View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Anisotropic damping of Timoshenko beam elements

Hansen, Morten Hartvig

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hansen, M. H. (2001). Anisotropic damping of Timoshenko beam elements. (Denmark. Forskningscenter Risoe.
Risoe-R; No. 1267(EN)).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13770722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/anisotropic-damping-of-timoshenko-beam-elements(2bc02a23-7e95-4a54-900d-bda917e6f62b).html

Risg-R~1267(EN)
Anisotropic damping of
Timoshenko beam elements

Morten Hartvig Hansen

Risg National Laboratory, Roskilde, Denmark
May 2001



Abstract This report contains a description of a structural damping model for
Timoshenko beam elements used in the aeroelastic code HawC developed at Ris
for modeling wind turbines. The model has been developed to enable modeling
of turbine blades which often have different damping characteristics for flapwise,
edgewise and torsional vibrations. The structural damping forces acting on the
beam element are modeled by viscous damping described by an element damping
matrix. The composition of this matrix is based on the element mass and stiffness
matrices. It is shown how the coefficients for the mass and stiffness contributions
can be calibrated to give the desired modal damping in the complete model of a
blade.
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1 Introduction

This report contains a description of a damping model for the Timoshenko beam
elements used in the aeroelastic code HawC, which is developed at Ris [5] for the
modeling of wind turbines.

There are three requirements to a structural damping model for aeroelastic
models of wind turbines: It must define the damping forces as purely dissipative [6],
and it must enable modeling of the frequency dependency of structural damping,
and the anisotropic damping characteristics of moderne wind turbine blades. The
first requirement is basic, but it sets an important physical limitation on the
modeling of the structural damping forces: They must dissipate energy from any
vibration of the structure. The second requirement is also basic for structures with
internal dissipation in the material.

The third requirement is especially important for wind turbine applications. A
LM 19.1 m blade designed with extra high structural damping of its edgewise
vibrations is a good example of a blade with anisotropic damping characteristics.
Figure 1 shows the logarithmic decrements versus the natural frequencies of this
blade obtained from experimental modal analysis. These measurements indicate
that the frequency dependency of the modal damping for flapwise, edgewise, and
torsional vibrations of the blade is given by three distinct curves.

The anisotropic damping characteristic in Figure 1 cannot be modeled by the
traditional Rayleigh damping model which is often used for modeling frequency
dependent structural damping. The reason is that the Rayleigh model assumes
an isotropic distribution of the viscous damping forces, and can therefore only
describe a single curve in the modal damping—frequency diagram. There are meth-
ods to construct a viscous damping matrix that can describe any desired modal
damping—frequency characteristics of a mechanical system (see e.g. [1]). These
methods can be used to obtain a HawC model which describes the damping char-
acteristics in Figure 1. However they operate on a global matrix level, and a
physical understanding of the damping mechanism based on the global damping
matrix is not possible.

Instead a physical damping model for the Timoshenko beam elements is sug-
gested which also enables modeling of the anisotropic damping characteristic in
Figure 1. The suggested model is based on viscous damping, and it is introduced
by the definition of a damping matrix for the Timoshenko beam element. This
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Figure 1. Natural frequencies and logarithmic decrements of the first seven modes
for the LM 19.1 m blade (taken from [3]). The points include error bars showing
standard deviations of the measurements.
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element damping matrix is derived from the element mass and stiffness matrices,
but different from Rayleigh damping, the level and frequency dependency of the
damping can be set individually for the three principle shapes of vibration: The
bending in the two transversal directions and torsion about the axis of the ele-
ment. Thus, instead of two parameters as for the Rayleigh damping, this suggested
model contains six damping parameters.

The report is structured as follows: Section 2 deals with the frequency depen-
dency of viscous damping by studying a single degree of freedom system. The
suggested damping model for Timoshenko beam elements is introduced in Sec-
tion 3. This section also contains an example of damping modeling for the LM
19.1 blade. A conclusion is given in Section 4. Appendix A contains a brief in-
troduction of the Timoshenko beam element. In Appendix B it is shown how the
six parameters of the suggested damping model can be calibrated to obtain a
particular modal damping of a structure.

6 Ris¢-R-1267(EN)



2 Viscous damping vs. frequency

In this section a viscous damping model with three different types of damping
coefficients is considered: Mass and stiffness proportional coeflicients (similar to
Rayleigh damping), and a mized mass/stiffness proportional coefficient. The pur-
pose is to show that viscous damping forces depend on the vibration frequency, and
that the frequency dependency changes with the type of damping coefficient. This
introductory study forms the basis of choosing two types of damping coefficients
used in the viscous damping model for the Timoshenko beam element.

Three different types of viscous damping coefficients

Consider the damped oscillator shown in Figure 2. It has the mass m and the
linear spring stiffness k. The viscous damping force of the dash-pot is given by
Fy = —(nmm +n.Vmk + ngk) &, where the coefficients 7, 1, and 5, are the pro-
portionality coefficients of mass, mixed mass/stiffness, and stiffness proportional
damping, respectively. Thus, the equation of motion becomes

mi + (nmm+m\/mk+nsk) T+kx=0 (1)

where (") = 8/0t denotes differentiation with respect to time.

To compute the modal damping of this system, the solution z = Re{zoe*}
is inserted into equation (1), and the complex eigenvalue A is found from the
characteristic equation as:

Nm Nr Ns o (nm N Ns )2
A=——"F"— —w— —w't 4w+ —w?] —w? 2
2 2 2 \/ 2 2 2 )

where w = /k/m is the undamped angular natural frequency of the oscillator.
After substitution of A = a + iwy into the assumed solution, the free oscillations
of the damped system are given by z = e* Re{zoe’+'}. Hence, the imaginary
part of the eigenvalue wy is the natural frequency of the damped oscillator, and
the real part a is the damping factor.

For wind turbine applications the structural damping is low. It can therefore
be assumed that 5, + 7w + Nsw? << 2w, whereby the squareroot in equation (2)
can be approximated by iw. Thus, the damping factor and natural frequency of
the damped oscillator can be approximated by

az—%(nm+mw+nsw2) and wyAw (3)
which show that the mass proportional damping yields a frequency-independent
contribution, whereas the contributions due to mixed mass/stifiness and stiffness
proportional damping increase with the undamped natural frequency.

As a non-dimensional measure of damping it is possible to use the relative damp-
ing exponent £ = a/w, or the logarithmic decrement § = log(z(t+T)/x(t)), where

” T.I'U]I

k n,m+ nymk + .k

Figure 2. A damped oscillator modeled by the equation of motion (1).
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Figure 3. Logarithmic decrement based on equation (4) for a damped oscillator
modeled by the equation of motion (1).

T = 27w /wq is the period of oscillation. The logarithmic decrement (traditionally
used at Ris in wind turbine applications) for the damped oscillator is

a 1

§=— No— -t 4
g 4 (nmw + 0 +0s w) (4)

This equation shows that the logarithmic decrement due to mass proportional
damping depend on the frequency as the inverse of the frequency, the mixed
mass/stiffness proportional contribution is independent of frequency, and the stiff-
ness proportional contribution increases linear with frequency. These dependencies
are illustrated in Figure 3 which shows an example of the logarithmic decrement for
the damped oscillator. The individual contributions of mass, mixed mass/stiffness,
and stiffness proportional damping are plotted together with the total logarithmic
decrement.

Comparison of the damping characteristics in Figure 3 with the measured loga-
rithmic decrements in Figure 1 justify that viscous damping may be used to model
the frequency dependency of structural damping of a wind turbine blade. The ob-
served frequency dependency of the logarithmic decrements for flapwise bending
modes can be approximated by a curve similar to the total damping curve in
Figure 3.

The minimum of the total damping in Figure 3 occurs at wmin = /Mm/Ms,
and below this frequency the total damping decreases with frequency due to the
contribution of mass proportional damping. It may occur that the second flapwise
mode is less damped than the first flapwise mode, however such a decrease is often
small. The mass proportional damping is therefore assumed unnecessary for the
modeling of the frequency dependent damping of wind turbine blades. Only mixed
mass/stiffness proportional and stiffness proportional damping are therefore used
in the viscous damping model for the Timoshenko beam element suggested in the
next section. The first sets the level of damping, and the latter sets the frequency
dependency.

8 Ris¢-R-1267(EN)



3 Damping of Timoshenko beams

In the previous section, it is illustrated that a viscous damping model with mixed
mass/stiffness proportional and stiffness proportional damping coefficients can
describe the frequency dependency of structural damping.

In this section, it is shown that a combination of this viscous damping model
and the Timoshenko beam element enables modeling of the complete anisotropic
damping characteristics of wind turbine blades (cf. Figure 1). An element damping
matrix is defined for the Timoshenko beam element which describes the distinct
damping—frequency dependency of the three principle shapes of blade vibration:
Flapwise and edgewise bending vibrations, and torsional vibration. The element
damping matrix is shown to be positive semi-definite thereby ensuring that the
damping forces are purely dissipative, as discussed in the following. The section
ends with an example of damping modeling for the LM 19.1 blade.

3.1 Purely dissipative damping

The modeled structural damping forces must dissipate energy from any vibration
that the structure may undergo. This can be formulated mathematically by requir-
ing that the global damping matrix is positive definite. It can be shown that this
requirement is satisfied if the element damping matrix is positive semi-definite:

uTCelement u>0, forall ue R? (5)

where u is a displacement vector for the end-nodes of the element (cf. Figure 5 in
Appendix A):

T
u= {uw,h Uy,1,Uz,1, ew,l’ 01171702,17 Ug,2; Uy,2, Uz,2, 0w,2’ 011,2’ 02,2} (6)

Assuming that the harmonic vibration of the element is given by x = usin(wt),
the work of the damping forces over a period of oscillation is given by

T
_ . T . _ T
Wd,element = / X" Celement X dt = —Twu” Celement U (7)
0

Thus, if the element damping matrix Celement 1S positive semi-definite then the
work done by the modeled damping forces will be negative, or zero (the case
Wa,element = 0 can occur for solid body motion of the beam element), showing
that they will dissipate energy from any harmonic vibration of the element. This
statement can be proven to apply for non-harmonic vibrations as well.

3.2 Mixed mass/stiffness proportional damping

Mixed mass/stiffness proportional damping is used to set the level of damping.
Detailed modeling of the damping forces from this type of viscous damping that
include coupling of the element DOFs in equation (6), is less important. The
mixed mass/stiffness proportional element damping matrix, denoted C, element, i8
therefore chosen to be diagonal, composed only of the diagonal elements of the
element magss and stiffness matrices.

Three damping coefficients %, n¢, and 7% are introduced to describe the levels
damping for flapwise and edgewise bending, and torsion, respectively. Note that
in a HawC finite element model of a wind turbine blade, the beam elements are
oriented with the z-axis closest to the direction of edgewise bending, and the y-
axis closest to the flapwise direction. Thus, the superscripts of the coeflicients for
flapwise bending 7* and edgewise bending n? relate to the axis about which the
bending occurs.

Risg—R-1267(EN) 9



With the introduction of the three damping coefficients the 12x12 element
matrix for mixed mass/stiffness proportional damping is defined as (for notations
and matrices, see Appendix A)

Cr,sub 0

Cr,element - 0 Cr,sub (8)
where the 6x6 submatrix C, g1, is a diagonal matrix defined as
[ n¥gn 0 0 0 0 0
0 n%, gao 0 0 0 0
_ 0 0 7933 0 0 0
Cr,sub - 0 0 0 nfn944 0 0 (9)
0 0 0 0 nhgss O
0 0 0 0 0 nh9es |

where g;; = v/mi;ki;, and the coefficient 2, = (9%, + n¥,)/2 describes the damping
of longitudinal vibrations. The choice to compose this damping coefficient as the
mean of the coefficients for bending motion is based on the wish to reduce the num-
ber of parameters in the model, and the assumption that damping of longitudinal
vibrations must be correlated to the damping of both bending motions.

The diagonal elements of C, clement are all positive (g; > 0), thus the mixed
mass/stiffness proportional damping matrix (8) is positive definite, if all three
damping coefficients are positive.

3.3 Stiffness proportional damping

Stiffness proportional damping is used to model the frequency dependency of the
structural damping. The physical concept of using stiffness proportional viscous
damping is that the internal dissipation due to strain—stress hysteresis is propor-
tional to the rate of change in strain. The linear strains due to flapwise and edge-
wise bending, and torsion are proportional to the moments of inertia I, I, and
I, respectively. The anisotropi of the stiffness proportional damping can therefore
be modeled by defining new proportional moments of inertia n®I,, n¥I,, and n¢1,,
where n%, n¥, and it are damping coefficients.

With these moments of inertia, the stiffness proportional element damping ma-
trix becomes (cf. Appendix A)

Cs,ll Cs,12 :|

10
Cli, Cum (10)

Cs,element - |:

where the 6 x 6 submatrices are defined as

Yk11 0 0 0 Ykis nikis
ns k22 0 N k24 0 ns k26
Cs = n§k33 0 0 0
’ sym— Nekas 0 nikae
metric gk5 5 gk5 6
L Ce6
—nfkii 0 0 0 Ykis  —n¥kis |
0 —Mgka2 0 Ng k24 0 —n5kae
Cs 19 = 0 0 —n§k33 0 0 0
’ 0 —Ngk24 0 N kao 0 —Ngkae
—nikis 0 0 0 Yks10 —nYkse
| —n¥kie —nikee 0 nikae nikse  —Cee

10
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[ n¥k11 0 0 0 —ndkis  nYkie |
e nPkaa 0 —n5kay 0 ik
nkss 0 0 0
C = 8 11
2 e sym—  ee- Nskaa 0 —Nzkse ()
-+ metric e nikss —nikse
L .. 666

with

cos =1t GIZIZ L 1o B (mELeh -Q:ce:' nlyeisoy)
and the coeflicient nZ = (n? +1¥)/2 is used to describe the damping of longitudinal
vibrations, as for mixed mass/stiffness proportional damping.

The element damping matrix (10) is positive semi-definite if the three coeffi-
cients %, n¥, and it are positive. This requirement is satisfied because the element
stiffness matrix is positive semi-definite for a beam element with any combination
of area and moments of inertia.

(12)

3.4 Example: The LM 19.1 blade

The suggested damping model is used to model the anisotropic damping char-
acteristics of the LM 19.1 blade (cf. Figure 1). The blade is modeled by a finite
element model with 27 nodes using the Timoshenko beam element. The neces-
sary cross-section data for the blade has been supplied by the manufacturer, and
few adjustments has been made to obtain agreement between the measured and
modeled natural frequencies.

To obtain the six parameters of the damping model (%,n¥,nt,n%,7%,7%), a
procedure described in Appendix B is used. The idea of this procedure is to cal-
ibrate the damping parameters so that the measured and modeled logarithmic
decrements agrees for six lower modes (or when decrements are specified for more
than six modes a least squared method is used to minimize the residuals). The
six modes that (as a minimum) are chosen for this calibration are the two lowest
modes of the three principle shapes of vibration: Flapwise and edgewise bending,
and torsion. In the modeling of a wind turbine, the modal logarithmic decrements
of its sub-structures are often unknown, however this procedure for calibrating the
damping parameters can be used to set a realistic level and frequency dependency
of the structural damping.

Figure 4 shows a result for the LM 19.1 blade where the logarithmic decrements
of the two lowest flapwise, edgewise, and torsional modes are used to calibrate the
damping parameters. Note that the decrement for the second torsional mode has
not been measured, so the assumption is made that this mode is damped with the
logarithmic decrement of about 14 %.

A comparison of the measured and modeled logarithmic decrements shows that
there is an agreement for the six modes used in the calibration. However the
measured damping characteristic versus frequency for the four lowest flapwise
bending modes has not been captured by the model. A least square method applied
to minimize the differences between measured and modeled decrements for all four
modes has not improved this result.

There is a possible explanation to why the suggested model does not capture
the damping characteristics of the flapwise modes. Flapwise bending is composed
of the flapwise translation u, ; and the cross-sectional rotation 6, ;. The stiffness
proportional damping of this combined motion is defined by the same damping
coefficient #?. For the lower flapwise modes the cross-sectional rotations are small
and the damping is dominated by damping of the translational motion. For higher
flapwise modes the cross-sectional rotations increase and the stiffness proportional

Risg—R-1267(EN) 11
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Figure 4. Natural frequencies and logarithmic decrements for the lower modes of
the LM 19.1 blade computed using o HawC finite beam element model with 27
nodes. For comparison the measured frequencies and decrements from Figure 1
are also plotted.

damping of this motion becomes more important. The fact that these two different
damping mechanisms are governed by a single coefficient may explain why the
model cannot capture the damping—frequency curve of flapwise modes.

A possible solution to the problem is an expansion of the suggested model,
where two coefficients are used to individually define the stiffness proportional
damping of translational and rotational motion related to bending. However it is
not clear if this solution can be based on the same physical concept of strain—rates
dependent damping used in the present model.

12 Ris¢-R-1267(EN)



4 Conclusion

A viscous damping model for the Timoshenko beam element is suggested. Its pur-
pose is to enable physical modeling of the anisotropic damping of modern wind
turbine blades. These blades are often designed with distinct modal damping char-
acteristics of the three principle shapes of vibration: Flapwise bending, edgewise
bending, and torsion.

The model is presented by an element damping matrix for a prismatic Timoshen-
ko beam element. The element damping matrix consists of two parts: A part setting
the level of damping, and another part describing the frequency dependency of
the damping. The first part is a diagonal matrix derived from the diagonals of the
element mass and stiffness matrices. The derivation of the second part is based
on the physical concept that the frequency dependency of material damping is
cause by internal stress-strain hysteresis. Strains due to bending and torsion of
the element are proportional to the corresponding moments of inertia, and the
second part is therefore derived from the element stiffness matrix.

There are three damping coefficients for each part of the element damping ma-
trix, which enables that the three principle shapes of vibration can be modeled
with individual damping—frequency relationships. It might be possible to make
universal estimations of these six damping parameters from material tests with
simple beam structures. However, for the modeling of a blade it is traditionally
preferred to calibrate of the parameters in each case. A procedure for this cali-
bration is presented. It is based on fitting the modal damping obtained from a
finite element model of the particular blade (using the damped Timoshenko beam
element with the six parameters) to its measured/assumed modal damping charac-
teristics. An example of such calibration shows that the suggested damping model
can capture the modal damping of the LM 19.1 blade, except for its higher flap-
wise modes. It is unknown if this example represents a general insufficiency of the
model because damping measurements including the higher modes are not avail-
able for other blades. Future developments of the model could include additional
damping parameters to handle the higher flapwise modes.

Risg—R-1267(EN) 13
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A Timoshenko beam element

This appendix contains a brief description of the degrees of freedom for the Tim-
oshenko beam element, and the element mass and stiffness matrices for the pris-
matic element used in HawC. They are reproduced from the PhD-thesis by Jrgen
Thirstrup Petersen [4] where he introduces the HawC model. The purpose of the
appendix is only to show the degrees of freedom (DOFs) of the element, and the
structure of the element mass and stiffness matrices, see [4] for details.

Concepts and notations

With the Timoshenko beam element it is possible to describe three dimensional
motion of a beam structure. Figure 5 shows the six DOFs for each end-node of
the element that are used to describe bending about its two primary axes, torsion,
and elongation. If the element has a symmetrical cross-section the shear center,
elastic center, and center of gravity coincide. In this case, bending motion of any
end-node about the z-axis involves only the DOFs uy; and 6;;, and bending
about the z-axis involves only the DOFs u, ; and 6, ;. Torsion is described by the
DOF 6, ;, and longitudinal motion is described by u, ;. Note that in a HawC finite
element model of a wind turbine blade, the beam elements are oriented with the
z-axis closest to the direction of edgewise bending, and the y-axis closest to the
flapwise direction.

For asymmetric cross-sections where mass, shear and elastic center do not co-
incide, there is a coupling between bending and torsion. This effect is included in
the derived element matrices [4] listed in the following. Table 1 contains a list of
notations for a prismatic Timoshenko beam element.

Figure 5. Degrees of freedom for the Timoshenko beam element. The displacement
vectors r; = {uw,l,uy,l,uz,l}T and ro = {uw,g,uy,g,uz,g}T describe translations
of the end-nodes of the element.

Risg—R-1267(EN) 17



Parameter

Description

S

& Q
>
<

€51, €52
Tz, Ty

Trz, TIy

Nz
Ny
Oz
Qy
Oy
Qy
B
By

Mass per unitlength

Length for the element

Area of the cross-section

Moments of inertia of the cross-section about the z-
and y- principle bending axis

Modulus of elasticity

Torsional moment of inertia (for a circular cross-
section equal to the polar moment of inertia)
Modulus of elasticity in shear

Form factors for shear related to forces in z- and
y-directions (see [2])

z- and y-coordinates for the shear center in element
coordinates with origin at the elastic center

y- and z-coordinates for the center of mass in element
coordinates with origin at the elastic center

Radii of inertia about the z- and y-axes of the ele-
ment coordinate system (thus radii of inertia about

the center of mass are \/ ri, — 72 and /17, —r2)
EL/(k,GA)

EL ] (k,GA®)

1/(1+12n,)

1/(1 4 12n,)

(1 +3nz)es

(1+3ny)ey

(1—6nq)0q

(1—6ny)oy

Table 1. List of parameters for the Timoshenko beam element.

18
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Element mass matrix

The symmetric element mass matrix can be written on the form:

Melement - |: ﬁ;} ﬁm :|
12 22
where the 6 x 6 submatrices are
mi1 0 my3 0 mis mie
Mg 2 ma3z  Mm2q4 0 mag
My, = msg Mmgz4 Mgz M3e
sym— e mes 0 mye
metric --- Mgy Mse
L m66 -
my7 0 m13 0 Myl Mi12
0 Moy M3  M210 0 Mg 12
My, = —mis3 —M23 M3y m3io m31 —M3e
0 —M2z10 M310 MM410 0 mM412
—m111 0 m311 0 ms11  M512
mi12 m212 Mm3ze —Mga12 —Mz12 Me12
mi1 0 —Mm13 0 —m1s5  Mig
Mga  —Ma3 —May 0 Mag
My, = msg m3y4 mss —M3e
sym— e M4y 0 —M4g
meltric <o mss —Mse
L Mee

(A.13)

(A.14)

The elements of the first row of the complete 12x12 element matrix are given by

42 13\ 6 /2
o = gy | (ser+ Fn e 53) + 8 (%))
m13 = _MQy e
nou 1\ /r1
= Meg? - - — ) (2
s te, [(6’79 0™ 210) (6’7” 10) ( ¢
42 13\ 6 /2
mie = —MeSQQZ |:(4877§+€77y+£) +5 (%) :|

7
- MQy (rw - 682) |:477y + %]

18 9 6 Trr 2
e - w52
9 13 1 Ty
= —M/flp: |6 - 6n, — — | (¥
min Qy[ny 10 +40+(77y 10)(£
18 9 6 Tr 2
min = <Mead) 20} + P+ - ()]

3
- MQy (rw - 682) |:277y 20:|

Risg-R-1267(EN)
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the second row

s = 0 [(w e ) £ )]

Ma3 = %Mgw%”

e = o)~ (o-15) (7
o = e (o B+ 2) £ 25

7
+ MQ;E (T'y - esl) |:477w + %]

18 9 6 Tr 2
R e R )
9 13 1 rr 2
_ 2 (2, Y 13 1\ (i
me10 = Mo, [an-i- o™ T T (an 10) ( 7 ) ]
18 9 6 /7 2
ma12 = Mego? [24773 + & + 0 5 (%) ]

3
+ Mes (T'y - 631) |:277w + %]

the third row

1
mgz = §M
1
mgs = Mogrs |4, + 12
1
mgs = —Mpyry |4ny + 2
mse = %M |:631 OxTx ; ESQQyTy:|
1
mgg = EM
1
mgio = Mogry 20, — o
1
man = —Moyry |20, — o
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the fourth row

myy = Mo [gnﬁ + %m + % + (48773 + 21, + %) (%)2]
mig = —Mlesol [6773 + %m + % _ (an B 11_0) (%)2]
- M. (r, — ) 312+ 5]
muo = Mg [t g g+ (-2t oo ) ()
miz = —Mleag; [6773 + %m + % + (an - 11—0) (%)2]
- Mt (ry — ) 312+ 5]
the fifth row
mss = Mg, [(5—;7712, + %ny + % + (487712, + 2, + 12—5) (%)2]
ran = Mt o gy (00 ) ()
— Mloy (ry — es2) Bny + %]
msn = —Mby, [g’ﬁ, + %ny + 1}To + (—24775 + 2y + %) (%)2]
ms12 = —Mlegng, [6775 + 19_0,711 + % n (Gny B 11_0) (%)2]
— Mloy (ry — es2) Bny + %]
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and the sixth row

42 13 6 /r 2
mes = Me? o> [48n3+—77w+—+5(ﬂ)]

14
42 13 6 /rry\2
+ Me, 0! [48n§+€ny+—+g( Iy) ]

+ Meg10; (ry —€s1) |:877w
+ Mes29y (rw - 682) |:877y + =

2 2 2 2
M (€5, + €2y + 17, + 77, — 2ea7ry — 2e57;)

L1
3

18 9 6 /rrz\?2
moss = Mehet [part+ Fn 5= (7))

18 9 6 /riy\2
2 2 2 Yy
+M6829y |:2477y+€77y+%—5( ) :|

+ Mesl Oz (ry - esl |:477w :|
+ Mesopy (ry — €52) [47711 ]

1
+ EM (€5, + €2g + 77, + 77, — 2eq7y — 26597,

where M = m/ is the total mass of the element.

Element stiffness matrix

The symmetric element stiffness matrix can be written on the form:

Kii Ko ]
K= A5
[ K{, Kz (4.15)
where the 6 x 6 submatrices are
i k11 0 0 0 k15 k16 |
koo 0 kas 0 kog
. o ks 0 0 0
KH o sym— k44 0 k46
metric --- k55 k56
- k66 -
[ —k1y 0 0 0 kis —kig |
0 —kso 0 kas 0 —koe
. 0 0 —kss 0 0 0
o= 0 —ka4 0 kig 0 —kue
—kis 0 0 0 ksio —kse
| —kie —kae 0  kic kse —keo |
[ ki1 0 0 0 =kis ks
koo 0 —ka4 0 kae
B kss 0 0 0
Ky = co sym— kas 0 —ks6 (A.16)
metric - kss  —kse
i ke g
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The elements of the first row of the complete 12x12 element matrix are given by

EI, EI Eleqs

ki1 =12—=¢y, k15=6£—2y9y, kg =—12 s

V2
the second row
EI ET El.e
kay =125%00, kaa=—6-5"0s, ko =120
the third row
AE
ksg = —
33 7
the fourth row
ET Ele ET
kyg = 4Twaw » kig=-6 ZQ 0o, ko= QTwﬂw
the fifth row
ET Ele ET
kss = 4Tyay , kse = —6;—232911 , ksiwo= QTyﬂy
and the sixth row
GI. E (Iwe219w + Iyey0 )
k — z 12 s Y- s28y
66 7 + I
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B Calibration of parameters

This appendix deals with the calibration of the six damping parameters in the sug-
gested damping model. The idea is to compute these parameter from the condition
that the logarithmic decrement for the lower modes of the modeled structure must
have certain values. The procedure for this computation is described in five steps.

Step 1 — equations of motion

Set-up the finite element model of the structure by deriving the mass, damp-
ing, and stiffness matrices. The damping parameters are still unknown thus the
equations of motion for free vibrations described by that model can be written as

M3+ C(p)x+Kx =0 (B.17)

where p = {n%,n%, 7%, n%, 1Y, nz}T is a vector containing the damping parameters,
the damping matrix C(p) is a function of p, and x is a vector containing the N
degrees of freedom (translations and rotations in the nodes).

Step 2 — compute undamped modal properties

To set-up the conditions for calibrating the damping parameters, the natural fre-
quencies and mode shapes for the undamped structure are needed. These are
computed from the eigenvalue problem obtained by substitution of x = u;ei?
into the equations of motion (B.17) without the damping term:

(—w?M +K)u; =0 (B.18)

where w; are the undamped natural frequencies, and u; are the undamped mode
shapes, or undamped eigenvectors. These eigenvectors are orthogonal with respect
to the mass and stiffness matrices. After normalization of the eigenvectors this
orthogonality condition can be written as

T L 1 fOI‘ l:J

ui Mu; = {0 for i # j

2 - .

T o wj for i=j
u; Ku; = { 0 for ifj (B.19)

which is used in the following step.

Step 3 — conditions for calibration

The conditions for calibrating the damping parameters p are based on the assump-
tion that the level of structural damping is low. It can thereby be assumed that
adding of damping does not significantly change the natural frequencies and mode
shapes of the structure. Hence the eigenvalues of the damped eigenvalue problem
are assumed to be A\; = o; + iw;, where w; are the undamped frequencies given
by (B.18), and «; are the modal damping factors obtained from the logarithmic
decrements (cf. equation (4)) which the structure is assumed to have. Further-
more, the mode shapes of the damped structure is assumed to be given by the
undamped eigenvectors u;. The error due to these assumptions can be quantified
by computing the residuals weighted by the eigenvectors:

u; ((aj +iw;)? M + (o + iw;) C(p) + K) w0 ij=1,...,N (B.20)

where the only unknowns are the damping parameters p.
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Using that w; and u; are defined by (B.18), and the orthogonality conditions
(B.19), the weighted residuals can be rewritten as

aj (@ +1i2w;) + (o +iw;)u; C(p)u; ~0 i,5=1,...,N (B.21)

which all have a real and an imaginary part. It is noted that these two parts of each
residual can not both be satisfied. However because of low damping w; >> «;,
the real part is neglected and only the imaginary part is considered. After use of
orthogonality the imaginary part of the weighted residuals can be written as

—2a; for i =13
ll;rC(p)llj ~ { 0 ! for i #j

These residuals only depend on p and therefore gives the conditions for com-
puting the damping parameters. The weighted residuals for i # j describes that
there should be no modal coupling of the undamped modes due to the damping
forces. This is the case for a Rayleigh damping model, but for the suggested model
these residuals may not vanish (this does not mean that the suggested model in-
cludes inter-modal damping coupling, the eigenvectors of the damped system are
orthogonal with respect to the symmetric damping matrix).

i,j=1,...,N (B.22)

Step 4 — compute damping parameters

The computation of the damping parameters is based on equation (B.22) for i = j.
Because there are six unknown parameters, at least six equations are needed to
compute p, thus the logarithmic decrements of only six modes need to be specified.
The choice of modes is free, however it is a good practice to at least include the
two lowest modes of the three vibration shapes: Two transversal bending, and
torsion. The reason is that the six damping parameters are related in pairs to
these three vibration shapes (cf. Section 3).

Assume that the decrements for Ny > 6 modes have been specified, and that
the chosen modes are given by a list m; where j = 1,..., N4. The least square
method to minimize the residuals for these modes then yields the equation

ATA p=-2ATd (B.23)

where A is a Ny X 6 matrix containing the derivatives:

d
Apgn = —— (uf, C(P)up,) j=1,...,Ngand n=1,..,6  (B.24)
odpy WY !
and d = {aum,, - - - Oy, }7 is a vector containing the modal damping factors for
the chosen modes. The damping parameters that minimize the residuals for these
modes can now be computed as the solution of equation (B.23). The validity of

the result is discussed in the fifth and last step.

Step 5 — validate damping parameters

For some choices of modes and corresponding logarithmic decrements it can occur
that one or more of the computed damping parameters are negative, whereby the
definiteness of the damping matrix becomes unknown. Such solution is discarded
because the damping matrix must be positive definite for the modeled damping
forces to be purely dissipative (cf. Section 3).

The cases where the suggested damping model leads to a non-physical damping
characteristics, an adjustment of the logarithmic decrements may overcome the
problem. However, if the decrements have all been measured, the model must be
reconsidered for the particular structure.
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