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Abstract 
A mathematical multi-cell model for the in vitro kinetics of the anti-cancer agent topotecan 
(TPT) following administration into a culture medium containing a population of human 
breast cancer cells (MCF-7 cell line) is described.  This nonlinear compartmental model is an 
extension of an earlier single-cell type model and has been validated using experimental data 
obtained using two-photon laser scanning microscopy (TPLSM). 

A structural identifiability analysis is performed prior to parameter estimation to test whether 
the unknown parameters within the model are uniquely determined by the model outputs.  
The full model has 43 compartments, with 107 unknown parameters, and it was found that the 
structural identifiability result could not be established even when using the latest version of 
the symbolic computation software MATHEMATICA.  However, by assuming that a priori 
knowledge is available for certain parameters, it was possible to reduce the number of 
parameters to 81, and it was found that this (Stage Two) model was globally (uniquely) 
structurally identifiable.  The identifiability analysis demonstrated how valuable symbolic 
computation is in this context, as the analysis is far too lengthy and difficult to be performed 
by hand. 

Keywords:  Compartmental models, structural identifiability, topotecan, drug kinetics. 

1. Introduction 
In recent years, anti-cancer drugs with the ability to inhibit DNA topoisomerase I, have 
become one of the main foci in drug discovery.  Topotecan (TPT, Hycamtin®), a cytotoxin 
alkaloid chemotherapy drug, is a semi-synthetic, water-soluble derivative of the drug 
camptothecin (CPT) [1].  CPT was originally isolated from a Chinese tree, Campthotheca 
acuminata which is widely found in South East Asia where it is known as Xi Shu.  The main 
drawbacks of CPT are: (i) its poor water solubility; (ii) its lactone instability; (iii) the 
reversibility of the drug–target interaction; (iv) its drug resistance; and (v) its high toxicity [1, 
2].  In contrast, the CPT analogue TPT has a more stable structure [3], and clinical evidence 
for the cytotoxic properties of TPT against lung, breast and ovarian cancers is well known [1]. 

Topoisomerase I, a monomeric protein, is an enzyme that acts to relax negative and positive 
super coils that accumulate in DNA during DNA replication [4] and transcription (S-phase), 
chromosome segregation and the efficient traverse of mitosis [5].  Topoisomerase I is 
necessary within the nucleus for cell proliferation and its level is constant throughout the cell 
cycle [6]. 

Acquired (external factors) or inherited gene mutations lead to the alteration of normal cell 
proliferation signals and hence a loss of cell cycle controls [7].  This leads to uncontrolled cell 
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proliferation and, as a consequence, tumours develop and become established.  The cancer 
cells are characterised by a rapid proliferation rate which is paralleled by topoisomerase I 
activity.  Since TPT activity is sensitive to proliferating cells and is S-phase specific [8], 
cancer cells are more likely to be targeted by the drug due to the increased levels of 
topoisomerase I. 

TPT undergoes rapid, reversible, pH-sensitive, non-enzymatic hydrolysis [9] from a ring-
closed lactone form (TPTL) that predominates at low pH (<4) to an open-ringed hydroxyl 
form (TPTH), which predominates at high pH (>10).  The pharmacologically active lactone 
form, TPTL, is a DNA topoisomerase I inhibitor which binds to the nuclear DNA.  It disturbs 
the process of replication resulting in DNA breaks (S-phase) by trapping topoisomerase I and 
DNA in a covalently bound ternary complex.  It also interferes with the catalytic function of 
the enzyme without trapping the covalent complex.  As a result, cell division is prohibited, 
and cell arrest is caused in the target area [10]. 

Identification of dissimilitude in the uptake kinetics into human breast cancer cells (MCF-7 
cell line) of the topoisomerase I inhibitor topotecan (Hycamtin®; SmithKline Beecham, 
Pharmaceutics) is essential for the development of therapeutic agents in oncology.  The search 
for cell heterogeneity corresponds to a search for knowledge of specific factors involved in 
the differentiation of subpopulations in most neoplasms.  Evidence of heterogeneous 
characteristics expressed in clonal cancer cells has been recorded in the literature [11, 12].  
This heterogeneity is further supported in this paper by compartmental modelling of drug 
uptake. 

In this work, a multi-cell compartmental model is derived to describe the in vitro kinetics of 
TPT following administration into a culture medium containing a population of human breast 
cancer cells (MCF-7 cell line) in suspension.  The proposed model is an extension of that 
presented in [13], which did not differentiate between the behaviours of different cells.  Thus, 
in the previous model, a heterogeneous population of cells was treated as a single averaged 
homogeneous type.  A similar approach was used in [14, 15] for compartmental models that 
used high performance liquid chromatography (HPLC) data during parameter estimation. 

Although the population of 105 cells modelled in this study initially originated from a single 
cloning stream, evidence of the inter-cellular heterogeneity of breast cancer cells has been 
found in in vitro experiments [16, 17]. 

The previous model [13] did not seek to address inter-cellular heterogeneity, but rather sought 
to represent the average population response.  This established a firm foundation for the 
development of a more complex model that contains more compartments and parameters.  
Therefore, rather than treating the cells as a homogeneous population, the possible features of 
inter-cellular heterogeneity in TPT drug uptake is investigated through a model that includes 
different cell types.  The source and effects of heterogeneity in cellular uptake kinetics is 
sought from estimates for the unknown parameters in the compartmental model.  The 
experimental data used for the parameter estimation were collected from an in vitro study of 
the interaction of a culture of human breast cancer (MCF-7) cells and TPT using two-photon 
laser scanning microscopy (TPLSM). 

Topotecan is a UV-excitable camptothecin and these auto-fluorescent properties have been 
exploited to evaluate drug resistance in differently derived cell lines using confocal 
microscopy [18].  The binding characteristics of the drug to DNA were observed in 
spectroscopy studies by using the high two-photon absorption cross-section properties 
demonstrated by TPT [19]. 
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The experimental data were collected for the model using TPLSM; investigations [20] 
showed that TPT is UV light excitable, so that TPT will also be infrared two-photon 
excitable.  The principle of two-photon excitation of fluorescence [21] is that two photons of 
longer wavelength light are simultaneously absorbed by a fluorochrome that would normally 
be excited by a single photon with a shorter wavelength.  Hence, the fluorochrome excitation 
is limited to the point of focus by the non-linear optical absorption property of two-photon 
excitation. 

 

Fig. 1.  The fluorescence intensity of topotecan in MCF-7 breast cancer cells, 
plotted against the concentration of the active and inactive form of the drug. 

The advantages given by the features of non-linear excitation are that the images obtained 
have high contrast and are free of out-of-focus light. Also, this method is particularly 
beneficial to live cell imaging as the light is only restricted in the focal plane, thereby 
decreasing photo bleaching of the indicator and photo-damage to the cells. Although this 
method is not able to differentiate the active form (TPTL) from the inactive form of drug 
(TPTH), as shown in Figure 1, it has been considered to be a reliable method for the collection 
of high quality data. The experimental data only provide the total concentration of drug within 
the extracellular location, cytoplasm and nucleus (see Figure 2). 

 
Fig. 2.  A TPLSM image of topotecan localisation in MCF-7 breast cancer cells; 

where n denotes the nucleus, c the cytoplasm and m the medium. 

The experiment performed to collect data for the purposes of parameter estimation imposes an 
output structure on the model.  This output structure comprises the functions of the model 
variables that are directly measured in the proposed experiment (the output, or measurement, 
vector).  Prior to the parameter estimation for the new multi-cell model, a structural 
identifiability analysis [22] is vital to test whether the output structure corresponding to the 
TPLSM experiment uniquely determines the unknown parameters.  A globally identifiable 
model indicates that the estimated parameters are unique for a given model output vector.  
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Structural identifiability is independent of the experimental data and the analysis of it is a 
fundamental prerequisite to experiment design, system identification and parameter 
estimation. 

The ultimate goal of this paper is the use of compartmental modelling techniques to 
implement a valid model to seek for the identification and verification of the importance of 
heterogeneity in the uptake kinetics of the drug in human cancer cells. 

2. The multi-cell model 
For a single tumour, not all the cells are homologous; rather there is a range of cells in a 
population expressing many different phenotypes.  Cells might vary according to their 
structure (e.g., growth rate and morphology) and/or behaviour (e.g., invasion and metastasis) 
[23].  The verification and importance of heterogeneity of these cells is therefore explored 
using a new mathematical multi-cell compartmental model [24, 25] of the interaction between 
TPT and a population of MCF-7 breast cancer cells [8]. 

The experiment, using TPLSM, to track the delivery of TPT to the sub-cellular compartments 
of a population of MCF-7 cells, was performed on a cultural medium of 105 cells in 
suspension.  Data for 13 individual cells were collected and are used to validate the multi-cell 
model proposed in this paper.  The heterogeneous population of cells is assumed, for 
simplicity, to comprise 13 types corresponding to the cells for which data are available.  The 
innate (as opposed to acquired) heterogeneity in the loading of drug within the population of 
MCF-7 cells was a striking feature of observations made during the experiment [8], which 
suggested the existence of inter-cellular heterogeneity. 

2.1. Kinetics of the drug action 
The principles of compartmental modelling were used to describe the behaviour of the 
system, that is, the uptake kinetics of the anti-cancer agent topotecan immediately after 
administration to a population of breast cancer cells. 

Chemical reactions are assumed to occur, in accordance with the Law of Mass Action, at a 
rate that is directly proportional to the product of the concentrations of reactants [26].  The 
constant of proportionality is the corresponding rate constant.  This principle is used in the 
proposed model to describe the reversible hydrolysis of TPT-L, the nuclear binding of TPT-L 
and the dissociation of bound drug.  The transfers of drug between different physical locations 
are treated as first order processes.  There is only one rate constant for the irreversible 
transfers corresponding to the dissociation of bound drug from the nucleus to the cytoplasm 
(as TPTL or TPTH); while the reversible transfers between locations have two constants (one 
for the forward direction and one for the reverse direction). 

2.2. Complexity of the model 
The basic model of one cell type proposed in [13] consists of 7 compartments and has 11 
parameters.  Using the same underlying set of experimental data for parameter fitting, the 
basic model is extended to one that is composed of 43 compartments (involving 109 
parameters, 2 of which are known a priori), which describes the kinetics within a population 
of 13 distinct cell types.  The extension of the model from 1 cell type to 13 cell types 
increases the complexity of the system with new pathways being added to account for the flux 
of the drug to each cell type.  Both models were designed specially for parameter estimation 
using TPLSM data. 
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The increase in complexity of the system also increases the difficulty in performing a 
structural identifiability analysis, since a more complex system requires higher computational 
power to complete the analysis.  Once the model is shown to be structurally identifiable, this 
complexity also affects parameter estimation.  As the number of parameters increases, the 
time and computational power required for the process is increased as a consequence.  The 
fitted proposed model is a stiff system [27] and so a specialist simulation and parameter 
estimation tool is used that is able to handle such a system (FACSIMILE, MCPA Software, 
UK).  When the number of parameters is increased, there are an increased number of fluxes 
operating on different timescales, which increases the computational time within the 
simulation software used to handle the parameter estimation process. 

2.3. Assumptions of the compartmental model for 13 cell types 
The new multi-cell compartmental model is a “model of process” [28].  The representation of 
this model involves equations describing the reactions and transfers within the system.  These 
are written based on the basic laws of the processes that constitute the system.  Therefore, the 
simulation results obtained in the virtual experiment on the model can then be compared with 
real experimental data.  Assumptions are made when developing the model in order to fully 
describe the features of the real life situation.  The validation of the assumptions is made once 
the structural identifiability and parameter estimation have been performed. 

Assumption 1:  The Law of Mass Action applies and is used to model all the chemical 
reactions within the system. 

Assumption 2:  The total concentration of drug in the experimental pool is divided into the 
medium, which is the environment in which the drug is added, and the extracellular region, 
which is the location in which the cells are situated [13].  Figures 3(a) and (b) show the 
response of one cell for which data were collected during the TPLSM experiment.  The 
mixing that takes place in the medium, which necessitates this assumption, is evident in 
Figure 3(a). 

 
(a) 

 
(b) 

Fig. 3.  The total concentration of TPT (TPTL plus TPTH) plotted against time. 

Assumption 3:  The rates of hydrolysis between the active and inactive forms of the drug in 
the medium and extra-cellular location are the same for each particular direction, and the rate 
constants are denoted by kom and kcm, respectively. 

Assumption 4:  It is assumed that only the active form of TPT in the extracellular location is 
able to flow into and out of the cell, with the influx and efflux taken to be first order processes 
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with rate constants ki and ke, respectively.  These assumptions are supported by previous 
experimental observations [14] and the physical properties of the hydroxy acid form with 
respect to the lipid bilayer traverse [29]. 

Assumption 5:  The target site contains only the DNA complex, which is formed by the 
combination of DNA and topoisomerase I.  Only the active form of drug, TPTL, will bind to 
the DNA complex [19] and the entire drug in the nucleus is bound.  Further experiments are 
essential to validate such a simplification of the real situation and it is important to investigate 
the possibility of modelling unbound drug located in the nucleus [13]. 

Assumption 6:  In accordance with the Law of Mass Action, the product of the concentrations 
of available binding sites BF, and cytosolic TPTL is assumed to be proportional to the rate at 
which TPTL binds to DNA.  The concentration BF can be rewritten as (BT − Ln) by applying 
suitable conservation laws [30], where BT is the total concentration of sites available for TPTL 
to bind to and Ln denotes the concentration of bound TPTL in the nucleus. 

Assumption 7:  The dissociation of the drug from the nucleus can be to both active and 
inactive forms, i.e., to cytosolic TPTL or TPTH.  The dissociation to either form occurs at a 
first order rate, kdlLn and kdhLn, respectively. 

2.4. A two-compartment model for the reversible hydrolysis of TPT 
The drug TPT consists of two forms [14, 15], an active lactone form (TPTL) and an inactive 
hydroxy acid form (TPTH).  Experiments indicate that for higher pH, the initial dose of TPTL 
more rapidly undergoes hydrolysis to TPTH and that the equilibrium concentration of TPTL 
decreases [14].  A simple model with two compartments (see Figure 4) can be used to 
describe this reversible hydrolysis of TPTL in solution; as was done in [14] for TPT in 
buffered solutions of different pH (in the range from 6.8 to 8.0).  This simple model, where 
Lm and Hm denote the respective concentrations of TPTL and TPTH in the buffer (medium), 
forms the foundation for the overall multi-cell model.  The pH in the medium during the 
experiments was 7.2 and so the values for the rate constants (for this pH) from [14] were 
used.  Although the experiment only provides observations for the total concentration of TPT 
for estimation purposes, the model is able to predict individual concentrations of TPTL and 
TPTH. 

Fig. 4.  Schematic of two compartmental model of the drug hydrolysis. 

2.5. The multi-cell compartmental model 
The model consists of two groups of pools; the first group consists of the medium (denoted by 
subscript m), in which the cells grow, and an extra-cellular location pool (denoted by 
subscript e) that contains all of the individual cells.  Then, within each cell is another group 
that comprises two pools corresponding to the cytoplasm (denoted by subscript c) and the 
nucleus (denoted by subscript n).  A two-compartment model (Figure 4) is used to model the 
reversible hydrolysis of the drug in the drug medium, extra-cellular location and the 
cytoplasm. 

The model, shown in Figure 5, is made up of 43 compartments, each compartment 
representing a well-mixed homogeneous subsystem of the overall system.  These subsystems 

TPTL 
Lm 

 

TPTH 
Hm 

kcm 

kom 
Medium 
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represent the concentration of the drug, in its active or inactive form, in a particular location 
with respect to time.  The arrows represent the flows between compartments.  These transfers 
can be as a result of the reversible hydrolysis process, the rate of flow of drug from one 
location to another location or the binding/association of the drug in the nucleus. 

Fig. 5.  Schematic of the proposed mathematical model for the in vitro kinetics of 
TPT, including its delivery to the DNA target in each cell nucleus.  The 
concentration of free target sites (in cell type j) for TPTL is denoted by 

( )[ ] [ ] [ ]
F T n( ) ( )j j jB t B L t= − . 

In the experiment a dose of TPTL was injected into the medium in order to give an overall 
concentration of 10 μM (in the full 2mL physical medium).  In the model this dose 
corresponds to time t = 0 and provides the initial concentration of the active form of drug 
(TPTL) in the medium, Lm(0).  Mixing between the medium and extracellular locations then 
takes place with first order flows with rate constants kmi and kmo, respectively. 

The full multi-cell compartment model (Figure 5) has 109 parameters in total divided between 
the medium (kmi, kmo, kom, kcm and v0 = ve/vm) and the different cell types ( [ ]
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[ ]
b

jk , [ ]
dl

jk , [ ]
dh

jk  and [ ]
T

jB , j = 1, …, 13).  Since the pH in the medium during the experiment 
was 7.2, previously determined [14] values were used for the hydrolysis rate constants kom and 
kcm.  In principle, if the pH of each cell were known then values could also be used for [ ]

oc
jk  

and [ ]
cc

jk  (j = 1, …, 13). 

The model is described by the following nonlinear system of 43 differential equations: 

 m ( )L t  ( )om mi m cm m mo 0 e( ) ( ) ( )k k L t k H t k v L t= − + + +  (1) 

 m ( )H t  ( )om m cm mi m mo 0 e( ) ( ) ( )k L t k k H t k v H t= − + +  (2) 

 e ( )L t  
13 13

[ ] [ ] [ ]mi
m om mo i e cm e e c

1 10 1

1( ) ( ) ( ) ( )j j j

j j

k L t k k k L t k H t k L t
v v= =

 
= − + + + + 

 
∑ ∑  (3) 

 e ( )H t  ( )mi
m om e cm mo e

0

( ) ( ) ( )k H t k L t k k H t
v

= + − +  (4) 

 [ ]
c ( )jL t  [ ] ( ) [ ] [ ]( ) [ ] ( ) [ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] [ ] ( )( ) [ ]

i 1 e e oc c cc c dl 2 n b T n c
j j j j j j j j j j j jk v L t k k L t k H t k v L t k B L t L= − + + + − −  (5) 

[ ]
c ( )jH t  [ ] [ ] ( ) [ ] [ ] ( ) [ ] ( )[ ]

oc c cc c dh 2 n
j j j j jjk L t k H t k v L t= − +  (6) 

 [ ]
n ( )jL t  

[ ]
[ ] [ ] ( )( ) [ ] ( ) [ ] [ ]( ) [ ] ( )b
T n c dl dh n

2

j
j j j j j jk B L t L t k k L t

v
= − − +  (7) 

where the additional superscript (j = 1, …, 13) is used to denote cell type.  For example, [ ]
c
jL  

denotes the concentration of the active form of the drug in the cytoplasm of cell type j.  The 
parameters 0 e m/v v v= , 1 e c/v v v=  and 2 n c/v v v=  are the ratios, respectively, of the volume of 
the extracellular location (ve) to drug medium (vm), extracellular location to cytoplasm (vc) 
and nucleus (vn) to cytoplasm.  The cellular volumes correspond to the total volume for each 
cell type, where it is assumed, for simplicity, that these volumes are the same across cell 
types.  The total volume, vT, of the medium is equal to the sum of the volumes of the medium 
and extracellular location, 

 i.e., ( )e 0e
T m e e

0 0

1v vvv v v v
v v

+
= + = + = . (8) 

Since vT = 2 ml (i.e., 122 10×  μm3), Equation (8) may be rearranged to give: 

 ( )12 0
e

0

2 10
1

vv
v

 
= ×  + 

. (9) 

The volume of the cytoplasm, cv , can be obtained by multiplying the mean volume of 
cytoplasm per cell (829 μm3 [13]) by the total number of cells of a particular type: 

 ( )5
c 829 10 /13v = ×  (10) 

where it is assumed that the cell population is equally divided between the different types.  
Substituting the expressions from Equations (9) and (10) into v1 = ve / vc gives: 
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( ) ( )

( )
12

12 0 0
1 c 5

0 0

5 0

0

2 10
2 10 / 13

1 1829 10

3.1363 10
1

v vv v
v v

v
v

×  
= × = ×   + +×  

 
= × × + 

 (11) 

The value of v1 is therefore calculated in terms of v0. 

Since the drug was administered into the medium at time t = 0 with dose D (equal to 10 μM) 
and was in active form only, the initial conditions for the model are given by: 

 ( ) ( )m 00 1L D v= +  (12) 

and 

 ( ) ( ) ( ) ( ) ( ) ( )m e e c c n0 0 0 0 0 0 0H L H L H L= = = = = = . (13) 

As noted above, the full model has 109 parameters, but the values of kom and kcm were known 
experimentally, so leaving 107 parameters left to be estimated. 

3. Structural Identifiability Analysis 
For a compartmental system, it is unlikely that all of the compartments (state variables) within 
the system model can be observed from a real experiment.  Therefore, there is the question of 
whether the limited number of compartments being observed can provide enough information 
to uniquely determine all of the unknown model parameters.  Depending upon the complexity 
of the model, and in particular how the parameters enter the system and output equations, a 
model in which all of the compartments are measured may prove to not uniquely determine 
all of the unknown parameters.  For the structural identifiability approach [22] it can be 
assumed that an ideal experiment has been performed which provides flawless, smooth and 
noise free data. 

Consider a general postulated parametric model that is expressed in a state variable 
representation of the form: 

 ( ) ( )( ), ,t t=x f x p p , ( ) ( )00, =x p x p  (14) 

with 

 ( , ) ( ) ( , )t t=y p C p x p , where ( )
( ) ( )

( ) ( )

11 1

1

n

r rn

c c

c c

 
 =  
  

p p
C p

p p



  



 (15) 

and the unknown parameters of the model are constituted in a q-dimensional vector, 

( )T

1,..., qp p= ∈Ωp  (Ω some open subset of q
 ).  It is assumed that there exists a set 

nM ⊆   (parameter independent) that contains the trajectories of the n-dimensional state 

vector, ( ) ( ) ( )( )T
1, , ,..., ,nt x t x t=x p p p , i.e., ( ),t M∈x p  for all 0t ≥  (the model variables 

are the ( , )ix t p ).  The vector ( ),ty p  represents the r-dimensional measurements in the 

experiment and ( )C p  is an r n×  matrix. 
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The following are the basic definitions used to distinguish the different types of parameter and 
system identifiability; they are consistent with the definitions originally proposed by Walter 
[31].  These definitions classify the uniqueness of the unknown parameters with respect to the 
observation function corresponding to the experiment used to collect data for parameter 
estimation.  There are three cases: uniquely (globally) identifiable, locally identifiable and 
unidentifiable.  It should be emphasised that uniqueness of a parameter in terms of 
identifiability does not guarantee that it will be well-determined from the actual experimental 
data. 

For generic ∈Ωp , the parameter pi (the ith component of p) is said to be uniquely (globally) 
identifiable if it is uniquely determined by the observation function, ( , )ty p .  That is, given 
the observed output of the compartmental model, ( , )ty p , the parameter pi is globally 
identifiable if for any ∈Ωp  such that 

 ( ) ( ), , ,  for all 0t t t= ≥y p y p  (16) 

then i ip p= .  If all of the parameters, pi, in p are globally identifiable, then the model is said 
to be structurally globally identifiable. 

For generic ∈Ωp , the parameter pi (the ith component of p) is said to be locally identifiable if 
it can take on any value from a countable (usually finite) set in the parameter space.  That is, 
there exists an 0ε >  such that for any ∈p Ω , if − < ε

 p p  and ( ) ( ), ,t t= y p y p for all 
0t ≥  then i ip p= .  If all of the parameters, pi, in p are locally identifiable, and at least one is 

not globally identifiable, then the model is said to be structurally locally identifiable. 

For generic ∈Ωp , the parameter pi (the ith component of p) is said to be unidentifiable if it 
can take on an infinite (uncountable) number of possible values.  That is, given any 0ε >  
there exists a ∈p Ω , i ip p≠ , such that − < εp p

   and ( ) ( ), ,t t= y p y p for all 0t ≥ .  If any 
parameter, pi, in p is unidentifiable, then the model is said to be unidentifiable. 

If the model system is unidentifiable, any variation in an unidentifiable parameter could not 
be attributed specifically to heterogeneity.  It is then important to consider the redesign of the 
experiment, for example by collecting additional data.  An alternative approach is to redesign 
the model, postulating values for some of the unknown parameters in some other way.  If 
neither of these is possible, then consideration should be given to a reparameterisation of the 
model [32].  Therefore, it is essential to perform an identifiability analysis before parameter 
estimation. 

3.1 The Taylor series approach 
For linear systems, there are several techniques available for structural identifiability analysis 
[33], but there are relatively few techniques available for the corresponding analysis for 
nonlinear systems – see, for example, [34, 35, 36].  In this paper, the Taylor series approach 
[37] is used, because it provided a tractable solution for the model with 81 unknown 
parameters (see Section 3.2). 

In this approach, the Taylor series expansion of the observation function ( , )ty p , that is the 
vector of model variables to be measured from the real experiment, is considered about some 
known time point (usually the initial condition t = 0+). The successive derivatives of y, 
evaluated at the time point, then consist of information about the parameter vector p and are 
considered to be measurable and unique. This yields a (countable) series of simultaneous 
equations that are then solved for the parameters. Structural identifiability is then dependent 
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upon the uniqueness of solutions of this system of equations. Consider the Taylor series 
expansion of the observation ( ),iy t p  about the initial time point 0t =  with r linear 
combinations of the model variables measured: 

 ( ) ( ) ( ) ( ) ( )
2

(1) (2) ( ), 0, 0, 0, 0,
2! !i i i i i
t ty t y y t y y

ω
ω

ω
= + + + ⋅⋅⋅+ + ⋅⋅⋅p p p p p   1,...,i r=  (17) 

where 

 ( ) ( )( )

0
, lim , ,i

i
d yy t
dt

ω
ω

ωτ
τ

→
=p p  for 1, ,i r=   and 1, 2, 3,ω =  . (18) 

Uniqueness of the coefficients in the Taylor series with respect to the observations means that 
if ∈p Ω  is such that ( ) ( ), ,t t= y p y p for all 0t ≥  then 

 ( ) ( )0, 0,i iy y=p p  and ( ) ( )( ) ( )0, 0,i iy yω ω=p p        1, , ; 1, 2, 3,i r ω= =   (19) 

It must be noted that Equation (19) provides an infinite list of equations that relate parameter 
vectors p and p  that give rise to identical outputs.  If a finite number of these equations 
establishes that i ip p=  in any solution for p  then this is sufficient to show that the parameter 
pi is globally identifiable.  However, for any finite number of equations, if it is found there are 
solutions for which i ip p≠  then it is not necessarily true that the parameter pi is not globally 
identifiable.  It is often difficult, for nonlinear models, to establish an upper bound for ω in 
Equation (19) such that the resulting finite number of equations relating parameter vectors p 
and p  (with identical outputs) yields a necessary and sufficient condition for identifiability.  
Typically to demonstrate that such a bound, N say, has been found it must be shown that a 
solution for p  of Equation (19) with ω ≤ N is a solution of the full system of equations (i.e., 
ω = 1, 2, …, ∞).  Margaria et al. [38] have provided an upper bound, using differential 
algebra methods, for systems of the form of (14) and (15) in which the right-hand side f is 
rational and r = 1. 

3.2 Structural identifiability analysis of the model 
The Taylor series approach is applied to test the structural identifiability of the model with 
107 unknown parameters described above.  The complex algebraic manipulations necessary 
when applying the Taylor series approach are handled within MATHEMATICA [39], a software 
package used to perform the symbolic computation involved in the structural identifiability 
analysis.  The package is used to expand the Taylor series of the observations based upon the 
model definition, Equations (1)-(7), with the initial conditions given in Equations (12) and 
(13).  It is then used to attempt to solve the resulting nonlinear simultaneous equations in (19) 
to test for uniqueness of the solution set.  The structural identifiability result for this model 
could not be determined due to the high complexity of the computation involved in the 
analysis. 

A second structural identifiability analysis was performed after reducing the number of 
unknown parameters to 81 by assuming that all the rate constants [ ]

oc
ik , i = 1, …, 13 are known 

and equal; similarly for the rate constants [ ]
cc
ik , i = 1, …, 13.  Partial justification for this was 

provided by simulations with the cellular parameters at the pH values 7.0, 7.2 and 7.4 (within 
the feasible range, using values obtained in [14]), in which it was found that the model 
responses were not sensitive to these different values for the individual rate constants. 
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For the model with 81 unknown parameters, the Taylor series approach is performed on the 
model defined in Equations (1)-(7) with initial conditions given in Equations (12) and (13). 
The unknown parameter vector is given by: 

( )[1] [13] [1] [13] [1] [13] [1] [13] [1] [13] [1] [13]
mi mo i i e e b b dl dl dh dh T T 0, , , , , , , , , , , , , , , , , , , ,k k k k k k k k k k k k B B v=p      

T
 

where p is an 81-dimensional vector.  The set of parameter vectors, Ω, consists of those 
vectors ( )1 81,...,p p T  such that ( )0 1 81ip i> ≤ ≤ , given that each of the model parameters has 
positive value. 

The state vector ( , )tx p is given by 

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ))

m m e e

[1] [13] [1] [13] [1] [13]
c c c c n n

, , , , , , , , ,

, , , , , , , , , , , , , ,

t L t H t L t H t

L t L t H t H t L t L t

=x p p p p p

p p p p p p  

T  

and the set M is taken to be 43
 .  The output function is given by the following 

 
( )
( )

T[1] [1] [13] [13] [1] [13]
e e c c c c n n

T[1] [13] [1] [13]
e c c n n

( , ) , , , , , ,

, , , , , ,

t L H L H L H L L

T T T L L

= + + +

=

y p  

 

 (20) 

so that the output matrix, ( )C p , is given by 

 
( )

0 1 3 1 3 1 3

02 4 1 2 3 2 3

2 4 2 3

2 4 2 3 13

where 0 0 1 1 ,
( ) 1 1 0

( 1,...,13)
0 0 1j j

× × ×

× × ×

× ×

× ×

 
  = 
 =  

= =   
  

 
 

C
CC

C p
C

C





 

   

 

0 0 0
0 0 0
0 0

0 0

 

and 0k×m is the k × m zero matrix.  The initial state of the model is given by 

 ( ) ( )0 0(1 ),  0, , 0D v= +x p 

T  

where the dose, D  is known.  Let ∈Ωp  be any parameter vector 

( )[1] [13] [1] [13] [1] [13] [1] [13] [1] [13] [1] [13]
mi mo i i e e b b dl dl dh dh T T 0, , , , , , , , , , , , , , , , , , , ,k k k k k k k k k k k k B B v=p            

 

 
     

T
 

such that ( ) ( ), ,t t= y p y p  for all 0t ≥ .  The relationship between the co-ordinates of p and 
p  is explored by equating successive coefficients of the Taylor series expansions of the 

components of ( ),ty p  and ( ),t y p .  The symbolic computation software MATHEMATICA was 
employed due to the complexity of the coefficients obtained for the higher derivatives.  The 
analysis of the model is shown below and the corresponding MATHEMATICA code used is 
found in Appendix A. 

The first coefficient obtained when setting ω = 0 in Equation (19), for i = 1, …, 27, is equal to 
zero indicating the absence of information.  For the first derivative, that is ω = 1 in Equation 
(19) (i = 1, …, 27), it is seen that 

 ( )
( )

mi 0 0
mi

0 0

1
1

k v v
k

v v
+

=
+







. (21) 
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Using the relation in Equation (21) with the coefficients obtained in the next derivative (ω = 2 
in Equation 19) yields the following relations 

 ( )
( )

[ ] ( )
( )

mi 0 0 i 0 0
mo mo

0 0 0 01 1

jk v v k v v
k k

v v v v
− −

= + +
+ +

 



 

 and [ ]
[ ] ( )
( )

i 0 0
i

0 0

1
1

j
j k v v

k
v v
+

=
+







  for j = 1,…,13. (22) 

By combining the set of coefficients in the Taylor series expansion (ω = 3 in Equation 19) and 
the relations given in Equations (21) and (22), yields the following relations 

 [ ]
[ ] [ ]

[ ]
T b

b
T

j j
j

j

B kk
B

=



, [ ] [ ]
e e

j jk k=  (for j = 1,…,13) and 0 0v v=  (23) 

Therefore, in order for Equation (19) to be satisfied for each j = 1,…,27 and ω = 1,…,3, the 
following relationships must hold true when taking into account all of the relations between 
the parameters in p and p  given in Equations (21-23): 

 mi mik k= , mo mok k= , [ ] [ ]
i i

j jk k= , [ ] [ ]
e e

j jk k= , [ ]
[ ] [ ]

[ ]
T b

b
T

j j
j

j

B kk
B

=



 (j = 1,…,13) and 0 0v v= . (24) 

Using the relations in Equations (24), together with the fourth derivative terms (ω = 4 in 
Equation 19), it follows that 

 [ ] [ ]
dl dl

j jk k=  and [ ] [ ]
dh dh

j jk k=  (j = 1,…,13). (25) 

Equating the relations in Equation (25) with the set of coefficients in the Taylor series 
expansion for the fifth derivative terms (ω = 5 in Equation 19) and the relations obtained in 
Equations (24) and (25), the set of coefficients returned is equal to zero.  Determining the 
Taylor series coefficients corresponding to the sixth derivative (ω = 6 in Equation 19) and 
using the relations in Equations (24) and (25) gives 

 [ ] [ ]
T T

j jB B=  (j = 1,…,13). (26) 

Therefore, for Equation (19) to be satisfied, it is necessary that 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
i i e e b b dl dl dh dh T T

mi mi mo mo 0 0

, , , , , ( 1, ,13),

, , and ,

j j j j j j j j j j j jk k k k k k k k k k B B j

k k k k v v

= = = = = = =

= = =

    




 



 (27) 

that is, =p p .  Since this is true for generic ∈Ωp , the model with 81 unknown parameters is 
structurally globally identifiable, which implies that all of the unknown parameters can be 
uniquely determined by the input-output behaviour corresponding to the experiment 
performed to collect the data used for parameter estimation. 

4. Parameter estimation 
Experimental data used for parameter estimation were collected using TPLSM, as described 
in [5, 13].  The duration of the experiment was 7.5 minutes with measurements taken every 5 
seconds, resulting in a dataset of 27 different observations of 90 time points.  The data include 
the total concentration level of topotecan uptake in the extracellular location (Te), the 
cytoplasm (Tc) and the nucleus (Ln) of 13 cells (see Equation 20). 
Parameter estimation is performed using the commercial software package, FACSIMILE 
(MCPA Software, UK), which employs the VA05 routine from the Harwell Subroutine 
Library (a hybrid method combining features from the Newton-Raphson, Steepest descent and 
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Marquardt methods).  This computer-modelling tool is designed to numerically solve 
differential equations (using a backward-difference predictor-corrector method), with a 
particular focus on modelling the kinetics of physical and chemical systems [40].  A particular 
advantage of this package is the robust numerical integrator that is able to handle stiff 
systems, that is, systems with widely varying rate constants.  The numerical integrator can 
solve all the ordinary differential equations of the model simultaneously and uses the 
parameter-fitting option available to fit the simulated output of the model to the experimental 
data.  The result of this optimisation process is the estimation of the model parameters. 

Goodness of fit is measured by the total error between the model and the experimental data, 
and the estimated confidence intervals on the parameter values.  The residual sum of squares 
(RSS), that is, the sum of the square of the error at each time point, is used for the error 
measure, making the optimisation a least squares problem.  To account for different 
magnitudes and accuracies of measurements, the error is weighted using the average 
magnitude for each time series: 

 
2

obs, sim,

1 1

( ) ( )r n
i i j

i j i

y j y t
RSS

σ= =

− 
=  

 
∑∑  (28) 

where sim, ( )i jy t  is the ith model output at the jth sampling time (tj); obs, ( )iy j  is the 
corresponding experimental data point; and i ie Rσ = ⋅  is an estimate for the standard error for 
the ith output, in which e = 0.015 is the estimated overall accuracy of the data and Ri is the 
range for sim, ( )i jy t  [40].  This approach is also referred to as a weighted least squares method 
as the random error at each sampling time tj is multiplied by a constant weight, 21 iσ , 
resulting in normalisation of the residuals if σi can be chosen to be the standard deviation for 
each of the random errors. 

Confidence levels give a statistical measure of how well the parameters are defined by the 
model and the data.  Sometimes the data will not determine a parameter value within tight 
enough bounds and so will be defined as ‘not well-determined’ (NWD) by the data in a 
statistical analysis that is performed during the fitting procedure.  FACSIMILE works in terms 
of internal parameters that are the natural logarithms of the given model parameters.  
Information is also returned on the estimated correlation between the well-determined 
parameters and the standard deviation of the natural logarithm (SDLN) of each of the well-
determined parameters, p0, which is estimated from the variance-covariance matrix of p-p0 
[40]. 

4.1. Alternating least squares method 
The number of unknown parameters that need to be estimated for the model is relatively large 
(81 in total).  To reach maximum accuracy and minimum numerical error in the process of 
parameter estimation, a general approach, the alternating least squares method (ALSM), was 
applied.  This approach was first introduced in 1976 by Young, de Leeuw and Takane [41, 
42] and since then, has been used widely by different researchers (for example [43]) to obtain 
optimal parameter estimates. 

The alternating least squares method involves estimating a limited number of parameters 
while the remaining parameters are assumed known and hence kept fixed.  For subsequent 
iterations in the fitting procedure, previously estimated parameters are fixed to allow any 
remaining parameters to be estimated.  This process is repeated until all of the parameters are 
estimated and a “small” residual sum of squares is obtained.  The advantage of the ALSM 
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approach is that at each stage of the parameter estimation, the optimisation algorithm only 
requires adjustment of a proper subset of the free parameters.  This reduces the computational 
complexity at each optimisation stage and hence increases the likelihood of convergence and 
well-determined parameter estimates.  The original ALSM, described in [41], involved 
subdivided subsets of parameters for the alternating estimation process that are not suitable to 
illustrate the interaction of the cells.  Therefore, the procedure of subdividing parameters into 
different subsets was replaced by the two approaches detailed in the next subsection. 

4.2. Cell pairing approaches 
All of the unknown parameters within each cell are inter-related so that separation of the 
unknown parameters into subsets with individual estimation is not appropriate.  The natural 
classification of the unknown parameters in the model into logical subsets corresponding to 
each cell forms the primary step in the subdivision of parameters.  This subdivision comprises 
13 subsets of parameters associated with each of the cells (consisting of six parameters each) 
and one subset of parameters corresponding to the medium (comprising three parameters). 

Although parameter estimation using ALSM for these 14 sets of unknown parameters is 
feasible, the connectivity between the cells and the medium would be neglected.  This 
connectivity results from the medium acting as a reservoir of drug, and also as a bridge for 
drug flow between cells.  To counter this issue, two cell pairing approaches are introduced to 
retain this inter-connection.  Applying the ALSM the parameters corresponding to each pair 
of cells (or a single cell and the medium) are fitted separately while the remaining unknown 
parameters are fixed.  For the first approach the cells are paired at random.  In the second 
approach cells are paired such that the combined maximum concentration of drug in each pair, 
observed in the experimental data, is approximately the same for each pair (∼24 μM).  Both 
approaches are compared with respect to the RSS after the parameter estimation procedures.  
After several initial parameter estimation runs were conducted using both approaches 
independently, the random pairing of cells approach was found to result in smaller RSS value.  
This approach was then adopted as the main one for the full parameter estimation. 

The initial input values for the unknown parameters used in the parameter estimation routine 
were important.  These values allow the determination of the local region of parameter space 
for the optimisation routines involved in the parameter estimation.  These initial input 
parameter values (given in Table 2 in the next subsection) represent the average behaviour of 
the model and were estimated in [13] for the one cell model using the averaged experimental 
data and assuming different cellular pH values of 7.0, 7.2 and 7.4. 

4.3. Results 
Using FACSIMILE, sets of simulation data for the multi-cell population model are generated.  
Each set of simulation outputs is compared with the corresponding observed data and the 
parameter values are iteratively altered until the RSS (Equation 28) is minimised.  The 
estimates obtained for the unknown parameters in the model are shown in Table 1, and these 
were generated for a cellular pH of 7.0 (giving koc = 1.2913 × 10-4 s-1 and kcc = 3.1578 × 10-4 
s-1 [13]).  Since the package FACSIMILE works in terms of internal parameters that are natural 
logarithms of the model parameters [40], the SDLN values given in Table 1 correspond to the 
estimated standard deviation for the natural logarithm of each parameter.  The SDLN values 
are automatically generated within FACSIMILE, and correspond to the fitting of the parameters 
for the appropriate pair of cells, rather than the complete fit across all cells.  However, for 
each parameter grouping FACSIMILE determines the sensitivity matrix (via finite-differences) 
with respect to all observation functions, which thus provides estimates for the corresponding 
columns of the full sensitivity matrix.  Since it might be expected that the observation 
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functions for each cell would be insensitive to parameters from other cells, and each grouping 
consists of all of the parameters for a pair of (randomly selected) cells, the SDLN values 
provide an approximate accuracy of each parameter estimate.  Those SDLN values 
corresponding to parameters related to the linking between the cellular subsystems and the 
medium might be estimated with lower accuracy because of the use of the ALSM. 

Cell ki (SDLN) ke (SDLN) kb (SDLN) kdl (SDLN) kdh (SDLN) BT (SDLN) 
 (s-1) (s-1) (s-1 µM-1) (s-1) (s-1) (µM) 
1 9.6793×10-4 

(0.01) 
6.2390×10-3 

(0.02) 
1.0363×10-3 

(0.27) 
1.6352×10-1 

(0.39) 
3.4443×10-7 

(NWD) 
8.3271×10+1 

(NWD) 
2 1.7991×10-3 

(0.01) 
6.3897×10-3 

(0.02) 
6.9339×10-4 

(0.27) 
1.0082×10-1 

(0.27) 
5.3976×10-7 

(NWD) 
8.9980×10+1 

(NWD) 
3 1.7790×10-3 

(0.01) 
8.8861×10-3 

(0.02) 
5.4223×10-4 

(0.25) 
7.3321×10-2 

(0.26) 
2.3474×10-9 

(NWD) 
8.8863×10+1 

(NWD) 
4 2.9240×10-3 

(0.02) 
2.9843×10-2 

(0.02) 
9.6381×10-5 

(0.02) 
1.4977×10-2 

(0.03) 
2.9111×10-5 

(NWD) 
9.0000×10+1 

(NWD) 
5 1.7511×10-3 

(0.01) 
1.0744×10-2 

(0.02) 
3.8854×10-4 

(0.12) 
5.1612×10-2 

(0.12) 
4.8398×10-8 

(NWD) 
8.6378×10+1 

(NWD) 
6 1.8373×10-3 

(0.01) 
5.3843×10-3 

(0.03) 
2.8155×10-4 

(0.10) 
3.7808×10-2 

(0.10) 
1.3193×10-5 

(NWD) 
8.9492×10+1 

(NWD) 
7 2.0484×10-3 

(0.02) 
6.6008×10-3 

(0.02) 
2.5786×10-4 

(0.07) 
3.4608×10-2 

(0.08) 
1.0840×10-8 

(NWD) 
8.9068×10+1 

(NWD) 
8 1.9419×10-3 

(0.01)   
7.1130×10-3 

(0.02) 
5.0752×10-4 

(0.14) 
6.7302×10-2 

(0.14) 
3.2643×10-8 

(NWD) 
8.6353×10+1 

(NWD) 
9 1.2397×10-3 

(0.01) 
9.9466×10-3 

(0.02) 
8.2157×10-4 

(0.25) 
8.6975×10-2 

(0.19) 
4.5910×10-6 

(NWD) 
6.6101×10+1 

(NWD) 
10 1.3153×10-3 

(0.01)  
7.2792×10-3 

(0.02) 
1.1271×10-3 

(0.36) 
1.4692×10-1 

(0.33) 
5.2075×10-7 

(NWD) 
8.3445×10+1 

(NWD) 
11 1.7472×10-3 

(0.01)  
7.2440×10-3 

(0.02) 
4.5567×10-4 

(0.13) 
6.7669×10-2 

(0.13) 
2.7069×10-9 

(NWD) 
8.8169×10+1 

(NWD) 
12 1.5702×10-3 

(0.01)  
5.0707×10-3 

(0.03) 
3.6026×10-4 

(0.13) 
5.1449×10-2 

(0.14) 
4.5926×10-8 

(NWD) 
8.9683×10+1 

(NWD) 
13 1.8230×10-3 

(0.01)  
6.5954×10-3 

(0.02) 
6.9745×10-4 

(0.22) 
1.0707×10-1 

(0.23) 
4.1422×10-9 

(NWD) 
8.9687×10+1 

(NWD) 

Table 1.  Estimates for cell-specific parameters with the estimated standard 
deviation of the natural logarithm of the parameter (SDLN) for individual run. 

During any fitting procedure, FACSIMILE performs a statistical analysis to detect parameters 
that are not well determined (NWD) by the data.  The values for these parameters are then 
fixed before continuing with the parameter fitting, and treated as unknown in subsequent 
statistical tests [40].  Of the fitted parameters, kdh and BT in each cell are NWD by the 
experimental data, which means that small variations in the estimates do not significantly alter 
the closeness of the fit.  A similar situation was also observed in the parameter estimation for 
the single-cell model [13], providing further support for the lack of sensitivity of the model 
output to variation in these parameters. 
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(a) Cell 1 

 
(b) Cell 2 

 
(c) Cell 3 

 
(d) Cell 4 

 
(e) Cell 5 

 
(f) Cell 6 

Fig. 6.  Comparison of model simulations with experimental data (denoted by 
‘Obs’).  The total concentration of drug in the cytoplasm is denoted by Tc and 
in the nucleus by Ln. (Cells 1 to 6.) 
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(a) Cell 7 

 
(b) Cell 8 

 
(c) Cell 9 

 
(d) Cell 10 

 
(e) Cell 11 

 
(f) Cell 12 

Fig. 7.  Comparison of model simulations with experimental data (denoted by 
‘Obs’).  The total concentration of drug in the cytoplasm is denoted by Tc and 
in the nucleus by Ln.  (Cells 7 to 12.) 
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(a) Cell 13 

 
(b) Extracellular region 

Fig. 8.  Comparison of model simulations with experimental data (denoted by 
‘Obs’).  The total concentration of drug in the extracellular region is denoted 
by Te, in the cytoplasm by Tc and in the nucleus by Ln.  (Cell 13 and 
Extracellular Region.) 

Figures 6–8 show the comparisons between the simulated model outputs (with the fitted 
parameter values) and the observed data.  In the graphs plotted in Figures 6–8 the total 
concentration of TPT in the extracellular location (Te), cytoplasm (Tc) and nucleus (Ln) in 
each of the cell types is shown against time.  The starred lines denote the experimental data 
and the solid lines the simulation results.  The figures show very good visual fits for all 
locations in all cells, except those for the Cell 4 nucleus data.  This is possibly as a result of 
experimental error in the data or Cell 4 being a particularly drug resistant cell.  The root-
mean-square error (RMSE) provides a quantitative measure of the closeness of fit and is 
calculated according to the following formula: 

  1.5136RSSRMSE
N q

= =
−

   (µM) (29) 

where N is the number of data points and q is the number of fitted parameters such that N – q 
is the number of degrees of freedom.  This implies that the difference between the model 
prediction and the actual data for the overall time series is approximately 2.3% of the range of 
the data set: 

 , ,( ) ( ) 1.5136 0.0227observed i simulated i j i iy j y t Rσ− = × = × . (30) 

5. Analysis of results 
Table 3 shows the parameter estimates obtained in [13] for the single cell-type version of the 
model, assuming a cellular pH value of 7.0, which were used as the initial estimates in the 
parameter fitting for the multi-cell type model presented in this paper.  Also shown are the 
mean values for the estimates across the cells in the multi-cell version of the model.  In 
comparing the means for the multi-cell estimates to the single-cell estimates, there is good 
correspondence for all parameters except the influx rate constant, ki.  There is a significant 
decrease in value for the mean across the multi-cell estimates.  This decrease affects the ratio 
of the efflux/influx rate constants (E/I ratio), an indication of the drug resistance of a cell; in 
the single cell model the ratio is 0.36 and for the multi-cell model (see Table 4) the mean E/I 
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ratio is 5.05 (standard deviation is 2.18) which is significantly higher than the value obtained 
for the single cell model.  However, the single cell model represents all cells, rather than a 
fraction (1/13) of them as in the multi-cell model.  Assuming that the single cell model is 
representative of an average cell comparable to those constituting the multi-cell model, this 
would lead to an E/I ratio of 4.64 (13×0.357). 
Comparing the E/I ratios for each of the cells, shown in Table 4, it appears that the approach 
of [13] in considering the population via a single average type, results in a slight 
underestimation of drug resistance.  However, the highest ratio is for Cell 4, for which the 
poorest visual fit is seen, see Figure 6(d).  The relatively poor fit for Cell 4 might account for 
an artificially high ratio, which in turn would produce an overestimate for the mean.  In this 
case the ‘true’ E/I ratio might be closer to the single cell value.  Although the visual fit is not 
as good for Cell 4, the estimates obtained for the influx and efflux rate constants do have very 
low SDLN values suggesting that they are well-determined by the data. 

Table 2.  Comparison of the parameter estimates for the single cell model [13] 
(with cellular pH of 7.0) and the mean values of the individual estimates for 
the 13 cells. 

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 

E/I 
ratio 

6.45 3.55 4.99 10.20 6.14 2.93 3.22 3.66 8.02 5.53 4.15 3.23 3.62 

Table 3.  The E/I ratios for all cells, calculated using the parameter estimates for 
the full multi-cell model.  The mean value is 5.05, with a standard deviation of 
2.18.  The corresponding ratio for the single-cell model [13] is 4.64. 

A statistical analysis is performed on the estimated parameter values, in order to rank their 
importance with respect to heterogeneity.  The coefficient of variation [44] of each parameter 
is used to measure the significance of the spread of the estimates, and hence as a measure for 
the heterogeneity of cancer cells.  The coefficient of variation (Cv), of each of the parameters 
is calculated according to the formula [44]: 

 /vC xσ=  

where σ is the standard deviation and x  is the mean or expected value of the estimated 
parameter.  The value of Cv provides a relative measure of data dispersion with respect to the 
mean.  It is a dimensionless quantity that can be represented as a percentage or as a simple 

Parameter Single Cell Mean for Multi-cell 
kmi (s-1) 1.3974×10-6 1.4941×10-6 
kmo (s-1) 8.5551×10-2 9.2632×10-2 

v0 1.5045×10-5 2.2324×10-5 
ki (s-1) 2.2110×10-2 1.7869×10-3 
ke (s-1) 7.8915×10-3 9.0034×10-3 

kb (s-1 µM-1) 3.8085×10-4 5.5039×10-4 
kdl (s-1) 5.5522×10-2 8.0489×10-2 
kdh (s-1) 1.5639×10-7 4.7793×10-7 
BT (µM) 8.9972×10+1 8.9440×10+1 
RMSE 1.0238 1.5136 
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decimal value, and is directly proportional to the size of the data scatter; if the data scatter is 
small then Cv is small, and vice-versa. 

Since there is some discrepancy between the model simulations for Cell 4 and the data, 
particularly for the cytoplasm, the Cv is calculated for each parameter both with and without 
Cell 4 taken into account.  The values of the mean, standard deviation and Cv of the 
parameters in the model are presented Table 5.  The table also shows the rank of the 
parameters from highest Cv to lowest Cv.  The larger the Cv, the higher the rank and the more 
likely that the parameter is to be a factor of heterogeneity. 

In Table 5, although the Cv of each of the model parameters decreases when Cell 4 is 
excluded from the analysis, there are no major differences in the order of Cv observed.  From 
the ranking of the two sets of Cv values (with or without Cell 4) it can be seen that the rate 
constant of dissociation of bound TPT as the inactive form, kdh, has the largest Cv, 316.5% or 
137.4%; these values represent the highest variation in the parameter estimates across the 
different cell types.  However, the large Cv for the estimates for kdh cannot be accepted as 
indication of heterogeneity since this parameter is not well determined (NWD) during the 
parameter estimation in FACSIMILE. 

In terms of well-determined parameters, the largest decrease in Cv obtained when neglecting 
Cell 4 is observed for the cellular efflux rate constant, ke (from 71.8% to 23.2%).  When 
neglecting the parameter estimate for Cell 4 the coefficient of variation drops from the second 
largest to the fourth largest.  The former rank suggests that efflux is a factor of heterogeneity, 
while the second does not.  If the relatively poor fit for cytoplasmic TPT and the high E/I ratio 
for Cell 4 are indicators of drug resistance, the higher rank for Cv suggests that this resistance 
is manifested through the efflux pathway.  Since the Cv for the rate constants related to TPT 
binding, kb and kdl, are over 40% in both cases (with or without Cell 4), they are thought to be 
factors of heterogeneity. 

Although the parameter relating to the total concentration of potential binding sites, BT, is also 
not well determined during parameter fitting, the coefficient of variation is still small (less 
than 1.5%).  This very low value for Cv suggests that the abundance of potential binding sites 
for nuclear TPT-L is not likely to be a source of heterogeneity.  It should also be noted that BT 
is constrained to be in the interval 0–90 µM and that this is implemented in FACSIMILE by 
defining BT to be a bounded function of a positive dummy parameter that is estimated rather 
than BT [13].  This bounded function is quite insensitive to variation in the dummy parameter 
resulting in BT being not well determined.  All estimates for this parameter were towards the 
higher end of the constraint interval (mean value of approximately 89 µM). 

 All estimates Estimates without Cell 4 
 Mean ( x ) StDev (σ) Cv Mean  ( x ) StDev (σ) Cv 
ki 1.7869×10-3 4.7542×10-4 26.61% (5) 1.6873×10-3 3.2540×10-4 19.28% (5) 
ke 9.0034×10-3 6.4610×10-3 71.76% (2) 7.2680×10-3 1.6830×10-3 23.16% (4) 
kb 5.5039×10-4 2.6568×10-4 48.27% (4) 5.8809×10-4 2.3843×10-4 40.54% (3) 
kdl 8.0489×10-2 4.1840×10-2 51.98% (3) 8.5931×10-2 3.8596×10-2 44.92% (2) 
kdh 4.7793×10-7 1.5127×10-6 316.52% (1) 5.8924×10-8 8.0947×10-8 137.37% (1) 
BT 8.9440×10+1 1.1955 1.34% (6) 8.9397×10+1 1.2377 1.38% (6) 

Table 4.  The mean, standard deviation and Cv for each of the estimated 
parameters in the model.  The rank of the Cv, from highest to lowest, is also 
indicated in brackets. 
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Examining the differential equation (7) it can be seen that the affinity of binding [45] of TPT 
to DNA within a particular cell nucleus is given by 

 
[ ]

[ ] b 2
A [ ] [ ]

dl dh

/j
j

j j

k vK
k k

=
+

. (31) 

The affinity of binding for each of the cells is given in Table 5. 

Cell 1 2 3 4 5 6 7 8 
KA 1.55×10-2 1.75×10-2 1.86×10-2 1.64×10-2 1.90×10-2 1.85×10-2 1.88×10-2 1.91×10-2 

Cell 9 10 11 12 13 Mean StDev Cv 
KA 1.68×10-2 1.80×10-2 1.69×10-2 1.78×10-2 1.65×10-2 1.76×10-2 1.14×10-3 6.46% 

Table 5.  The affinity of binding, KA (µM-1), calculated using equation (31) for 
each of the cells.  Neglecting Cell 4 the mean KA is 1.77×10-2, with a standard 
deviation of 1.13×10-3, giving a coefficient of variation of 6.35%. 

An analysis of the propagation of errors in equation (31) is as follows: 
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For the means and standard deviations reported in Table 5 it is seen that 
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This analysis predicts that if the variation in the parameter values is random, the calculated 
binding affinity, KA, should have a coefficient of variation of 69%.  However, this is not the 
case, with a consistent estimate of the affinity being obtained across the cells.  The affinity of 
binding is a measure of the interaction of TPT with its binding sites and with such a relatively 
low coefficient of variation it would not be expected to account for inter-cellular 
heterogeneity.  In contrast, the individual pathways involved in binding and dissociation 
(parameters kb, kdl and kdh) are candidates for heterogeneity due to high coefficients of 
variation being obtained. 

In Figure 9 a further investigation is carried out for the identified heterogeneous parameters kb 
and kdl by plotting the normalised (with respect to the mean) parameter values against the cell 
number.  A high correlation is observed between these parameters across the cells.  To verify 
this observation, the blocks of the parameter correlation matrix pertaining to parameters kb 
and kdl were examined after a fit for Cells 1 to 4 was performed.  FACSIMILE reports the 
correlation matrix after parameter estimation and the relevant blocks are shown in Table 6 for 
Cells 1-4.  Similar such matrices for the other cells are omitted due to space constraints and 
the fact that the pattern of correlation is very similar.  It can be seen that there exists very 
strong correlation between kb and kdl for a given cell but there is no significant correlation 
between these parameters for the different cells shown. 
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Fig. 9.  Correlation between binding and (active) dissociation rate constants. 

 [1]
bk  [1]

dlk  [2]
bk  [2]

dlk  [3]
bk  [3]

dlk  [4]
bk  [4]

dlk  
[1]
bk  1.000 1.000 0.002 0.002 0.002 0.002 0.002 0.002 
[1]
dlk  1.000 1.000 0.002 0.002 0.002 0.002 0.002 0.002 
[2]
bk  0.002 0.002 1.000 1.000 0.003 0.003 0.003 0.003 
[2]
dlk  0.002 0.002 1.000 1.000 0.003 0.003 0.003 0.003 
[3]
bk  0.002 0.002 0.003 0.003 1.000 0.999 0.003 0.003 
[3]
dlk  0.002 0.002 0.003 0.003 0.999 1.000 0.003 0.003 
[4]
bk  0.002 0.002 0.003 0.003 0.003 0.003 1.000 0.987 
[4]
dlk  0.002 0.002 0.003 0.003 0.003 0.003 0.987 1.000 

Table 6.  Estimated correlation matrix for the estimated parameters kb and kdl for 
Cells 1–4 (the other cells being similar). 

6. Conclusions 
The implementation of a mathematical multi-cells model which describes the in vitro kinetics 
of the anti-cancer agent topotecan (TPT) following administration into a culture medium 
containing a population of human breast cancer cells (MCF-7 cell line) has been presented in 
this paper.  This model was then used to consider inter-cellular heterogeneity via the analysis 
of parameter estimates obtained from experimental data. 

The new model is an extension of the homogeneous cell model proposed in [13] using the 
same underlying set of experimental data obtained from two-photon laser scanning 
microscopy (TPLSM) for parameter fitting.  The previous model does not seek to address 
inter-cellular differentiation, but rather represents the population response by one average cell 
type.  It also provides a firm fundamental structure for the new highly complex model 
presented here that consists of 43 compartments and has 109 parameters (2 known and 107 
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unknown a priori).  This greater level of complexity is necessary to permit investigation of 
the heterogeneity in the uptake kinetics of topotecan into the cells. 

A formal structural identifiability analysis using the Taylor series approach [37] was 
performed as a prerequisite to parameter estimation to ensure that the unknown parameters in 
the model could be uniquely identified by the corresponding input-output behaviour.  The 
model imposed with different numbers of unknown parameters (107 and 81) underwent 
structural identifiability analyses using the Taylor series approach.  The structural 
identifiability analyses for both models were analogous, though a result for the model with 
107 (unknown) parameters could not be obtained.  The complex algebraic manipulations 
necessary in the Taylor series approach were handled by MATHEMATICA, a software package 
used to perform symbolic computation. 

The identifiability analysis for the model with 107 unknown parameters proved intractable 
due to the high complexity in the symbolic computation involved.  Therefore a reduced model 
(with 81 unknown parameters) was chosen for subsequent use and determined to be 
structurally globally (uniquely) identifiable.  The increased complexity of the system being 
investigated increased the difficulties for the structural identifiability analysis for both 
models.  This was especially true for the model with 107 unknown parameters, which requires 
higher computational power to complete the analysis or to perform a reparameterisation [32]. 

The parameter estimation of the model was carried out using the alternating least squares 
method (ALSM) in the computer software FACSIMILE.  In order to apply the ALSM, the 
unknown parameters were grouped into subsets that retained the connectivity between cells 
whilst maintaining a reasonable number of free parameters to estimate in a single FACSIMILE 
run.  This approach permitted a large number of parameters to be estimated, though some 
information is lost concerning the correlation between parameters in different subsets.  A 
good visual fit was obtained for all cells except Cell 4, which showed some marked deviation 
from the cytoplasm data (see Figure 6(d)).  The ratio of the efflux and influx rate constants 
(E/I ratio), a measure of drug resistance, is highest for Cell 4.  In addition, the estimates for 
these rate constants have low SDLN values indicating that they are well determined by the 
data.  These points suggest that Cell 4 is a drug resistant cell, and this might account for the 
relatively poor visual fit.  From Table 5 it is seen that the only significant change to the mean 
estimated values that was observed when neglecting Cell 4 is for the efflux rate constant.  
Similarly, there is a significant reduction in the coefficient of variation for this parameter 
when Cell 4 is neglected.  These factors suggest that drug resistance is manifest in the cellular 
efflux pathway. 

Through analysis of the coefficient of variation, Cv, for each of the estimated parameters, it 
was found that the heterogeneity of the cell population is manifested (separately) in the 
binding and dissociation pathways at the nuclear DNA target.  Although there is relatively 
little variation in the affinity of binding, KA, across cells (Cv = 6.46%; or 6.35% neglecting 
Cell 4), there is significant variation for the individual parameters for binding, kb, and 
dissociation (as active form), kdl.  An analysis of the propagation of errors in estimates for the 
affinity of binding of TPT to nuclear DNA showed that the variation in KA is small enough to 
suggest that a consistent estimate has been obtained across cells.  This observation gives 
further indication that the mathematical model embodies the behaviour of a physical cell 
system.  Finally, a high correlation was observed in the estimates for the two heterogeneous 
factors, name kb and kdl, across the cells.  This observation may indicate varying drug 
resistance in the cells. 

The model described in this paper is currently in use at the School of Medicine in Cardiff in 
the following applications: 
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• Determining the impact of TPT (a highly cell cycle selective agent) on cells, as part of 
studies on how bolus delivery can induce DNA damage (in discrete time frames) using 
the hyperphosphoryllation of a histone variant to detect early events in genomic 
damage stress induction.  For this, it is essential to clarify the pharmacokinetic 
behaviour of a drug at its first stage. 

• Providing an assessment of the ability of cells to modulate the delivery of active drug 
to nuclear targets as part of a rapid method of profiling the function in single cells of 
multidrug resistance modulators. 

• Assessing the ‘plasticity’ of expression of cellular features, such as cell size, efflux 
and nuclear-to-cytoplasmic ratio, that can affect drug responses.  This forms part of 
ongoing research on the origins of resistance in small cell lung cancer. 

In the future, it is envisaged that the modelling work will provide an important interface in 
research into new methods of drug tracking, in particular in flow cytometry and cell imaging, 
and will allow users to extract parameters of interest from the acquired data. 

The authors would like to thank Dr J. W. T. Yates, AstraZeneca, for valuable discussions 
relating to the data analysis. 
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Appendix A:  Structural identifiability analysis within the symbol computation software 
package MATHEMATICA 
The sample code used for the structural identifiability analysis of the model is provided in the 
following section.  It also shows how invaluable the package is when performing a structural 
identifiability analysis on such a model. 

Step One: 
Define the model equations in the MATHEMATICA workspace by stating the functions for the 
first derivatives (with respect to t) of the model variable for the 43 compartments where j = 
1,…,13: 
Lm'[t_]:= -(kom +kmi) Lm[t]+kcm Hm[t]+kmo v0 Le[t] 
Hm'[t_]:= kom Lm[t]-(kcm +kmi) Hm[t]+kmo v0 He[t] 

 

 
 
 

∑

∑

13

j=1

13

j=1

kmi
Le'[t_]:=  Lm[t]- kmo+kom + ki[j]  Le[t]+kcm He[t]

v0

1
+ ke[j] Lc[j, t]
v1

 

kmi
He'[t_]:=  Hm[t]-kmo Le[t]-(kcm +kmo) He[t] 

v0
 

Derivative[0, 1][Lc][j_, t_]:= ki[j] v1 Le[t]+kcc[j] Hc[j, t]

-(ke[j]+koc[j]) Lc[j, t]+kdl[j] v2 Ln[j, t]

-kb[j] (Bt[j]-Ln[j, t]) Lc[j, t]

                              

 

Derivative[0, 1][Hc][j_, t_]:= koc[j] Lc[j, t]-kcc[j] Hc[j, t]

                              +kdl[j] v2 Ln[j, t]

                              

 

 kb[j]
Derivative[0, 1][Ln][j_, t_]:= (Bt[j]-Ln[j, t]) Lc[j, t]-

v2
                              (kdl[j]+kdh[j]) Ln[j, t]

                              

 

The initial state of the system is given by: 
Lm[0] = d (v0+1) ; Hm[0]= 0; Le[0]= 0; He[0]= 0;

Lc[j_, 0]:= 0

Hc[j_, 0]:= 0

Ln[j_, 0]:= 0

 

where d is the dose and is known.  Using two-photon laser scanning microscopy to collect the 
experimental data results in the following output structure for the model: 
Te[t_] = Le[t]+He[t] 

Tc[j_, t] := Lc[j, t]+Hc[j, t]
 

In order to perform the identifiability analysis, let p  be another parameter vector such that 
the output ( , )ty p  is identical to ( , )t y p .  The relationship between p  and p  is explored 
through equating the coefficients of the Taylor series expansions of these outputs.  When the 
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successive terms in the expansion of ( , )ty p  are obtained, a set of substitution rules will then 
applied to obtain the corresponding terms in the expansion of ( , )t y p : 

→ → → →
→ → →

→ → →
→ → →

subst = {kmi kkmi, kmo kkmo, kom kkom, kcm kkcm,

        koc[j] kkoc[j], kcc[j] kkcc[j],ki[j] kki[j], 

        ke[j] kke[j], kb[j] kkb[j], kdl[j] kkdl[j],

        kdh[j] kkdh[j], Bt[j] BBt[j], v0 vv0};

 

In the above expression, which will be used as the substitution rule with the MATHEMATICA 
replacement operator (/.), the parameter b[ ]k j  in the vector p will be represented by kb[j] 
in MATHEMATICA and the corresponding parameter in the vector p  will be denoted by 
kkb[j]. 

It is assumed that the extracellular and intracellular hydrolysis rate constants are known a 
priori in the structural identifiability analysis for the reduced model (with 81 unknown 
parameters).  This additional information can be included in the analysis as follows: 

→ → → →soln = {kom kkom,kcm kkcm,koc[j] kkoc[j],kcc[j] kkcc[j]}; 

where j = 1,…,13.  In addition, the relation between the parameters v0 and v1 has to be taken 
into account (α is a known value and is equal to 3.1363×105): 

α v0
v1 = ;

1+v0
 

Corresponding to Equation (19) in the main text, the first coefficients in the Taylor series 
expansion of the components of the output (ω = 0 in Equation 19) are zero and so yield no 
useful information. 

The next coefficients are obtained by taking derivatives with respect to t and substituting 
t = 0.  For ω = 1 in Equation (19) it is seen that 

→
obs = D[y[t], t];

y1= Simplify[(obs/. t 0)];

y1bar = Simplify[y1/.subst];

newSoln = Simplify[Solve[y1[[1]]== y1bar[[1]], {*}]]

 

(where * inserts all of the unknown parameters) yields the following output 

  → 
  

Solve::svar :

Equations may not give solutions for all "solve" variable. More...

kmi (1+v0) vv0
kkmi

 (1+vv0) vv0

 

The relationship between mik (kkmi) and mik  (kmi) can be extracted using the command 
newSoln[[1]], and this new relationship can be added to the known a priori relations in 
soln where j = 1,…,13 using the Union[] function: 
soln = Union[soln, newSoln[[1]]] 
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→ → → →

→

kmi (1+v0) vv0
kom kkom, kcm kkcm, kkmi , koc[j] kkoc[j], 

(1+vv0) v0 

kcc[j] kkcc[j]

{

}
 

The next coefficient, for ω = 2 in Equation (19), combined with the previous relations yields 
the following, where * is used to denote all of the unknown parameters except mik : 

→
obs = D[obs, t];

y2= Simplify[obs/. t 0];

y2bar = Simplify[y2/.subst];

newSoln = Simplify[Solve[y2== y2bar, {*}]]

 

,→ + →
    
   
    

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

kmi (v0-vv0) ki[j](vv0-v0) ki[j] (1+vv0) v0
kkmo kmo+ kki[j]

 (1+vv0) v0 (1+v0) vv0 (1+v0) vv0

 

These new relations can then be used to update the previously obtained relations and can then 
be added to them using the following: 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]];
 

For ω = 3 in Equation (19), the third derivative can be obtained by using code similar that for 
the first and second derivatives, namely: 

→
obs = D[obs, t];

y3 = Simplify[obs/. t 0];

y3bar = Simplify[(y3/.subst) /. soln];

 

Since the coefficients obtained from this derivative are highly complicated, it is necessary to 
solve the relationship between p and p  for different unknown parameters in three parts.  First, 
the part of the coefficients that contain similar relations is solved, where * denotes all the 
remaining unknown parameters that have not yet been solved: 

==
≠ ≠ ≠ ≠ ≠

≠ ≠ ≠ ≠

eqns ={y3[[27]]-y3bar[[27]]};

For[i = 1, i <13, i++, 

eqns = Append[eqns, y3[[27-i]]-y3bar[[27-i]]]

eqns = Map[# 0 &, eqns];

eqns = Union[eqns, {BBt1 0,BBt2 0,BBt3 0,BBt4 0,BBt5 0,

BBt6 0,BBt7 0,BBt8 0,BBt9 0,BBt10 ≠ ≠
≠ ≠

0,BBt11 0,

BBt12 0,BBt13 0}];

newSoln = Simplify[Solve[eqns, {*}]]

 

The previous code gives the following new relations where (j = 1,…,13): 
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→ 

  

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

Bt[j] kb[j]
kkb[j]

BBt[j]

 

This gives rise to an updated set of relations taking into account the previously obtained 
relations between p  and p : 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]];
 

Second, another group of coefficients which will potentially give rise to the relations for [ ]
e

jk  
is dealt with: 

==
==

eqns={y3[[2]]-y3bar[[2]]};
For[i=3, i <15, i++, 

eqns= Append[eqns, y3[[i]]-y3bar[[i]]]
eqns= Map[# 0 &, Simplify[eqns /. soln]]];
eqns= Union[eqns, Map[# 0 &, {*}]]; 
newSoln =Simplify[Solve[eqns,{*}]]

 

{ }{ }→

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

kke[j] ke[j]

 

Finally, the remaining group of terms is solved which gives rise to the following relation for 
0v : 

eqns={y3[[1]]-y3bar[[1]]};
eqns= Map[#==0 &, Simplify[eqns /. soln]]];
eqns= Union[eqns, Map[#==0 &, {*}]]; 
newSoln =Simplify[Solve[eqns,{*}]]

 

{ }{ }→

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

vv0 v0

 

Using all three new relations obtained for [ ]
b

jk , [ ]
e

jk and 0v  to update the set of relations 
obtained for all coefficients examined yields the following: 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]]
 

→ → → → →

→ → → →

→

kom kkom,kcm kkcm,kkmi kmi,kkmo kmo,koc[j] kkoc[j], 

Bt kb[j]
kcc[j] kkcc[j],kki[j] ki[j],kke[j] ke[j] ,kkb[j]

BBt

vv0 v0

{

}
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For ω = 4 in Equation (19), the coefficients obtained for this derivative are solved in two 
parts.  First, to obtain a potential relation for [ ]

dl
jk  the following code is used: 

→
obs = D[obs, t];

y4= Simplify[obs/. t 0];

y4bar = Simplify[(y4 /.subst) /. soln];

 

and 

eqns={y4[[27]]-y4bar[[27]]};
For[i=1, i <13, i++, 

eqns= Append[eqns, y4[[27-i]]-y4bar[[27-i]]]
eqns= Map[#==0 &,eqns];
eqns= Union[eqns, Map[#==0 &, {*}]]; 
newSoln =Simplify[Solve[eqns,{*}]]

 

yielding 

{ }{ }→

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

kkdl[j] -kkdl[j]+kdh[j]+kdl[j]

 

These new relations are used to update the previously obtained ones and then added to them 
using the following: 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]];
 

Next, to obtain potential relations for [ ]
dh

jk  the following code is run: 

eqns={y4[[1]]-y4bar[[1]]};
For[i= 2, i <15, i++, 

eqns= Append[eqns, y4[[i]]-y4bar[[i]]]
eqns= Map[#==0 &, Simplify[eqns /. soln]]];
eqns= Union[eqns, Map[#==0 &, {*}]]; 
newSoln =Simplify[Solve[eqns,{*}]]

 

which yields the following output 

{ }{ }→

Solve::svar :

 Equations may not give solutions for all "solve" variable. More...

kkdh[j] kdh[j]

 

The following code uses all three new relations obtained for [ ]
dl

jk  and [ ]
dh

jk  to update the full set 
of all relations obtained so far: 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]]
 

which yields the following output 
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→ → → → →

→ → → →

→ → →

kom kkom,kcm kkcm,kkmi kmi,kkmo kmo,koc[j] kkoc[j],

Bt kb[j]
kcc[j] kkcc[j],kki[j] ki[j],kke[j] ke[j] ,kkb[j] ,

BBt

kkdl[j] kdl[j],kkdh[j] kdh[j],vv0 v0

{

}
 

For ω = 5 in Equation (19), initially an attempt was made to solve the coefficients but no 
solution was obtained.  The reason for this, as seen in the output from the following code, is 
that the corresponding coefficients for the two outputs ( ( , )ty p  and ( , )t y p ) are identical: 

→
obs = D[obs, t];

y5 = Simplify[obs/. t 0];

y5bar = Simplify[(y5 /.subst) /. soln];

Simplify[y5-ybar]

 

{ }0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  

For ω = 6 in Equation (19), the relations for [ ]
T

jB  are obtained using the following code: 

→
obs = D[obs, t];

y6 = Simplify[obs/. t 0];

y6bar = Simplify[(y6 /.subst) /. soln];

newSoln = Simplify[Solve[y6 == y6bar, {BBt[j]}]]

 

which yields the following output 

{ }{ }→BBt[j] Bt[j]  

Using the new relations obtained for [ ]
T

jB  to updated the set of relations obtained so far, the 
following is obtained which indicates that =p p : 

soln = Simplify[soln/. newSoln[[1]]];

soln = Union[soln, newSoln[[1]]]
 

→ → → → →
→ → → →

→ → → →

kom kkom,kcm kkcm,kkmi kmi,kkmo kmo,koc[j] kkoc[j],

kcc[j] kkcc[j],kki[j] ki[j],kke[j] ke[j],kkb[j] kb[j],

kkdl[j] kdl[j],kkdh[j] kdh[j],BBt[j] Bt[j],vv0 v0

{

}
 

This final set shows that =p p  if ( , ) ( , )t t=y p y p  for all 0t ≥  and hence the model is 
structurally globally (uniquely) identifiable since MATHEMATICA works in terms of generic 
parameters (for p ) [39]. 
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