#### Technical University of Denmark



#### Accelerated fatigue testing of LM 19.1 blades

Kristensen, Ole Jesper Dahl; Jørgensen, E.

Publication date: 2003

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

*Citation (APA):* Kristensen, O. J. D., & Jørgensen, E. (2003). Accelerated fatigue testing of LM 19.1 blades. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1358(EN)).

#### DTU Library Technical Information Center of Denmark

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

RISØ-R-1358(EN)



# Accelerated Fatigue Testing of LM 19.1 Blades

# Ole Jesper Dahl Kristensen Erik R. Jørgensen



Risø National Laboratory, Denmark May 2003

# Accelerated Fatigue Testing of LM 19.1 Blades

Ole Jesper Dahl Kristensen

Erik R. Jørgensen

Risø National Laboratory, Roskilde, Denmark May 2003

# Abstract

A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in a fatigue test and to give information if it is possible to increase the load in fatigue test to shorten test time.

The tests were carried out as a part of a project financed by the Danish Energy Agency.

During the fatigue tests the blades have been surveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges.

This report presents the temperature during test, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause of the damages. The report is also giving information on the blade-to-blade variation. The total number of pages for this report is 72.

Measurements described in this report refer only to the specific blades, identified in this report. The report may only be published in full and with source reference. Extracts may only be quoted upon prior permission in writing.

The Danish Energy Agency and Risø National Laboratory financed testing, measurements and data analysis and LM Glasfiber A/S has delivered the blades used in test.

ISBN 87-550-3099-8 ISBN 87-550-3100-5 (Internet) ISSN 0106-2840

Print: Pitney Bowes Management Services Denmark A/S, 2003

# Contents

| 1   | INTRODUCTION                                        | 5  |
|-----|-----------------------------------------------------|----|
| 2   | THE TESTED BLADES                                   | 7  |
| 2.1 | Blade stiffness                                     | 7  |
| 2.2 | Determination of natural frequencies                | 10 |
| Mea | asurement procedure                                 | 10 |
| Mea | asurement results                                   | 10 |
| 2.3 | Conclusion on similarity                            | 11 |
| 3   | EXPERIMENTAL TEST SET-UP                            | 12 |
| 3.1 | Description of test set-up                          | 12 |
| 3.2 | Description of measurement system                   | 12 |
| 3.3 | Calibration and configuration of measurement system | 13 |
| 3.4 | Description of control system                       | 13 |
| 3.5 | Strain gauge locations                              | 14 |
| 3.6 | Blade mounting                                      | 16 |
| 3.7 | Equipment mounting                                  | 17 |
| 3.8 | Photo of the test set-up                            | 17 |
| 4   | FLAPWISE FATIGUE TEST OF BLADE NO. # 4703           | 18 |
| 4.1 | Blade one, test sequences                           | 18 |
| 4.2 | Phase definition                                    | 18 |
| 4.3 | Events during test                                  | 18 |
| 4.4 | Environment during test                             | 21 |
| 4.5 | Calibration test results                            | 22 |
| 4.6 | Moment range measurements                           | 23 |
| 4.7 | Strain measurements                                 | 26 |
| 4.8 | Results of inspections                              | 27 |
| 4.9 | Conclusion, Blade # 4703                            | 27 |
| 5   | FLAPWISE FATIGUE TEST OF BLADE NO. # 4706           | 28 |
| 5.1 | Blade two, test sequence                            | 28 |
| 5.2 | Phase definition                                    | 28 |
| 5.3 | Events during test                                  | 28 |
| 5.4 | Environment during test                             | 31 |
| 5.5 | Calibration test results                            | 32 |
| 5.6 | Moment range measurements                           | 33 |
| 5.7 | Strain measurements                                 | 35 |
| 5.8 | Results of inspections                              | 36 |
| 5.9 | Conclusion, Blade # 4706                            | 36 |
| 6   | FLAPWISE FATIGUE TEST OF BLADE NO. # 4700           | 37 |
| 6.1 | Blade three, test sequence                          | 37 |
| 6.2 | Phase definition                                    | 37 |
| 6.3 | Events during test                                  | 37 |
| 6.4 | Environment during test                             | 39 |
| 6.5 | Calibration test results                            | 40 |
| 6.6 | Moment range measurements                           | 41 |
| 6.7 | Strain measurements                                 | 43 |
| 6.8 | Results of inspections                              | 44 |

| 6.9 | Conclusion, Blade # 4700            | 44 |
|-----|-------------------------------------|----|
| 7   | FREQUENCY MEASUREMENTS DURING TEST  | 45 |
| 8   | CONCLUSION                          | 47 |
| 9   | REFERENCES                          | 48 |
| A.  | DATA SHEETS FOR STATIC TESTS        | 50 |
| B.  | GRAPHS FROM FREQUENCY DETERMINATION | 56 |
| C.  | EQUIPMENT USED DURING TEST          | 62 |
| D.  | DATA FROM FATIGUE TESTS             | 63 |
| Е.  | UNCERTAINTY OF MEASUREMENTS         | 70 |
| F.  | DATA SHEET FOR STRAIN GAUGES        | 71 |

# **1** Introduction

Traditionally a wind turbine blade is tested as part of a type approval. In these approval tests is determination of weight and centre of gravity. Determination of the natural frequencies, 1<sup>st</sup> and 2<sup>nd</sup> flapwise, 1<sup>st</sup> edgewise and 1<sup>st</sup> torsional are also a part of the blade-test. Static prooftest is carried out and the blade is also tested in a fatigue test. The fatigue test is normally separated in two, one for the edgewise direction and one for the flapwise direction. With an increase in blade length the time consumption in fatigue test is increasing. For the time being the normal fatigue test is carried out with a number of load-cycles of 5 million in each of the two directions. If an increase in load can be done without introducing higher temperatures in the material of the blade, which never appears in blades "on sites", it might be possible to reduce the number of cycles needed for a fatigue test by increasing the load. It is a criterion that the failure mode on the three blades must be similar regardless of the load levels. The theory used for the reduction of load cycles by increasing the load is the Palmgren-Miner method of calculating fatigue damages and log-log S-N curve. Throughout this report a slope (m) of the S-N curve equal to 9 has been assumed.

These test series are carried out as traditional flapwise fatigue tests, but where the fatigue tests normally are carried out with one nominal load level for the entire fatigue test these tests have been carried out with increasing load levels to make damages to occur on the blades. For the first blade the fatigue test was devided in five parts to determine the impact of a load increase, on the temperature in the blade material. For the second and third blade the load was increased to damage the blade.

For the fatigue test the tips of the blades were cut of, the space available did not leave room for the tip of the blade. The determination of the natural frequencies were carried out on the complete blade i.e. including tip.

The test was conducted in accordance with the procedure in Ref. 2 chapter 5. Furthermore the test was conducted in accordance with the procedure in Ref. 3 QP8.103 "Fatigue test of wind turbine blades" and QP8.104 "Calibration test"; internal documents at Sparkær Testcentre.

The fatigue-tests were performed on the test rig "E", at the Risø National Laboratory Blade Test Facility at the Sparkær Centre. The period of the fatigue tests was 7<sup>th</sup> of June 2001 to ultimo January 2002. The Sparkær Centre has carried out all instrumentation, tests and measurements described within this report. The thermal imaging surveillance was carried out in co-operation with HB Termografi, Aarhus.

This report presents the temperature history during test, calibration test results, moment range measurements and strain statistics. There is also presentation of the thermal images and an evaluation of the damages occurring on the blades.

The initial fatigue load level and test configuration is based on a prior test of a similar blade, i.e. design load at  $5*10^6$  load cycles.

Within this report the abbreviation  $\mu S$  represent the unit for strain, i.e.  $10^{-6}$  [m/m].

Distances and forces used in this report are related to a rectilinear co-ordinate system with origin at the blade root interface. The z-axis is parallel to the direction for the 0-degree twist chord (usually the tip chord) see Figure 1.

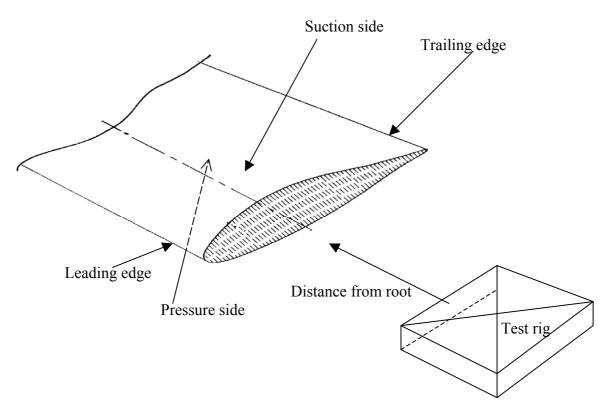



Figure 1. Sketch with the definitions that are used in this report

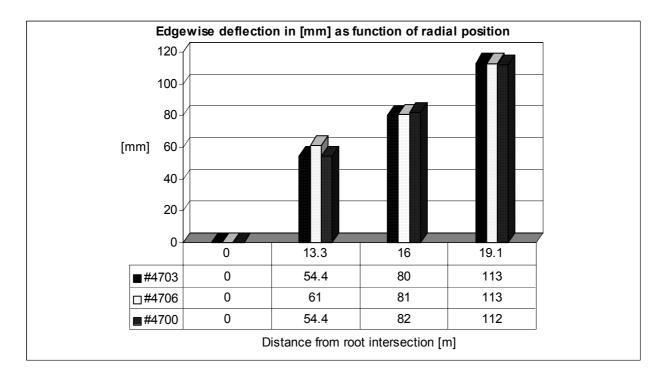
# 2 The tested blades

To determine the comparability of the three blades, a determination of the blades stiffness and the natural frequencies were made.

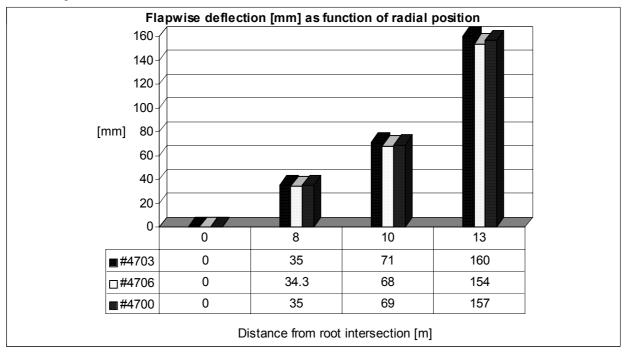
## 2.1 Blade stiffness

The tested blades were produced by LM Glasfiber A/S of Lunderskov, Denmark and had a grey gel-coat finish.

| Type:                                  |                   | LM 19.1        |         |            | LM 19.1 |         |            | LM 19.1 |       |
|----------------------------------------|-------------------|----------------|---------|------------|---------|---------|------------|---------|-------|
| Serial no.                             |                   | 4703           |         | 4706       |         |         | 4700       |         |       |
| Date of measurement                    | 01-03-2001        |                |         | 03-08-2001 |         |         | 03-08-2001 |         | 01    |
| Weight                                 | 19.23 [kN]        |                |         | 19.57 [kN] |         |         | 19.67 [kN] |         | N]    |
| Center of gravity                      | 6.3 [m]           |                | 6.1 [m] |            |         | 6.1 [m] |            |         |       |
| Blade length                           | 1                 | 9.08 [n        | 1]      | 19.09 [m]  |         |         | 19.08 [m]  |         |       |
| Points of deflection measurement [m]   | 19.1              | 19.1 16.0 13.3 |         | 19.1       | 16.0    | 13.3    | 19.1       | 16.0    | 13.3  |
| Initial stiffness, edgewise [mm]/[kNm] | 0.870 0.610 0.413 |                | 0.855   | 0.621      | 0.463   | 0.859   | 0.622      | 0.415   |       |
| Points of deflection measurement [m]   | 13.0 10.0 8.0     |                | 13.0    | 10.0       | 8.0     | 13.0    | 10.0       | 8.0     |       |
| Initial stiffness, flapwise [mm]/[kNm] | 0.746             | 0.333          | 0.162   | 0.725      | 0.323   | 0.161   | 0.749      | 0.333   | 0.167 |

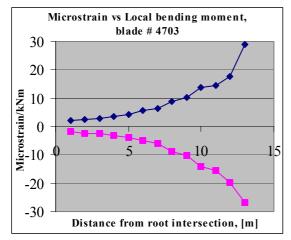

Table 1.Blade data, for further details see appendix.

To determine the initial stiffness of the blades, two tests were conducted on each blade, one in edgewise direction and one in flapwise direction. For both tests the load was applied in steps, the values in Table 1 are based on the average deflection as function of applied root bending moment for the 4 load steps.

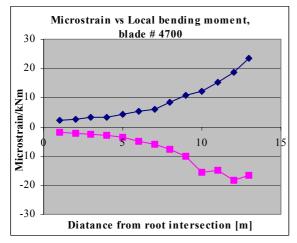

For all three blades the maximum applied load for the edgewise test was 8 [kNm] applied in Z = 16.3 [m]. In the flapwise direction the maximum load applied was 16 [kNm], this load was applied in Z = 13.15 [m].

The blade with serial no. #4706 is the blade with the highest stiffness i.e. the blade that shows the smallest deflection in a static test.

The data sheets with measured data for the static tests of the blades are available in the appendix.




*Figure 2. Graphical presentation of edgewise deflection for each of the three tested blades, shown for the highest load step.* 




*Figure 3. Graphical presentation of flapwise deflection for each of the three tested blades, shown for the highest load step.* 

As the flapwise stiffness determination was carried out just prior to the fatigue test there was also made strain measurements during these tests. The strains measured on the blade are evaluated in correspondence with the applied load, i.e. microstrain vs. local bending moment. Figure 4, Figure 5 and Figure 6 show that blade no. # 4706 and # 4700 are very similar to each other in the sense of lengthwise strain distribution and blade no # 4703 differs a little from the two others.



*Figure 4.* Normative strain distribution for blade # 4703



*Figure 6.* Normative strain distribution for blade # 4700

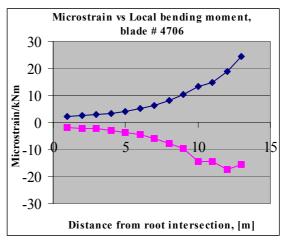



Figure 5. Normative strain distribution for blade # 4706

## 2.2 Determination of natural frequencies

The Natural frequencies have been determined for all three blades. The determined frequencies are  $1^{st}$  and  $2^{nd}$  flapwise,  $1^{st}$  edgewise and  $1^{st}$  torsional natural frequencies. To determine the frequencies of the blades, tests were conducted in accordance with Ref. 3 (QP 8.101). The tests were performed on the following dates:  $23^{rd}$  of February 2001,  $17^{th}$  of May 2001 and  $3^{rd}$  of October 2001 on the blades with serial number 4703, 4706 and 4700 respectively. The frequency determinations were carried out on test-rig H at the test-facillity at the Sparkær Centre.

The tip-chords were in vertical position during the determination of the frequencies.

#### **Measurement procedure**

For the flap- and edgewise eigenfrequencies determination an accelerometer was mounted on the centreline of the blade, at the tip, and connected to an amplifier. A Labtech Notebook program has sampled the output data from the amplifier. To create a signal from the accelerometer, the blade was excited into its natural frequency by hand, the blade was allowed to oscillate free and the natural frequency was measured.

The torsional frequency was determined using two accelerometers on the blade, one on the leading edge, and one on the trailing edge. The two accelerometers were placed in equal distance, 14.48 [m], from the root-interface. The signals from the two accelerometers were amplified, and the difference between the two amplified signals was stored in an oscilloscope. A PC equipped with a Labtech Notebook program recorded the stored signal. The sampled file was analysed using a MathCad program.

#### **Measurement results**

The natural frequencies and damping values are determined by performing a curve-fit to the following equation:

X(t)=Ae<sup> $\zeta \omega n t$ </sup> cos( $\omega_d t$ - $\phi$ ) for  $0 < \zeta < 1$ 

Where:

A is an amplitude scale factor.  $\zeta$  is the viscous damping factor.

 $\omega_n$  is the natural frequency.

 $\omega_d$  is the frequency of the damped free vibration.

 $\phi$  is the phase angle.

Due to the excitation principle  $\omega_n$  and  $\omega_d$  are essentially equal.

The following natural frequencies and damping coefficients were measured for the blades.

| Direction   | No. | # 4703 | # 4706 | # 4700 |
|-------------|-----|--------|--------|--------|
| 1. Flapwise |     | 1.66   | 1.66   | 1.66   |
| 2. Flapwise |     | 5.06   | 5.12   | 5.09   |
| 1. Edgewise |     | 2.87   | 2.86   | 2.86   |
| 1. Torsion  |     | 23.9   | 23.4   | 23.3   |

Table 2. Measured natural frequencies.

| Direction   | No. | # 4703                | # 4706                | # 4700                |
|-------------|-----|-----------------------|-----------------------|-----------------------|
| 1. Flapwise |     | 3.49*10 <sup>-3</sup> | 2.92*10 <sup>-3</sup> | 2.99*10 <sup>-3</sup> |
| 2. Flapwise |     | 3.34*10 <sup>-3</sup> | 3.36*10 <sup>-3</sup> | 3.36*10 <sup>-3</sup> |
| 1. Edgewise |     | $4.00*10^{-3}$        | 3.77*10 <sup>-3</sup> | 3.97*10 <sup>-3</sup> |
| 1. Torsion  |     | Not determined        | Not determined        | Not determined        |

Table 3. Measured damping coefficients.

# 2.3 Conclusion on similarity

The three tested blades are, in overall, similar. There is a minor difference in flapwise stiffness distribution for blade # 4703 compared to the two other blades. For the natural frequencies blade # 4703 differs from the two others in the flapwise damping. Blade # 4703 has a damping in the  $1^{st}$  flapwise mode that is 17 % higher than the two other blades; this might be due to higher amplitude during the measurement of the frequency and therefore a damping contribution from aerodynamic damping.

# **3** Experimental test set-up

## 3.1 Description of test set-up

The blade was mounted in the test-rig "E". In a distance of 12 [m] an exciter was mounted. This exciter consists of two pair of yokes and two pair of clamps. On this exciter-frame was mounted a motor which drives an eccentric mass. This eccentric mass excites the blade when the motor revolves.

### 3.2 Description of measurement system

The measurement system consist of:

- 1) A PC with the software program "HP Vee" for data acquisition.
- 2) HP82350 PCI card (communication between the PC and the data acquisition computer).
- 3) DAC02 card (communication between the PC and the frequency converter).
- 4) A HP3852 data acquisition computer.
- 5) Strain gauges.
- 6) Accelerometer (B&K).
- 7) Amplifier for the accelerometer.
- 8) A termocouple (PT100).

The accelerometer is mounted on the blade near the exciter frame. The temperature measurement is made using the voltmeter in the data acquisition computer. The temperature sensor is positioned on the blade, in the area of the root. Strains are measured by a voltmeter in the data acquisition computer. The strain gauges are connected in a quarter bridge configuration, using a tree wire connection.

For every 2500 oscillations strain gauge scan is performed (at the end of the test of blade # 4703 the interval of oscillations between every strain gauges scan was reduced to 1000 cycles). In the strain file the strain range is stored. Furthermore the moment range before and after the scan, the temperature and the bridge voltage are stored. At level 4 in the test of blade # 4703 the data acquisition system was set to store the accelerometer signal as well. In the moment file, the moment range cycles are summed and stored. For the flapwise test the

moment range cycles are stored in bins from 78-121% of the nominal root bending moment, each bin has a width of 1 %

Calibration-tests are performed on a regular basis. At the calibration test a static load is introduced at the exciter position. Corresponding values of load at the exciter and deflection at the accelerometer are measured. Additionally the strains are measured. Six load steps are imposed on the blade ranging from 0 to 15% of the root bending moment. In the calibration test file the loads deflections and strain are stored.

# 3.3 Calibration and configuration of measurement system

Prior to the fatigue test the accelerometer measurement chain is calibrated, such that the response from the amplifier is 1 [V] RMS. The calibration is performed using an accelerometer calibrator and a Fluke. The eigenfrequency of the system, including exciter etc, is determined using accelerometer, amplifier and a Fluke.

### 3.4 Description of control system

The relation between root bending moment and acceleration width is found using the relation:

 $\ddot{X} = \omega^2 \cdot a$ where  $\ddot{X}$  = acceleration width  $\omega$  = eigenfrequency of the system a = deflection width

At the static calibration test the relation between deflection and force is found. The relation between deflection width and prescribed root bending moment is determined. Using the equation above it is now possible to find the acceleration width. Based on the measured accelerations it is possible to control the root bending moment width, using software and a frequency converter. The absolute value of the root bending moment might induce a small error because of this procedure (not including inertia loads), but it does not affect the results of this project, because it is the same control system for all three blades. Additionally a system using two photo diodes is used to prevent the blade from being overloaded. Furthermore the diodes count mechanically the number of oscillations.

# 3.5 Strain gauge locations

The strain gauges were of type CEA-06-500UW-350 from Measurements Group, Inc., see appendix C.

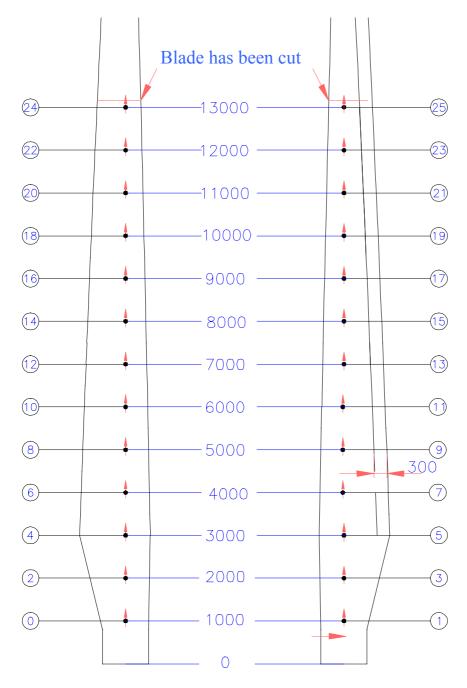
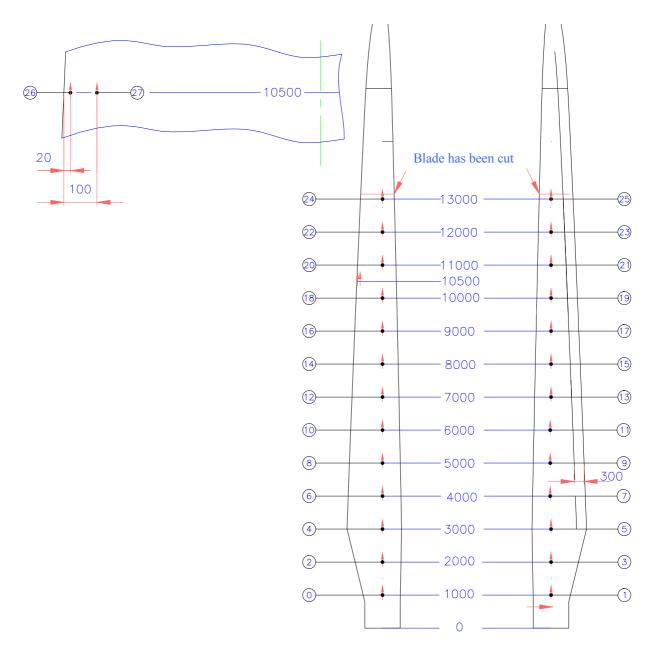
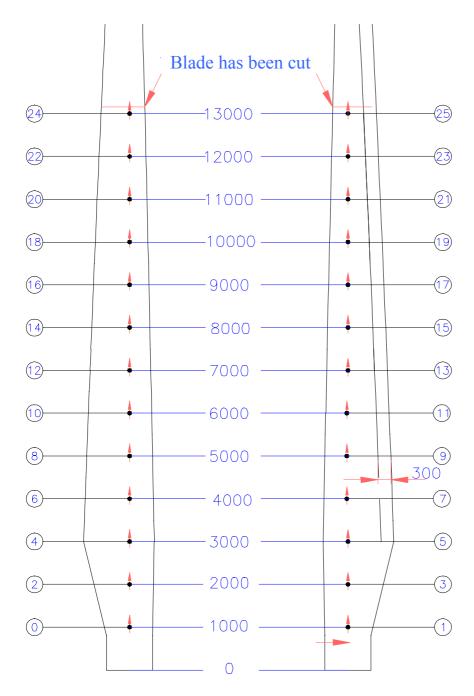





Figure 7. Strain gauge position and numbering, LM 19.1 # 4703, initially.



*Figure 8. Strain gauge position and numbering, LM119.1 # 4706.* 



*Figure 9. Strain gauge position and numbering, LM 19.1 # 4700.* Test set-up

### 3.6 Blade mounting

The blades were mounted on test rig "E" at Risø National Laboratory, Sparkær Centre. As the maximum length of blade to be tested in test rig "E" is 14 [m] these three 19.1 metre blades were cut off in a length of 13.4 [m].

The suction side of the blade was downwards and the tip-chord in horizontal direction.

# 3.7 Equipment mounting

The exciter was mounted at 12 [m] from the root interface. The total mass mounted at this point was 2554.6 [kg]. The exciter system consists of a motor and an interface between the motor and the blade. The interface consists of four u-profiles and wood clamps. On the output shaft of the motor a triangular steel plate is mounted to form an eccentric load on the motor. This eccentric mass excites the blade as the motor revolves. In order to keep the prescribed root bending moment the motor revolution speed is controlled via a PC and a frequency converter. In addition to the load at the position of the exciter there was mounted a pre-load in Z = 13.0 [m]. This load had a mass of 145 [kg].

### 3.8 Photo of the test set-up



Figure 10. Test configuration at the flapwise fatigue test.

# 4 Flapwise fatigue test of blade no. # 4703

### 4.1 Blade one, test sequences

To determine if the temperature changes because of an increased bending moment in the blade, the first blade was tested in five different levels with increasing root bending moment. The root bending moment level used as basis is based on the type approval root bending moment applied to a similar blade, i.e the bending moment causing failure at  $5*10^6$  cycles. To compensate for the rest lifetime of the blade (partial safety factor) the basic root bending moment is increased with 30 %. The 30 % is an estimated rest lifetime.

Each of the five root bending moment levels is applied to the blade for a period of what is equivalent to 16 % of a lifetime. By the end of the initial five levels the blade has used what is equivalent to 80 % of the total lifetime. The test will be continued at the last level, level 5, until the blade is damaged.

### 4.2 Phase definition

The test phases are defined in Table 4. The load at level 1 is equivalent to 130 % of a normal  $5*10^{6}$ -cycles fatigue test.

| Phase and | Date   |        | Root bending | Number of    | Number of     | Number of      |
|-----------|--------|--------|--------------|--------------|---------------|----------------|
| level     |        |        | moment       | nominal      | nominal       | lifetimes      |
|           |        |        | [kNm]        | cycles for a | cycles        | applied to the |
|           | Start  | Stop   |              | lifetime     | applied in    | blade in       |
|           | Start  | Stop   |              |              | current phase | phase          |
| 1         | 07/06- | 19/06- | 862          | 5000000      | 809733        | 0.16           |
|           | 2001   | 2001   |              |              |               |                |
| 2         | 19/06- | 25/06- | 931          | 2500000      | 446406        | 0.18           |
|           | 2001   | 2001   |              |              |               |                |
| 3         | 25/06- | 28/06- | 1005         | 1250000      | 192936        | 0.15           |
|           | 2001   | 2001   |              |              |               |                |
| 4         | 28/06- | 02/07- | 1086         | 625000       | 86567         | 0.14           |
|           | 2001   | 2001   |              |              |               |                |
| 5         | 03/07- | 20/07- | 1173         | 312500       | 103042        | 0.33           |
|           | 2001   | 2001   |              |              |               |                |
|           |        |        |              |              | Sum           | 0.96           |
|           |        |        |              |              |               |                |

Table 4. Phase definition

### 4.3 Events during test

The first blade was surveyed by thermal imaging equipment in 6 sessions. There were two sessions for the first level and one session for each of the following levels. There were no observations of hot spots under the first thermal surveillance.

On the 15<sup>th</sup> of June two additional strain gauges were mounted in the root section. The gauges were mounted on the centre line of the pressure side at distance Z = 0.79 [m] and Z = 1.49 [m]. The positions of these two gauges were determined after the second thermal surveillance of the blade; see

Figure 11 and Figure 13. During this second thermal surveillance, at this load level, there was also discovered a hot spot in the root section on the centre line on downwind side of the blade; see Figure 12 and Figure 14.

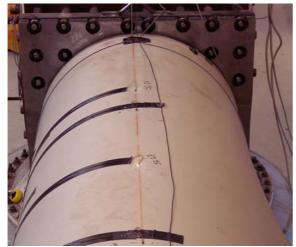



Figure 11. Two additional strain gauges on upwind centre line



*Figure 13. Thermal image of upwind side of root section* 



Figure 12. Downwind centre line, hot spot marked with red marker, in the black-lined square, diameter app. 3 [cm].

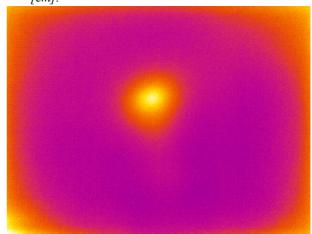
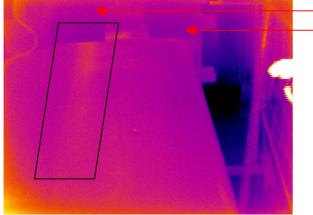




Figure 14. Thermal image of hot spot on centre line of downwind side at the root section

During the thermal session at the second load level there was no propagation in the thermal emission, no increase in the temperature, on the blade, except for the area on the downwind side of the root section were the single hotspot had developed into to two spots. The position of these spots is corresponding to the positions of the bushings in the root section. The bushings are for mounting the blade on the hub.

As the test was proceeding, by thermo graphic surveillance at level 3, there was observed a band of higher temperature on the up-wind surface. This band is shown in Figure 15 in the black lined square. The observations showed that the band was narrowed in at Z = 10[m].



*Figure 15.* Thermo graphic image of up-wind surface, Z 9 [m] to Z 11.5 [m]. The red arrows are pointing out the two steel-bar pre-loads.

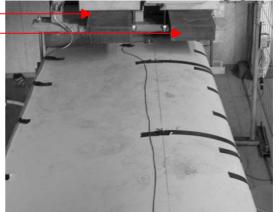



Figure 16. Picture of up-wind surface 9.3 [m] - 11.5[m]. SG mounted on centre line in Z = 10 [m] og Z = 11 [m] (where the black gaffa-tape crosses the centre line).

At load level 4 there was no propagation in the area with increased temperature and no change in temperature level. Figure 17 shows the area as the blade was surveyed during level 4.

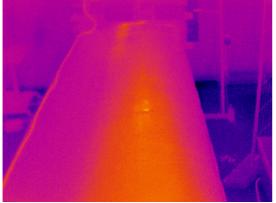
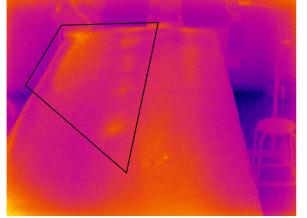




Figure 17. Up-wind surface at level 4

At level 5 the thermo graphic surveillance showed that the area with higher temperature had changed. What has been a continuous stripe from the exciter frame and one metre towards root section changed to a number of separated areas and additionally the temperature in the trailing edge was increased.



*Figure 18.* Up-wind surface at level 5. To the right in the black lined area, what used to be a continuous stripe has changed into a number of separated areas. To the left, the area near the trailing edge has increased in temperature.

Shortly after the thermal surveillance at level 5 the blade had a visible damage in that area of the trailing edge where an increase in temperature was observed.

## 4.4 Environment during test

Through the flapwise fatigue test temperature measurements were made. Figure 19 shows the temperature in the environment as a function of the cycles. The data-acquisition-computer measured the temperature and number of cycles. The temperature sensor is positioned on the blade near the root. The sensor is measuring the air temperature in the laboratory.

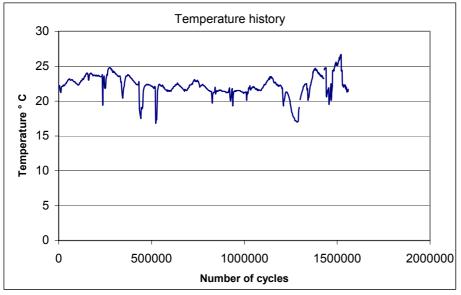
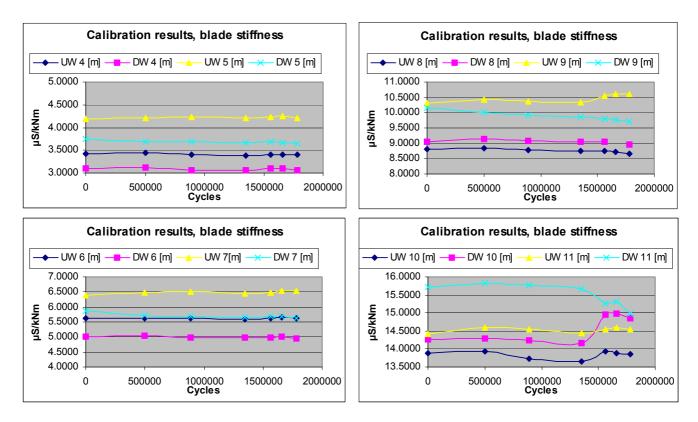




Figure 19. Temperature measurements during flapwise fatigue test blade #4703.

## 4.5 Calibration test results

During the fatigue test several calibration tests were performed. The calibration tests were performed as static tests with load applied to make bending towards suction (down wind) side of blade. Figure 20 shows the normative stiffness of the blade for discrete sections of the blade. The measurements show the  $\mu$ S/kNm local stiffness at maximum load for the calibration tests. The graphs are supposed to be linear i.e no change in stiffness of the blade. The graphs show a change in stiffness for the sections from 9 [m] to 11 [m] as the test is carried out. The change is starting when the test has run for 1.3 million cycles, i.e. app. 500 000 cycles before visual damage was seen on the blade.



*Figure 20.* Discrete stiffness distribution for calibration tests of LM 19.1 # 4703, the x-axis is number of cycles applied to the blade

#### 4.6 Moment range measurements

The number of cycles in Figure 21 - Figure 25 is determined from the data acquisition software.

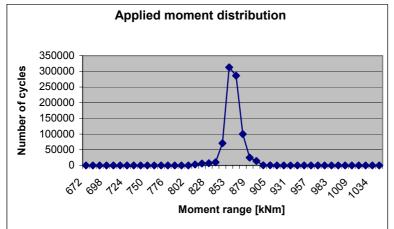



Figure 21. Moment distribution for blade # 4703 at load level 1

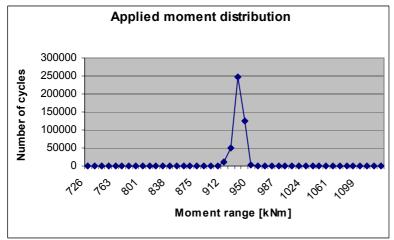
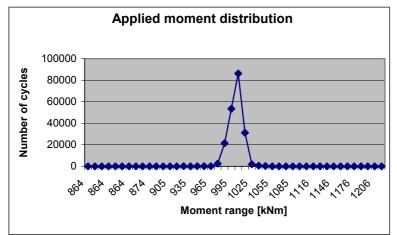




Figure 22. Moment distribution for blade # 4703 at load level 2



*Figure 23. Moment distribution for blade* # 4703 *at load level 3* 

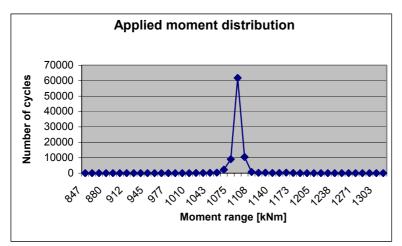
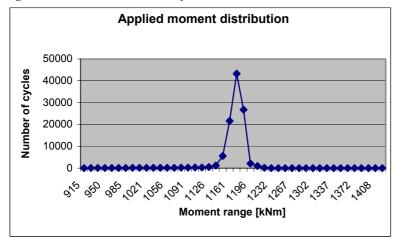




Figure 24. Moment distribution for blade # 4703 at load level 4



*Figure 25. Moment distribution for blade # 4703 at load level 5* 

These moment distributions are used to calculate the equivalent moment applied to the blade. For a more detailed view of the moment distribution see app D.

Table 5 shows the equivalence between the counted number, and sizes, of applied cycles and the equivalent moment.

" $\sum n$ , Nominal" is the number of cycles pre-selected for each load level. These levels are for evaluation of the change in thermal emission from the blade when the load level is increased.

The column " $\sum$ n, Data acquisition software" and the moment distribution in Figure 21 - Figure 25 gives the resulting "Equivalent moment".

The "Lifetime" column shows the percentage of a lifetime used at each level of the test. The blade did brake at 107 % of a lifetime.

|          | Tar     | rget    | Meas       | sured       | Calculated |             |  |
|----------|---------|---------|------------|-------------|------------|-------------|--|
| Series # | ∑n,     | Nominal | ∑n,        | ∑n,         | Equivalent | Calculated  |  |
|          | Nominal | moment  | Mechanical | Data        | moment     | $\sum n$ at |  |
|          |         | [kNm]   |            | acquisition | [kNm]      | nominal     |  |
|          |         |         |            | software    |            | moment      |  |
| Series 1 | 800000  | 862     | 890498     | 838164      | 858.7      | 809733      |  |
| Series 2 | 400000  | 931     | 457923     | 440948      | 932.3      | 446406      |  |
| Series 3 | 200000  | 1005    | 212227     | 198732      | 1001.7     | 192936      |  |
| Series 4 | 100000  | 1086    | 100050     | 86430       | 1086.2     | 86567       |  |
| Series 5 | 50000   | 1173    | 119692     | 104416      | 1171.3     | 103042      |  |

 Table 5.
 Root Bending Moment statistic for flapwise fatigue test of blade # 4703.

### 4.7 Strain measurements

A strain measurement is considered incorrect when the recorded strain values are more than 4 times the standard deviation beyond or below the average. These values are removed from the files and are disregarded in the further data analysis. The strain statistics in the tables are based on all strain gauge scans in the respective load levels. The increase in load level is based on the average of the prior load level.

|              |         |        |         |       | %-increase<br>compared to<br>level 1 | %-increase<br>compared to<br>level 2 | %-increase<br>compared to<br>level 3 | %-increase<br>compared to<br>level 1 |
|--------------|---------|--------|---------|-------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|              | LEVEL 1 |        |         |       | LEVEL 2                              | LEVEL 3                              | LEVEL 4                              | LEVEL 5                              |
| SG-no. #     | Min     | Max    | Average | Stdev |                                      |                                      |                                      |                                      |
| 0            | 1876    | 2001   | 1938,4  | 17,6  | 8,6                                  | 7,1                                  | 10.1                                 | 7,7                                  |
| 1            | 1606    | 1713   | 1655,1  | 17,4  | 6,8                                  | 7,1                                  | 9.5                                  | 7,4                                  |
| 2            | 1961    | 2090   | 2025,8  | 19,1  | 8,2                                  | 7,1                                  | 9.4                                  | 7,3                                  |
| 3            | 1940    | 2065   | 2000,0  | 19,0  | 8,1                                  | 7,0                                  | 9.5                                  | 7,2                                  |
| 4            | 2007    | 2144   | 2071,0  | 19,2  | 8,0                                  | 6,9                                  | 9.5                                  | 7,4                                  |
| 5            | 1771    | 1885   | 1824,0  | 17,5  | 8,1                                  | 7,0                                  | 9.4                                  | 7,1                                  |
| 6            | 2098    | 2238   | 2157,9  | 20,6  | 8,0                                  | 6,9                                  | 9.4                                  | 7,4                                  |
| 7            | 1919    | 2044   | 1975,6  | 19,2  | 8,1                                  | 7,0                                  | 9.4                                  | 7,1                                  |
| 8            | 2234    | 2390   | 2305,0  | 21,4  | 8,4                                  | 7,2                                  | 9.6                                  | 7,4                                  |
| 9            | 1988    | 2122   | 2048,0  | 18,8  | 8,2                                  | 6,9                                  | 9.3                                  | 7,0                                  |
| 10           | 2554    | 2723   | 2633,1  | 24,7  | 8,4                                  | 7,2                                  | 9.6                                  | 7,5                                  |
| 11           | 2283    | 2438   | 2350,0  | 22,0  | 8,2                                  | 7,0                                  | 9.5                                  | 7,1                                  |
| 12           | 2453    | 2620   | 2524,5  | 22,7  | 8,6                                  | 7,2                                  | 9.5                                  | 7,6                                  |
| 13           | 2195    | 2349   | 2265,5  | 22,1  | 8,0                                  | 6,9                                  | 9.3                                  | 6,9                                  |
| 14           | 2675    | 2859   | 2759,0  | 27,6  | 8,4                                  | 6,7                                  | 9.4                                  | 6,7                                  |
| 15           | 2778    | 2977   | 2866,9  | 27,4  | 8,2                                  | 7,0                                  | 9.2                                  | 6,1                                  |
| 16           | 2390    | 2563   | 2465,4  | 23,3  | 8,2                                  | 6,9                                  | 9.7                                  | 10,6                                 |
| 17           | 2327    | 2490   | 2397,6  | 22,5  | 8,0                                  | 6,9                                  | 9.2                                  | 6,7                                  |
| 18           | 2156    | 2318   | 2243,5  | 26,8  | 7,7                                  | 7,1                                  | 10.5                                 | 9,7                                  |
| 19           | 2239    | 2401   | 2308,6  | 21,8  | 8,3                                  | 7,1                                  | 11.1                                 | 12,5                                 |
| 20           | 1267    | 1361   | 1307,7  | 12,0  | 8,3                                  | 5,8                                  | 9.4                                  | 4,8                                  |
| 21           | 1362    | 1457   | 1403,2  | 13,2  | 8,3                                  | 7,4                                  | 8.7                                  | 0,3                                  |
| 22           | 465     | 500    | 481,2   | 5,0   | 7,7                                  | 1,1                                  | 3.3                                  | -0,6                                 |
| 23           | 526     | 564    | 543,1   | 5,4   | 8,0                                  | 4,4                                  | 3.3                                  | 0,8                                  |
| 24           | 20      | 23     | 20,9    | 0,6   | 6,6                                  | 6,3                                  | -0.1                                 | -72,7                                |
| 25           | 13      | 16     | 14,5    | 0,6   | 6,0                                  | 8,3                                  | -8.5                                 | 1,6                                  |
| 26           | 675     | 711    | 688,1   | 6,8   | 7,5                                  | 6,6                                  | 6.7                                  | 6,5                                  |
| 27           | 2105    | 2220   | 2170,5  | 16,9  | 8,6                                  | 7,2                                  | 9.5                                  | 7,6                                  |
| 28           |         |        |         |       |                                      |                                      |                                      | -0,8                                 |
| 29           |         |        |         |       |                                      |                                      |                                      | 6,0                                  |
| Moment start | 832,81  | 895,27 | 865,6   | 9,7   | 8,3                                  | 7,2                                  | 8.6                                  |                                      |
| Moment end   | 835,26  | 901,4  | 866,9   | 9,8   | 8,3                                  | 7,4                                  | 8.4                                  | 8,2                                  |

Table 6.Strain statistics for load level 1 compared to increase in load in level 2-5, for blade #4703. For the gauges # 24 and # 25 the basis measurement is at a low level, this explains the high percentage deviation for these gauges in the last load level

#### 4.8 Results of inspections

During the flapwise fatigue test the blade was visually inspected at regular intervals. Before the appearance of the crack there was no visual impacts on the blade. The only observations of changes made on the blade were made with the thermal imaging equipment as discussed in paragraph 4.3.

### 4.9 Conclusion, Blade # 4703

Blade # 4703 was fatigue tested at five different load levels. During test the blade was monitored by use of strain gauges, thermal inspection equipment and visual inspection. The blade did not show significant increase in temperature as the load was increased, i.e. changes in temperature were less than 5 ° C. The damage on the blade started on the joint between the trailing edge web and the pressure side shell. The damage propagated along the web, and the test was stopped when the trailing edge was damaged. For further info on the damage see Ref 5. As the test was carried out a minor change in the strain distribution was seen. This change was seen in the gauges positioned where the damage was appearing.

# 5 Flapwise fatigue test of blade no. # 4706

#### 5.1 Blade two, test sequence

The second blade was planned to be tested at only one load level, equal to the fourth level of the first blade (1086 [kNm]). This load is equal to a lifetime test carried out in 625.000 cycles.

When the blade has experienced 2.33 lifetime cycles the load was increased. The increase in load was 8 % and the new load was 1173 [kNm]. At this load the blade was tested for an additional 4.18 lifetime cycles. More load increases were made as described in paragraph 5.2. The intention was to excite the blade until visual damage occurred.

### 5.2 Phase definition

The test phases are defined in Table 7.

| Phase | Date   |        | Root    | Number of    | Number of     | Number of      |
|-------|--------|--------|---------|--------------|---------------|----------------|
| and   |        |        | bending | nominal      | nominal       | lifetimes      |
| level | Start  | Stop   | moment  | cycles for a | cycles        | applied to the |
|       |        |        | [kNm]   | lifetime     | applied in    | blade in       |
|       |        |        |         |              | current phase | phase          |
| 1     | 04/10- | 26/10- | 1086    | 625000       | 1454218       | 2.33           |
|       | 2001   | 2001   |         |              |               |                |
| 2     | 26/10- | 12/11- | 1173    | 312500       | 1306956       | 4.18           |
|       | 2001   | 2001   |         |              |               |                |
| 3     | 12/11- | 16/11- | 1267    | 156250       | 355116        | 2.27           |
|       | 2001   | 2001   |         |              |               |                |
| 4     | 16/11- | 19/11- | 1280    | 142851       | 255256        | 1.79           |
|       | 2001   | 2001   |         |              |               |                |
| 5     | 19/11- | 23/11- | 1368    | 78125        | 138818        | 1.78           |
|       | 2001   | 2001   |         |              |               |                |
|       |        |        |         |              | Sum           | 12.4           |
|       |        |        |         |              |               |                |



### 5.3 Events during test

The second blade was surveyed by thermal imaging equipment in 6 sessions. There were two sessions for the first level and one session for each of the following levels. There were no observations of hot spots under the first thermal surveillance.

On the 11<sup>th</sup> of October two additional strain gauges were mounted. The gauges were mounted on the centre line of the pressure side at distance Z = 4.89 [m] and Z = 6.81 [m]. The positions of these two gauges were determined after the second thermal surveillance of the blade.

The thermal observations on this blade have been very similar to the observations made on the first blade. The difference is observed on the suction side of the blade. Where the first blade showed no thermal emission in the area of the webs on suction side, the second blade has had areas on the suction

side very similar to the picture from the pressure side, i.e. a hot area between the two webs, especially in the area of the web towards trailing edge, see Figure 26 and Figure 28.

Hot spots observed in the root section on this blade, were similar to the spots on the first blade. Figure 27 and Figure 29 shows the root section, when the the thermal images were made the root bending moment was 1267 [kNm].



*Figure 26.* Suction side of blade with part of preload and exciter

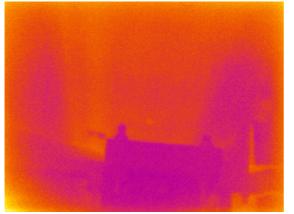



Figure 28. Thermal image of downwind side of exciter area at load level1086 [kNm]

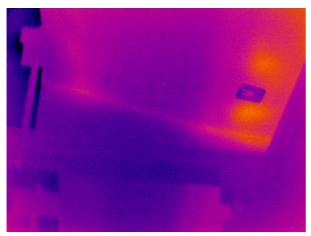



Figure 30. Thermal image of downwind side of exciter area at load level 1368 [kNm]



Figure 27. Downwind centre line, hot spot marked with red marker, diameter app. 3 [cm].

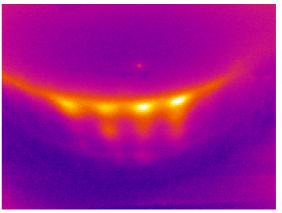



Figure 29. Thermal image of hot spot on centre line of downwind side at the root section at load level 1267[kNm]

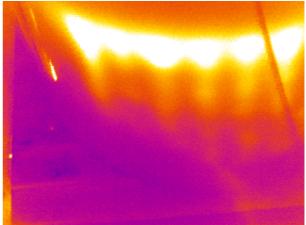



Figure 31. Thermal image of hot spot on centre line of downwind side at the root section at load level 1368[kNm]

The propagation in the thermal emission on the blade during test was limited to an increase in the heated area in the root section and, at the very end of the test, a change in heat distribution in the area of the exciter.



*Figure 32. Pressure side of blade, area between 8.5 [m] and exciter* 

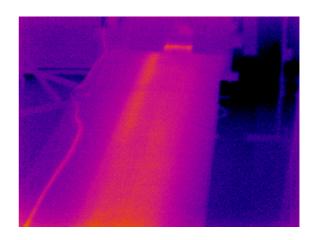



Figure 33. Thermal image of upwind side of exciter area at load level 1267 [kNm]

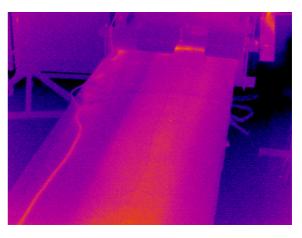



Figure 34. Thermal image of upwind side of exciter area at load level 1368 [kNm]

Figure 32 Figure 33 and Figure 34 shows the upwind side of the blade, and the change in thermal emission when the load is increased. A similar picture was seen on the first blade just prior to the damage in the trailing edge. On this blade are observed no damage by visual inspection when the blade was still mounted on the test-rig. Subsequent to the dismounting of the blade a small crack appeared in the trailing edge. The position of the crack was from 10.67 [m] to 10.85[m].

# 5.4 Environment during test

Through the flapwise fatigue test temperature measurements were made. Figure 35 shows the temperature in the environment as a function of the cycles. The data-acquisition-computer measured the temperature and number of cycles.

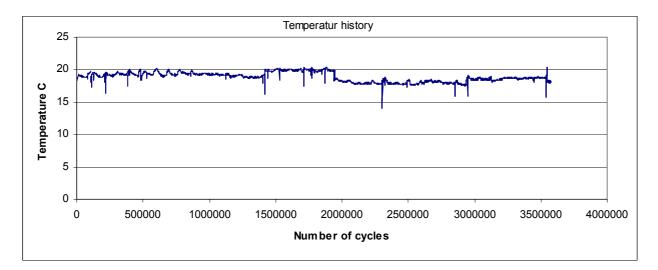
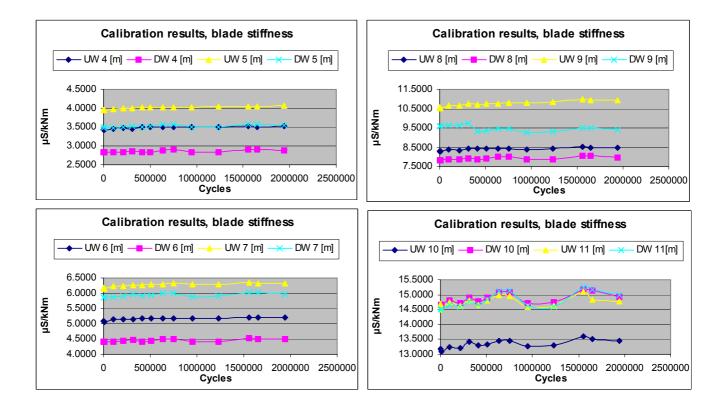




Figure 35. Temperature measurements during flapwise fatigue test.

# 5.5 Calibration test results

During the fatigue test several calibration tests were performed. The calibration tests were performed as static tests with load applied to make bending towards suction (down wind) side of blade. Figure 36 shows the normative stiffness of the blade for discrete sections of the blade. The measurements show the  $\mu$ S/kNm local stiffness at maximum load for the calibration tests. The graphs are supposed to be linear i.e no change in stiffness of the blade. The graphs show a change in stiffness for the sections from 9 [m] to 11 [m] as the test is carried out. The change is starting when the test has run for less than 500 000 cycles, i.e.

app. 1 500 000 cycles before visual damage was seen on the blade.



*Figure 36.* Discrete stiffness distribution for calibration tests of LM 19.1 # 4706, the x-axis is number of cycles applied to the blade

#### 5.6 Moment range measurements

The number of cycles in - is determined from the data acquisition software.

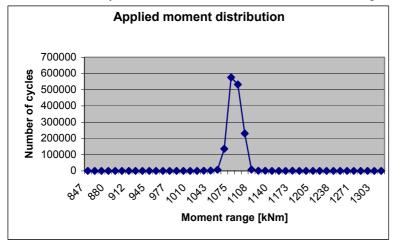



Figure 37. Moment distribution for blade # 4706 at load level 1



Figure 38. Moment distribution for blade # 4706 at load level 2

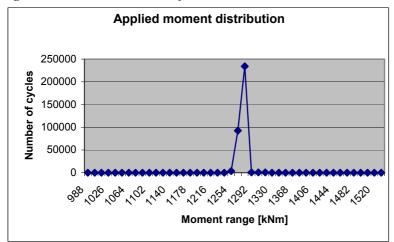
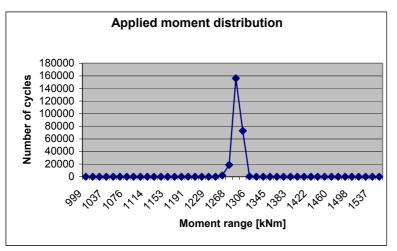




Figure 39. Moment distribution for blade # 4706 at load level 3



*Figure 40. Moment distribution for blade* # 4706 *at load level 4* 

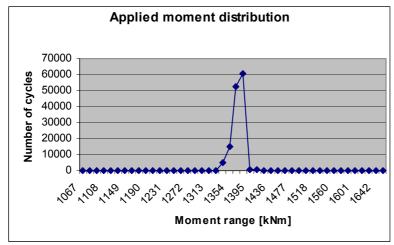



Figure 41. Moment distribution for blade # 4706 at load level 5

The number of cycles in Table 8 is determined from the data acquisition software

|          | Ta      | arget   | Meas       | sured       | Calculated |                     |  |
|----------|---------|---------|------------|-------------|------------|---------------------|--|
| Series # | ∑n,     | Nominal | ∑n,        | ∑n,         | Equivalent | Calculated          |  |
|          | Nominal | moment  | Mechanical | Data        | moment     | $\sum$ n at nominal |  |
|          |         | [kNm]   |            | acquisition | [kNm]      | moment              |  |
|          |         |         |            | software    |            |                     |  |
| Series 1 | 625000  | 1086.0  | 1649647    | 1501394     | 1082       | 1454218             |  |
| Series 2 | 312500  | 1173.0  | 1487758    | 1339458     | 1170       | 1306956             |  |
| Series 3 | 156250  | 1267.0  | 372731     | 332996      | 1276       | 355115              |  |
| Series 4 | 150000  | 1280.7  | 275889     | 250338      | 1283       | 255256              |  |
| Series 5 | 78125   | 1368.0  | 149476     | 135476      | 1371       | 138818              |  |

 Table 8.
 Root Bending Moment statistic for flapwise fatigue test of blade # 4706.

## 5.7 Strain measurements

A strain measurement is considered incorrect when the recorded strain values are more than 4 times the standard deviation beyond or below the average. These values are removed from the files and are disregarded in the further data analysis. The strain statistics in the tables are based on all strain gauge scans in the respective load levels. The increase in load level is based on the average of the prior load level. For the strain statistic the load level at 1267 kNm and the load level at 1280 kNm is treated as one load level

|              |         |         |         |       | %-increase<br>compared<br>to level 1 | %-increase<br>compared<br>to level 2 | %-increase<br>compared<br>to level 3 |
|--------------|---------|---------|---------|-------|--------------------------------------|--------------------------------------|--------------------------------------|
|              | LEVEL 1 |         |         |       | LEVEL 2                              | LEVEL 3                              | LEVEL 4                              |
| SG-no. #     | Min     | Max     | Average | Stdev |                                      |                                      |                                      |
| 0            | 2137    | 2384    | 2259.5  | 46.7  | 9.6                                  | 8.5                                  | 8.3                                  |
| 1            | 1807    | 2023    | 1928.3  | 40.6  | 9.5                                  | 7.3                                  | 9.7                                  |
| 2            | 2365    | 2592    | 2481.3  | 46.6  | 9.5                                  | 8.4                                  | 8.1                                  |
| 3            | 2186    | 2405    | 2304.1  | 44.7  | 9.4                                  | 7.8                                  | 8.0                                  |
| 4            | 2461    | 2727    | 2601.8  | 52.0  | 8.2                                  | 7.0                                  | 8.1                                  |
| 5            | 1926    | 2109    | 2018.6  | 37.7  | 9.8                                  | 8.7                                  | 8.1                                  |
| 6            | 2541    | 2805    | 2681.9  | 51.0  | 9.7                                  | 8.4                                  | 8.1                                  |
| 7            | 2121    | 2319    | 2220.0  | 41.0  | 9.3                                  | 8.2                                  | 7.9                                  |
| 8            | 2548    | 2824    | 2695.0  | 53.2  | 9.9                                  | 8.2                                  | 8.1                                  |
| 9            | 2273    | 2504    | 2397.5  | 44.6  | 9.5                                  | 8.2                                  | 8.0                                  |
| 10           | 2796    | 3100    | 2964.6  | 56.8  | 9.8                                  | 9.0                                  | 7.6                                  |
| 11           | 2467    | 2713    | 2596.5  | 48.1  | 9.4                                  | 8.3                                  | 8.1                                  |
| 12           | 2833    | 3156    | 3015.3  | 59.6  | 9.6                                  | 7.8                                  | 7.9                                  |
| 13           | 2727    | 3004    | 2875.3  | 53.4  | 9.4                                  | 8.2                                  | 7.9                                  |
| 14           | 3052    | 3388    | 3240.0  | 60.9  | 11.1                                 | 8.3                                  | 8.9                                  |
| 15           | 2914    | 3218    | 3079.4  | 57.0  | 9.5                                  | 8.4                                  | 8.1                                  |
| 16           | 2946    | 3304    | 3142.6  | 62.1  | 10.5                                 | 7.9                                  | 9.1                                  |
| 17           | 2650    | 2913    | 2795.2  | 52.1  | 8.5                                  | 3.4                                  | 1.0                                  |
| 18           | 2512    | 2787    | 2665.3  | 50.1  | 9.7                                  | 8.0                                  | 12.8                                 |
| 19           | 2780    | 3070    | 2942.4  | 54.5  | 9.1                                  | 8.2                                  | 9.0                                  |
| 20           | 1524    | 1684    | 1610.2  | 30.0  | 9.1                                  | 8.8                                  | 5.3                                  |
| 21           | 1522    | 1686    | 1614.8  | 29.7  | 9.4                                  | 9.1                                  | 2.9                                  |
| 22           | 593     | 655     | 625.5   | 11.7  | 9.9                                  | 8.6                                  | 2.7                                  |
| 23           | 549     | 607     | 581.3   | 10.6  | 9.8                                  | 8.6                                  | 3.0                                  |
| 24           | 26      | 37      | 29.0    | 1.6   | 2.0                                  | 5.9                                  | -12.1                                |
| 25           | 15      | 26      | 17.4    | 1.7   |                                      | 33.4                                 | 7.6                                  |
| 26           | 585     | 655     | 623.6   | 12.3  | 9.1                                  | 8.4                                  | 4.3                                  |
| 27           | 543     | 620     | 588.4   | 12.9  | 11.1                                 | 10.0                                 | -4.7                                 |
| 28           | 2805    | 3139    | 2971.6  | 79.0  | 6.4                                  | 7.4                                  | 7.9                                  |
| 29           | 3159    | 3505    | 3362.2  | 64.6  | 7.7                                  | 5.4                                  | 7.9                                  |
| Moment start | 1035.28 | 1129.98 | 1085.9  | 10.8  | 8.2                                  | 12.6                                 | 4.3                                  |
| Moment end   | 996.66  | 1132.59 | 1088.7  | 10.9  | 8.2                                  | 12.6                                 | 4.1                                  |

 Table 9.
 Strain statistics for load level 1- 4 for blade # 4706

## 5.8 Results of inspections

During the flapwise fatigue test the blade was visually inspected at regular intervals. There were no visual observations of damages on the blade; the only observations of changes were made with the thermal imaging equipment.

## 5.9 Conclusion, Blade # 4706

Blade # 4706 was fatigue tested at five different load levels. During test the blade was monitored by use of strain gauges, thermal inspection equipment and visual inspection. The blade did not show significant increase in temperature as the load was increased, i.e. changes in temperature were less than 5 ° C. As the test was carried out a minor change in the strain distribution was seen. This change was seen in the gauges positioned where the damage appeared. The test was stopped when the stiffness had changed with a magnitude and a rate that made it impossible for the regulation of the test to keep up with the changes. There was no visible damage on the blade when the test was aborted, but after dismantling the set-up a minor damage appeared on the trailing edge. The damage on the blade appears to have started on the joint between the trailing edge web and the pressure side shell. For further info on the damage see Ref 5.

## 6 Flapwise fatigue test of blade no. # 4700

### 6.1 Blade three, test sequence

The third blade was planned to be tested at only one load level, equal to the third level of the first blade (1005 [kNm]). This load is equal to a lifetime test carried out in 1250000 cycles.

When the blade has experienced 0.63 lifetime cycles the load was increased. The increase in load was 2 times 8 % and the new load was 1173 [kNm]. At this load the blade experiences one lifetime in 312500 cycles. At this level the test was carried out for 1453350 more cycles. This load-level and number of cycles is equivalent to 4.65 lifetime. The load increases were made as described in paragraph 6.2.

The intention was to excite the blade until visual damage occurred.

## 6.2 Phase definition

The test phases are defined in Table 10.

| Phase and | Da     | ate    | Root<br>bending | Number of nominal | Number of nominal | Number of<br>lifetimes |
|-----------|--------|--------|-----------------|-------------------|-------------------|------------------------|
| level     | Start  | Stop   | moment          | cycles for a      | cycles            | applied to the         |
|           |        |        | [kNm]           | lifetime          | applied in        | blade in               |
|           |        |        |                 |                   | current phase     | phase                  |
| 1         | 29/11- | 07/12- | 1005            | 1250000           | 592344            | 0.47                   |
|           | 2001   | 2001   |                 |                   |                   |                        |
| 2         | 07/12- | 21/12- | 1173            | 312500            | 1090638           | 3.49                   |
|           | 2001   | 2001   |                 |                   |                   |                        |
| 3         | 17/01- | 19/01- | 1267            | 156250            | 189691            | 1.21                   |
|           | 2002   | 2002   |                 |                   |                   |                        |
|           |        |        |                 |                   | Sum               | 5.17                   |
|           |        |        |                 |                   |                   |                        |

Table 10. Phase definition

### 6.3 Events during test

The third blade was surveyed by thermal imaging equipment in 3 sessions. There was one session for the first level and two sessions for the following level.

The thermal observations on this blade have been very similar to the observations made on the first and second blade.

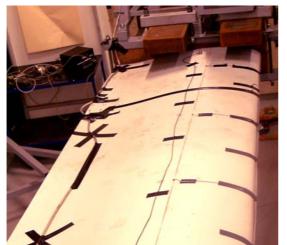



Figure 42. Pressure side of blade, area between 8.5 [m] and exciter. This picture is from blade 4706, this explains the difference in cabling

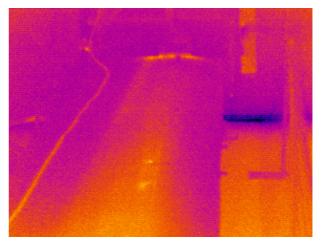



Figure 43. Thermal image of upwind side of exciter area at load level 1173 [kNm]

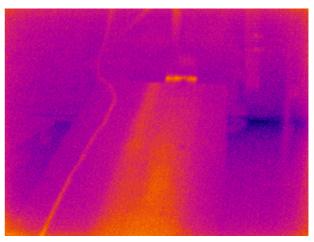



Figure 44. Thermal image of upwind side of exciter area at load level 1173 [kNm]

Figure 42, Figure 43 and Figure 44 show the upwind side of the blade, and the thermal emission from the blade. A similar picture was seen on the first two blades. On this blade are observed no damage by visual inspection but as the test of this blade was terminated a minor change in strain level were observed for some of the SG.

## 6.4 Environment during test

Through the flapwise fatigue test temperature measurements were made. Figure 45 shows the temperature in the environment as a function of the cycles. The data-acquisition-computer measured the temperature and number of cycles.

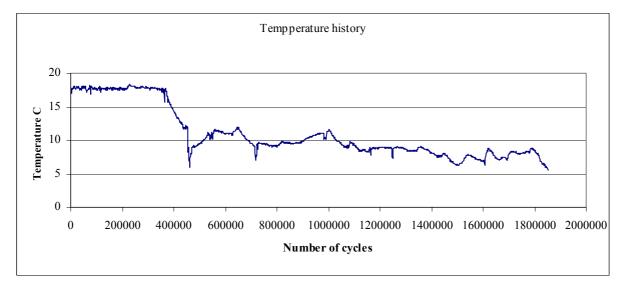
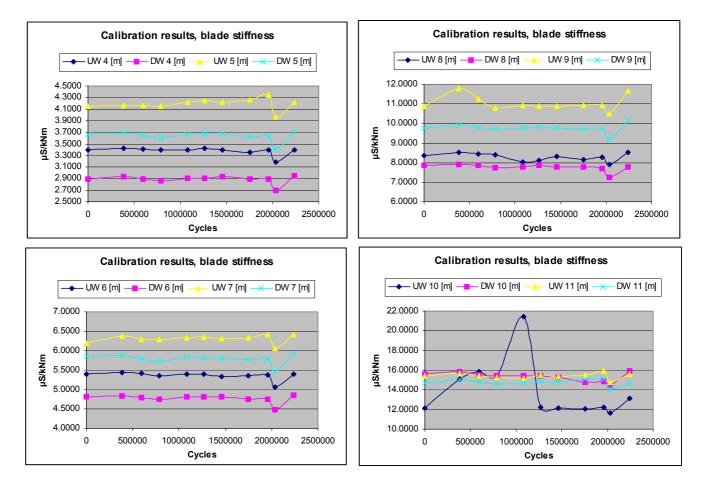
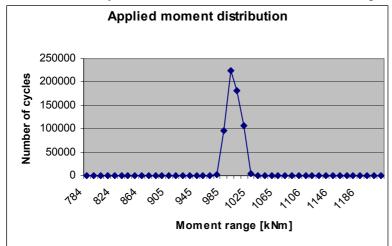
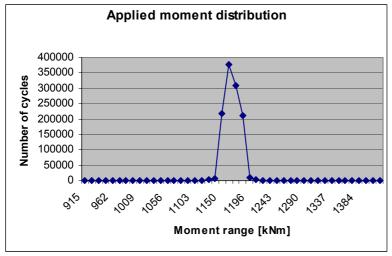




Figure 45. Temperature measurements during flapwise fatigue test.

## 6.5 Calibration test results


During the fatigue test several calibration tests were performed. The calibration tests were performed as static tests with load applied to make bending towards suction (down wind) side of blade. Figure 46 shows the normative stiffness of the blade for discrete sections of the blade. The measurements show the  $\mu$ S/kNm local stiffness at maximum load for the calibration tests. The graphs are supposed to be linear i.e no change in stiffness of the blade. The graphs show no change in stiffness for the different sections of the blade. The change seen on the UW 10 [m] in the early stage of the test is caused by a defect strain gauges.




*Figure 46.* Discrete stiffness distribution for calibration tests of LM 19.1 # 4700, the x-axis is number of cycles applied to the blade

## 6.6 Moment range measurements

The number of cycles in - is determined from the data acquisition software.



*Figure 47. Moment distribution for blade* # 4700 *at load level 1* 



*Figure 48. Moment distribution for blade # 4700 at load level 2* 

|          | Та      | arget   | Meas       | sured       | Calcu      | lated               |
|----------|---------|---------|------------|-------------|------------|---------------------|
| Series # | ∑n,     | Nominal | ∑n,        | $\sum n$ ,  | Equivalent | Calculated          |
|          | Nominal | moment  | Mechanical | Data        | moment     | $\sum$ n at nominal |
|          |         | [kNm]   |            | acquisition | [kNm]      | moment              |
|          |         |         |            | software    |            |                     |
| Series   | 1250000 | 1005.0  | 786836     | 618538      | 1000.2     | 592344              |
| 1        |         |         |            |             |            |                     |
| Series   | 312500  | 1173.0  | 1247404    | 1139386     | 1167.3     | 1090638             |
| 2        |         |         |            |             |            |                     |
| Series   | 156250  | 1267.0  | 205946     | 188212      | 1268.1     | 189691              |
| 3        |         |         |            |             |            |                     |

The number of cycles in Table 11 is determined from the data acquisition software

Table 11. Root Bending Moment statistic for flapwise fatigue test of blade # 4700.

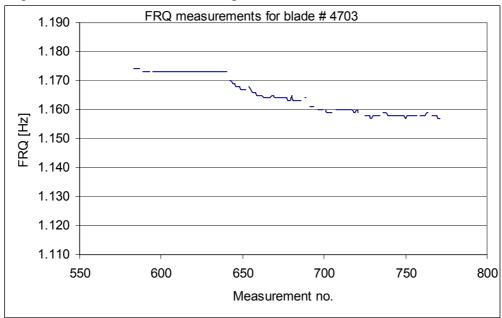
## 6.7 Strain measurements

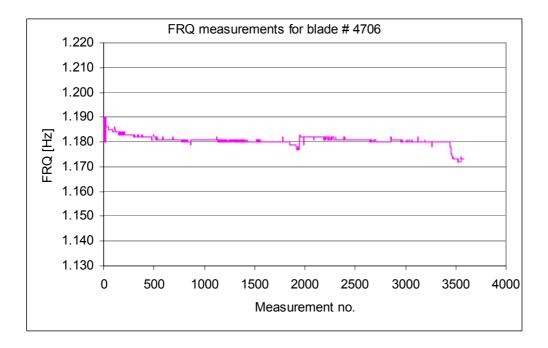
A strain measurement is considered incorrect when the recorded strain values are more than 4 times the standard deviation beyond or below the average. These values are removed from the files and are disregarded in the further data analysis. The strain statistics in the tables are based on all strain gauge scans in the respective load levels.

|              |         |         |         |       | %-increase<br>compared<br>to level 1 |
|--------------|---------|---------|---------|-------|--------------------------------------|
|              | LEVEL 1 |         |         |       |                                      |
| SG-no. #     | Min     | Max     | Average | Stdev |                                      |
| 0            | 2083    | 2225    | 2163.7  | 24.2  | 17.4                                 |
| 1            | 1790    | 1913    | 1857.0  | 19.5  | 18.7                                 |
| 2            | 2330    | 2478    | 2411.5  | 25.6  | 17.5                                 |
| 3            | 2090    | 2231    | 2167.7  | 24.4  | 17.0                                 |
| 4            | 2543    | 2723    | 2638.4  | 31.2  | 16.0                                 |
| 5            | 2095    | 2247    | 2179.9  | 26.6  | 15.6                                 |
| 6            | 2387    | 2537    | 2467.7  | 25.3  | 16.6                                 |
| 7            | 2083    | 2218    | 2156.9  | 23.4  | 17.2                                 |
| 8            | 2528    | 2693    | 2618.4  | 25.6  | 18.4                                 |
| 9            | 2283    | 2433    | 2366.6  | 26.0  | 17.0                                 |
| 10           | 2747    | 3009    | 2887.0  | 55.9  | 13.9                                 |
| 11           | 2544    | 2720    | 2642.9  | 29.6  | 16.8                                 |
| 12           | 2683    | 2902    | 2817.5  | 30.0  | 17.8                                 |
| 13           | 2570    | 2746    | 2669.5  | 29.5  | 16.9                                 |
| 14           | 2943    | 3151    | 3061.0  | 34.2  | 13.7                                 |
| 15           | 2755    | 2949    | 2865.5  | 32.0  | 16.5                                 |
| 16           | 2879    | 3382    | 3031.7  | 74.1  | 15.0                                 |
| 17           | 2625    | 2814    | 2733.6  | 29.8  | 16.6                                 |
| 18           | 2217    | 2399    | 2302.1  | 28.2  | 17.3                                 |
| 19           | 2780    | 3002    | 2910.8  | 35.0  | 14.2                                 |
| 20           | 1502    | 1618    | 1569.4  | 16.9  | 18.0                                 |
| 21           | 1474    | 1586    | 1537.8  | 16.5  | 18.8                                 |
| 22           | 554     | 608     | 584.0   | 9.3   | 16.0                                 |
| 23           | 549     | 597     | 576.6   | 7.6   | 16.1                                 |
| 24           | 31      | 34      | 33.0    | 0.2   | 11.2                                 |
| 25           | 14      | 21      | 17.3    | 1.3   | 7.3                                  |
| Moment start | 973.39  | 1036.51 | 1004.1  | 9.1   | 16.9                                 |
| Moment end   | 960.34  | 1044.09 | 1005.8  | 9.8   | 17.0                                 |

Table 12. Strain statistics for load level 1 and 2 for blade # 4700

## 6.8 Results of inspections


During the flapwise fatigue test the blade was visually inspected at regular intervals. There were no visual observations of damages on the blade.


## 6.9 Conclusion, Blade # 4700

Blade # 4700 was fatigue tested at three different load levels. During test the blade was monitored by use of strain gauges, thermal inspection equipment and visual inspection. The blade did not show significant increase in temperature as the load was increased, i.e. changes in temperature were less than 5 ° C. The damage on the blade started on the joint between the trailing edge web and the pressure side shell. The damage propagated along the web, and the test was stopped when the trailing edge was damaged. For further info on the damage see Ref 5. In the very end of the test, just before the blade broke a minor change in the strain distribution was seen. This change was seen in the gauges positioned where the damage was appearing.

# 7 Frequency measurements during test

The natural frequency (1<sup>st</sup> flapwise bending mode) was measured on the three blades during the fatigue tests. Changes in the stiffness of the blade will influence on the natural frequencies, and this is seen as changes in the structure.





*Figure 49. Changes in natural frequency (1<sup>st</sup> flapwise bending mode) as the tests proceeded.* 

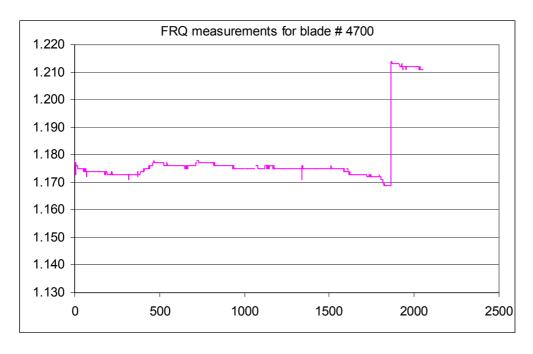



Figure 50. Changes in natural frequency ( $1^{st}$  flapwise bending mode) as the test proceeded.

As the graphs showed a general decrease in the frequency of the blades as the fatigue tests proceeded were observed.

On the last of the three blades there was made an improvement of the test-rig during the test. The test rig became stiffer, and this is seen as a higher frequency of the blade, this explain the "jump" in the graph.

# 8 Conclusion

A series of fatigue tests have been applied to three LM 19.1 blades with the aim of investigating the influence of increasing the load range to shorten the duration of the fatigue test. During these tests at different load levels, the blades were surveyed with thermal imaging system to see if the areas getting the most energy are changed to other locations, i.e. creating new failure modes with new, higher, loads. During these sessions no observations were made regarding changing of the overall pattern of the thermal emission from the blades, but the heated areas were enlarged and the temperature was increased up to 5°. For one blade the increase in load range corresponds to full 5 million cycles fatigue test carried out in only 78125 cycles, i.e. corresponding to an increase in load range of more than 50%. Even at this load level there seems to be no change of the overall pattern of the damaged areas using the thermal emission as guidance.

In addition to the thermal surveillance of the blades, static calibration measurements with strain gauges were also carried out. These strain gauges measurements showed changes in strain level very long time in advance of the observations of damages in the blades. The natural frequency (1<sup>st</sup> flapwise bending mode) was measured on the three blades during the fatigue tests. This showed a general decrease in the frequency of the blade as the fatigue tests proceeded.

Based on the tests in this project, the shortening of a fatigue blade test duration by means of increasing the load level range does not lead to new heated areas of the blade and only a small increase of the maximum temperature in the materiel was seen.

# **9** References

- 1. "Rekommandation til opfyldelse af krav i Teknisk Grundlag for Typegodkendelse og Certificering af Vindmøller i Danmark". (kapitel 5). 1. juli 1992.
- 2. "Teknisk Grundlag for Typegodkendelse og Certificering af Vindmøller i Danmark". 15. april 2000. Issued by Danish Energy Agency.
- 3. "Kvalitetshåndbog Vindmøllevinger for Sparkær Centret". Forskningscenter Risø.
- 4. "Dynamic test, windturbine blade LM". Dated 2000.
- 5. Depel, C.P. (2003) "Identification of Damage Types in Wind Turbine Blades Tested to Failure". Risø-R-1392(EN). Forskningscenter Risø, Roskilde.

## APPENDIX

#### **DATA SHEETS FOR STATIC TESTS** A.

## **Edgewise deflection measurements**

\*\*\* #{

Kalibreringstest for vinge udmattelse QS 8.104.1

| Vinge id / serie                              | : ar. :        | LM    | 119.1                        |         | 4    | 1703      |        |
|-----------------------------------------------|----------------|-------|------------------------------|---------|------|-----------|--------|
| Dato :                                        |                |       |                              | 2 - 2   |      |           |        |
| Antal lastcykle                               | r:             |       |                              |         |      | antris    | stulia |
| Nominei rodmo                                 | oment [kNm] :  | -     | 1.0441                       | ne i ye |      | 1013      | 11000  |
| Exciter og a <del>cce</del><br>position [m] : | terometer. ASM | 1 1   | 6,3                          |         | Tip- | 16,0 - 13 | 3,3    |
| Temperatur [°C                                | :]:            |       | 205                          | 19.2    |      |           |        |
| Parametertil :                                |                |       | -                            |         |      |           |        |
| Kalibreringstiin                              | navn :         |       | -                            |         |      |           |        |
| Skrevet af :                                  |                | ÷.    | ete                          | tim     | r    |           |        |
| Last trin                                     | Last [kN]      |       | ojning [                     |         |      | Δ [mm]    |        |
|                                               |                | 1 acc | måles ve<br>ele <b>xo</b> me | ter) 3  | 1    | 2         | 3      |
| 1                                             | 0              | 8543  | 1186                         | 1155    | 0    | 0         | c      |
| 2                                             | 2,01           | 844,3 | 1166                         | 1226    | 13,4 | 20,0      | 29,    |
| 3                                             | 4,06           | 830,4 | 1146                         | 1098    | 27.3 | 40,0      | 57,    |
| 4                                             | 6,01           | 817.1 | 1126                         | 1070    | 40,6 | 60,0      | 85     |
| j                                             | 8,00           | 803.3 | 1106                         | 1042    | 54.4 | 80,0      | 113,   |
| 6                                             | 0              | 856.4 |                              | 1153    | 1.3  | 10        | 2.     |

1: 1 m ASH @ 13.3 m 2:2m - ... @ 16.0 m 3 . 3 m -- @ tip

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden

0

1533

| Beregnet stivhed K [mm/kNm]   | 1                                         |
|-------------------------------|-------------------------------------------|
| Fra regressionsanalyse        |                                           |
| Beregnet skæringspunkt S [mm] |                                           |
| Fra regressionsanalyse        |                                           |
|                               | Hvis S>1 mm skal der laves en ny test     |
| Beregnet udsvingsvidde [mm]   |                                           |
|                               |                                           |
|                               | Kontrolleres med tidligere beregnet værdi |
| Opdatering af parameterfil    |                                           |
| (ja/nei)                      |                                           |

856,41185 1153 1,3

1574 1516 1515

Bemærkninger

PFV no.



 $ChK\ {\it callee} independence of the set of$ 

#2

## Kalibreringstest for vinge udmattelse QS 8.104.1

| Vinge id / serie nr. :                         | LM19.1      | 4706               |
|------------------------------------------------|-------------|--------------------|
| Dato :                                         | 18/5-2      | 007                |
| Antal lastcykler :                             | Bestemmelse | of hantuis stiched |
| Nominel rodmoment [kNm] :                      | ~           |                    |
| Exciter og-accelerometer ASM<br>position [m] : | 16.3        | Tip +6m - 13,3m    |
| Temperatur [°C] :                              | 22.50       |                    |
| Parameterfil :                                 |             |                    |
| Kalibreringsfilnavn :                          | -           |                    |
| Skrevet af :                                   | ARV         |                    |

| Last trin | Last [kN] | Udbøj   | jning [mm] |       | $\Delta$ [mm] |     |
|-----------|-----------|---------|------------|-------|---------------|-----|
|           |           |         | ales ved   | -1    | 2             | 3   |
| 1         | 0         | 438.6 ( | 645 1133   | 0     | 0             | 0   |
| 2         | 2,05      | 423.2 ( | 624 1105   | .15,4 | 21            | 28  |
| 3         | 4.07      | 407,8 ( | 604/1076   | 30,8  | 41            | 57  |
| 4         | 6,04      | 392.9 5 | 584 1048   | 45,7  | 61            | 85  |
| 5         | 8,06      | 377,6 5 | 564 1020   | 61,0  | 21            | 113 |
| 6         | 0         | 437.7 6 | 544 1131   | 0,9   | 1             | 2   |
|           |           |         |            |       |               |     |
| PFV no.   | 1533      | 1518 1  | 517 1516   |       | -             |     |

1. asin 13.3n 2. -11- 16.0m 3 -11- Tip

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden

| Beregnet stivhed K [mm/kNm]   |                                           |
|-------------------------------|-------------------------------------------|
| Fra regressionsanalyse        |                                           |
| Beregnet skæringspunkt S [mm] |                                           |
| Fra regressionsanalyse        |                                           |
|                               | Hvis S> 1 mm skal der laves en ny test    |
| Beregnet udsvingsvidde [mm]   |                                           |
|                               |                                           |
|                               | Kontrolleres med tidligere beregnet værdi |
| Opdatering af parameterfil    |                                           |
| (ja/nej)                      |                                           |

Bemærkninger



 $C.\mathsf{K} valite \mathsf{A} m dleh dn dbog, Spark \mathfrak{W} \mathsf{K} all breezing stest\_for\_\mathsf{vage\_idmattelse}, doologies the standard s$ 

QS 8.104.1

#### Vinge id / serie nr. : LM 19,1 4700 Dato : 2/10 2001 nestonnelse of kontuis stuhed Antal lastcykler : Nominel rodmoment [kNm] : Exciter og accelerometer AS m 3 16 11-16,0-B3 . position [m]: Temperatur [°C] : Ó 0 C PFV 0586 Parameterfil : Kalibreringsfilnavn : Aral Skrevet af :

Kalibreringstest for vinge udmattelse

| Last trin | Last [kN] |       | øjning [1<br>måles ver |      |       | Δ [mm] |       |
|-----------|-----------|-------|------------------------|------|-------|--------|-------|
|           |           |       | eleromet               |      | - 1   | 2      | 3     |
| 1         | Ú         | 489,6 | 656                    | 1104 | 0     | 0      | ð     |
| 2         | 2,00      | 476,3 | 636                    | 1076 | 13.3  | 200    | 28;0  |
| 3         | 4,12      | 461,6 | 614                    | 1046 | 28,0  | 42,0   | 58,0  |
| 4         | 6,02      | 4487  | 595                    | 1020 | 40,9  | 61,0   | 84,0  |
| 5         | 8,01      | 435,2 | 574                    | 992  | 54,4  | 82,0   | 112,0 |
| 6         | 0         | 4885  | 654                    | 1102 | . 1,1 | 2      | 2,0   |
|           | -         | -i-   |                        |      |       |        |       |
| PFV no.   |           | 1518  | 1517                   | 1516 |       | -      | •     |

1:0,5 h Asn213,3 h 2:1- -1-216,04 3:2--11- Tip

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden

na iosia di una

| Beregnet stivhed K [mm/kNm]<br>Fra regressionsanalyse |                                           |
|-------------------------------------------------------|-------------------------------------------|
| Beregnet skæringspunkt S [mm]                         |                                           |
| Fra regressionsanalyse                                | -                                         |
|                                                       | Hvis S>1 mm skal der laves en ny test     |
| Beregnet udsvingsvidde [mm]                           |                                           |
|                                                       |                                           |
|                                                       | Kontrolleres med tidligere beregnet værdi |
| Opdatering af parameterfil                            |                                           |
| (ja/nej)                                              |                                           |

Bemærkninger

RISØ-R-1358(EN)

## Flapwise deflection measurements

3



# JONOPI Series

# Kalibreringstest for vinge udmattelse QS 8.104.1

| Vinge id / serie nr. :                     | LM19.1           | 4703                                                                                                            |  |  |  |
|--------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Dato :                                     | 22/5 20          | the second se |  |  |  |
| Antal lastcykler :                         | O Flagues Silhed |                                                                                                                 |  |  |  |
| Nominel rodmoment [kNm] :                  | -                |                                                                                                                 |  |  |  |
| Exciter og accelerometer<br>position [m] : | 13.15            |                                                                                                                 |  |  |  |
| Temperatur [°C] :                          | 22.9             |                                                                                                                 |  |  |  |
| Parameterfil :                             | 1 LM 191 # PA    |                                                                                                                 |  |  |  |
| Kalibreringsfilnavn :                      | LM 191#CA1.DY    |                                                                                                                 |  |  |  |
| Skrevet af :                               | ARV .            |                                                                                                                 |  |  |  |

| Last trin | Last [kN] | (     | oojning [<br>måles ve<br>elerome | d    | $\Delta [mm]$ |     |
|-----------|-----------|-------|----------------------------------|------|---------------|-----|
| 1         | 0         | 417   | 962                              | 1209 | 0             |     |
| 2         | 4,09      | 408,5 | 944                              | 1169 | 40            |     |
| 3         | 8,06      | 400.0 | 927                              | 1130 | 79            | 2.6 |
| 4         | 12.06     | 391.1 | 909                              | 1091 | 118           |     |
| 5         | 16.20     | 382.0 | 891                              | 1049 | 160           |     |
| 6         | 0         | 417.0 | 961                              | 1207 | 2             | _   |
| PFV no.   | 0575      | 15/8  | 1517                             | 1516 |               | -   |

usm: 8m -n-10m -11- 13m 9, 28 mm/

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden

| Beregnet stivhed K [mm/kNm]<br>Fra regressionsanalyse   | 0,75                                      |  |
|---------------------------------------------------------|-------------------------------------------|--|
| Beregnet skæringspunkt S [mm]<br>Fra regressionsanalyse | Hvis S> 1 mm skal der laves en ny test    |  |
| Beregnet udsvingsvidde [mm]                             | Kontrolleres med tidligere beregnet værdi |  |
| Opdatering af parameterfil<br>(ia/nej)                  |                                           |  |

Bemærkninger

CAK valitetymälenandbog, Sparkmin Katibretingsteit \_for \_innge \_udmattelse

# FOTOS PI

## Kalibreringstest for vinge udmattelse QS 8.104.1

| Vinge id / serie nr. :                  | LM 19.1 4706       |
|-----------------------------------------|--------------------|
| Date :                                  | 3/10 2001          |
| Antal lastcykler :                      | FLAPNS STIVHED     |
| Nominel rodmoment [kNm] :               | -                  |
| Exciter og accelerometer position-[m]-: | 13.15              |
| Temperatur [°C] :                       | 18.5               |
| Parameterfil :                          | LM 19.1 # PA       |
| Kalibreringsfilnavn :                   | LM 19.1 # CA1. DYF |
| Skrevet af :                            | 2,51               |

| Last trin | Last [kN] | N] Udbøjning [mn<br>(måles ved<br>accelerometer) |      |      | Δ [mm] |  |
|-----------|-----------|--------------------------------------------------|------|------|--------|--|
| 1         | 0         | 395,5                                            | 670  | 1189 | 0      |  |
| 2         | 4.0       | 387.2                                            | 653  | 1151 | 38     |  |
| 3         | 8.0       | 378,5                                            | 636  | 1113 |        |  |
| 4         | 12.0      | 370                                              | 619  | 1075 | 114    |  |
| 5         | [6.0      | 361.2                                            |      | 1035 | 154    |  |
| 6         | 0         | 395.1                                            |      | 1188 | 1      |  |
| PFV no.   | 0575      | 1518                                             | 1517 | 1516 |        |  |

1 ASM : 8 m 2 ASM : lom 3 ASM : 13 m 9.63 mm/

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden



| Beregnet stivhed K [mm/kNm]   |                                           |
|-------------------------------|-------------------------------------------|
| Fra regressionsanalyse        | 0,73 dhe 14-01                            |
| Beregnet skæringspunkt S [mm] |                                           |
| Fra regressionsanalyse        |                                           |
|                               | Hvis S>1 mm skal der laves en ny test     |
| Beregnet udsvingsvidde [mm]   |                                           |
|                               | Kontrolleres med tidligere beregnet værdi |
| Opdatering af parameterfil    | · · ·                                     |
| (ja/nej)                      |                                           |

Bemærkninger

...

RISØ-R-1358(EN)

## Kalibreringstest for vinge udmattelse QS 8.104.1

| Vinge id / serie nr. :                     | LM 191       | 4700            |
|--------------------------------------------|--------------|-----------------|
| Dato :                                     | 26/11-01     |                 |
| Antal lastcykler :                         | MARMENSION O | Flapvis Stivhed |
| Nominel rodmoment [kNm] :                  |              | 7               |
| Exciter og accelerometer<br>position_[m] : | 13.15        |                 |
| Temperatur [°C] :                          | 18.1         |                 |
| Parameterfil :                             | 64/91 # PA   | . DYF           |
| Kalibreringsfilnavn :                      | 6M191#CA1    |                 |
| Skrevet af :                               | MHOF         |                 |

| Last trin | Last [kN] |        | bøjning [<br>(måles ve | $\Delta$ [mm] |     |
|-----------|-----------|--------|------------------------|---------------|-----|
|           |           | ) ac   | celerhme               |               |     |
| 1         | 0         | 2 92.7 | 780                    | 1178          | ð   |
| 2         | Y         | 283,7  | 762                    | 1/38          | 40  |
| 3         | 8         | 275.2  | 745                    | 1100          | 78  |
| 4         | 12        | 266.5  | 728                    | 1060          | 118 |
| 5         | 16        | 257.7  | 711                    | 1021          | 157 |
| 6         | 0         | 2 92,> | 779                    | 11 77         | 1   |
| PFV no.   | 0575      | 1518   | 1517                   | 1516          |     |

1: 8m 2: 10 m 3: 13~

NB. Kalibrerings last skal minimum være 15 % af rodmomentvidden

| Beregnet stivhed K [mm/kNm]<br>Fra regressionsanalyse   | 0,7433                                    |
|---------------------------------------------------------|-------------------------------------------|
| Beregnet skæringspunkt S [mm]<br>Fra regressionsanalyse | 1                                         |
| -                                                       | Hvis S>1 mm skal der laves en ny test     |
| Beregnet udsvingsvidde [mm]                             |                                           |
|                                                         | Kontrolleres med tidligere beregnet værdi |
| Opdatering af parameterfil                              |                                           |
| (ja/ncj)                                                |                                           |

Bemærkninger



## **B. GRAPHS FROM FREQUENCY DETERMINATION**

### LM 19.1 # 4703 frequency graphs

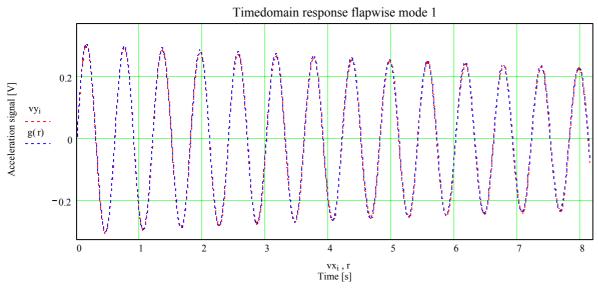



Figure 51. Time domain response, flapwise 1. mode.

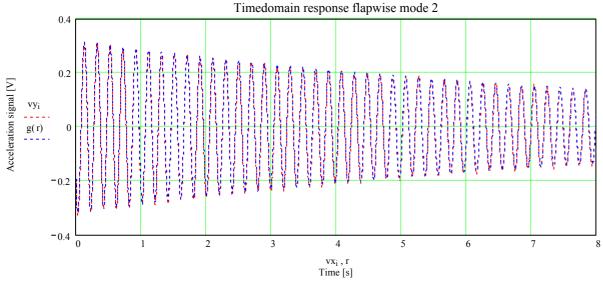



Figure 52. Time domain response, flapwise 2. mode.

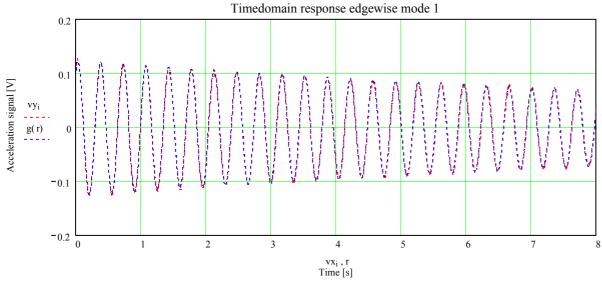
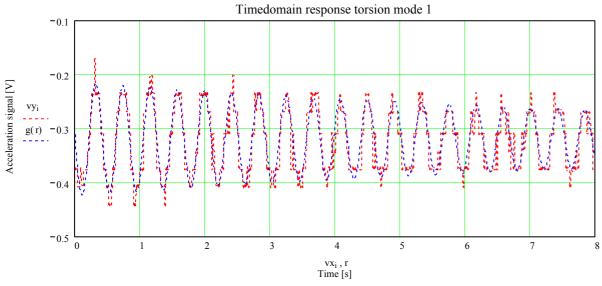




Figure 53. Time domain response, edgewise 1. mode



*Figure 54. Time domain response, torsional 1. Mode. The figure shows the torsional frequency replayed in a speed of 1/10 of the normal speed.* 

### LM 19.1 # 4706 frequency graphs

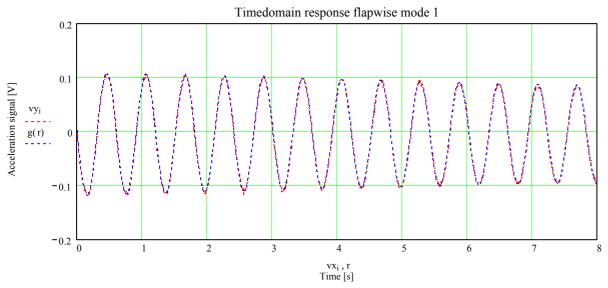



Figure 55. Time domain response, flapwise 1. mode.




Figure 56. Time domain response, flapwise 2. mode.

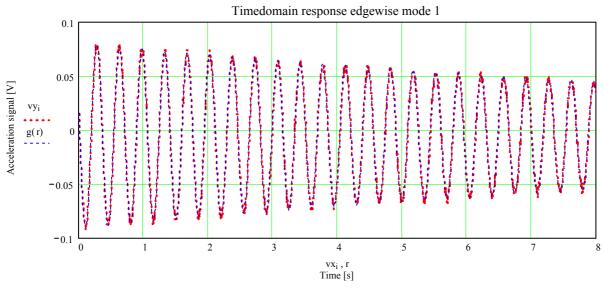
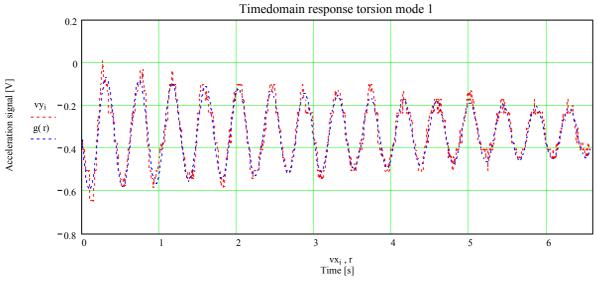




Figure 57. Time domain response, edgewise 1. mode



*Figure 58. Time domain response, torsional 1. Mode. The figure shows the torsional frequency replayed in a speed of* 1/10 of the normal speed.

### LM 19.1 # 4700 frequency graphs

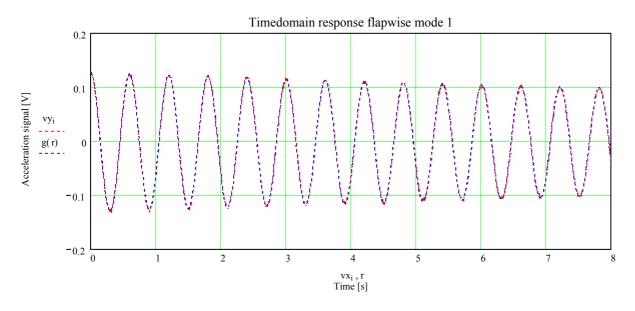



Figure 59. Time domain response, flapwise 1. mode.

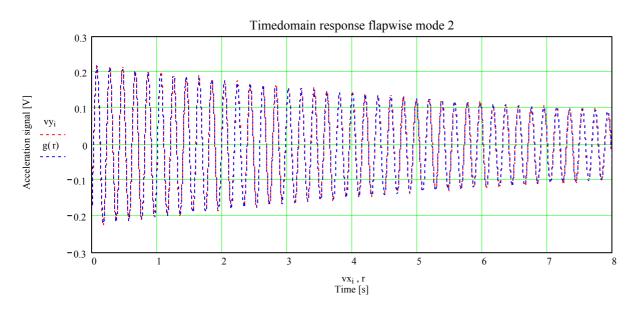
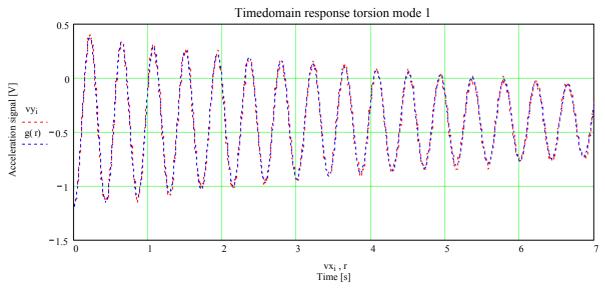




Figure 60. Time domain response, flapwise 2. mode.



Figure 61. Time domain response, edgewise 1. mode



*Figure 62. Time domain response, torsional 1. Mode. The figure shows the torsional frequency replayed in a speed of 1/10 of the normal speed.* 

## C. EQUIPMENT USED DURING TEST

| Equipment                | Туре               | Pfvno. |
|--------------------------|--------------------|--------|
| Thermocouple             | Ideline            | 1551   |
| Accelerometer            | Brüel og Kjær 4381 | 0579   |
| Accelerometer amp.       | Brüel og Kjær 2635 | 1554   |
| Accelerometer            | Brüel og Kjær 4381 | 0566   |
| Accelerometer amp.       | Brüel og Kjær 2635 | 1570   |
| Accelerometer            | Brüel og Kjær 4381 | 0580   |
| Accelerometer amp.       | Brüel og Kjær2635  | 1569   |
| Oscilloscope             | Kikusui DSS 6521   | 0585   |
| PC                       | Toshiba T2130CS    | 1522   |
| Data acquisition card    | DAS 16/330         | 1523   |
| Accelerometer calibrator | Brüel og Kjær 4294 | 0582   |
| Software                 | Labtech Notebook   |        |
| Software                 | MathCad 2000       |        |

### Equipment used during determination of natural frequencies

Table 1.Equipment used for determination of natural frequencies.

### Equipment used during the fatigue test

| Equipment               | Туре              | PFV. No. |
|-------------------------|-------------------|----------|
| Thermocouple with       | PT100             |          |
| Amplifier               |                   |          |
| Accelerometer           | Brüel & Kjær 4381 | 1532     |
| Accelerometer amplifier | Brüel & Kjær 2635 | 0532     |
| Multimeter              | Fluke             | 1581     |
| Strain gauge scanner    | HP 3852           | 1580     |
| PC                      | JAI               | 1537     |
| Software                | NT 4.0 Rev. 04 09 |          |
| Software                | NT 4.0 Rev. 04 10 |          |
| Load cell               | 20 [kN]           | 0575     |
| Load cell               |                   |          |
| Displacement-transducer | ASM 500 [mm]      | 1518     |
| Displacement-transducer | ASM 1000 [mm]     | 1517     |
| Displacement-transducer | ASM 2000 [mm]     | 1516     |

Table 13. Equipment used during fatigue- and calibration test.

## **D. DATA FROM FATIGUE TESTS**

## Strain statistics for blade no. # 4703

| FASE 2        |        |        |                                       |       |               |        |         |         |                                       | %-stigning i<br>forhold til<br>fase 2 |
|---------------|--------|--------|---------------------------------------|-------|---------------|--------|---------|---------|---------------------------------------|---------------------------------------|
|               |        |        |                                       |       |               | FASE 3 |         |         |                                       |                                       |
| SG-no. #      | Min    | Max    | Average                               | Stdev | SG-no.        | Min    | Max     | Average | Stdev                                 |                                       |
| 0             | 2052   | 2158   | 2105,1                                | 20,1  | 0             | 2199   | 2303    | 2254,5  | 23,6                                  | 7,1                                   |
| 1             | 1727   | 1810   | 1767,7                                | 16,0  | 1             | 1851   | 1934    | 1893,7  | 18,7                                  | 7,1                                   |
| 2             | 2141   | 2247   | 2192,7                                | 20,3  | 2             | 2289   | 2395    | 2347,8  | 24,0                                  | 7,1                                   |
| 3             | 2111   | 2216   | 2162,5                                | 19,6  | 3             | 2257   | 2359    | 2312,6  | 23,5                                  | 7,0                                   |
| 4             | 2178   | 2290   | 2236,2                                | 17,3  | 4             | 2330   | 2439    | 2390,2  | 25,0                                  | 6,9                                   |
| 5             | 1925   | 2022   | 1972,4                                | 17,9  | 5             | 2059   | 2147    | 2109,6  | 21,2                                  | 7,0                                   |
| 6             | 2264   | 2923   | 2330,2                                | 54,3  | 6             | 2429   | 2538    | 2489,4  | 24,7                                  | 6,9                                   |
| 7             | 2087   | 2188   | 2136,5                                | 19,2  | . 7           | 2228   | 2328    | 2285,5  | 23,0                                  | 7,0                                   |
| 8             | 2441   | 2553   | 2499,0                                | 23,5  | 8             | 2612   | 2730    | 2677,8  | 28,1                                  | 7,2                                   |
| 9             | 2166   | 2269   | 2216,9                                | 19,7  | 9             | 2307   | 2413    | 2370,2  | 23,6                                  | 6,9                                   |
| 10            | 2783   | 2918   | 2853,0                                | 26,9  | 10            | 2982   | 3113    | 3058,3  | 31,9                                  | 7,2                                   |
| 11            | 2483   | 2599   | 2543,7                                | 23,2  | 11            | 2653   | 2773    | 2720,6  | 28,3                                  | 7,0                                   |
| 12            | 2678   | 2800   | 2742,0                                | 25,5  | 12            | 2864   | 2993    | 2937,7  | 30,7                                  |                                       |
| 13            | 2392   | 2498   | 2447,3                                | 21,5  | 13            | 2548   | 2664    | 2615,0  | 26,7                                  |                                       |
| 14            | 2919   | 3056   | 2990,3                                | 26,6  | 14            | 3099   | 3248    |         | · · · · · · · · · · · · · · · · · · · | 6,7                                   |
| 15            | 3026   | 3162   | 3101,1                                | 27,9  | 15            | 3229   |         | 3317,6  | -                                     |                                       |
| 16            | 2607   | 2720   | 2668,0                                | 23,2  | 16            | 2774   | 2903    | 2852,0  |                                       |                                       |
| 17            | 2527   | 2767   |                                       | 26,4  | 17            |        |         | 2766,0  |                                       |                                       |
| 18            |        | 2465   |                                       | 21,9  | 18            |        | 2635    | 2587,9  |                                       |                                       |
| 19            | 2442   | 2545   | 2499,7                                | 21,9  | 19            | 2606   | 2725    | 2676,2  |                                       | 7,1                                   |
| 20            | 1381   | 1445   | 1416,2                                | 12,3  | 20            | 1460   | 1527    | 1498,1  | 15,3                                  |                                       |
| 21            | 1484   | 1547   | -                                     | 13,5  | 21            | 1590   | 1660    | 1630,6  | -                                     |                                       |
| 22            | 507    | 528    | , , , , , , , , , , , , , , , , , , , | 4,2   | 22            |        |         | 523,7   |                                       |                                       |
| 23            |        |        |                                       | 5,0   | 23            |        |         | ,       | ,                                     |                                       |
| 24            |        |        |                                       | 0,6   |               |        |         | ,       | ,                                     |                                       |
| 25            |        |        | · · · · · · · · · · · · · · · · · · · | 0,5   | 25            |        |         |         |                                       |                                       |
| 26            |        | 760    | ,                                     | 5,4   |               |        |         | 788,2   |                                       |                                       |
| 27            | 2303   |        | ,                                     | 20,7  | 27            |        |         | 2526,8  | -                                     | 7,2                                   |
| 28            |        | _ 102  | ,0                                    | 20,7  | 28            |        |         | ,0      | _/,1                                  | · ,-                                  |
| 29            |        |        |                                       |       | 29            |        |         |         |                                       |                                       |
| Moment        |        |        |                                       |       | Moment        |        |         |         |                                       |                                       |
| start         | 917,23 | 975,33 | 937,6                                 | 7,4   | start         | 977,38 | 1023,11 | 1005,5  | 9,7                                   | 7,2                                   |
| Moment<br>end | 918,46 | 966,67 | 938,4                                 | 6,6   | Moment<br>end | 978,6  | 1026,31 | 1007,9  | 9,6                                   | 7,4                                   |

 Table 14.
 Strain statistics for load level 2 and 3 for blade # 4703

|              |         |         |         |       | %-stigning<br>i forhold til<br>fase 3 |               |         |         |         |       |
|--------------|---------|---------|---------|-------|---------------------------------------|---------------|---------|---------|---------|-------|
|              | FASE 4  |         |         |       |                                       |               | FASE 5  |         |         |       |
| SG-no.       | Min     | Max     | Average | Stdev |                                       | SG-no.        | Min     | Max     | Average | Stdev |
| 0            | 2415    | 2534    | 2482.9  | 20.5  | 10.1                                  | 0             | 2565    | 2736    | 2674,3  | 33,6  |
| 1            | 2027    | 2118    | 2073.0  | 14.7  | 9.5                                   | 1             | 2134    | 2274    | 2225,0  | 28,1  |
| 2            | 2515    | 2629    | 2569.4  | 18.4  | 9.4                                   | 2             | 2647    | 2826    | 2756,2  | 33,1  |
| 3            | 2477    | 2590    | 2531.3  | 17.9  | 9.5                                   | 3             | 2596    | 2778    | 2713,5  | 33,7  |
| 4            | 2559    | 2675    | 2618.0  | 19.1  | 9.5                                   | 4             | 2712    | 2874    | 2810,7  | 34,1  |
| 5            | 2258    | 2356    | 2307.0  | 15.6  | 9.4                                   | 5             | 2371    | 2527    | 2469,0  | 29,3  |
| 6            | 2659    | 2784    | 2723.0  | 20.4  | 9.4                                   | 6             | 2814    | 2991    | 2921,9  | 34,5  |
| 7            | 2447    | 2549    | 2500.1  | 16.8  | 9.4                                   | 7             | 2571    | 2741    | 2677,1  | 32,8  |
| 8            | 2869    | 2994    | 2934.4  | 20.9  | 9.6                                   | 8             | 3025    | 3224    | 3151,4  | 38,2  |
| 9            | 2537    | 2642    | 2590.0  | 16.8  | 9.3                                   | 9             | 2656    | 2834    | 2769,4  | 34,6  |
| 10           | 3274    | 3417    | 3352.5  | 24.9  | 9.6                                   | 10            | 3461    | 3684    | 3601,5  | 45,0  |
| 11           | 2912    | 3037    | 2979.6  | 20.0  | 9.5                                   | 11            | 3064    | 3259    | 3190,5  | 40,1  |
| 12           | 3144    | 3279    | 3217.6  | 24.2  | 9.5                                   | 12            | 3307    | 3531    | 3460,7  | 43,9  |
| 13           | 2794    | 2915    | 2858.6  | 19.6  | 9.3                                   | 13            | 2925    | 3120    | 3054,7  | 37,3  |
| 14           | 3411    | 3554    | 3488.7  | 25.0  | 9.4                                   | 14            | 3567    | 3803    | 3721,8  | 42,0  |
| 15           | 3547    | 3695    | 3623.7  | 24.7  | 9.2                                   | 15            | 3691    | 3928    | 3842,5  | 41,2  |
| 16           | 3048    | 3224    | 3127.9  | 38.1  | 9.7                                   | 16            | 3341    | 3533    | 3456,7  | 47,9  |
| 17           | 2956    | 3081    | 3020.0  | 19.8  | 9.2                                   | 17            | 3100    | 3296    | 3221,8  | 39,9  |
| 18           | 2762    | 3037    | 2858.4  | 58.2  | 10.5                                  | 18            | 3033    | 3218    | 3136,3  | 41,2  |
| 19           | 2857    | 3255    | 2972.6  |       | 11.1                                  | 19            | 3231    | 3420    | -       | 40,9  |
| 20           | 1586    | 1795    | 1639.0  |       | 9.4                                   | 20            | 1638    | 1763    |         | 20,6  |
| 21           | 1653    | 2042    | 1772.0  | 64.0  | 8.7                                   | 21            | 1685    | 1821    | 1775,1  | 22,5  |
| 22           | 421     | 580     | 541.1   | 47.0  | 3.3                                   | 22            | 483     | 556     |         | 1     |
| 23           | 468     | 679     | 632.0   | 56.5  | 3.3                                   | 23            | 578     | 660     | 635,4   | 22,5  |
| 24           |         | 27      | 23.7    |       | -0.1                                  | 24            |         |         | -       |       |
| 25           |         | 19      | 15.2    |       |                                       |               |         |         | 15,4    |       |
| 26           |         | 872     | 840.7   |       |                                       | 26            |         | 918     | /       | 9,6   |
| 27           |         | 2827    | 2768.0  |       | 9.5                                   | 27            |         | 3040    | ,       | ,     |
| 28           |         | 1803    | 1439.5  |       |                                       | 28            |         | 1460    |         | 11,4  |
| 29           |         | 1679    | 1597.8  |       |                                       | 29            |         |         | ,       |       |
|              |         | 2017    |         |       |                                       | Moment        | 1910    | 2710    |         | ,,    |
| Moment start | 1074.67 | 1122.52 | 1092.0  | 7.3   |                                       | start         | 1149,55 | 1212,56 | 1179,9  | 10,0  |
| Moment end   | 1075.9  | 1113.93 | 1092.6  | 6.5   |                                       | Moment<br>end | 1146,02 | 1211,17 | 1181,3  | 10,9  |

 Table 15.
 Strain statistics for load level 4 and 5 for blade # 4703

## Moment distribution for blade no. # 4703

| Bin<br>[%] | Mi<br>[kNm]    | Cycles | Mi<br>[kNm]      | Cycles | Mi<br>[kNm]      | Cycles | Mi<br>[kNm]             | Cycles  | Mi<br>[kNm]      | Cycles |
|------------|----------------|--------|------------------|--------|------------------|--------|-------------------------|---------|------------------|--------|
| 78         | 672.4          | 0      | 726.2            | 0      | 783.9            | 0      | 847.1                   | 0       | 914.9            | 0      |
| 79         | 681.0          | 30     | 735.5            | 40     | 794.0            | 34     | 857.9                   | 16      | 926.7            | 46     |
| 80         | 689.6          | 34     | 744.8            | 36     | 804.0            | 24     | 868.8                   | 12      | 938.4            | 40     |
| 81         | 698.2          | 28     | 754.1            | 28     | 814.1            | 36     | 879.7                   | 14      | 950.1            | 38     |
| 82         | 706.8          | 36     | 763.4            | 50     | 824.1            | 40     | 890.5                   | 18      | 961.9            | 48     |
| 83         | 715.5          | 42     | 772.7            | 48     | 834.2            | 40     | 901.4                   | 24      | 973.6            | 68     |
| 84         | 724.1          | 38     | 782.0            | 40     | 844.2            | 34     | 912.2                   | 12      | 985.3            | 64     |
| 85         | 732.7          | 44     | 791.4            | 38     | 854.3            | 34     | 923.1                   | 20      | 997.1            | 120    |
| 86         | 741.3          | 40     | 800.7            | 52     | 864.3            | 44     | 934.0                   | 20      | 1008.8           | 148    |
| 87         | 749.9          | 50     | 810.0            | 54     | 874.4            | 48     | 944.8                   | 20      | 1020.5           | 154    |
| 88         | 758.6          | 62     | 819.3            | 58     | 884.4            | 46     | 955.7                   | 18      | 1032.2           | 168    |
| 89         | 767.2          | 134    | 828.6            | 86     | 894.5            | 48     | 966.5                   | 24      | 1044.0           | 152    |
| 90         | 775.8          | 118    | 837.9            | 96     | 904.5            | 52     | 977.4                   | 36      | 1055.7           | 162    |
| 91         | 784.4          | 102    | 847.2            | 104    | 914.6            | 64     | 988.3                   | 28      | 1067.4           | 150    |
| 92         | 793.0          | 74     | 856.5            | 68     | 924.6            | 88     | 999.1                   | 28      | 1079.2           | 204    |
| 93         | 801.7          | 178    | 865.8            | 82     | 934.7            | 72     | 1010.0                  | 40      | 1090.9           | 248    |
| 94         | 810.3          | 2894   | 875.1            | 110    | 944.7            | 86     | 1020.8                  | 64      | 1102.6           | 272    |
| 95         | 818.9          | 6192   | 884.5            | 114    | 954.8            | 78     | 1031.7                  | 102     | 1114.4           | 288    |
| 96         | 827.5          | 6970   | 893.8            | 214    | 964.8            | 140    | 1042.6                  | 166     | 1126.1           | 482    |
| 97         | 836.1          | 10364  | 903.1            | 1272   | 974.9            | 2572   | 1053.4                  | 352     | 1137.8           | 1198   |
| 98         | 844.8          | 70900  | 912.4            | 11718  | 984.9            | 21534  | 1064.3                  | 2316    | 1149.5           | 5556   |
| 99         | 853.4          | 312992 | 921.7            | 51078  | 995.0            | 53422  | 1075.1                  | 9056    | 1161.3           | 21628  |
| 100        | 862.0          | 286456 | 931.0            | 246236 | 1005.0           | 86152  | 1086.0                  | 61822   | 1173.0           | 43234  |
| 101        | 870.6          | 100088 | 940.3            | 125676 | 1015.1           | 31272  | 1096.9                  | 10488   | 1184.7           | 26762  |
| 102        | 879.2          | 24950  | 949.6            | 1580   | 1025.1           | 1896   | 1107.7                  | 726     | 1196.5           | 2128   |
| 103        | 887.9          | 14226  | 958.9            | 1260   | 1035.2           | 592    | 1118.6                  | 228     | 1208.2           | 932    |
| 104        | 896.5          | 518    | 968.2            | 414    | 1045.2           | 284    | 1129.4                  | 264     | 1219.9           | 114    |
| 105        | 905.1          | 268    | 977.6<br>986.9   | 300    | 1055.3           | 0      | 1140.3                  | 60      | 1231.7           | 12     |
| 106        | 913.7          | 158    | 986.9            | 96     | 1065.3           | 0      | 1151.2                  | 80      | 1243.4<br>1255.1 | 0      |
| 107<br>108 | 922.3          | 44 132 |                  | 0      | 1075.4           | 0      | 1162.0                  | 294     |                  | 0      |
| 108        | 931.0<br>939.6 | 132    | 1005.5<br>1014.8 | 0      | 1085.4<br>1095.5 | 0      | <u>1172.9</u><br>1183.7 | 82<br>0 | 1266.8<br>1278.6 | 0      |
| 110        | 939.0          | 0      | 1014.8           | 0      | 1105.5           | 0      | 1183.7                  | 0       | 1278.0           | 0      |
| 110        | 946.2          | 0      | 1024.1           | 0      | 1105.5           | 0      | 1205.5                  | 0       | 1290.3           | 0      |
| 111        | 965.4          | 0      | 1033.4           | 0      | 1113.6           | 0      | 1205.3                  | 0       | 1302.0           | 0      |
| 112        | 974.1          | 0      | 1042.7           | 0      | 1125.0           | 0      | 1210.3                  | 0       | 1315.8           | 0      |
| 113        | 982.7          | 0      | 1052.0           | 0      | 1135.7           | 0      | 1238.0                  | 0       | 1323.3           | 0      |
| 114        | 991.3          | 0      | 1001.5           | 0      | 1145.7           | 0      | 1238.9                  | 0       | 1349.0           | 0      |
| 115        | 999.9          | 0      | 1080.0           | 0      | 1165.8           | 0      | 1259.8                  | 0       | 1360.7           | 0      |
| 117        | 1008.5         | 0      | 1089.3           | 0      | 1175.9           | 0      | 1270.6                  | 0       | 1372.4           | 0      |
| 118        | 1017.2         | 0      | 1098.6           | 0      | 1185.9           | 0      | 1281.5                  | 0       | 1384.1           | 0      |
| 119        | 1025.8         | 0      | 1107.9           | 0      | 1196.0           | 0      | 1292.3                  | 0       | 1395.9           | 0      |
| 120        | 1034.4         | 0      | 1117.2           | 0      | 1206.0           | 0      | 1303.2                  | 0       | 1407.6           | 0      |
| 121        | 1043.0         | 0      | 1126.5           | 0      | 1216.1           | 0      | 1314.1                  | 0       | 1419.3           | 0      |
|            | $\sum$ cycles  | 838164 | $\sum$ cycles    | 440948 | $\sum$ cycles    | 198732 | $\sum$ cycles           | 86430   | $\sum$ cycles    | 104416 |

*Table 16. Moment distribution for flapwise fatigue test of blade* # 4703, *phase/level* 1 – 5, *level* 5 *in last columns.* 

| Strain statistics | for | blade | no. | # 4706 |
|-------------------|-----|-------|-----|--------|
|-------------------|-----|-------|-----|--------|

|                 | EAGE 2      |          |         |            |
|-----------------|-------------|----------|---------|------------|
| 8.C             | FASE 2      | M        |         | C( 1.      |
| SG-no. #        | Min<br>2292 | Max 2(1) | Average | Stdev 20.1 |
| 0               |             |          |         | 30.1       |
| 1               |             |          |         |            |
|                 | 1           | 2824     |         | 25.4       |
| 3               |             | 2611     | 2520.9  | 24.6       |
| 4               | -           |          | 2816.1  | 47.6       |
| 5               |             |          |         | 19.0       |
| 6               |             |          |         | 26.9       |
| 7               |             |          | 2426.4  | 23.2       |
| 8               |             |          |         | 26.7       |
| 9               | 2558        |          |         | 24.4       |
| 10              |             | 3367     | 3254.4  | 29.0       |
| 11              | 2767        | 2939     | 2841.4  | 26.4       |
| 12              | 3213        | 3415     | 3304.0  | 31.4       |
| 13              | 3063        | 3251     | 3144.5  | 28.5       |
| 14              | 3509        | 4172     | 3601.0  | 55.4       |
| 15              | 3288        | 3485     | 3371.8  | 30.3       |
| 16              | 3389        | 3580     | 3471.5  | 29.4       |
| 17              | 2955        | 3123     | 3031.4  | 27.7       |
| 18              | 2849        | 3012     | 2922.6  | 25.2       |
| 19              | 3125        | 3318     | 3209.9  | 31.3       |
| 20              | 1714        | 1808     | 1757.3  | 15.3       |
| 21              |             |          |         | 15.3       |
| 22              |             |          |         |            |
| 23              | 624         | 655      | 638.4   | 5.1        |
| 24              |             | 32       | 29.6    |            |
| 25              |             |          |         |            |
| 26              |             | 715      |         | 7.5        |
| 27              |             |          | 653.8   | 5.8        |
| 28              |             |          | 3162.7  | 35.9       |
| 29              |             |          | 3622.3  | 67.3       |
| Moment start    | 1123.97     |          |         | 9.3        |
| Moment end      | 1152.91     | 1223.02  |         | 8.5        |
| interneting ond | 1152.71     | 1217.70  | 11/1.5  | 0.5        |

 Table 17.
 Strain statistics for load level 2 for blade # 4706

|               | FASE 3  |         |         |       |               | FASE 4  |         |         |       |
|---------------|---------|---------|---------|-------|---------------|---------|---------|---------|-------|
| SG-no.        | Min     | Max     | Average | Stdev | SG-no.        |         | Max     | Average | Stdev |
|               | 0 2618  |         |         | 12.9  | -             | 2824    |         |         |       |
|               | 1 2210  |         | 2265.4  | 10.8  |               | 2397    |         |         |       |
|               | 2 2856  |         | 2947.3  | 16.1  | 2             | 3089    |         |         |       |
|               | 3 2633  |         | 2717.4  | 16.4  | 3             | 2840    |         |         |       |
|               | 4 2921  | 3056    | 3013.9  | 16.9  | 4             |         |         | 3258.3  | 24.4  |
|               | 5 2343  | 2436    | 2409.4  | 12.3  | 5             | 2523    | 2656    | 2603.4  | 19.4  |
|               | 6 3095  | 3225    | 3187.5  | 17.0  | 6             | 3336    | 3515    | 3445.3  | 26.5  |
|               | 7 2551  | 2659    | 2625.5  | 14.4  | . 7           | 2744    | 2888    | 2833.9  | 20.5  |
|               | 8 3111  | 3249    | 3205.7  | 18.1  | 8             | 3355    | 3537    | 3465.5  | 26.6  |
|               | 9 2752  | 2874    | 2840.0  | 15.6  | 9             | 2970    | 3128    | 3066.7  | 22.9  |
| 1             | 0 3477  | 3571    | 3546.4  | 16.9  | 10            | 3703    | 3863    | 3815.2  | 30.4  |
| 1             | 1 2985  | 3114    | 3076.0  | 17.0  | 11            | 3215    | 3389    | 3324.7  | 25.3  |
| 1             | 2 3444  | 3614    | 3560.7  | 24.1  | 12            | 3717    | 3920    | 3842.4  | 29.8  |
| 1             | 3 3298  | 3443    | 3403.7  | 18.9  | 13            | 3554    | 3748    | 3673.9  | 27.6  |
| 1             | 4 3830  | 3985    | 3901.3  | 20.8  | 14            | 4227    | 4264    | 4250.0  | 16.6  |
| 1             | 5 3546  | 3699    | 3654.9  | 19.7  | 15            | 3820    | 4031    | 3950.3  | 29.5  |
| 1             | 6 3615  | 3806    | 3744.5  | 27.9  | 16            | 3898    | 4191    | 4084.9  | 43.7  |
| 1             | 7 2845  |         | 3134.3  | 176.9 | 17            | 3070    | 3222    | 3164.4  |       |
| 1             | 8 3098  |         | 3157.3  | 20.8  |               | 3462    |         |         |       |
| 1             | 9 3376  | 3514    | 3473.0  | 17.9  | 19            | 3711    | 3919    |         |       |
| 2             |         |         | 1911.3  | 11.0  |               | 1957    | 2087    |         |       |
| 2             |         | 1994    | 1927.1  | 19.8  |               | 1904    |         |         |       |
| 2             |         |         | 746.5   | 6.9   |               | 741     | 782     |         |       |
| 2             |         |         | 693.4   | 5.5   |               | 693     |         |         |       |
| 2             |         |         | 31.3    | 0.9   |               | 25      |         |         |       |
| 2             |         |         | 2859.5  | 20.5  |               | 2974    |         |         |       |
| 2             |         |         | 738.0   | 5.1   | 26            | 725     | 886     |         |       |
| 2             |         | 791     | 719.0   | 10.2  |               | 170     |         |         |       |
| 2             |         | 3448    | 3397.1  | 23.9  |               | 3534    |         |         |       |
| 2             |         |         | 3819.1  | 26.8  |               | 3975    |         |         |       |
| Moment        | 5070    | 5000    | 5017.1  | 20.0  | Moment        |         | 1201    | 1122,2  |       |
| start         | 1263.93 | 1397.91 | 1322.5  | 48.3  | start         | 1329.66 | 1395.08 | 1378.8  | 11.3  |
| Moment<br>end | 1263.93 | 1397.91 | 1326.4  | 48.4  | Moment<br>end | 1330.9  | 1403.99 |         |       |

 Table 18.
 Strain statistics for load level 3 and 4 for blade # 4706

## Moment distribution for blade no. # 4706

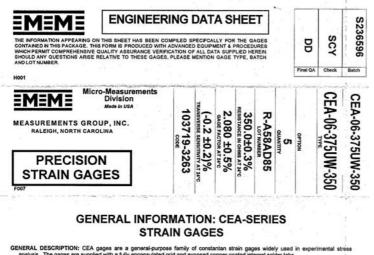
| Bin<br>[%] | Mi<br>[kNm]      | Cycles     | Mi<br>[kNm]      | Cycles          | Mi<br>[kNm]      | Cycles   | Mi<br>[kNm]             | Cycles        | Mi<br>[kNm]      | Cycles          |
|------------|------------------|------------|------------------|-----------------|------------------|----------|-------------------------|---------------|------------------|-----------------|
| 78         | 847.1            | 0          | 914.9            | 0               | 988.3            | 0        | 998.9                   | 0             | 1067.0           | 0               |
| 79         | 857.9            | 136        | 926.7            | 22              | 1000.9           | 12       | 1011.7                  | 2             | 1080.7           | 10              |
| 80         | 868.8            | 110        | 938.4            | 28              | 1013.6           | 18       | 1024.5                  | 6             | 1094.4           | 6               |
| 81         | 879.7            | 94         | 950.1            | 30              | 1026.3           | 12       | 1037.3                  | 4             | 1108.1           | 10              |
| 82         | 890.5            | 90         | 961.9            | 26              | 1038.9           | 14       | 1050.1                  | 4             | 1121.8           | 8               |
| 83         | 901.4            | 106        | 973.6            | 28              | 1051.6           | 14       | 1062.9                  | 4             | 1135.4           | 14              |
| 84         | 912.2            | 116        | 985.3            | 28              | 1064.3           | 16       | 1075.8                  | 4             | 1149.1           | 6               |
| 85         | 923.1            | 104        | 997.1            | 24              | 1077.0           | 14       | 1088.6                  | 4             | 1162.8           | 10              |
| 86<br>87   | 934.0            | 114        | 1008.8           | <u>32</u><br>40 | 1089.6           | 16<br>22 | 1101.4                  | <u>6</u><br>8 | 1176.5           | <u>14</u><br>72 |
| 87         | 944.8<br>955.7   | 114<br>100 | 1020.5<br>1032.2 | 36              | 1102.3<br>1115.0 | 22       | <u>1114.2</u><br>1127.0 | 8             | 1190.2<br>1203.8 | 72              |
| 89         | 955.7            | 100        | 1032.2           | 30              | 1113.0           | 22       | 1127.0                  | 8             | 1203.8           | 96              |
| 90         | 900.3            | 94         | 1044.0           | 42              | 1127.0           | 20       | 1152.6                  | 4             | 1217.3           | 106             |
| 91         | 988.3            | 168        | 1055.7           | 52              | 1153.0           | 20       | 1165.4                  | 8             | 1244.9           | 100             |
| 92         | 999.1            | 248        | 1079.2           | 180             | 1165.6           | 26       | 1178.2                  | 10            | 1258.6           | 100             |
| 93         | 1010.0           | 312        | 1090.9           | 86              | 1178.3           | 30       | 1191.0                  | 10            | 1272.2           | 108             |
| 94         | 1020.8           | 374        | 1102.6           | 92              | 1191.0           | 34       | 1203.8                  | 8             | 1285.9           | 96              |
| 95         | 1031.7           | 696        | 1114.4           | 88              | 1203.7           | 32       | 1216.6                  | 18            | 1299.6           | 94              |
| 96         | 1042.6           | 2232       | 1126.1           | 108             | 1216.3           | 48       | 1229.4                  | 10            | 1313.3           | 120             |
| 97         | 1053.4           | 7054       | 1137.8           | 404             | 1229.0           | 54       | 1242.2                  | 22            | 1327.0           | 250             |
| 98         | 1064.3           | 136530     | 1149.5           | 55682           | 1241.7           | 64       | 1255.0                  | 1996          | 1340.6           | 5114            |
| 99         | 1075.1           | 575846     | 1161.3           | 461944          | 1254.3           | 3350     | 1267.9                  | 18772         | 1354.3           | 15038           |
| 100        | 1086.0           | 532312     | 1173.0           | 652800          | 1267.0           | 92748    | 1280.7                  | 156062        | 1368.0           | 52236           |
| 101        | 1096.9           | 230436     | 1184.7           | 164160          | 1279.7           | 234032   | 1293.5                  | 72738         | 1381.7           | 60560           |
| 102        | 1107.7           | 7874       | 1196.5           | 1100            | 1292.3           | 732      | 1306.3                  | 504           | 1395.4           | 524             |
| 103        | 1118.6           | 1328       | 1208.2           | 478             | 1305.0           | 742      | 1319.1                  | 122           | 1409.0           | 332             |
| 104        | 1129.4           | 766        | 1219.9           | 356             | 1317.7           | 880      | 1331.9                  | 0             | 1422.7           | 54              |
| 105<br>106 | 1140.3<br>1151.2 | 454<br>454 | 1231.7           | 246             | 1330.4           | 0        | 1344.7<br>1357.5        | 0             | 1436.4<br>1450.1 | 78<br>82        |
| 106        | 1151.2           | 434<br>324 | 1243.4<br>1255.1 | 158<br>228      | 1343.0<br>1355.7 | 0        | 1357.5                  | 0             | 1450.1           | 148             |
| 107        | 1102.0           | 704        | 1255.1           | 330             | 1355.7           | 0        | 1370.3                  | 0             | 1403.8           | 4               |
| 108        | 1172.5           | 384        | 1200.8           | 566             | 1381.0           | 0        | 1395.9                  | 0             | 1491.1           | 0               |
| 110        | 1194.6           | 412        | 1290.3           | 26              | 1393.7           | 0        | 1408.7                  | 0             | 1504.8           | 0               |
| 111        | 1205.5           | 188        | 1302.0           | 0               | 1406.4           | 0        | 1421.5                  | 0             | 1518.5           | 0               |
| 112        | 1216.3           | 160        | 1313.8           | 0               | 1419.0           | 0        | 1434.3                  | 0             | 1532.2           | 0               |
| 113        | 1227.2           | 222        | 1325.5           | 0               | 1431.7           | 0        | 1447.1                  | 0             | 1545.8           | 0               |
| 114        | 1238.0           | 156        | 1337.2           | 0               | 1444.4           | 0        | 1460.0                  | 0             | 1559.5           | 0               |
| 115        | 1248.9           | 70         | 1349.0           | 0               | 1457.1           | 0        | 1472.8                  | 0             | 1573.2           | 0               |
| 116        | 1259.8           | 50         | 1360.7           | 0               | 1469.7           | 0        | 1485.6                  | 0             | 1586.9           | 0               |
| 117        | 1270.6           | 50         | 1372.4           | 0               | 1482.4           | 0        | 1498.4                  | 0             | 1600.6           | 0               |
| 118        | 1281.5           | 50         | 1384.1           | 0               | 1495.1           | 0        | 1511.2                  | 0             | 1614.2           | 0               |
| 119        | 1292.3           | 86         | 1395.9           | 0               | 1507.7           | 0        | 1524.0                  | 0             | 1627.9           | 0               |
| 120        | 1303.2           | 168        | 1407.6           | 0               | 1520.4           | 0        | 1536.8                  | 0             | 1641.6           | 0               |
| 121        | 1314.1           | 8          | 1419.3           | 0               | 1533.1           | 0        | 1549.6                  | 0             | 1655.3           | 0               |
|            | $\sum$ cycles    | 1501394    | $\sum$ cycles    | 1339458         | $\sum$ cycles    | 332996   | $\sum$ cycles           | 250338        | $\sum$ cycles    | 135476          |

*Table 19.* Moment distribution for flapwise fatigue test of blade # 4703, phase/level 1 – 5, level 5 in last columns.

|                 | LEVEL 2 |         |         |       |
|-----------------|---------|---------|---------|-------|
| SG-no.          | Min     | Max     | Average | Stdev |
| 0               | 2392    | 2653    | 2541.2  | 46.9  |
| 1               | 2067    | 2314    | 2203.4  | 45.1  |
| 2               | 2664    | 2949    | 2833.2  | 50.9  |
| 3               | 2369    | 2632    | 2536.5  |       |
| 4               | 2868    | 3179    | 3061.1  | 51.2  |
| 5               | 2339    | 2611    | 2520.2  | 38.2  |
| 6               | 2663    | 2996    | 2877.6  | 42.4  |
| 7               | 2355    | 2622    | 2527.2  | 42.6  |
| 8               | 2887    | 3215    | 3099.0  | 52.4  |
| 9               | 2576    | 2871    | 2768.2  | 45.5  |
| 10              | 3133    | 3502    | 3289.6  | 78.7  |
| 11              | 2865    | 3208    | 3086.4  | 48.9  |
| 12              | 3125    | 3490    | 3318.6  | 59.1  |
| 13              | 2904    | 3251    | 3120.8  | 51.5  |
| 14              | 3272    | 3708    | 3480.9  | 76.8  |
| 15              | 3066    | 3489    | 3339.7  | 55.1  |
| 16              | 3246    | 3648    | 3485.2  | 48.8  |
| 17              | 2957    | 3323    | 3187.2  | 49.6  |
| 18              | 2446    | 3328    | 2700.4  | 68.5  |
| 19              | 3008    | 3486    | 3324.8  | 63.0  |
| 20              | 1754    | 2001    | 1852.6  | 40.9  |
| 21              | 1719    | 2015    | 1826.3  | 59.4  |
| 22              | 615     | 710     | 677.5   | 12.4  |
| 23              | 615     | 703     | 669.6   | 11.4  |
| 24              | 33      | 42      | 36.7    | 2.3   |
| 25              | 15      | 22      | 18.6    | 1.0   |
| Moment<br>start | 1089.86 | 1225.75 | 1174.1  | 12.3  |
| Moment<br>end   | 1067.5  | 1219.4  | 1176.3  | 12.5  |

## Strain statistics for blade no. # 4700

 Table 20.
 Strain statistics for load level 2 for blade # 4700


## **E. UNCERTAINTY OF MEASUREMENTS**

The accuracy for the load measurements is determined based on the rules in EAL-R2. The accuracy is determined by inserting the specific load level P in the expression given in the tabel below.

| Equipment                | Туре                  | PFV  | Calibratio | Calibratio | Accuracy                                                |
|--------------------------|-----------------------|------|------------|------------|---------------------------------------------------------|
|                          |                       | no.  | n date     | n date     |                                                         |
| Thermocouple with        | PT100                 | NA   | -          |            |                                                         |
| Amplifier                |                       |      |            |            |                                                         |
| Accelerometer            | Brüel & Kjær 4381     | 0529 |            |            |                                                         |
| Accelerometer            | Brüel & Kjær 4381     | 1529 |            |            |                                                         |
| Accelerometer amplifier  | Brüel & Kjær 2635     | 0533 |            |            |                                                         |
| Accelerometer amplifier  | Brüel & Kjær 2635     | 1570 |            |            |                                                         |
| Accelerometer amplifier  | Brüel & Kjær 2635     | 1554 | -          |            |                                                         |
| Accelerometer amplifier  | Brüel & Kjær 2634     | 1558 | -          |            |                                                         |
| Accelerometer calibrator | Brüel & Kjær 4294     | 0582 | 19-04-00   | 17-08-00   | ±0.03 [Hz]                                              |
| Multimeter               | Fluke 87              | 1560 | 02-02-00   | 28-03-01   | 0.01 [Hz]                                               |
| Strain gauge scanner     | HP3852A               | 1550 |            |            | <1.5%                                                   |
| PC                       | NT 4.0                | 1555 |            |            |                                                         |
| Software                 | SPAR revision B.04.03 | NA   |            | -          |                                                         |
| Software                 | SPAR revision B.04.04 | NA   |            | -          |                                                         |
| Load cell                | 50 [kN]               | 0596 | 25-06-00   | 31-08-00   | $\pm (5.12 \cdot 10^{-3} \cdot P + 5.03 \cdot 10^{-3})$ |
| Load cell                | 20 [kN]               | 0575 | 26-01-00   | 16-01-01   | $\pm (4.74 \cdot 10^{-3} \cdot P + 9.95 \cdot 10^{-3})$ |
| Load cell                | 20 [kN]               | 1511 | 14-02-00   | 16-01-01   | $\pm (4.74 \cdot 10^{-3} \cdot P + 9.86 \cdot 10^{-3})$ |
| Displacement-transducer  | 1.0 [m]               | 1574 | 09-10-00   | 03-05-01   | ±2.40 [mm]                                              |
| Displacement-transducer  | 1.0 [m]               | 1517 | 03-02-00   | 10-01-01   | ±2.39 [mm]                                              |
| Displacement-transducer  | 0.5 [m]               | 1518 | 03-02-00   | 10-01-01   | ±1.23 [mm]                                              |

Table 21. Calibration status and accuracy for the equipment used in the tests.

## F. DATA SHEET FOR STRAIN GAUGES



GENERAL DESCRIPTION: CEA gages are a general-purpose family of constantan strain gages widely used in experimental stress analysis. The gages are supplied with a fully encepsulated grid and exposed copper-coated integral solder tabs. TEMPERATURE RANGE: -100° to +350° F (-75° to +175° C) for continuous use in static measurements.

SELF-TEMPERATURE COMPENSATION: See data curve below.

STRAIN LIMITS: Approximately 5% for gage lengths 1/8 in. (3.2 mm) and larger, approximately 3% for gage lengths under 1/8 in. (3.2 mm).

FATIGUE LIFE: Fatigue life is a marked function of solder joint formation. With 30-AWG leads directly attached to gage tabs, fatigue life will be 10<sup>6</sup> cycles at ±1500µin/in (µm/m) using M-Line 361A solder.

CEMENTS: Compatible with N-M Certified M-Bond 200, but it will normally not provide the greatest strain limit. Micro-Measurements M-Bond AE-1015, M-Bond GA-2, M-Bond 600, and M-Bond 610 are excellent. M-Bond 610 is the best choice over the entire operating range. Refer to M-M Cetalog A-110 for information on bonding agents, and Bulletins B-127, B-130, and B-137 for installation procedures.

SOLDER: If operating temperature will not exceed +300" F (+150" C), M-Line solder 361A (83-37) tin-lead solder may be used for lead attachment. M-Line solder (95-5) tin-antimony is satisfactory to +400" F (+205" C). Refer to M-M Catalog A-110 for further information on solders, and Toch Tp TT-600 for lead attachment techniques.

NOTE: The backing of CEA-Series gages has been specially treated for optimum bond formation with all appropriate strain gage achiesives. No further cleaning is necessary if contamination of the prepared surface is avoided during handling. GM45

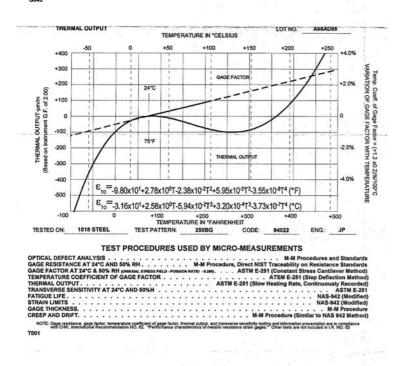



Figure 63. Datasheet for strain gauges used during fatigue test.

### **Bibliographic Data Sheet**

Title and authors

### Accelerated Fatigue Testing of LM 19.1 Blades

### Ole Jesper Dahl Kristensen Erik R. Jørgensen

| ISBN              |                    |               | ISSN                     |  |
|-------------------|--------------------|---------------|--------------------------|--|
| ISBN 87-55        | 0-3099-8           |               | ISSN 0106-2840           |  |
| ISBN 87-55        | 0-3100-5 (Internet | )             |                          |  |
| Department or gro | oup                |               | Date                     |  |
| Wind Energ        | y Department       |               | April 2003               |  |
| Groups own reg.   | number(s)          |               | Project/contract No(s)   |  |
| 1165              |                    |               | ENS j. nr. 51171/97-0043 |  |
| Pages             | Tables             | Illustrations | References               |  |
| 72                | 21                 | 63            | 5                        |  |

Abstract (max. 2000 characters)

A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in a fatigue test and to give information if it is possible to increase the load in fatigue test to shorten test time.

The tests were carried out as a part of a project financed by the Danish Energy Agency.

During the fatigue tests the blades have been surveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges.

This report presents the temperature during test, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause of the damages. The report is also giving information on the blade-to-blade variation.