontally homogeneous flow, assuming orthogonality, i.e. ¢ = 0 for i #
7, the following is obtained,

=V g33 1"3 + A (72)

n-r+z =

1, a3,
—— 339" % + 20
/433

12 Risg-R-1446(EN)



6.2 Friction velocity

It is assumed that the friction velocity U, is constant in the region where the wall
law is enforced, so that the absolute velocity U is described by

U 1 n-r+ 2z

I | 4T

o = o (IR (73)
i.e. U

U, = ~ (74)

n-r+z2p
log T

For the horizontally homogeneous solution it is necessary to use the average Zg of
the roughness over the surface. Thus,

Uk

p; /3, —
log (\/933 T +Zo>

Zo

U, =

(75)

In a finite difference formulation, this expression can be applied in the center of
the boundary cell.

6.3 Absolute velocity

The absolute velocity is given by

U =VUFUE = \/Bg(]qgéc[js - \/gququ (76)

For the horizontally homogeneous flow, the absolute velocity becomes

U = /410101 + o020 (77)
Note that on the lower boundary, U = 0, i.e. U(zp) = 0.

6.4 Surface stress
Now, consider the stress tensor, -
x4 (78)
The corresponding force, F/, on the surface with the normal vector n is then
FI =S gyn* =9, (79)

which is the inner product between the stress tensor and the normal vector. In
the transformed coordinate system,

F1 = $%§,,,i™ = £, (80)
Thus,
FI = BIseiys (81)

Inserting the transformed coordinates of the normal vector, the surface shear stress

is obtained,
1

i = ,3;‘23‘1—,33 (82)
9
With the orthogonality assumption for the horizontally homogeneos flow this can
be written,

Th = B35/ Gas (83)
Applying the definition of friction velocity,
Tw = pU U, (84)

Risg-R-1446(EN) 13



assume that the surface stress has the same direction as the velocity near the
surface,

. U. ] U. .,
i= pU,—2U7 = | pU, == | pU? 85
T = PUr 35 (p i > By (85)
Hence, the surface stress is given by

1. .
_2311 — /g'33 (U‘r%> U? (86)

P
which for the horizontally homogeneous flow can also be formulated
1. 1 U:\ -
-3 = (UT—T> U1 (87)
p V933 U

This expression for the surface stress must be applied at the boundary for the
momentum equations. Implicit treatment of the velocity appearing in the term is
possible.

6.5 Turbulent kinetic energy

The surface boundary condition of the turbulent kinetic energy is,

0

o3
Let a finite difference representation be considered. When using a wall law for a
rough surface, the above condition is not applied directly. Rather, it is substituted
in place of the relevant term at the boundary in the discretized equation for E
for the boundary cell. Also, the production of turbulent kinetic energy and the
dissipation must be evaluated for the boundary cell in order to solve the equation
for E for the boundary cell.

Refer to the surface distance as

E=n-r+2 (89)

(E)=0 (88)

For the horizontally homogeneous flow,

€=1/dgs3 > + 2o (90)

Introduce the vertical index k, so that the center of the boundary cell is placed at
k and the lower boundary at k — % Thus,

§(k—3) =2 (91)

Details regarding the choice of (k) can be found elsewhere. See for instance
Serensen (1995). However, past experience show that a minimum of approximately

§(k)U-

Vmol

£ (k) =

> 100 (92)

is needed although formally only a minimum value of 11.6 is required. Here, vp,0)
denotes the molecular kinematic viscosity.

6.6 Production of turbulent kinetic energy

Define,
o " <£(k+%)>
oo UCl+3) P\ (53)
U(&(k)) log (€(k)>

14 Risg-R-1446(EN)



which for the horizontally homogeneous flow becomes,

(a&3(k +3) +%>
log | ————=—

Zo

= - — 94
’ log (7333(19)_4- ZO) o
20
Now, the production is
1 oU
I=-7,——
pTw 85 (95)

where 7, is considered constant. The finite difference form is analogous to the
finite volume form, where the average of II is calculated for the boundary cell and
applied in the center of the cell, i.e.

_ 1 1 E(k+3) oU
I = -7, — d
" E(k+%)—€(k—%)/g(1@_%) og
= 17’ 71 1y) —
p wf(k + %) — % (U(f(k + 2)) U(ZO)) (96)

Utilizing ¢ and inserting 7, = pU, U, the following is obtained,
oU U,

M=—"—"""—U(k 97
s G o7)
For the horizontally homogeneous flow, this can also be written as
— oU U, — 3 —
I = ———77—U([V§332°|(k) +Z 98

6.7 Dissipation of turbulent kinetic energy

Using the relationship
1
U, =ciE? (99)
together with the wall law under the assumption of a balance between the dissi-

pation and production near the surface, the dissipation can be expressed as

3

K€
For the boundary cell, the equation for the dissipation is replaced entirely by the
average dissipation for the boundary cell which is then applied in the cell center,
ie.

(100)

— i
€=cy

1 §(k+3) C%E%
E = - 1/ e d
Ek+35)—E&k—3) Jew—y) KE
1 c

E3 o <§(k + %))
f(k‘-F%)—ZO K & 20

_ o B €k
= WD x ”H log( . ) (101)

T hlw

Utilizing Uy = ¢i B3 and the wall law,

UEk) = o (—) (102)

it is obtained that
e= 0 ¢} BUE®K) (103)
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This is the expression that is applied for the dissipation in the boundary cell. Note
that E can be referenced implicitely in the above expression for the average dissi-
pation of the boundary cell when used in the formulation of the surface boundary
condition for the turbulent kinetic energy. For the horizontally homogeneous flow,
it becomes

¢

Ve ¢ F U(1V/gas)(k) +70) (104)

6.8 Pressure

Boundary conditions for the pressure are not needed to solve for the horizontally
homogeneous flow. However, it is needed if a pressure solution is desired. From
the vertical equation of motion the following is obtained for the lower boundary,
OP
013
where B? is defined in Equation (44).

, 1 .
— 2333 _ 3
=g F° = ’33_prBj Ug (105)

7 Upper boundary conditions

7.1 Velocity

At the upper boundary, the Coriolis force is zero. Hence, the velocity must satisfy
U’ -U) =0 forj=1,2 (106)

where U. g is the transformed geostrophic wind.

7.2 Turbulence properties
At the upper boundary, let

OF
E = 0 (107)
Oe

which constitutes the boundary conditions for the turbulence properties.

7.3 Pressure
At the upper boundary, let
o°P
prie
which constitutes the boundary condition for the pressure needed if a pressure
solution is desired.

(109)

8 Conclusion

The model equations have been derived for an incompressible flow which is hori-
zontally homogeneous. The model solution can be used as a computationally in-
expensive starting point of a more complete solution for neutral atmospheric flow
over complex terrain. Unlike the previous models of Ayotte and Taylor (1995)

16 Risg-R-1446(EN)



and Beljaars et al. (1987), the present work uses general orthogonal coordinates.
Strong conservation form of the model equations allows a robust and consistent
numerical procedure to be developed. An invariant tensor form of the model equa-
tions is utilized expressing the flow variables in the transformed coordinate system
in which they are horizontally homogeneous.

Although the flow is actually solved in orthogonal general coordinates, it can be
corrected into an initial solution in general coordinates via an appropriate Frac-
tional Step method such as the method described in Jorgensen (in preparation).
This is provided that the general coordinate system is nearly orthogonal as when
using a hyperbolic grid generation method. A pertubation solver yielding a more
complete solution may treat small deviations from orthogonality as pertubations.
Another possibility is to apply the horizontal homogeneous flow model for a gen-
eral orthogonal grid, provided that such a grid can be generated.

The horizontal equations of motion can be solved independently of the vertical
equation of motion, which then can be utilized to determine the pressure. The
model employs the & — ¢ model with limited mixing length by Apsley and Cas-
tro (1997). This turbulence closure reflects the fact that the atmosphere is only
neutral up to a certain height. The limitation of the mixing length is obtained
by a modification of the transport equation for dissipation. Boundary conditions
for a rough surface using the wall law and upper boundary conditions for the
atmosphere are expressed.

The horizontally homogeneous flow model is a part of a pertubation solver under
development which is hoped to be more accurate than the current flow model of the
industry standard program WAsP by Troen and Petersen (1989) while achieving
a high speed of execution.
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