

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Radon transport modelling: User's guide to RnMod3d

Andersen, Claus E.

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, C. E. (2000). Radon transport modelling: User's guide to RnMod3d. (Denmark. Forskningscenter
Risoe. Risoe-R; No. 1201(EN)).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13769798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/radon-transport-modelling-users-guide-to-rnmod3d(a4cea154-3a04-4c6f-90c8-17171afcbf29).html

Risø-R-1201(EN)

Radon Transport Modelling:
User’s Guide to RnMod3d

Claus E. Andersen

Risø National Laboratory, Roskilde, Denmark
August 2000

Risø-R-1201(EN)

Radon Transport Modelling:
User’s Guide to RnMod3d

Claus E. Andersen

Risø National Laboratory, Roskilde, Denmark
August 2000

Abstract RnMod3d is a numerical computer model of soil-gas and radon trans-
port in porous media. It can be used, for example, to study radon entry from
soil into houses in response to indoor-outdoor pressure differences or changes in
atmospheric pressure. It can also be used for flux calculations of radon from the
soil surface or to model radon exhalation from building materials such as concrete.
The finite-volume model is a technical research tool, and it cannot be used

meaningfully without good understanding of the involved physical equations. Some
understanding of numerical mathematics and the programming language Pascal
is also required. Originally, the code was developed for internal use at Risø only.
With this guide, however, it should be possible for others to use the model.
Three-dimensional steady-state or transient problems with Darcy flow of soil gas

and combined generation, radioactive decay, diffusion and advection of radon can
be solved. Moisture is included in the model, and partitioning of radon between
air, water and soil grains (adsorption) is taken into account. Most parameters can
change in time and space, and transport parameters (diffusivity and permeability)
may be anisotropic.
This guide includes benchmark tests based on simple problems with known

solutions. RnMod3d has also been part of an international model intercomparison
exercise based on more complicated problems without known solutions. All tests
show that RnMod3d gives results of good quality.

Copyright The copyright to the model code called RnMod3d (described in this
guide) belongs to Risø National Laboratory, Denmark.

Disclaimer Although great care has been taken in preparing RnMod3d, and al-
though many of the features implemented in the model have been tested by com-
parison with exact solutions, it cannot in any way be guaranteed that the program
is free of errors. The model is provided ”as is” without warranty of any kind. In
no event shall Risø be liable for any damages whatsoever arising out of the use of,
inability to use, or malfunctioning of RnMod3d.

Version This guide concerns RnMod3d, version 0.8 (Sep. 15, 1997 – July 18, 2000).

Claus E. Andersen
Risø National Laboratory
Nuclear Safety Research Department
Building NUK-125
DK-4000 Roskilde, Denmark
Phone: +45− 4677 4677 (main lab.)
Phone: +45− 4677 4912 (direct)
Fax: +45− 4677 4959
E-mail: claus.andersen@risoe.dk
Internet: www.risoe.dk/nuk

Printed August 21, 2000

ISBN 87-550-2734-2 (printed edition)

ISBN 87-550-2733-4 (internet edition)

ISSN 0106-2840

Information Service Department · Risø · 2000

Contents

1 Introduction 1
1.1 What problems can be solved? 1
1.2 What problems can not be solved? 1
1.3 How to get a copy of RnMod3d 1
1.4 Structure of this guide 2
1.5 How to use RnMod3d 2
1.6 Making a job file 2

2 Installation 5
2.1 Pascal compiler (Delphi) 5
2.2 Pascal compiler (Borland Pascal 7) 6
2.3 Source files 6
2.4 Test case: F0000prg.dpr 6

3 Method 7
3.1 Basic definitions 7
3.2 Radon transport equation 8
3.3 Soil-gas transport equation 9
3.4 RnMod3d treatment of radon and soil gas 11
3.5 Finite-volume method 12

4 Control variables 14
4.1 runid 15
4.2 runtitle 15
4.3 solution 15
4.4 geometry 15
4.5 Ly 15

4.6 grid def 15
4.7 force new grid in every run 15
4.8 boundary conditions def 16
4.9 flux def 16
4.10 probe def 16
4.11 materials def 16
4.12 e def 16
4.13 beta def 17
4.14 G def 17
4.15 lambda def 17
4.16 D def 17
4.17 initialfield def 17
4.18 import initialfield 17
4.19 import finalfield guess 17
4.20 export field 18
4.21 use fieldbuffer 18
4.22 flowfield 18
4.23 flowfactor 18
4.24 import field name 19
4.25 export field name 19
4.26 flowfield name 19
4.27 plotfiles def 19

Risø-R-1201(EN) iii

4.28 user procedure each iteration def 19
4.29 wr details 20
4.30 wr main procedure id 20
4.31 wr all procedure id 20
4.32 wr iteration line log 20
4.33 wr iteration line screen 20
4.34 wr residual during calc log 20
4.35 wr residual during calc screen 21
4.36 wr flux during calc log 21
4.37 wr flux during calc screen 21
4.38 wr probes during calc log 21
4.39 wr probes during calc screen 22
4.40 wr final results log 22
4.41 wr final results screen 22
4.42 wr axes 22
4.43 wr nodes 22
4.44 wr nodes numbers 22
4.45 wr node sizes 23
4.46 wr coefficients 23
4.47 wr material volumes 23
4.48 warning priority log 24
4.49 warning priority screen 24
4.50 solver def 25
4.51 scheme 25
4.52 relax factor 25
4.53 flux convset 25
4.54 probe convset 25
4.55 conv evaluation period 26
4.56 min iterations 26
4.57 max iterations 26
4.58 max time 26
4.59 max change 26
4.60 max residual sum 27
4.61 dtim 27
4.62 BC running 27
4.63 BC running update of cBCs def 27
4.64 BC running min iterations 27
4.65 BC running max residual sum before new BC 27
4.66 BC running convergence def 27
4.67 wr BC running messages log 28
4.68 wr BC running messages screen 28
4.69 press enter wanted 28

5 Geometry 28
5.1 Grid size (memory issues) 29
5.2 geometry 30
5.3 set FixVal 30
5.4 wFixVal 31
5.5 Node spacing 31
5.6 set axis single 31
5.7 set axis double 33
5.8 set axis triple 33
5.9 Location and size of specific control volumes 34
5.10 Grid inspection: wr axes 36

iv Risø-R-1201(EN)

5.11 Grid evaluation: dcdx and dcdxnorm 37

6 Nodes and connectors 38
6.1 Node types 39
6.2 Connector types 39
6.3 Default nodes and connectors 39
6.4 Inspection of nodes and connectors 40
6.5 set node 41
6.6 change node 41
6.7 boundary conditions def 41
6.8 in cube 43
6.9 in plane 44
6.10 in region 44
6.11 in interval 45

7 Materials 45
7.1 materials def (mat1, mat2 etc.) 46
7.2 Porosity, e def 46
7.3 Partition-corrected porosity, beta def 48
7.4 Generation rate, G def 48
7.5 Decay constant, lambda def 49
7.6 Diffusivity, D def 49
7.7 Moisture 49

8 Flux probes (Flx1, Flx2 etc.) 51
8.1 Fluxes between individual pairs of control volumes 51
8.2 update flxval 52
8.3 FlxVal 54
8.4 Standard flux probe output 55

9 Field probes (Obs1, Obs2 etc.) 55
9.1 ObsVal 55
9.2 Standard field probe output 56
9.3 fieldvalue 56
9.4 fieldvalue2D 57
9.5 get fieldvalue 57
9.6 get fieldvalue2D 57
9.7 get avgfield 57
9.8 get avgfield2D 58

10 Solution procedure 58
10.1 First guess 58
10.2 Relaxation 58
10.3 Iterative solution procedures 59
10.4 Criteria for convergence and residuals 59
10.5 Scheme (space) 60
10.6 Scheme (time) 61

11 Time dependency 61
11.1 solution := steady 61
11.2 solution := unsteady 61
11.3 Initial conditions 62
11.4 Time-dependent boundary conditions 63
11.5 Time-dependent material properties 64

Risø-R-1201(EN) v

11.6 Time-dependent flow field of soil gas 64
11.7 Full time dependency (cBUF1, cBUF2 and qBUF) 65

12 Special boundary conditions 67
12.1 Trial-and-error by hand 68
12.2 BC running 68

13 Output and debugging 73
13.1 Standard files 73
13.2 Other file output 73
13.3 Contour plots: update plotfile 74
13.4 Stream lines 75
13.5 Warnings 76
13.6 Error messages 77
13.7 Critical evaluation of results 77

14 RnMod3d inside 78
14.1 Index coordinates: i, j, and k 78
14.2 The main data structure: GP 78
14.3 Other variables 79
14.4 datatype 80
14.5 Memory 80
14.6 Enumerated types 80
14.7 Sequence of actions in run model 81

15 Benchmark tests 83
15.1 F0100prg: Steady flow of soil gas 83
15.2 F0101prg: Steady diffusion of radon 84
15.3 F0102prg: Diffusion and advection of radon 84
15.4 F0103prg: Time-dependent flow of soil gas 87

16 House simulation example 90

A F0100prg.dpr 94

B Output: F0100LOG.dat 96

C F0101prg.dpr 98

D F0102prg.dpr 100

E F0103prg.dpr 105

F F0130prg.dpr 108

References 114

vi Risø-R-1201(EN)

1 Introduction

RnMod3d is a computer model of radon transport in porous media. It can been
used for:

• flux calculations of radon from the soil surface into the atmosphere

• simulations of entry of soil gas and radon into houses in response to indoor-
outdoor pressure differences or changes in atmospheric pressure

• calculation of radon exhalation from building materials

• error analysis of measurement procedures related to radon

The model is a technical research tool, and it cannot be used meaningfully without
good understanding of the involved physical equations. Some understanding of nu-
merical mathematics and the programming language Pascal is also required. Orig-
inally, the model was developed for internal use at Risø only. With this guide, how-
ever, it should be possible for others to use the model. The design has emphasized
flexibility, robustness, programming transparency, and the ability to document
and verify computations. Features such as speed, use of memory, and portability
have been given a lower priority. The model can be run on personal computers PC model
with an Intel processor DX486 or above.

1.1 What problems can be solved?

Three-dimensional steady-state or transient problems with Darcy flow of soil gas
and combined generation, radioactive decay, diffusion and advection of radon can
be solved. Moisture is included in the model, and partitioning of radon between
air, water and soil grains (adsorption) is taken into account. Most parameters can
change in time and space, and transport parameters (diffusivity and permeability)
may be anisotropic.
The model can treat problems where both the soil-gas and the radon problem are

time-dependent. For example, the model can calculate time-dependent combined
diffusive and advective entry into a house when the flow of soil gas is created by
changes in the atmospheric pressure.

1.2 What problems can not be solved?

Clearly it is difficult to list all the things RnMod3d can not do. Here are, how-
ever, the most important ones: The model cannot treat non-Darcy flow of soil gas
or soil-gas flow in non-isothermal soil. In transient soil-gas simulations there are
two restrictions: the air-filled porosity must be constant in time, and the pressure
variations must be small (compared with the absolute pressure). The numerical
procedures implemented in RnMod3d are relatively simple and the model is not
particularly fast. Although the model in principle can treat time-dependent prob-
lems in full 3D, the computational time required to solve such problems can be
too large to be of practical use. Finally, it is mentioned that RnMod3d is based
on orthogonal grids. Hence, it is not possible to perform accurate calculations for
complex geometries.

1.3 How to get a copy of RnMod3d

RnMod3d can be obtained from the author of this report.

Risø-R-1201(EN) 1

1.4 Structure of this guide

The remaining part of this section tries to give an overview of what it takes to set
up a problem. Section 2 tells how the model can be ”installed” on a PC, and how
the test case can be run. Section 3 presents the equations solved by RnMod3d. The
numerical method is also described. After these ”introductory” sections, Section 4
then describes all the so-called control variables used in RnMod3d. This is the
reference section of the guide. Then from Section 5 and onwards specific issues are
treated one by one. First it is shown how a grid is set up, then the idea of nodes
and connectors are introduced etc. The final part of the guide gives examples of
computations performed with RnMod3d.

1.5 How to use RnMod3d

To do calculations with RnMod3d it is necessary for the user to write, compile,
and run a Pascal program. The program is here called a job file. An example isJob file
shown in the appendix starting page 94. The job file contains a link to the RnMod3d
code plus all information about the problem in question: the computational grid,
boundary and initial conditions, soil parameters, what output to calculate etc. To
set up a job, the user needs to make proper assignments to what is here called
control variables. Many of the control variables are Pascal pointers to user-definedControl variables
functions or procedures. This design makes the model highly flexible.
The most difficult part of setting up a job is probably to define the geometry

of the problem. However, when the geometrical model has first been established
(and verified) it is an easy task to change parameters, and to get the output of
interest. The ”geometrical model” can be saved and used (directly or in modified
form) in other computations.

1.6 Making a job file

The structure of a job file is very simple: First, values are assigned to control vari-
ables. Then, RnMod3d is run by calling the predefined procedure run model. There-run model
after, it is possible to redefine one or more of the control variables, and additional
simulations can be done with run model. Each time run model is called, RnMod3d
performs a simulation corresponding to the settings of the control variables. The
primary result of a simulation is pressures and flows of soil gas and/or concen-
trations and fluxes of radon. After the simulations, the procedure close model isclose model
called (once) to close output files etc.
The structure of a prototype job file is shown in example 1. Only a few dec-

larations and control-variable assignments are shown. Most code lines have been
left out as indicated by the dots. The example includes two runs. In the first run,
RnMod3d solves the problem on the basis of the coarse grid specified in the proce-
dure my coarse grid. In the second run, a finer grid is used. Which grid is used
is controlled by the pointer: grid def. The difference in results from run 1 to 2
will show how sensitive the solution is to the selected grid.

Example 1 Prototype structure of a job file.

program F001prg;

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03; (* Links to RnMod3d *)

procedure my_coarse_grid;

begin

set_FixVal(xFix1,0.0); (* xFix1 = 0.0 m *)

set_FixVal(xFix2,3.3); (* xFix2 = 3.3 m *)

set_axis_single(xFix1,xFix2,5,FocusA,1.0) (* Allocate 5 nodes between xFix1 and xFix2 *)

2 Risø-R-1201(EN)

...

end;

procedure my_fine_grid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,3.3);

set_axis_single(xFix1,xFix2,33,FocusA,1.0) (* Allocate 33 nodes between xFix1 and xFix2 *)

...

end;

...

begin (* main *)

runid:=’001’;

...

grid_def:=my_coarse_grid;

run_model; (* first run *)

grid_def:=my_fine_grid;

run_model; (* second run *)

close_model;

end.

grid def is just one single control variable (out of more than 60). The difference
from run to run could have related to almost any other aspect of the computation:
boundary conditions, material properties, requirement for convergence, numerical
scheme, relaxation etc. RnMod3d is therefore particularly well suited for sensitivity
analyses. As another example, imagine that entry into a house has to be calcu- Sensitivity analyses
lated for a range of 10 permeabilities and 10 indoor-outdoor pressure differences
contained in two arrays: perm and press defined by the user. Such a sensitivity
analysis could be programmed as follows:

Example 2 Prototype sensitivity analysis.

program F002prg;

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

var ii,jj:1..10;

perm,pres:array[1..10] of real;

...

begin (* main *)

runid:=’002’;

...

perm[1]:=1e-14; (* m2 *)

perm[2]:=2e-14;

perm[3]:=1e-13;

...

pres[1]:=-10; (* Pa *)

pres[2]:=-8;

pres[3]:=-3;

...

for ii:=1 to 10 do

for jj:=1 to 10 do

begin

... (* set permeability to perm[ii] and pressure to pres[jj] *)

run_model;

end;

close_model;

end.

The steps needed to set up a job file are described in the following.

Risø-R-1201(EN) 3

Run identification

Before anything else, assign the job an identification tag with the runid control
variable. If the job file is saved under the name: F0997prg.dpr then it would be
convenient to set runid := ’0997’ because then standard output from RnMod3d
runs will go to files such as F0997LOG.dat and F0997FLW.dat. This makes it easy
to find out what files belong to what jobs.

Geometry

Then the geometry of the problem should be considered. All dimensions (for ex-
ample, of building components) of importance for the problem should be identified
and formally set up as so-called fix points called xFix1, xFix2 etc. A link mustFix points
then be established between the physical (x, y, z) world in meters and a three-
dimensional grid of control volumes with index coordinates (i,j,k). Initially (i.e.Control-volume grid
before the model set-up has been fully verified), it is best to use only a very coarse
grid. Fortunately, the control-volume approach guarantees that even results ob-
tained with coarse grids are physically meaningful (for example, the solution will
not become unstable and the radon concentrations will not become negative for
this reason). In the end, the grid must, however, have a sufficiently high resolution,
otherwise the results will be too inaccurate. The use of fix points means that these
points do not move as grids with more control volumes are used.

Nodes and connectors

Then it must be defined how each control volume should ”work”. Most control
volumes will be under the control of the transport equations for radon or soil gas,
but some others may be fixed at certain external values (boundary conditions) or
may not be part of the computations at all. In RnMod3d, each control volume has
a property called node type which reflects these aspects. Likewise, some (adjacent)
control volumes will be connected and some others will be disconnected. These
aspects are specified in control-volume properties called connectors. Each control
volume has six connectors (one for each neighbor). The user can set all nodes and
connectors in accordance with the problem in question.

Materials

The next step is to define material properties. For example, in a simulation of
radon transport, it is of course necessary to specify values for porosity and diffu-
sivity etc. The assignment of material properties can be based on physical (x, y, z)
coordinates (for example, it can be specified that the radon generation rate should
change with soil depth in some user-defined way or that the top-soil moisture con-
tent should change in time because it rains). It is also possible to divide the
computational plane into blocks of materials (called mat1, mat2 etc.) and to set
the material properties to be block-wise constant.

Output

RnMod3d solves the specified equations and returns field values at all nodes in the
(i,j,k) computational field. This type of output is, however, seldom the endFlux ”probes” etc.
result from the user’s point of view. Often the prime output will be field values
or fluxes at a few selected locations (given in physical (x, y, z) coordinates). To
get this type of output without troubles, RnMod3d is equipped with special ”field
measurement probes” (called Obs1, Obs2 etc.) and ”flux measurement probes”

4 Risø-R-1201(EN)

(called Flx1, Flx2 etc.). In radon simulations, this framework provides the user
with the ability to monitor radon concentrations and fluxes of radon. In soil-gas
simulations the probe values correspond to pressures and soil-gas flow rates. The
”field measurement probes” are normally placed at given points defined by physical
(x, y, z)-coordinates. In contrast, ”flux measurement probes” are normally defined
in relation to plane surfaces defined by reference to fix points.

2 Installation

To use RnMod3d, a Pascal compiler must be installed and the five source files (listed
in Section 2.3) must be copied to a directory ”visible” for the compiler together
with the test job file: F0000prg.dpr.

2.1 Pascal compiler (Delphi)

It is best to run RnMod3d from the editor/compiler environment of Delphi (only
Delphi 3 has been tested, but other versions are probably all right). Observe, Delphi
that RnMod3d is a pure console application. No use is made of the Windows user-
interface in Delphi. Here is what to do to make an old-fashioned hello-world pro-
gram. A job file for RnMod3d can be made in the same way.

1. Open Delphi.

2. Create a new application using File | New Application.

3. Go to the Project Manager (View | Project Manager).

4. Remove the default form from the project (highlight the unit and hit delete).
Do not save changes.

5. Go to Project Source (View | Project Source).
6. Edit the project source file:

• Remove code inside begin end.

• Replace the Forms unit in the uses section with SysUtils.

• Remove {$R *.RES}.
• Place {$apptype console} in a line by itself right after the program
statement.

7. Add whatever statements needed in the body of the program. The program
can look like this:

program test;

{$apptype console}

begin

writeln(’Hi there’);

readln;

end.

8. Compile the program with (Project | Compile).

9. Run the program with Run | Run.
10. When the program is saved, it is best to use the default extension for Delphi

projects: .dpr. Any units that are created should be saved with extension:
.pas.

Risø-R-1201(EN) 5

2.2 Pascal compiler (Borland Pascal 7)

RnMod3d can also be run from Borland Pascal 7. The only change is that the
following two lines must be removed from the code file R3Dirs03.pas:

{$DEFINE Delphi}
{$apptype console}

There are three reasons why it is best to run RnMod3d from Delphi:

• RnMod3d runs much slower under Borland Pascal v. 7 compared with Delphi
(a factor of 2 or such).

• The memory model is better in Delphi.

• The max time control variable does not work under Borland Pascal (see Sec-
tion 4.58)

2.3 Source files

RnMod3d consists of more than 5500 code lines. The code is placed in the following
five files:

R3Dirs03.pas Compiler directives

R3Defi03.pas Global declarations

R3Main03.pas The main program

R3Writ03.pas Additional procedures (mainly output routines)

R3Delp03.pas Special code for Delphi and Borland Pascal 7

These files should be placed in the working directory or better in a separate codeCode directory
directory. In the latter case, Delphi needs to know about this directory. This is
done by adding the path (e.g. d:\data\pascal\rnmod3d\code) in the Libary Path
(Environmantal Options | Library). It is advisable to make the code files read only.

2.4 Test case: F0000prg.dpr

F0000prg.dpr is a test job file where everything is defined by default. The (hid-
den) problem that is solved is a simple heat-conduction problem of no inter-
est here. It just serves as a simple test. When the model is run, the following
two (output) files are created: f0000LOG.dat and f0000RES.dat. The first is a
log file with all sorts of output. The second is a general purpose result file. In
the default case, no output goes to the RES file. If everything works, running
F0000prg.dpr should give: Flx1 : J = -1.0000000E-0006 (this is a flux) and
Obs1 : c = 1.5000000E+0000 (this is a concentration).

Example 3 Test case: F0000prg.dpr

program F0000prg;

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

begin

default_problem;

run_model;

close_model;

end.

6 Risø-R-1201(EN)

3 Method

The purpose of this section, is to present the basic transport equations solved by
RnMod3d. The framework is consistent with that used in [An92] and [An99c]. An
outline of the finite-volume approach is also given.

3.1 Basic definitions

Consider a reference element δV of soil. This volume may be split into three parts:
δVg for the volume of grains, δVw for the volume of water, and δVa for the volume
of air:

δV = δVg + δVw + δVa (1)

Hence the (total) porosity ε, the water porosity εw, and the air porosity εa can be
expressed as:

ε =
δVw + δVa

δV
(2)

εw =
δVw

δV
(3)

εa =
δVa

δV
(4)

We define the fraction of water saturation of the pore volume (i.e. the volumetric
water content) as:

θv =
δVw

δVa + δVw
=

εw
ε

(5)

Hence θv = 1 means that the pores are completely filled with water whereas θv = 0
means that the soil is dry. The total mass of the reference element is:

δM = δMg + δMw (6)

where δMg is the mass of grain material and δMw is the mass of water. The mass
of air is neglected. The density of the grain material is:

ρg =
δMg

δVg
(7)

For a wide range of soils ρg is in the (narrow) range from 2.65 to 2.75 · 103 kgm−3.
The density for water:

ρw =
δMw

δVw
(8)

is about 1.0 · 103 kgm−3. The wet-soil density for given porosity and water content
can be calculated as:

ρws =
δM

δV
= (1− ε)ρg + θvρw (9)

The dry-soil density is:

ρds =
δMg

δV
= (1− ε)ρg (10)

We define the amount of water per dry mass of soil (i.e. the gravimetric water
content) as:

θg =
δMw

δMg
=

ρwδVw

ρgδVg
=

εw
1− ε

ρw

ρds
=

ε

1− ε

ρw

ρds
θv (11)

Hence if the porosity of the soil is ε = 0.3, then full water saturation (θv = 100 %)
means that the amount of water per dry mass is normally about θg = 16 %.

Risø-R-1201(EN) 7

3.2 Radon transport equation

The total activity δA of radon-222 (simply referred to as ”radon” in all of the
following) in the reference element δV may be split into three parts:

δA = δAg + δAw + δAa (12)

where the indices have the same meaning as in equation 1. We now define the
concentration of radon in the air-filled parts of the pores as:

ca =
δAa

δVa
(13)

and the radon concentration in the water-filled parts of the pores as:

cw =
δAw

δVw
(14)

Part of the grain activity δAg is available for transport in the pore system. This is
the radon adsorbed to soil-grain surfaces: δAg,s. The immobile part (δAg − δAg,s)
is radon produced by the ”non-emanating” part of the grain radium. In line with
the framework presented by Rogers and Nielson [Rog91A], we introduce the sorbed
radon concentration per kg dry mass (Bq kg−1) as:

cs =
δAg,s

δMg
(15)

where δMg is the grain mass within δV .
We assume rapid sorption kinetics [Wo92] such that the partitioning of radon

between air, water and soil grains is permanently in equilibrium at any point of
the soil:

cw = Lca (16)

cs = Kca (17)

where L is the Ostwald partitioning coefficient given in Table 1, and K is the
radon surface sorption coefficient [Rog91A, Na92]. The equilibrium assumption
simplify the problem considerably as we can then express the total mobile radon
activity by reference to the concentration in just one phase. Normally, the radon
concentration in the air phase ca is selected as ”reference concentration”. This
approach is also taken in RnMod3d. The mobile activity in δV is hence given as:

δAg,s + δAw + δAa = βcaδV (18)

where
β = εa + Lεw +Kρds (19)

is sometimes called the partition-corrected porosity. If the medium is dry and
without grain sorption, we have: β = ε. The equilibrium assumption is widely used
in models of pollutant transport, but is not universally correct [Th97]. Support
for the assumption can be found in [Na88, Na92]
If radium is present only in soil grains, we define the radon generation rate per

pore volume (Bq s−1 per m3-pore) as:

G =
λρdsE

ε
= λE

1− ε

ε
ρg (20)

where λ is the decay constant of radon (2.09838 · 10−6 s−1), andE is the emanation
rate of radon to the soil pores (i.e. the number of atoms that emanates into
water and air per second per kg dry mass). We can write the emanation rate
as E = fARa, where f is the fraction of emanation and ARa is the activity
concentration (Bq kg−1) of radium-226 per dry mass.

8 Risø-R-1201(EN)

Table 1. Radon solubility L in water as function of temperature (from [Cl79], p.
228).

Temperature L

K -
273.15 0.5249
278.15 0.4286
283.15 0.3565
288.15 0.3016
293.15 0.2593
298.15 0.2263
303.15 0.2003
308.15 0.1797

A mass-conservation equation for the mobile radon activity in δV is:

∂βca
∂t

= εG− λβca −∇ ·�j (21)

where �j is the bulk flux density (in units of Bq s−1 per m2) at time t. The term
’bulk’ means that the density is measured per total cross-sectional area perpen-
dicular to �j. Hence, a flux J (Bq s−1) across some plane with geometric area A

(e.g. a 120 m2 crawl-space floor) and uniform bulk flux density �j gives: J = �j ·Aâ,
where â is a unit vector perpendicular to the plane.
The bulk flux density is divided into two:

�j = �ja +�jd (22)

Ignoring water movement, the advective flux density is given by:

�ja = ca�q (23)

where �q is the bulk flux density of soil gas (in units of m3 s−1 per m2) discused
later. We assume, that the diffusive flux can be written as:

�jd = −D∇ca (24)

such that the bulk diffusivity D accounts for radon diffusion through air and water
in the pores.D is a function of temperature and pressure [Wa94] and may therefore
(if not for other reasons) change in time and space. We assume, that the soil-gas
flow is so low that mechanical dispersion can be ignored (i.e. D is independent of
�q) [Do92].

3.3 Soil-gas transport equation

It is assumed that the flow is of the Darcy type, that the soil has a uniform
temperature (natural convection in the soil is ignored), and that εa is constant in
time. Also, it is assumed that pressure variations are small in comparison with
the absolute pressure. The equation can be derived as given next.
The equation of continuity for soil gas transport is [Bi60]:

∂εaρa

∂t
= −∇ · (ρa�q) (25)

where ρa is the density of the gas (in kgm−3). For an ideal gas under isothermal
conditions, ρa is proportional to the absolute pressure P (x, y, z, t) (in Pa). Hence,
we have:

∂εaP

∂t
= −∇ · (P �q) (26)

Risø-R-1201(EN) 9

We can split the absolute pressure into three parts:

P (x, y, z, t) = P0 − ρa,0 g z + p(x, y, z, t) (27)

where P0 is the mean pressure at the atmospheric surface, and where p is the
disturbance pressure field. The middle term consists of: the average air density at
the given temperature ρa,0 (about 1.3 kgm−3), the acceleration due to gravity g

(about 9.8 m s−2), and the depth −z below the atmospheric surface (located at
z = 0). The z-axis points upwards. The ”aerostatic” pressure:

PH(z) = P0 − ρa,0 g z (28)

increases about 13 Pa per m depth.
The left-hand side of equation 26 can be evaluated as follows:

∂εaP

∂t
=

∂εa(PH(z) + p(x, y, z, t))
∂t

(29)

= PH(z)
∂εa
∂t

+
∂εap

∂t
(30)

We limit the treatment to the situation when εa is constant in time, and we
therefore have:

∂εaP

∂t
=

∂εap

∂t
(31)

On the right-hand side of equation 26, we assume that the disturbance pressure
is small in comparison with PH(z) such that:

P �q = (PH(z) + p) �q (32)

≈ P0 �q (33)

From this, we can approximate equation 26 as:

∂εap

∂t
= −∇ · (P0�q) (34)

or
εa
P0

∂p

∂t
= −∇ · �q (35)

where �q is given by Darcy’s law:

�q = −k

µ
∇p (36)

In the special case of homogeneous soil, we can reduce equation 35 and 36 to:

∂p

∂t
= Dp∇2p (37)

which is a usual diffusion equation, where

Dp =
kP0

µεa
(38)

is the diffusivity. Observe, that without the important simplification in equa-
tion 33, we would had obtained a transport equation with the term: ∇2p2. In-
stead, only ∇2p is part of the final equation1. Hence, equation 33 has lead to a
linearization of the problem.

1Observe, that in one dimension,

∂

∂x

(
p

∂p

∂x

)
=

1

2

∂2

∂x2
p2 (39)

10 Risø-R-1201(EN)

RnMod3d solves the following equation for radon transport:

∂βca
∂t

= εG− λβca −∇ ·�j (40)

where
�j = ca�q −D∇ca (41)

is the bulk flux density of radon (in Bq s−1 per m2) and where

ca is the radon concentration in the air-filled parts of the pores (Bq m−3)

t is the time (s)

β = εa + Lεw +Kρds is the partition-corrected porosity (dimensionless)

ε is the porosity (dimensionless)

G is the radon generation rate per pore volume (Bq s−1 per m3)

λ is the decay constant for radon (2.09838 · 10−6 s−1 for radon-222)

D is the bulk diffusivity (m2 s−1)

�q is a known bulk flux density of soil gas (m3 s−1 per m2)

Box 1: Radon transport equations.

RnMod3d solves the linearized equation for soil-gas transport:

εa
P0

∂p

∂t
= −∇ · �q (42)

where:
�q = −k

µ
∇p (43)

is the bulk flux density of soil gas (in m3 s−1 per m2), and where

p is the disturbance pressure (Pa)

t is the time (s)

εa is the air porosity (dimensionless)

P0 is the mean absolute pressure (about 105 Pa)

k is the gas permeability (m2)

µ is the dynamic viscosity (about 17.5 · 10−6 Pa s at 10 ◦C)

Box 2: Soil-gas transport equations.

3.4 RnMod3d treatment of radon and soil gas

RnMod3d is programmed to solve equations 40 and 41 in Box 1 and the formalism
used to define problems in RnMod3d closely follows that used in these equations.
For example, the control variable relating to the radon-decay constant (λ) is called
lambda def in RnMod3d. Hence, equation 40 and 41 relate to RnMod3d in a straight-
forward manner. For the soil-gas problem, the situation is a bit more complicated.
First, we observe, that equations 42 and 43 in Box 2 are also of the form given in
equations 40 and 41. We just have to substitute ca with p, D with k

µ and β with
εa/P0. The rest of the ”radon-equation coefficients” must be set to zero: λ = 0,
G = 0, ε = 0 and �q = 0. If we do that, RnMod3d solves the soil-gas problem as
defined by equations 42 and 43.
Table 2 should ease the translation of quantities used in RnMod3d and the two Translation table

Risø-R-1201(EN) 11

Table 2. Quantities etc. used by RnMod3d in radon and soil-gas problems.

RnMod3d Radon problem Soil-gas problem
Equation 40 + 41 Equation 42 + 43

Basic field value ca [Bq m−3] p [Pa]

D def D [m2 s−1] k
µ [m2 Pa−1 s−1]

e def ε [-] 0

beta def β [-] εa
P0

[Pa−1]

G def G [Bq s−1 m−3] 0

lambda def λ [s−1] 0

flowfield import export

J
∫
Ω
�j · d�a [Bq s−1]

∫
Ω
�q · d�a [m3 s−1]

Q
∫
Ω
�q · d�a [m3 s−1] 0

sets of transport equations. The first line of the table concerns the ”field values”
used by RnMod3d. For radon problems, these field values represent the radon con-
centration in the air-filled pore parts (ca). For soil-gas problems, they correspond
to the disturbance pressure (p). Therefore these quantities should be used when
specifying fixed-value boundary conditions. Furthermore, it should be observed
that model output of field values are based on these quantities.
The next lines concern control variables D def to Lambda def. These controlDual meaning of material

properties variables are Pascal pointers to user-defined functions as described in Section 7.
Here we just state that their meaning relates directly to the coefficients of equa-
tions 40 and 41. Hence, for radon problems, D def should point to the user-defined
function where the bulk diffusivity D of the material is defined and e def should
point to the user-defined function of (total) porosity. For soil-gas problems, the
situation is different as already stated: D def should point to the function where
the gas permeability divided by the dynamic viscosity is defined, e def should
point to a function which always return zero etc.
The next line of the table concerns the soil-gas flow field �q. It links the soil-Flow field

gas problem and the radon problem. It must be observed, that in the soil-gas
equation, �q results from the calculation. Its relation to the pressure field is given
in equation 43. In advective radon problems, �q is a known flow field of soil gas.
RnMod3d has a control variable called flowfield. In a soil-gas simulation, we
may set this to export meaning that the calculated flow field �q should be output
(exported) to a file. Later, in a radon simulation, we may want to import this
soil-gas flow field. We can do that by setting flowfield to import. Other settings
are also possible.
The two final lines of the table concern RnMod3d ”probes” for flux measurements.

More details can be found in Section 8. Here we just mention, that in radonOutput ”probes”
problems J and Q give the flux of radon and soil gas, respectively. In problems
with pure diffusion, the soil-gas flow will be zero. In soil-gas problems, J is the
calculated flow of soil gas whereas Q is without meaning (the model returns Q =
0). Flux measurements are done over some surface Ω as indicated in the table.

3.5 Finite-volume method

RnMod3d is based on a finite-volume (also called control-volume) method. This
method is closely related to the finite-difference method. Information about these

12 Risø-R-1201(EN)

S

N

W E

B

T

P

x

y

z

Figure 1. Sketch of the control volume located around node P . The six adjacent
nodes are called W for west, E for east, S for south, N for north, B for bottom,
and T for top.

S

N

W E
P

x

y

Figure 2. Two-dimensional projection of a grid of control volumes. Observe, that
control volumes need not have the same size, and that nodes are always located
midway between control-volume interfaces.

Risø-R-1201(EN) 13

numerical techniques can be found in [Pa80, Ve95, He96, Fe99]. The finite-volume
approach has been used also in other models of radon transport [Lo87, An92,
Sp98].
The computational grid is divided into control volumes as sketched in Figure 1

and 2. Each control volume is a box with one (center) node and six faces. The
prime variable is the value of the field at the nodes. Soil-gas problems are based on
the disturbance pressure field p(x, y, z) whereas radon problems are based on the
radon concentration field in the air-filled parts of the pores ca(x, y, z). Transport
from one control volume to another is approximated by linear flux expressions.
These expressions involve field values at pairs of adjacent nodes (e.g. P and E in
Figure 1). Fluxes are calculated for each of the six control-volume faces. Consid-
ering sources and sinks and that soil-gas and radon may accumulate in the control
volume, we then require strict conservation of mass. This gives one algebraic equa-
tion for each control volume P :

aP cP = aEcE + aW cW + aNcN + aScS + aT cT + aBcB + b (44)

where the a’s and the b are coefficients, the c’s are the unknown field values, and
where indices E, W , N , S, T , and B refer to the adjacent control volumes on the
east, west, north, south, top, and bottom sides of P . The coefficients are calculated
from material properties and control volume sizes.
We do the same thing for all control volumes in the grid and therefore obtain

a traditional matrix equation with N equations and N unknown field values. N
is typically 10 000 or more, so it is virtually impossible to solve the equation by
ordinary matrix inversion (the main matrix would be of size: N by N). RnMod3d
therefore uses iterative methods for finding the solution.
In summary, RnMod3d is based on field values at control-volume nodes and fluxes

at interfaces between pairs of adjacent nodes. Section 5.9 contains a few more
details about these matters.

4 Control variables

RnMod3d is controlled by more than 60 control variables. Some control variables
can be assigned simple types of data: strings, floating-point numbers, integers,
or booleans (i.e. true or false). Other variables are enumerated types of data.Enumerated types
These are used to help clarify the meaning of variable assignments and to restrict
assignments to what is actually meaningful. For example, the control variable
geometry is declared as an enumerated type, and it can only be assigned the
values: cartesian3D, cartesian2D or cylindrical2D. Otherwise an error will
occur.
Some of the control variables are pointers to pre-defined or user-defined proce-

dures and functions. These variables have names ending with def. For example,Pointer variables end with
def grid def is a pointer to the user-defined procedure where the grid is defined. If

the user has defined a procedure called mygrid, then we can tell RnMod3d about it
with the assignment: grid def := mygrid. Sometimes it makes sense to set such
variables to nil. For example, during debugging it may be of interest to avoid
calling the solver. This can be done with solver def:=nil.
In the following, all global control variables in RnMod3d are presented one by one.

The order of presentation follows the likely order of assignment during creation of
a job file.

14 Risø-R-1201(EN)

Default values

When RnMod3d starts, all control variables are set to their default values. If more
runs are conducted within the same job file, it is sometimes desirable to reset all
control variables to these values. This can be done with the procedure:

set_control_variables_to_defaults;

4.1 runid

Type: String with four characters Default: ’0000’ Description: Each model
calculation is assigned an identification tag called runid. If we set runid :=
’0997’ and run the model, then standard output goes to the files f0997LOG.dat
and f0997RES.dat. It is a good idea to name that job file f0997PRG.dpr, be-
cause then all files relating to the run can be found as f0997*.*. Additional
information: See Section 13.1

4.2 runtitle

Type: String Default: ’Default control variables’Description: This vari-
able is used to assign a descriptive line of text to the model calculation. For ex-
ample, runtitle := ’My first job’. This line of text is output to the screen
and to the LOG-file.

4.3 solution

Type: Enumerated variable with two possible assignments: steady or unsteady
Default: steady Description: The assignment: solution := steady implies
that the model calculation corresponds to steady-state conditions. The assign-
ment: solution := unsteady is used for time-dependent problems. Additional
information: See Section 11.

4.4 geometry

Type: Enumerated variable with three possible assignments: cartesian3d, cartesian2d,
or cylindrical2d Default: cartesian3d Description: Selection of coordinate
system. Additional information: See Section 5.

4.5 Ly

Type: Floating-point number larger than 0 Default: 1.0 Description: Ly gives
the thickness of the grid (in m) in the y-direction. The value of Ly is only of
importance when geometry := cartesian2d.

4.6 grid def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
procedure with the grid. Additional information: See Section 5.

4.7 force new grid in every run

Type: BooleanDefault: falseDescription: The assignment force new grid in every run
:= true forces a re-calculation of the grid pointed to by grid def every time
run model is issued. If the variable is false, the grid will only be recalculated

Risø-R-1201(EN) 15

if the procedure pointed to by grid def changes from one run to another. For
example, it will do so in:
...

grid_def:=mygrid;

run_model; (* Run 1 *)

grid_def:=myothergrid;

run_model; (* Run 2 *)

...

regardless of the setting of force new grid in every run. In the following exam-
ple, it is, however, important that force new grid in every run is set to true:
...

procedure mygrid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,NN,FocusA,1.0);

...

end;

...

grid_def:=mygrid;

for NN:=10 to 100 do

run_model;

...

otherwise all model runs will be performed for the grid size corresponding to
NN:=10.

4.8 boundary conditions def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
procedure where the boundary conditions are defined. Other information about
nodes and connectors located within the grid boundary can also be specified here.
Additional information: See Section 6.

4.9 flux def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
procedure where the ”flux measurement probes” (Flx1, Flx2 etc.) are defined.
Additional information: See Section 8.

4.10 probe def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
procedure where pressure or radon-concentration probes (Obs1, Obs3 etc.) are
defined. Additional information: See Section 9.

4.11 materials def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
procedure where the materials mat1, mat2 etc. are defined. Additional informa-
tion: See Section 7.1.

4.12 e def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function where the (total) porosity (ε) is defined. Additional information: See
Section 7.2.

16 Risø-R-1201(EN)

4.13 beta def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function where the partition-corrected porosity (β) is defined. Additional infor-
mation: See Section 7.3.

4.14 G def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function where the radon generation rate per pore volume (G) is defined. Addi-
tional information: See Section 7.4.

4.15 lambda def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function where the decay constant of radon (λ) is defined. Additional informa-
tion: See Section 7.5.

4.16 D def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function where the bulk diffusivity (D) is defined. Additional information: See
Section 7.6.

4.17 initialfield def

Type: Pointer Default: nil Description: This is a pointer to a user-defined
function. In time-dependent problems, it is possible to specify that the initial field
should be given by some function (e.g. equal to a non-zero constant). The variable
initialfield def can be used to tell RnMod3d about such a function. A nil-
assignment: initialfield def := nil is required if the initial field is specified by
other means (see import initialfield).Warning: Only nodes of the type free
(see Section 6.1 page 39) will be initialized by initialfield def. For example,
nodes that are fixed to certain values (such as boundary conditions) are unaffected
by the initial field read through initialfield def.

4.18 import initialfield

Type: Boolean Default: false Description: In time-dependent problems, it is
possible to specify that the initial field should be read from a file with: import initialfield
:= true. The name of the file is given by import file name. Observe, import initialfield
should be set to false after the first time step has been taken.

4.19 import finalfield guess

Type: Boolean Default: false Description: The solver in RnMod3d solves
the field equations iteratively until some requirements of convergence are met.
If import finalfield guess := false, then the first ”guess” is the field already
in the main data structure GP. In the very first run in a job file, the field in GP
is always 0 everywhere. If import finalfield guess := true, then the solver
imports a field from the file given by import file name and uses that as an ini-
tial guess of the final solution. It is important to distinguish between the initial
field for a time-dependent problem and the initial guess for the iterative solution
procedure.

Risø-R-1201(EN) 17

4.20 export field

Type: Boolean Default: false Description: If export field := true then
the final field is exported to the file given by export file name. If the file al-
ready exists, then it will be overwritten without warning. It is particularly useful
to export a ”field” if the computations have not converged. The field can then
be imported with import finalfield guess := true and used as a good start-
ing guess for more iterations. If export field := false, then no such field is
exported.

4.21 use fieldbuffer

Type: Enumerated variable with three possible assignments: cBUF1, cBUF2 or
no cBUF Default: no cBUF Description: If use fieldbuffer has been set to
cBUF1 then the state of RnMod3d in the next run model call will be reset to that
stored in the buffer called cBUF1. Likewise, the results of the new computations
will be stored in the same buffer. Buffers are needed in problems when both the
soil gas and the radon problems are time-dependent. If use fieldbuffer has
been set to cBUF2 then the state of RnMod3d is encapsulated in the buffer called
cBUF2. If use fieldbuffer has been set to no cBUF, then no such buffer is used.
Additional information: Section 11.7.

4.22 flowfield

Type: Enumerated variable with three possible assignments: none, export, import,
export to qBUF, or import from qBUF Default: none Description: The term
flowfield refers to the flow of soil gas (�q in Box 1 and 2, page 11). In a cal-
culation of soil-gas transport, the assignment flowfield := export, forces the
flow field of soil gas between control volumes to be exported to the file given by
flowfield name. In a later calculation with advective radon transport, it is possi-
ble to import this flow field with flowfield := import. The flow field is read from
the file given by flow field name. In a calculation of radon transport with pure
diffusion, we set flowfield := none. With flowfield set to export to qBUF,
the flow field is stored in the flow field buffer called qBUF. This is a dynamic vari-
able created for the purpose only when needed. It can be used only within a single
job file. With flowfield set to import from qBUF, a flow field already stored in
qBUF can be restored. An example of the use of qBUF can be found in Section 11.7.
Warning: Observe, that it is meaningful to use flow fields in other calculations
only if these calculations are performed with grids identical to that used in the
original flow calculation. For example, if the flow of soil gas is calculated with a
very fine grid of 20 000 nodes, then this grid cannot be used in a later radon calcu-
lation based on a coarser grid with only 5 000 nodes. RnMod3d tests if the number
of nodes are identical in the two situations. If they are not, an error message will
appear. The model does, however, not test if the two grids are truly identical.

4.23 flowfactor

Type: Floating-point number Default: 1.0 Description: During import of a
flow field of soil gas, all flows between control volumes are multiplied by the
flowfactor. For example, imagine a problem with diffusive and advective radon
entry into a house depressurized 1 Pa relative to the outdoors. If the soil-gas flow
field has been calculated (in a previous model run) with a steady depressurization
of 1 Pa, then we use flowfactor := 1.0 in the radon calculation (no scaling).
However, if we want to know the radon entry in the situation of a 5 Pa depressur-

18 Risø-R-1201(EN)

ization, we set flowfactor := 5.0. Thereby all flows between control volumes
are multiplied by a factor of 5. If the radon entry during house pressurization is
needed, we set flowfactor to be negative (all flows are reversed). The flow field
can be scaled meaningfully in this fashion because of the linearity of the transport
equation for the soil-gas flow. Observe, that the procedure is not directly applica-
ble if the house has entry points with different depressurizations etc. flowfactor
affects both flow fields imported from files and from the buffer called qBUF, see
Section 4.22.

4.24 import field name

Type: String with a valid file name or ’’ Default: ’’ Description: This variable
is used to specify the name of a file from which a field may be imported (see
initialfield def and import finalfield guess). If import field name = ’’
then the import file takes the standard name fxxxx 00.dat where xxxx is given
by the runid. For example, if runid := ’0997’ then import will be done from the
file f0997 00.dat. If the field should be imported from a file called myfile.dat
then use the assignment: import field name := ’myfile.dat’.

4.25 export field name

Type: String with a valid file name or ’’ Default: ’’ Description: This vari-
able is used to specify the name of a file to which the final field should be ex-
ported (see export field). If export field name := ’’ then the export file
takes the standard name fxxxx 00.dat where xxxx is given by the runid (see
import field name).

4.26 flowfield name

Type: String with a valid file name or ’’ Default: ’’ Description: This variable
is used to specify the name of a file to which or from which the flow field of soil
gas should be imported or exported (see flowfield). If flowfield name =: ’’
then the flowfield file takes the standard name fxxxxflw.dat where xxxx is given
by the runid (see import field name).

4.27 plotfiles def

Type: Pointer Default: nil Description: This is a pointer to the user-defined
function that makes data files for plotting purposes. Additional information:
See Section 13.3.

4.28 user procedure each iteration def

Type: Pointer Default: nil Description: This is a pointer to a user-defined
procedure that is called once every iteration by the solver. This procedure is called
from within the find field-procedure. See Section 14.7. Normally, this variable is
set to nil. The procedure can be used to monitor the convergence of the iterative
solution procedure:

procedure monitor_convergence;
begin
writeln(’Iteration = ’,iter,’c = ’,GP[5]^[2]^[5].c);
end;

where

Risø-R-1201(EN) 19

user_procedure_each_iter_def := monitor_convergence;

In principle it is also possible to let the procedure change the boundary condi-
tions. For example, the cBC[fixed1] can be changed. The methods described in
Section 12 are, however, more suited for that purpose.

4.29 wr details

Type: BooleanDefault: falseDescription: wr details := true forces RnMod3d
to output detailed information about the progress of the computations. The out-
put goes to the screen during run time. This can be used to debug problematic
job files.

4.30 wr main procedure id

Type: Boolean Default: false Description: wr main procedure id := true
forces RnMod3d to output identification headers every time the main procedures
are called. This can be used to debug problematic job files.

4.31 wr all procedure id

Type: Boolean Default: false Description: wr all procedure id := true
forces RnMod3d to output identification headers whenever procedures are called.
This can be used to debug problematic job files.

4.32 wr iteration line log

Type: Boolean Default: false Description: wr iteration line log := true
makes RnMod3d output information to the LOG-file about the number of iteration
conducted:

Iteration = 501 (1000) Time = 13.02 min (60.00) Residual = 3.40E+0002

The meaning is a follows: The line was written after completion of iteration number
501. The number in parentheses shows that a maximum of 1000 iterations is
allowed. 13.02 minutes have passed since the run model was issued. The maximum
time allowed for the computations is 60.00 minutes. The sum of residuals amounts
to 3.4 · 102. The concept of residuals is described page 60. The ”iteration line” is
output whenever the iteration number divided by conv evaluation period gives
an integer.

4.33 wr iteration line screen

Type: Boolean Default: true Description: This variable has the same meaning
as wr all procedure id, except that the line of information goes to the screen.

4.34 wr residual during calc log

Type: Boolean Default: false Description: wr residual during calc log
:= true forces RnMod3d to write information in the LOG-file about residuals. The
output comes during the computations, and it is useful for monitoring if the so-
lution converges. The output comes whenever the iteration number divided by
conv evaluation period gives an integer. An example is shown here:

* Abs. sum of bs = 0.00000E+0000

* Abs. sum of residuals = 2.63340E+0002 (change = -5.31864E-0003)

20 Risø-R-1201(EN)

* Max residual = 1.02542E+0001 (change = 7.43469E-0003)

* Max residual at (i,j,k) = (2, 1, 3)

* Max residual at (x,y,z) = (7.500E-0001, 0.000E+0000, 2.250E+0000)

The quantities involved are defined in Section 10.4. The output includes the sum
of absolute values of residuals, the max residual, and the location of the max
residual (both as control-volume coordinates (i,j,k) and physical coordinates
(x, y, z)). The ”relative change per iteration” is also given. In the example, the
sum of absolute residuals decreases about 0.53 % per iteration. Observe: To ob-
tain information about the number of iterations reached, wr iteration line log
should be set to true.

4.35 wr residual during calc screen

Type: Boolean Default: false Description: This variable has the same mean-
ing as wr residual during calc log, except that the output goes to the screen.

4.36 wr flux during calc log

Type: Boolean Default: false Description: If this variable is set to true,
RnMod3d will output results of ”flux measurements” with the probes Flx1, Flx2
etc. The output comes during the computations and can therefore be used to
monitor the convergence of the run. The output does not come for every single
iteration, unless conv evaluation period := 1. An example of output is shown
here:

Flx1 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx2 : J = -3.3263329E+0000 (change = -1.3561772E-0002) Q = 1.2035000E-0007

Flx3 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx4 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx5 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

If this output concerns a radon problem, then the meaning of the numbers is as
follows: Flux probe no. 2 (Flx2) reports a flux (J) of about -3.326 Bq s−1. The
relative change per iteration is about -1.35 %. The flow of soil gas (Q) is about
1.2 · 10−7 m3 s−1. Observe: To obtain information about the number of iterations
reached, wr iteration line log should be set to true.

4.37 wr flux during calc screen

Type: Boolean Default: false Description: This variable has the same mean-
ing as wr flux during calc log, except that the output goes to the screen.

4.38 wr probes during calc log

Type: Boolean Default: false Description: If this variable is set to true,
RnMod3d will output results of ”concentration measurements” with the probes
Obs1, Obs2 etc. The output comes during the computations and can therefore be
used to monitor the convergence of the run. The output does not come for every
single iteration, unless conv evaluation period := 1. An example of output is
shown here:

Obs1 : c = 2.7050633E-0001 (change = 1.2874671E-0001)

Obs2 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs3 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs4 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs5 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Risø-R-1201(EN) 21

If this output concerns a radon problem, then the meaning of the numbers is
as follows: Concentration probe no. 1 (Obs1) reports a field value (c) of about
0.27 Bq m−3. The relative change per iteration is about -12.9 %. Observe: To ob-
tain information about the number of iterations reached, wr iteration line log
should be set to true.

4.39 wr probes during calc screen

Type: Boolean Default: false Description: This variable has the same mean-
ing as wr probes during calc log, except that the output goes to the screen.

4.40 wr final results log

Type: Boolean Default: true Description: If this variable is set to true,
output will be written to the LOG-file after the solver has ended its computa-
tions. The output includes: (1) the title of the run as specified by runtitle,
(2) a statement of why the computations stopped (e.g. because the computa-
tions converged), (3) a line showing the number of iterations and time used for
the computations (see wr iteration line log), (4) results about residuals (see
wr residual during calc log), (5) results of ”flux measurements” (see wr flux
during calc log), and (6) results of ”concentrationmeasurements” (see wr probes
during calc log).

4.41 wr final results screen

Type: Boolean Default: true Description: This variable has the same meaning
as wr final results log, except that the output goes to the screen.

4.42 wr axes

Type: Boolean Default: true Description: If this variable is set to true, the
information about the grid is output to the LOG-file. Additional information:
See Section 5.10.

4.43 wr nodes

Type: Boolean Default: false Description: If this variable is set to true,
information about each individual control volume is written to the LOG-file. An
example is shown here:

wr_nodedata

i j k c nodetyp west east south north bottom top

1 1 1 0.000 fixed1 nill noflow nill noflow nill noflow

The output includes: (1) The index coordinates of the control volume (i,j,k),
(2) the field value (c) in Bq m−3 if a radon problem is solved, (3) the type of node,
and (4) the connectors for each of the six faces of the control volume.

4.44 wr nodes numbers

Type: BooleanDefault: trueDescription: If this variable is set to true, output
will be written to the LOG-file about the number of each type of control volumes
in the grid. For example:

22 Risø-R-1201(EN)

wr_count_nodes

* Type and number of nodes incl. boundary conditions :

* NOP 328

* free 640

* fixed1 16 value = 1.00000000000E+0000

* fixed2 16 value = 0.00000000000E+0000

* fixed3 0 value = 0.00000000000E+0000

* unchanged 0

* Total 1000

tells that there are 328 ”no operation” control volumes, 640 control volumes that
are ”free floating” (i.e. controlled by the transport equation), 16 control volumes
of the type fixed1, and 16 control volumes of type fixed2. In total there are 1000
control volumes in the grid. When the computations ended the ”fixed values” at
fixed1 and fixed2 were 1.0 and 0.0, respectively. The item ”unchanged” has no
meaning here.

4.45 wr node sizes

Type: Boolean Default: false Description: If this variable is set to true,
output will be written to the LOG-file about the sizes of each individual control
volume in the grid. For example:

wr_cvsize

2 5 8 ArW= 3.000E+0000 ArE= 3.000E+0000

ArS= 3.000E+0000 ArN= 3.000E+0000

ArB= 2.250E+0000 ArT= 2.250E+0000

dV= 4.500E+0000

tells that the area of the west face (ArW) of control volume (i,j,k) = (2,5,8)
amounts to 3 m2. The areas of the east, south, north, bottom, and top faces are
also given. The volume dV of the control volume is 4.5 m3.

4.46 wr coefficients

Type: Boolean Default: false Description: If this variable is set to true,
output will be written to the LOG-file about the coefficients of each individual
control volume in the grid. For example:

wr_all_coefficients

1 1 1 mat1 ap= 1.000E+0000 b= 1.000E+0000

aw= 0.000E+0000 ae= 0.000E+0000

as= 0.000E+0000 an= 0.000E+0000

ab= 0.000E+0000 at= 0.000E+0000

tells that the material of control volume (i,j,k) = (1,1,1) is mat1, and that
the ap coefficient amounts to 1.0 etc.

4.47 wr material volumes

Type: BooleanDefault: trueDescription: If this variable is set to true, output
relating to the materials mat1, mat2 etc. (see Section 7.1) will be written to the
LOG-file. This information can be particularly useful for testing if the problem has
been set up correctly. For example, in 3D simulations with building components
of different materials, it is useful to test if the volumes of these components are
as intended. For example,

wr_material_volumes_etc (volume-averaged field values)

mat Avg(conc) Activity Volume N N_invalid

mat1 1.197706031E+0004 9.581648252E+0002 4.000000000E-0001 36 89

Risø-R-1201(EN) 23

mat2 2.638484718E+0004 6.860060266E+0003 1.300000000E+0000 36 89

mat3 2.221443068E+0004 5.775751977E+0003 1.300000000E+0000 63 162

mat Min(conc) i j k x y z

mat1 2.999521243E+0003 2 4 2 1.852E-0002 9.815E-0001 -2.950E+0000

mat2 2.434101159E+0004 2 4 10 1.852E-0002 9.815E-0001 -1.500E+0000

mat3 2.156342193E+0004 2 4 18 1.852E-0002 9.815E-0001 -5.000E-0002

mat Max(conc) i j k x y z

mat1 2.095874291E+0004 2 2 5 1.852E-0002 3.519E-0001 -2.650E+0000

mat2 2.851119095E+0004 4 2 8 6.481E-0001 3.519E-0001 -2.300E+0000

mat3 2.300846592E+0004 4 2 11 6.481E-0001 3.519E-0001 -1.100E+0000

Total geometric volume = 3.00000000000E+0000

Total activity = 1.35939770688E+0004

Overall mean concentration = 2.26566284481E+0004

gives the following information for the control volumes set to mat1: (1) the average
air concentration (ca) is 11.97 kBq m−3, (2) the total activity considering all phases
(
∑

βcaδV) is 958 Bq, (3) the total geometric volume taken up by mat1 (
∑

δV) is
0.4 m3, (4) there are 36 control volumes with valid field values and 89 with invalid
field values (invalid field values could be from control volumes of zero volume or
NOP’s–see Section 6.1 page 39), (5) the minimum concentration is 3.0 kBq m−3 and
this value occurs at control volume (i,j,k) = (2,4,2) with physical coordinates
(x,y,z) = (0.019 m, 0.98 m, −2.95 m), and (6) the maximum concentration is
21 kBq m−3. Similar information is given for the two other materials: mat2 and
mat3.
The item ”Total geometric volume” gives the total geometric volume included

in the grid without consideration for porosity. The item ”Total activity” is the
total (mobile) activity covered by the grid regardless of phase (

∑
βcaδV). The

”Overall mean concentration” corresponds to the average air concentrations (ca)
listed for the individual materials. The only difference is that this value includes
results from all materials. Observe: all average air concentrations use the volume
of the included control volumes as weight.

4.48 warning priority log

Type: Enumerated variable with the following possible assignments:
war interpolation,war other, war fileimport, war convergence, war residual,
or war none Default: war other Description: It is used to control what type of
warnings that should be written to the LOG-file: only warnings of sufficient impor-
tance will be output. If warning priority log := war none, then no warnings
whatsoever will be output. If warning priority log := war other, then warn-
ings of this type plus those lower on the list (convergence warnings, file import
warnings, and residual warnings) will be output. Warnings from the (less impor-
tant) field interpolation functions will not be output. Normally, warning priority log
will be set to war other because in some circumstances the output can be flooded
with warnings from the field interpolation procedure.

4.49 warning priority screen

Type: Enumerated variable with the following possible assignments:
war interpolation,war other, war fileimport, war convergence, war residual,
or war none Default: war other Description: This variable has the same mean-
ing as warning priority log, except that the output goes to the screen.

24 Risø-R-1201(EN)

4.50 solver def

Type: Pointer to nil, find better field Thomas, or find better field Gauss Seidel
Default: nil Description: This is a pointer to the RnMod3d procedure that
should be used as solver. (1) nil means that no solver is defined. This is use-
ful during debugging. For example, it can be tested if the grid is set up cor-
rectly or if there are memory problems etc. without really solving the prob-
lem. (2) find better field Thomas means that the Thomas algorithm is used
as solver. This procedure sweeps the grid line by line in alternating directions.
(3) find better field Gauss Seidel means that the Gauss-Seidel procedure is
used as solver. This is a point-iterative procedure. The procedure pointed to by
solver def is called once in each iteration. Additional information: See Sec-
tion 10.3.

4.51 scheme

Type: Enumerated variable with the following possible assignments: powerlaw,
central, upwind, hybrid, or exact. Default: exact Description: This variable
is used to control how the coefficients are calculated. Additional information:
See the function Apower in the file R3Main03.pas and [Pa80].

4.52 relax factor

Type: Positive floating-point number Default: 1.0 Description: This variable
controls the relaxation of the iterative solution procedure:

c_new:=c_old+relax_factor*(c_now-c_old)

where c old is the field value reached in the previous iteration, c now is the re-
sult reached in this iteration, and c new is the new result after relaxation. With
relax factor := 1.0 there is no relaxation. Relaxation factors above 1 can be
used to obtain quicker convergence (over-relaxation). Relaxation factors below 1
(under-relaxation) can be used to ”tame” unstable problems. Relaxation factors
above 2.0 are unstable. Optimal relaxation factors for soil-gas problems are often
around 1.98.

4.53 flux convset

Type: Set of the enumerated values: Flx1, Flx2 etc. Default: [] (i.e. an
empty set) Description: The variable specifies which ”flux measurement probes”
that should be used by the solver for for convergence tests. For example, if
flux convset := [Flx3], then only the convergence of Flx3 is used by the solver.
Examples of other assignments are: Calculation with Pascal

sets!
flux_convset := [Flx1,Flx2]; (* Flx1 and Flx2 *)

flux_convset := [Flx1,Flx3..Flx5]; (* Flx1, Flx3, Flx4, and Flx5 *)

flux_convset := [Flx1..Flx5]-[Flx2]; (* Flx1, Flx3, Flx4, and Flx5 *)

flux_convset := []; (* Empty set, no flux probes *)

Warning: Flux probes with end results close to zero should not be included in
flux convset. Additional information: See Section 8.

4.54 probe convset

Type: Set of the enumerated values: Obs1, Obs2 etc. Default: [] (i.e. an empty
set) Description: This variable has the same meaning as flux convset (see

Risø-R-1201(EN) 25

the previous section) except that this one concerns ”the probes for concentra-
tion measurements”: Obs1, Obs2 etc. Warning: Probes with end results close to
zero should not be included in probe convset. Additional information: See
Section 9.

4.55 conv evaluation period

Type: Integer number Default: 50 Description: This variable is used to control
when convergence tests should be conducted. This is of interest because the solver
works iteratively, and because it costs computational time to evaluate if conver-
gence has been reached. In particular, calculation of fluxes Flx1, Flx2 etc. can be
somewhat time consuming. If conv evaluation period := 1 then a convergence
test is performed after every single iteration. If conv evaluation period := 100
then a convergence test is performed only after every 100 iterations. There is one
side effect to the setting of conv evaluation period: The procedures associated
with the variables:

wr_iteration_line_log
wr_iteration_line_screen
wr_residual_during_calc_log
wr_residual_during_calc_screen
wr_flux_during_calc_log
wr_flux_during_calc_screen
wr_probes_during_calc_log
wr_probes_during_calc_screen

will generate output only for those of the iterations with convergence tests.

4.56 min iterations

Type: Integer number Default: 5 Description: This variable sets the minimum
number of iterations that the solver should use. For example: min iterations:=50
will force the solver to do at least 50 iterations regardless of all other settings.

4.57 max iterations

Type: Integer number Default: 500 Description: This variable sets the maxi-
mum number of iterations that the solver can use. For example: max iterations:=1000
will force the solver to stop after a maximum of 1000 iterations. The iterations
may stop before that (e.g. if convergence is reached).

4.58 max time

Type: Floating-point number Default: 180 Description: This variable sets the
maximum computational time (wall-clock time in seconds) that the solver can use.
For example: max time:=12*3600 will force the solver to stop after 12 hours of
computations. The iterations may stop before that (e.g. if convergence is reached).
Warning: This variable has no meaning if RnMod3d is complied with Borland
Pascal v. 7.

4.59 max change

Type: Floating-point number Default: 1e-6 Description: This variable sets
part of the criteria for ”convergence”. When all of the probes included in the
sets flux convset and probe convset changes less (per iteration) than the value

26 Risø-R-1201(EN)

given by max change, we consider this part of the requirement for convergence
to have been met (but there are others). Hence max change := 1e-4 means that
convergence is not reached before the monitored values change by less than 0.01 %
per iteration.

4.60 max residual sum

Type: Floating-point number Default: 1e-4 Description: In addition to ”flux
measurements” and ”concentration measurements” (see max change), RnMod3d
also uses the sum of residuals as a criteria for convergence. If the sum of residuals
is larger than the value assigned to max residual sum, the model does not consider
the solution to have converged. Additional information: See Section 10.4.

4.61 dtim

Type: Non-negative floating-point number Default: 0.0 Description: dtim is
the time step given in seconds. Hence, in a time-dependent problem (i.e. when
solution has been set to unsteady) the call run model will advance the field of
pressures or radon concentrations by dtim. For example, if each time step should
be 1 hour, then we set dtim := 3600 Additional information: See Section 11.2.

4.62 BC running

Type: Boolean Default: false Description: If this variable is set to false
then no adjustment of boundary conditions are carried out. Hence this value must
be set to true when ”running boundary conditions” are needed. Additional
information: See Section 12.

4.63 BC running update of cBCs def

Type: PointerDefault: nil Description: This is a pointer to a user-defined pro-
cedure that controls how the boundary conditions (e.g. cBC[fixed1]) are changed.
To prevent unstable solutions the process is normally under-relaxed. Additional
information: See Section 12.

4.64 BC running min iterations

Type: Interger number Default: 100 Description: This variable is of type in-
teger. It sets the minimum number of iterations that RnMod3d needs to carry
out before it attempts to change the boundary conditions. If the value is set too
low, the solution procedure can become unstable. Additional information: See
Section 12.

4.65 BC running max residual sum before new BC

Type: Floating-point number Default: 1e-9 Description: This variable gives
the maximum sum-of-residuals before RnMod3d attempts to change the boundary
conditions. If the value is set too high, the solution procedure can become unstable.
Additional information: See Section 12.

4.66 BC running convergence def

Type: Pointer Default: nil Description: This is a pointer to a user-defined
function that returns the value true if some user-defined criteria for convergence

Risø-R-1201(EN) 27

has been met. Otherwise it should return the value false. For example, in a
simulation of exhalation from concrete into a chamber it can be tested if there
is consistency between the assumed fixed-concentration and the calculated flux.
Additional information: See Section 12.

4.67 wr BC running messages log

Type: Boolean Default: false Description: This variable that controls if
RnMod3d should output information about the running boundary conditions to
the LOG-file. Additional information: See Section 12.

4.68 wr BC running messages screen

Type: Boolean Default: false Description: This variable controls if RnMod3d
should output information about running boundary conditions to the screen. Ad-
ditional information: See Section 12.

4.69 press enter wanted

Type: Boolean Default: true Description: If the variable is set to true, then
the console (window) where RnMod3d runs does not close before the user has
pressed enter. If the variable is set to false RnMod3d can be run in batch mode.

5 Geometry

RnMod3d uses a grid of control volumes as the basis for all computations. This sec-
tion tells how the grid spacing is controlled. Essentially, the user needs to write a
procedure that maps the computational (i,j,k) space onto the physical (x, y, z)
world in meters. Only orthogonal grids are possible in RnMod3d. This means that
control volumes with the same i-coordinate have identical x coordinates (regard-
less of j and k). The same is true for the other dimensions. Hence the mapping
can be done independently for each axis:

i ↔ x

j ↔ y

k ↔ z

The mapping involves three steps:

• Selection of coordinate system The type of coordinate system is se-
lected with the control variable geometry. Three possibilities are available:
cartesian2d, cylindrical2d and cartesian3d.

• Declaration of fix points All physical dimensions of importance for the
problem should be associated formally with fix points called xFix1, xFix2
etc. For example, in a house simulation there may be a crack in the floor at
x = 3 m. We can associate this location with xFix2 with the call:
set FixVal(xFix2,3.0). In other parts of the job file, reference should be
made to this physical location through xFix2. Reference directly to x = 3.0 m
should be avoided.

• Node spacing To achieve a sufficiently accurate numerical solution it is
important that grid points are closely spaced in regions with large field gradi-
ents. In RnMod3d, the grid is generated ”by hand”. Essentially, each axis can

28 Risø-R-1201(EN)

be subdivided as specified by the user. If each of the three axes are divided
into 50 pieces, then the grid will consist of 503 = 125 000 control volumes.

When the grid has been set up in this way, each control volume has a certain loca-
tion and size. Section 5.9 provides more details about this. However, geometrical
information for individual control volumes is normally not needed because of the
use of fix points.
An example of a user-defined grid is shown next. The grid is from a three-

dimensional problem. The full meaning of the statements is explained in the fol-
lowing.

Example 4 Three-dimensional grid, where geometry:=cartesian3d .

procedure mygrid;

begin

set_FixVal(xFix1,0.0); (* x-axis *)

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,10,FocusA,2.0);

set_FixVal(yFix1,0.0); (* y-axis *)

set_FixVal(yFix2,1.0);

set_axis_single(yFix1,yFix2,10,FocusB,2.0);

set_FixVal(zFix1,-3.0); (* z-axis *)

set_FixVal(zFix2,-2.5);

set_FixVal(zFix3,-0.5);

set_FixVal(zFix4, 0.0);

set_axis_single(zfix1,zfix2,1,FocusA,1.0);

set_axis_single(zfix2,zfix3,5,focusA,1.0);

set_axis_single(zfix3,zfix4,1,FocusA,1.0);

end;

To force RnMod3d to use the grid defined in the example, we need set the control
variable called grid def as follows:

grid_def := mygrid;

5.1 Grid size (memory issues)

The only limitation for the size of the grid is the available computer memory.
Grids with as many as 250 000 nodes have been used on a pc with 128 Mb of ram.
By default RnMod3d, however, is limited to the grid size given by the compiler
directives in the file R3DIRS03.pas. Typical settings are:

{$DEFINE imax100}
{$DEFINE jmax100}
{$DEFINE kmax200}

This means that a maximum of 100 nodes can be located on the x-axis (index i)
and the y-axis (index j), whereas 200 nodes are allowed on the z-axis (index j).
The following DEFINE-directives are possible for the x-axis:

imax3
imax10
imax50
imax100
imax150
imax200
imax250
imax300

Risø-R-1201(EN) 29

imax350
imax400
imax450
imax500

Similar directives can be used for the other axes. The maximum number of nodes
that can be allocated on the x-, y-, and z-axes are given by imaxTot, jmaxTot,
and kmaxTot. The values of these variables are output to the LOG-file and the
screen when a job is run. In case too many nodes are specified in a job file, the
computations will end with an error message.

5.2 geometry

The coordinate system used by RnMod3d is set by the control variable geometry.
As shown in Figure 3 there are three possibilities.
The assignment geometry := cartesian3d implies that an ordinary carte-

sian (x, y, z)-coordinate system is used for the computations. With geometry :=
cartesian2d, only the cartesian (x, z)-coordinates are used. The thickness of the
grid in the y-direction can be set with the control variable Ly (see Section 4.5).
The default thickness is 1 meter. With geometry := cylindrical2d, the (x, z)-
coordinates refer to the (r, z) cylindrical coordinates. In this case, the y coordinate
has no meaning. One-dimensional problems are solved with either of the three co-Grids for 1D-problems
ordinate systems. To minimize the use of memory, only one node should be devoted
to each of the ”passive” dimensions.

x

x x

y

z

z

z

cartesian2d cylindrical2d cartesian3d

Figure 3. Types of grid geometries that can be selected with the control variable
geometry. The idea for this figure comes from [Ho94, p. 30].

5.3 set FixVal

As already stated, physical dimensions of importance for the problem should be
associated with fix points called xFix1, xFix2 etc. for the x-axis, yFix1, yFix2
etc. for the y-axis, and zFix1, zFix2 etc. for the z-axis. Fix points are associated
with physical dimensions by calls such as:

set_FixVal(xFix2,3.0)

that links xFix2 to the physical dimension x = 3.0 m. Fix points should be set up
in accordance with the following rules:

30 Risø-R-1201(EN)

• Fix points should be defined starting from xFix1 for the x-axis, yFix1 for
the y-axis, and zFix1 for the z-axis.

• The physical dimensions associated with fix points should be given in ascend-
ing order: ”xFix1” < ”xFix2” < ”xFix3” etc.

• There can be ”no gaps” in the series of fix points used. For example, it is not
possible to define xFix2 and xFix4 without also defining xFix3.

5.4 wFixVal

RnMod3d stores all information about fix points in the array wFixVal. For each fix
point, the array contains a record of two items called defined and w. The first
element is a boolean that tells if the fix point has been defined or not. The second
element is the physical (meter) coordinate of the fix point. This type of information
is useful in some special situations. For example, imagine that a basement slab is
set to span vertically from zFix2 to zFix3. To ascertain that this slab thickness
has been correctly implemented in the job file, we could make the following call
in the job file:

Example 5 Reference to fix points.

if (wFixVal[zFix2].defined) and (wFixVal[zFix3].defined) then
writeln(’The slab thickness is = ’,wFixVal[zFix3].w-wFixVal[zFix2].w,’ m’);

5.5 Node spacing

The grid of control volumes is created by subdividing each of the three axes. In
RnMod3d, this subdivision is always done between single pairs of fix points. Fix
points never move (regardless of the grid spacing). This means, for example, that
control volumes will never ”cross” a fix point. This has the following important
implication: If, for example, a concrete slab in a house simulation is defined by
reference to fix points then the ”concrete” is always filled up completely by control
volumes. There will be no control volumes which are partly in the soil and partly in
the concrete. To say it differently: All ”cuts” are made along fix points. Subdividing
an axis between pairs of fix points can be done with the three procedures:

set_axis_single(wFixA,wFixB,hAB,f,pow);
set_axis_double(wFixA,wFixB,hAM,hMB,fA,fB,powA,powB,wdiv);
set_axis_triple(wFixA,wFixB,hAM,hMM,hMB,fA,fM,fB,powA,powM,powB,wdivA,wdivB);

The fix points ”FixA” and ”FixB” must be adjacent. Hence, we cannot make
a call such as set axis single(xFix2,xFix5...). To help read the set axis-
procedure headers it is probably useful to know that w is used for x, y and z.
Likewise h is a generic reference to the index variables: i, j and k.

5.6 set axis single

set_axis_single(wFixA,wFixB,hAB,f,pow);

where

wFixA and wFixB are fix points such as xFix1 and xFix2.

hAB is the wanted number of subdivisions between ”A” and ”B”.

f is focusA or focusB.

pow is a real number (e.g. 1.0).

Risø-R-1201(EN) 31

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 4. Z-axis generated with: set axis single(zFix1,zFix2,5,FocusA,1.0);
Five nodes are placed at uniform distances between the fix points at -3 and 0.0.

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 5. Z-axis generated with: set axis single(zFix1,zFix2,25,FocusA,1.0);
Now 25 nodes are located between the two fix points.

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 6. Z-axis generated with: set axis single(zFix1,zFix2,25,FocusA,2.0);
Now the 25 nodes are not distributed uniformly. The density is highest in the left
part of the axis (FocusA).

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 7. Z-axis generated: set axis single(zFix1,zFix2,25,FocusB,2.0);
Now the focus is to the right side (FocusB).

32 Risø-R-1201(EN)

This procedure divides the axis between the fix point pair: wFixA and wFixB into
hAB subdivisions. Power functions of the type wpow are used for the purpose.
pow equal to 1 makes the node-spacing uniform. If a non-uniform distribution is
wanted, we set pow to values different from 1. For example, pow set to 2, will give
a spacing that increases as a square-function. The parameter f is used to control
where the density of divisions should be highest. If the density should be highest
close to fix point A, then set f=focusA. If the density should be highest in the
other end, use f=focusB. The term ’single’ in the name of the procedure refers
to the fact that the grid point density changes monotonically (i.e. in one single
interval) as specified by the distribution function.
Sample calls with set axis single are given in Figure 4 to 7. The two fix

points zFix1 and zFix2 are set as follows:

set_FixVal(zFix1,-3.0)
set_FixVal(zFix2, 0.0)

5.7 set axis double

set_axis_double(wFixA,wFixB,hAM,hMB,fA,fB,powA,powB,wdiv);

where

wFixA and wFixB are fix points such as xFix1 and xFix2.

hAM and hMB are the wanted numbers of subdivisions between ”A” to ”M” and
”M” to ”B”, respectively.

fA and fB are assigned the values focusA or focusB.

powA and powB are real numbers.

wdiw is a real number (e.g. 0.5).

In this procedure, the axis between the two fix points (A and B) is split into
two. The physical location of the middle point (M) is given by wdiv. wdiv gives
the location of M as a fraction of the total physical distance between A and B.
wdiv=0.5 means that M is half way between A and B. wdiv=0.01 means that M
is located very close to A: The distance A–M is 1 % of the total distance from A to
B. wdiv=0.99 locates M very close to B. The number of subdivisions allocated to
cover the interval A to M is specified by hAM. Likewise, the number of subdivisions
between M and B is hMB. Within the two intervals: AM and MB, subdivisions are
distributed as described for the set axis single procedure. Each interval has its
own pow-parameter. So for example, it is possible to have uniform spacing between
A and M and highly non-uniform spacing from M to B.
Sample calls with set axis double are given in Figure 8 and 9. The two fix

points zFix1 and zFix2 are set to -3 and 0.0, respectively.

5.8 set axis triple

set_axis_triple(wFixA,wFixB,hAM,hMM,hMB,fA,fM,fB,powA,powM,powB,wdivA,wdivB);

where

wFixA and wFixB are fix points such as xFix1 and xFix2.

hAM, hMM, and hMB are the wanted numbers of subdivisions between ”A” to ”M”,
”M” to ”M”, and ”M” to ”B”, respectively.

fA, fM, and fB are assigned the values focusA or focusB.

Risø-R-1201(EN) 33

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 8. Z-axis generated with: set axis double(zFix1,zFix2,5,20,FocusA,
FocusB,1.0,2.0,0.5); 5 Nodes are devoted to the left interval and 20 to the
right. The middle point (that separates left from right) cuts the z-interval into two
parts of equal parts (f=0.5). The node distribution is uniform in the left interval
(from −3 to −1.5 m and non-uniform (the exponent equals 2.0) to the right (from
−1.5 to 0 m).

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 9. Z-axis generated with: set axis double(zFix1,zFix2,5,20,FocusA,
FocusB,1.0,2.0,0.2); Now the two intervals are not of equal size. The left in-
terval covers 20 % of the distance between the two fix points. The right interval
covers the remaining 80 %.

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = 0

Figure 10. Z-axis generated with: set axis triple(zFix1,zFix2,5,20,5,
FocusA,FocusA,FocusB,3.0,1.0,3.0,0.2,0.8); The distance between the two
fix points is now divided into three. Cuts are made after 20 % and 80 %.

powA, powM, and powB are real numbers.

wdiwA and wdiwB are real numbers (e.g. 0.5).

This procedure is a natural extension of set axis double. The only difference is
that now the interval between node A and B is split into three subintervals. A
sample call with set axis triple is given in Figure 10. The two fix points zFix1
and zFix2 are set to -3 and 0.0, respectively.

5.9 Location and size of specific control volumes

Figure 11 shows a generic control volume. It is located at (i,j,k). The control
volume is represented by the gray region. Any material property assigned to the
control volume (porosity, diffusivity etc.) applies to that region. Hence, material

34 Risø-R-1201(EN)

x[i] xnod[i] x[i+1]

dx[i]

x-axis

W P E
jw je

Figure 11. Geometry and x-coordinates for control volume (i,j,k).

properties are assumed to be constant within each control volume. RnMod3d finds
the field value (e.g. the radon concentration) exactly at the node P in the center
of the control volume, and fluxes are calculated exactly at the interfaces between
adjacent control volumes (je and jw in the figure).
The x-coordinates for the control volume (i,j,k) are shown in Figure 11.

The west-side interface is located at x[i] and the east-side interface is located
at x[i+1]. The node P is located at xnod[i] midway between the interfaces.
Hence xnod[i] = x[i] +0.5 · dx[i]. The length of the control volume is dx[i] =
x[i+ 1]− x[i].
In RnMod3d the location of control-volume interfaces are stored in the arrays

x[i], y[j], and z[k]. Likewise the ”height, width and depth” are stored in the
arrays dx[i], dy[j], and dz[k]. Hence such information can be accessed directly
by the user as given in the following example. Alternatively, a standard list can
be written to the LOG-file as shown in Section 5.10.

Example 6 How to print out the coordinates of a specific control volume.

...

run_model;

writeln(’Control volume (5,3,6) has its west interface at: x = ’,x[5]);

writeln(’Control volume (5,3,6) has its south interface at: y = ’,y[3]);

writeln(’Control volume (5,3,6) has its bottom interface at: z = ’,k[6]);

...

xnod(i), ynod(j) and znod(k)

Often it is necessary only to get the (x, y, z) coordinate of the node (not the
interfaces). This information is most easily obtained with the functions xnod(i),
ynod(j) and znod(k). For example, the physical x-coordinate of the center-node
of the i’th control-volume is xnod(i). An illustrative example of the use of these
functions is given page 47.

Areas and volume of a given control volume

As shown in Figure 1 page 13 each control volume is a ”box” with six sides. The
area of each side are output to the LOG-file if the control variable wr node sizes
is set to true (see Section 4.45). It is also possible to get the information for just

Risø-R-1201(EN) 35

one single control volume. This can be done with the procedure set cvsize. The
following example shows what to do.

Example 7 Application of set cvsize .

procedure wr_interface_areas(i:itype; j:jtype; k:ktype);

var ArW,ArE,ArS,ArN,ArB,ArT,dV:datatype;

begin

set_cvsize(i,j,k,ArW,ArE,ArS,ArN,ArB,ArT,dV);

writeln(’The area of the west-side interface of control volume: ’);

writeln(i:4,j:4,k:4,’ is: ’,ArW,’ m2’);

writeln(’The volume of control volume : ’);

writeln(i:4,j:4,k:4,’ is: ’,dV,’ m3’);

end;

5.10 Grid inspection: wr axes

The location of control volumes can be inspected if the control variable wr axes
is set to true. A table like the one given next will appear in the LOG-file (see
page 74).

Example 8 Grid output created with mygrid in the example page 29.

axis i x[i] x[i+1] dx[i] dcdx dcdxnorm Fixpts

x 1 0.00000 0.00000 0.0000000 8.883E-0005 0.00005922 xFix1

x 2 0.00000 0.01000 0.0100000 4.254E-0004 0.00028357 -

x 3 0.01000 0.04000 0.0300000 6.003E-0004 0.00040023 -

x 4 0.04000 0.09000 0.0500000 6.801E-0004 0.00045337 -

x 5 0.09000 0.16000 0.0700000 7.312E-0004 0.00048749 -

x 6 0.16000 0.25000 0.0900000 7.477E-0004 0.00049845 -

x 7 0.25000 0.36000 0.1100000 7.191E-0004 0.00047942 -

x 8 0.36000 0.49000 0.1300000 6.325E-0004 0.00042165 -

x 9 0.49000 0.64000 0.1500000 4.695E-0004 0.00031299 -

x 10 0.64000 0.81000 0.1700000 1.878E-0004 0.00012520 -

x 11 0.81000 1.00000 0.1900000 2.168E-0019 0.00000000 -

x 12 1.00000 1.00000 0.0000000 0.000E+0000 0.00000000 xFix2

axis j y[j] y[j+1] dy[j] dcdy dcdynorm Fixpts

y 1 0.00000 0.00000 0.0000000 8.181E-0005 0.00005454 yFix1

y 2 0.00000 0.19000 0.1900000 8.392E-0005 0.00005594 -

y 3 0.19000 0.36000 0.1700000 3.420E-0004 0.00022799 -

y 4 0.36000 0.51000 0.1500000 5.414E-0004 0.00036095 -

y 5 0.51000 0.64000 0.1300000 6.500E-0004 0.00043333 -

y 6 0.64000 0.75000 0.1100000 6.927E-0004 0.00046177 -

y 7 0.75000 0.84000 0.0900000 6.845E-0004 0.00045634 -

y 8 0.84000 0.91000 0.0700000 6.361E-0004 0.00042405 -

y 9 0.91000 0.96000 0.0500000 5.471E-0004 0.00036470 -

y 10 0.96000 0.99000 0.0300000 3.096E-0004 0.00020641 -

y 11 0.99000 1.00000 0.0100000 2.168E-0019 0.00000000 -

y 12 1.00000 1.00000 0.0000000 0.000E+0000 0.00000000 yFix2

axis k z[k] z[k+1] dz[k] dcdz dcdznorm Fixpts

z 1 -3.00000 -3.00000 0.0000000 0.000E+0000 0.00000000 zFix1

z 2 -3.00000 -2.50000 0.5000000 1.500E+0000 1.00000000 -

z 3 -2.50000 -2.50000 0.0000000 0.000E+0000 0.00000000 zFix2

z 4 -2.50000 -2.10000 0.4000000 1.127E-0002 0.00751807 -

z 5 -2.10000 -1.70000 0.4000000 1.021E-0002 0.00681031 -

z 6 -1.70000 -1.30000 0.4000000 8.553E-0003 0.00570229 -

z 7 -1.30000 -0.90000 0.4000000 6.397E-0003 0.00426476 -

z 8 -0.90000 -0.50000 0.4000000 1.824E-0003 0.00121574 -

z 9 -0.50000 -0.50000 0.0000000 2.280E-0003 0.00151967 zFix3

z 10 -0.50000 0.00000 0.5000000 4.337E-0019 0.00000000 -

z 11 0.00000 0.00000 0.0000000 0.000E+0000 0.00000000 zFix4

36 Risø-R-1201(EN)

The example corresponds to the mygrid procedure given page 29. First information
about the x-axis is given. Nodes on this axis are indexed by the variable i. There
are 12 nodes on the axis, so i goes from 1 to 12. x[i] gives the physical coordinate
for the left interface of control volume i. Likewise x[i+1] is the coordinate of the
right interface. dx[i] is the thickness of the control volume i (see Figure 11,
page 35). The columns dcdx and dcdxnorm will be described in the following
section. They contain information about maximum gradients of the field (c) in
the direction of the x-axis, so this information can be used to identify where more
grid points should be located. The final column Fixpts marks fix-point locations.
The same type of information is given for the other two axis. Here, j and k are
used as index variables for the y and z-axeses, respectively. Observe that for each
fix point, there will be a ”ghost” node of zero thickness.

x [m]

0.0 0.2 0.4 0.6 0.8 1.0

xFix1 = 0
xFix2 = 1

y [m]

0.0 0.2 0.4 0.6 0.8 1.0

yFix1 = 0
yFix2 = 1

z [m]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

zFix1 = -3
zFix2 = -2.5

zFix3 = -0.5
zFix4 = 0

Figure 12. Plot of axes generated with mygrid defined page 29. The circles rep-
resent nodes. Fixpoints are named xFix1 etc. Interfaces of control volumes are
indicated on the line above the nodes.

5.11 Grid evaluation: dcdx and dcdxnorm

The output from wr axes (see the previous section) also indicates where to add
more grid points in the grid: For all nodes at i, RnMod3d calculates the field
differences (”∆c”) to the adjacent nodes at i+1. The largest field difference is
called dcdx. In a soil-gas simulation, dcdx is measured in Pa. In a radon simulation,
dcdx is measured in Bq m−3. What does this quantity tell? If dcdx is found to be
1 Pa at i=10 whereas dcdx is much smaller than 1 Pa, for all other i’s in the grid,
then it would probably be good to add some more grid points between i=10 and
i=11. Observe, dcdx is the field ”gradient” per node in the x-direction.
Similar calculations are carried out for the two other axes, and the results are

stored in dcdy and dcdz. To find out which axis that may be in most need of more
grid points, the maximum of dcdx, dcdy, and dcdz is calculated. From this global
maximum, we normalize all the dcdx-values etc. The results are called dcdxnorm,
dcdynorm, and dcdznorm.

Risø-R-1201(EN) 37

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

z

0.0 0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

y

z

0.0 0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Figure 13. Two-dimensional projection plots of the grid generated with mygrid
defined page 29. The circles represent nodes. Fix points are drawn with thick lines.
Interfaces of control volumes are drawn with thin lines.

As shown in the previous section, dcdx and dcdxnorm etc. are output to the
LOG-file by setting wr axes to true.

6 Nodes and connectors

Having created a (i,j,k)-grid of control volumes and linked them to the physical
(x, y, z)-world in meters (see the previous section), it is now time to define how
each control volume should ”behave” and how each control volume should be
connected with its nearest neighbors. This section tells how to do that. Like the
geometry of the grid is contained in the procedure pointed to by the control
variable grid def, the control variable boundary conditions def2 points to the
procedure where the ”grid behavior” is defined. In other words, this section tells
how the boundary conditions def procedure should be programmed.
The section is divided in two. First, the different types of nodes and connectors

are presented, and it is shown how these may be set with the procedures set node
and change node. Then we describe the so-called in-functions: in cube, in plane,
in region, and in interval, which are used to pin point ”collections” of control
volumes (for example an entire boundary) by reference to fix points (xFix1, xFix2
etc.) defined in the grid procedure. As described in subsequent sections, the in-
functions are used also for setting up material properties and flux measurements.

2The name of this control variable is a little bit misleading. The procedure pointed to by
boundary conditions def controls not only boundary conditions, but all nodes and connectors
in the grid.

38 Risø-R-1201(EN)

6.1 Node types

Three types of nodes are used in RnMod3d:

the standard node free,

the no-operation node nop, and

the fixed-value nodes fixed1, fixed2 etc.

Control volumes with a node type set to free are controlled by the transport
equation for radon or soil gas given in Section 3. Of course, this is normally
the majority of control volumes. The no-operation node type, nop, is used for
control volumes which are not part of the problem (they just happen to be in
the grid because the grid is always a regular box). For example, imagine a 3D-
simulation of soil-gas entry into a basement house: That part of the grid that is
”in the basement” is not controlled by Darcy’s law and control volumes in this
region should be set to nop. The fixed-value node types: fixed1, fixed2 etc. are
used for control volumes where the field is held fixed at certain constant values
(regardless of transport equations). The fixed values are set up in the array cBC.
For example, in the previous basement example, the pressure at the interface
between concrete and basement (or soil and basement) may be set to some fixed
value (e.g. −3.0 Pa). If we set these control volumes to be of node type fixed1,
then we set cBC[fixed1] := -3.0. Likewise, the collection of control volumes
located at the interface between soil and atmosphere may be assigned the node
type fixed2. If this boundary is maintained at zero Pa, then we set cBC[fixed2]
:= 0.0. The control volumes in the soil (or concrete) are of the type free.

6.2 Connector types

Each control volume is like a box (see Figure 1, page 13): it represents a certain
volume and has six faces. For control volumes (deep) inside the grid, each control
volume interfaces with six other control volumes. Radon (or soil gas) therefore
normally can flow from one control volume to six others (nearest neighbors). The
ability of having transport between neighboring control volumes is handled by
connectors. All control volumes have six connectors. These are called: Econ, Wcon,
Ncon, Scon, Tcon, and Bcon for the east, west, north, south, top, and bottom
of the control volume faces, respectively. There are three types of connectors in
RnMod3d:

the standard connector std,

the no-flow connector noFlow, and

the connector to ”nowhere” called nill.

The standard connector type, std, is used when radon or soil gas can flow freely
(as given by the governing transport equations) between the two control volumes
linked by the connector. The no-flow connector called noFlow is used when such
transport is explicitly set to be zero. This represents a no-flow boundary condition.
Clearly, connectors are only meaningful between control volumes. Control volumes
located at the boundary of the grid will have one or more faces pointing to nowhere.
These connectors are set to be of the type called nill.

6.3 Default nodes and connectors

When run model is called the first time and the grid geometry has been set in
accordance with the procedure pointed to by grid def, RnMod3d assigns the fol-
lowing default values to grid nodes and connectors:

Risø-R-1201(EN) 39

All nodes are set to be of type free.

Connectors between control volumes are set to be of type std.

Connectors at the boundary of the grid (pointing to nowhere) are set to nill.

This means that the default computational grid behaves as a closed box. For
example, if we add some radon activity, it cannot leave the box: All boundaries
are closed off. However, radon can move around inside the box and decay as
specified by the radon transport equation.
If we make a list of nodes in the grid (e.g. by setting the control variable

wr nodes to true) it will be found that the above description is not entirely
true. A glance at such a table will reveal that (all) grids contain a number of nop
nodes and noFlow connectors. These occur for control volumes that have all three
coordinates at fix points (for example, the x-coordinate could be at xFix3, the
y-coordinate could be at yFix2, and the z-coordinate could be at zFix5). Such
control volumes have zero volume, and we refer to them as being ”dead”. The
”dead” control volumes plays absolutely no role for the user when a problem is set
up. They can be ignored completely3. Only, they may cause a little confusion in
the situation (already mentioned) where the node types in the grid are inspected:
The user may think that something is wrong with the grid because it contains a
bunch of nop’s that he or she had not explicitly defined.
The type of nodes and connectors should be changed from the default with

the procedures set node and change node. These procedures are ”clever” in the
sense that if for example the connector at the top face of control volume (i,j,k)
is set to noFlow, then the program automatically updates the connector of the
bottom face of the control volume (i,j,k+1). Also, these procedures take care of
the ”dead” control volumes.

6.4 Inspection of nodes and connectors

Often it is useful to be able to verify that the correct nodes and connectors are
set up. An easy way to inspect the grid is to set the control variable wr nodes
to true. Then a complete listing of alle nodes and connectors are output to the
LOG-file (see Section 4.43). Another way is to interact with the main data structure
GP directly (see Section 14). A list of specific nodes or connectors can be made as
shown in the following examples.

Example 9 Print list of control volumes with specific nodes. The procedure can
be called as wr nodelist(NOP).

procedure wr_nodelist(what:nodetyptype);

var i:itype;

j:jtype;

k:ktype;

begin

for i:=1 to imax do

for j:=1 to jmax do

for k:=1 to kmax do

if GP[i]^[j]^[k].nodetyp=what then

writeln(i,’ ’,j,’ ’,k,’ Found one node = ’,nodetyp_string(what))

end;

Example 10 Print list of control columes with specific connectors. The procedure
can be called as: wr connectorlist(noFlow).

3Well, they can almost be ignored completely. If the user makes direct access to the field
values of the grid make sure to test if the grid values are valid. See the examples in Section 9 for
how to do that.

40 Risø-R-1201(EN)

procedure wr_connectorlist(what:nodecontype);

var i:itype;

j:jtype;

k:ktype;

begin

for i:=1 to imax do

for j:=1 to jmax do

for k:=1 to kmax do

if GP[i]^[j]^[k].Wcon=what then

writeln(i,’ ’,j,’ ’,k,’ Found one connector = ’,nodecon_string(what))

end;

6.5 set node

The procedure set node is used to set the node type of a single control volume.
For example, if the control volume (i,j,k) should be set to type fixed2, then
we simply make the call:

set_node(i,j,k,fixed2)

The connectors of the control volume remain unaffected by set node unless the
node type is set to nop. In that case, all connectors to other control volumes are
set to noFlow.

6.6 change node

The procedure change node can be used to change any feature of nodes and
connectors. The procedure is called as follows:

change_node(i,j,k,nodetypNew,
wconNew,econNew,
sconNew,nconNew,
bconNew,tconNew)

where (i,j,k) are the index coordinates of the control volume to be affected,
nodetypNew is the new node type that should be assigned to the control volume,
and wconNew is the new connector type that should be assigned to the west face of
the control volume. Similarly, the other parameters concern connectors at the east,
south, north, bottom, and top faces of the control volume. Hence, the following
call sets the node type of control volume (i,j,k) to free and all connectors
(except the one at the top) to std. The top connector is set to noFlow:

change_node(i,j,k, free, std,std, std,std, std,noFlow)

Often, we want to change only the node type (or a single connector) and leave nodX and conX
everything else unchanged. To do that, we use nodX for ”unchanged node type”
and conX for ”unchanged connector”. Hence, if we want to set the top connector
of control volume (i,j,k) to noFlow and leave everything else unchanged we use
the call:

change_node(i,j,k, nodX, conX,conX, conX,conX, conX,noFlow);

6.7 boundary conditions def

All node types and connectors (deep inside the grid or on the true boundary) can
be set by the procedure pointed to by the control variable: boundary conditions def.
In the simple situation where we want to use the default settings (i.e. to model
transport in a closed box as explained previously) and nothing more, we ”pro-
gramme” a procedure with no changes of nodes or connectors:

Risø-R-1201(EN) 41

Example 11 Default equations and boundary conditions.

procedure my_closed_box(i:itype;j:jtype;k:ktype);
begin
end;

With the assignment:

boundary_conditions_def := my_closed_box;

RnMod3d is told that this is the procedure with all our changes.
Normally, changes of nodes and connectors are not really made for individual

control volumes. In the typical situation we make changes for ”collections” of
control volumes. One example of such a ”collection” for a house simulation is
the collection of nodes that are located at the atmospheric soil-air interface. In a
soil-gas calculation we may want to set the pressure to zero with a fixed node
type. To pinpoint such ”collections” of control volumes by reference to fix points
(xFix1, xFix2 etc.), special in-functions have been developed. This means that
the user need not (explicitly) know the index coordinates (i,j,k) of the control
volumes in the ”collection”. The in-functions are: in cube, in plane, in region,
and in interval. These functions are look-up tables: It can be tested if any
control volume (i,j,k) is within, outside or at the ”edge” of a certain region
defined by fix points (xFix1 xFix2 etc.). The functions return the value true,
if the control volume belongs to the region, and false if it does not. Before
describing how the in-functions are used, we will present a simple example.
Imagine, a 30 m high column of sand with cross-sectional area of 2 x 2 m. The

sand is placed in some container with walls impermeable to gas flow. The top of
the container is maintained at −3 Pa relative to the bottom. To treat this problem
we define the following two procedures:

Example 12 Sand column example.

procedure grid_column;

begin

set_FixVal(xFix1,0.0); (* x-axis *)

set_FixVal(xFix2,2.0);

set_axis_single(xFix1,xFix2,5,Focus,1.0);

set_FixVal(yFix1,0.0); (* y-axis *)

set_FixVal(yFix2,2.0);

set_axis_single(yFix1,yFix2,5,Focus,1.0);

set_FixVal(zFix1, 0.0); (* z-axis *)

set_FixVal(zFix2,30.0);

set_axis_single(zFix1,zFix2,10,Focus,1.0);

end;

procedure BC_column(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

cBC[fixed2]:=-3.0;

if in_plane([eqAB,inside],i,xFix1,xFix2,yFix1,yFix2,zFix1,zFix1) then

set_node(i,j,k,fixed1); (* Boundary at zFix1 *)

if in_plane([eqAB,inside],i,xFix1,xFix2,yFix1,yFix2,zFix2,zFix2) then

set_node(i,j,k,fixed2); (* Boundary at zFix2 *)

end;

and we make the assignments:

geometry := cartesian3D;
grid_def := grid_column;
boundary_conditions_def := BC_column;

42 Risø-R-1201(EN)

Observe the following: (1) control-volume sizes etc. are in grid column and control
volume ”behaviors” are as defined by default with the changes given in BC column.
(2) All geometrical features are assigned to fix points (column height and cross-
sectional dimensions). The procedure BC column contains references only to fix
points. Hence, BC column remains valid even if we (later) change the column di-
mensions or if we add more control volumes to the grid (i.e. if we make a finer
grid).

6.8 in cube

The boolean function in cube is called as:

in_cube(reg, i,xFixA,xFixB, j,yFixA,yFixB, k,zFixA,zFixB)

where

reg is a Pascal set of inside, outside, and eqAB.

i, j and k are index coordinates of control volumes.

xFixA and xFixB are adjacent fix points on the x-axis.

yFixA and yFixB are adjacent fix points on the y-axis.

zFixA and zFixB are adjacent fix points on the z-axis.

The function concerns the location of the control volume with index coordinates
(i,j,k) in relation to the ”cubic”4 region defined by the six planes defined sym-
bolically by x = xFixA, x = xFixB, y = yFixA etc. where x = xFixA is the plane
of all control volumes with physical x-coordinates equal to the fix point xFixA
etc. If the control volume (i,j,k) belongs to the region, then in cube returns
the value true. Otherwise it returns the value false.
The parameter reg is a Pascal set of the elements: inside, outside, and eqAB5.

The meaning will become clear after the example given next. An example call is:

Example 13 Test procedure for the function in cube.

procedure test;

var i:itype;

j:jtype;

k:ktype;

begin

for i:=1 to imax do

for j:=1 to jmax do

for k:=1 to kmax do

if in_cube([inside],

i,xFix1,xFix4,

j,yFix3,yFix5,

k,zFix1,zFix2) then

writeln(’Inside the cube : ’,i:4,j:4,k:4);

end;

This example prints a list of all control volumes that have physical coordinates
within the cube given by (xFix1 < x < xFix4) and (yFix3 < y < yFix5) and
(zFix1 < z < zFix2). To refer to the control volumes that are not inside the
cube, [inside] should be substituted with [outside]. To refer to those control
volumes exactly on the faces of the cube, [inside] should be substituted with
[eqAB]. To refer to those control volumes, that are inside or on the face of the

4The name ”cube” is misleading in the sense that the sides of the region need not be of equal
size. It had probably been better to call the function: in box.

5For the other in-functions the values eqA and eqB can also be used.

Risø-R-1201(EN) 43

cube, write [inside,eqAB]. To refer to those control volumes, that are inside or
outside (but not on the face of the cube), write [inside,outside]. To refer to
all control volumes, write [inside,outside,eqAB]. To specify a an empty region
use [],

6.9 in plane

The boolean function in plane is called as:

in_plane(reg, i,xFixA,xFixB, j,yFixA,yFixB, k,zFixA,zFixB)

where

reg is a Pascal set of inside, outside and eqAB.

i, j and k are index coordinates of control volumes.

xFixA and xFixB are adjacent fix points on the x-axis.

yFixA and yFixB are adjacent fix points on the y-axis.

zFixA and zFixB are adjacent fix points on the z-axis.

The function concerns the location of the control volume with index coordinates
(i,j,k) in relation to the plane defined by whichever (single) pair of fix points
that are identical. If xFixA=xFixB, then the function concerns the plane of control
volumes with physical x-coordinates equal to the fix point xFixA. Planes in the
other directions can be specified by yFixA=yFixB or zFixA=zFixB. Only one pair
of fix points can be identical.
If xFixA=xFixB, then the fix points for the y- and z-axis are used to limit the

region to be some rectangular part of the plane. An example will be given below.
The parameter reg is a Pascal set of the elements: inside, outside, and eqAB.
The meaning is identical to that described for the function in cube.
The following example shows three sample calls of in plane. The first case con-

cerns the region defined symbolically as: (x = xFix1) and (yFix3 < y < yFix5)
and (zFix1 < z < zFix2). So this is a rectangle in the yz-plane through x =
xFix1. The function returns true if (i,j,k) is inside the region.

Example 14 Sample calls of in plane.

if in_plane([inside] ,i,xFix1,xFix1, j,yFix3,yFix5, k,zFix1,zFix2) then

writeln(’A ’,i:4,j:4,k:4); (* case A *)

if in_plane([eqAB] ,i,xFix1,xFix2, j,yFix2,yFix2, k,zFix1,zFix2) then

writeln(’B ’,i:4,j:4,k:4); (* case B *)

if in_plane([inside,eqAB],i,xFix1,xFix1, j,yFix3,yFix5, k,zFix3,zFix3) then

writeln(’C ’,i:4,j:4,k:4); (* case C *)

6.10 in region

The boolean function in region is called as:

in_region(i,xFixA,xFixB,xreg, j,yFixA,yFixB,yreg, k,zFixA,zFixB,zreg)

where

xreg, yreg, and zreg are Pascal sets of inside, outside, eqA, eqB and eqAB.

i, j and k are index coordinates of control volumes.

xFixA and xFixB are adjacent fix points on the x-axis.

yFixA and yFixB are adjacent fix points on the y-axis.

44 Risø-R-1201(EN)

zFixA and zFixB are adjacent fix points on the z-axis.

This is a more general function than in cube and in plane. Six planes are defined:
two yz-planes at x = xFixA and x = xFixB, two xz-planes at y = yFixA and y =
yFixB, and two xy-planes at z = zFixA and z = zFixB. For each pair of planes, it
can be specified if it is the region inside, outside etc. that is of interest. The function
will return true if the control volume (i,j,k) is within the ”x-region” and the
”y-region” and the ”z-region”. Otherwise, it will return the value false. The
parameters xreg, yreg, and zreg are sets of the elements: inside, outside, eqA,
eqB, eqAB. The meaning of the elements inside, outside, and eqAB is identical
to that described for the function in cube. The values eqA and eqB can be used
to include only fix point A or B. This is demonstrated by the following sample
call. Here, the in region is true for all control volumes that fulfill: (xFix2 ≤ x
< xFix3) and (yFix2 < y < yFix3) and (zFix2 ≤ z ≤ zFix3).

Example 15 Sample call of in region.

if in_region(i,xFix2,xFix3,[inside,eqA],

j,yFix2,yFix3,[inside],

k,zFix2,zFix3,[inside,eqA,eqB]) then writeln(i:4,j:4,k:4);

6.11 in interval

The boolean function in interval is called as:

in_interval(h,wFixA,wFixB,wreg):boolean;

h is an index coordinate (i, j or k) of a control volume.

wFixA and wFixB is a pair of adjacent fix points on the x-, y- or the z-axis.

wreg, yreg, and zreg is a Pascal set of inside, outside, eqA, eqB and eqAB.

This function concerns only one coordinate. h is a generic index variable i, j, and
k. Likewise, w is a generic physical coordinate x, y, and z. The parameter wreg
is a Pascal set of the elements inside, outside, eqA, eqB, or eqAB. The meaning
of these elements is identical to that described for the function in region. The
sample call shown next, concerns all control volumes that have x-coordinates in
the interval: xFix2 ≤ x < xFix3.

Example 16 Sample call of in interval.

if in_interval(i,xFix2,xFix3,[inside,eqA]) then writeln(i:4,j:4,k:4);

7 Materials

RnMod3d solves transport equations of the form given in Box 1, page 11. These
equations involve five material properties: β, ε, G, D and λ. The physical interpre-
tation of the coefficients is clear in the case of radon transport. When problems of
soil-gas transport are considered, the same ”coefficients” are used, however, with
a different physical interpretation. This is discussed in Section 3.4.
This section outlines how RnMod3d is linked to user-defined functions of mate-

rial properties through the control variables: beta def, e def, G def, D def and
lambda def. The technique is flexible as it allows material properties to change in
space and time.
To ease the assignment of material properties, it is useful to divide the compu-

tational grid into different types of materials. RnMod3d has a tool for that. This is
described next.

Risø-R-1201(EN) 45

7.1 materials def (mat1, mat2 etc.)

Most computations involve materials of different types. For example, calculations
of entry into houses almost always involve concrete, fill and undisturbed soil. In
RnMod3d, each control volume can be set to a given material. These materials are
named: mat1, mat2 etc. The assignment of control volumes to materials takes place
through the user-defined procedure pointed to by materials def. The simplest
example is if all control volumes are set to be of the same material:

Example 17 Homogeneous problem.

function mymaterials(i:itype;j:jtype;k:ktype):mattype;

begin

mymaterials:=mat2;

end;

where the control variable materials def must be set to mymaterials. An exam-
ple involving four materials is given below. The materials mat1, mat2, mat3 and
mat4 could be layers of soil in a laboratory column experiment. The in-procedure
described in Section 6 are useful for the task.

Example 18 Inhomogeneous problem.

function mymaterials(i:itype;j:jtype;k:ktype):mattype;

var mat:mattype;

begin

mat:=mat1;

if in_cube([inside,eqAB],i,xFix1,xFix2,j,yFix1,yFix2,k,zFix1,zFix2) then

mat:=mat2;

if in_cube([inside,eqAB],i,xFix1,xFix2,j,yFix1,yFix2,k,zFix2,zFix3) then

mat:=mat3;

if in_cube([inside,eqAB],i,xFix1,xFix2,j,yFix1,yFix2,k,zFix3,zFix4) then

mat:=mat4;

mymaterials:=mat;

end;

A simple way to verify that the geometrical extension of the involved materials
has been defined correctly, is to set the control variable wr material volume to
true. This will make RnMod3d output a list of the total volume occupied by each
of the defined materials (see page 23). Other material-specific information is also
output.
It should be observed that the use of materials mat1, mat2 etc. is just a ”book-

keeping tool”. As will be described in the following, this tool is useful when ma-
terial properties are defined, however, it is perfectly all right not to use the tool.
This can be done by setting all control volumes to be of the same type (e.g. mat1).

7.2 Porosity, e def

The control variable e def has to point to the user-defined procedure where the
porosity is defined. The following example shows how to set all control volumes
to have a porosity equal to 0.5:

Example 19 Homogeneous porosity.

function e_test(i:itype;j:jtype;k:ktype):datatype;

begin

e_test:=0.5;

end;

where e def must be set to e test. In principle we can assign an individual
porosity for each control volume (i,j,k):

46 Risø-R-1201(EN)

Example 20 Porosity specified by index variables.

function e_test(i:itype;j:jtype;k:ktype):datatype;

var ee:datatype;

begin

ee:=0.5;

if i=10 then ee:=0.3;

if j=5 the ee:=0.4;

if znod(k)>5.33 then ee:=0.2;

e_test:=ee;

end;

If the grid has been split into four materials called mat1, mat2, mat3 and mat4, with
porosities 0.5, 0.4, 0.3 and 0.3, respectively, we would define e test as follows:

Example 21 Blockwise (in)homogeneous porosity.

function e_test(i:itype;j:jtype;k:ktype):datatype;

var ee:datatype;

begin

case materials_def(i,j,k) of

mat1: ee:=0.5;

mat2: ee:=0.4;

mat3: ee:=0.3;

mat4: ee:=0.3

else

error_std(’e_test’,’Unknown material’);

end; (* case *)

e_test:=ee;

end;

Observe, the following: (1) the function pointed to by the control variable materials def
is used to look up the type of material assigned to each individual control volume.
(2) It was said that only material mat1, mat2, mat3 and mat4 were used in the ap-
plication. Hence, porosities are defined only for these materials. If materials def
returns some other material, an error has occurred. We therefore stop the com-
putations by calling error std. The use of error procedures is described in Sec-
tion 13.6. (3) Imagine that mat2 represents the soil layer from the atmospheric
surface down to 0.3 m. If we at some point discover, that in fact this soil layer
goes down to a depth of only 0.2 m, then we make changes only in the ”materials”
function. The porosity of mat2 is unchanged.
In the examples above, each individual material were assumed to be homoge-

neous. Material properties can, however, easily be non-constant. A simple example,
is if the porosity of mat3 changes with depth as described in the example page ??:

Example 22 Depth dependent porosity.

function e_test(i:itype;j:jtype;k:ktype):datatype;

var ee:datatype;

begin

case materials_def(i,j,k) of

mat1: ee:=0.5;

mat2: ee:=0.4;

mat3: ee:=0.50+0.125*znod(k);

mat4: ee:=0.3

else

error_std(’e_test’,’Unknown material’);

end; (* case *)

e_test:=ee;

end;

The function znod(k) is used to get the physical z-coordinate (in meters) of control
volume (i,j,k) (see Section 5.9).

Risø-R-1201(EN) 47

In some cases, the porosity has been measured in the field for a number of depths
(e.g. from 0 to 3 m at 10 cm intervals). Such results can easily be used by RnMod3d
in the following way: First, the data are gathered in a file. Then a Pascal function
is written that can read the file and perform (e.g. linear) interpolation between
measurement points. Here we imagine a function called look up etot(depth). It
simply returns the estimated porosity at any given depth within the measurement
interval. Finally, the function is used by the porosity procedure in RnMod3d:

Example 23 Depth dependent porosity read from a file.

function e_test(i:itype;j:jtype;k:ktype):datatype;

var depth:datatype;

begin

depth:=-znod(k);

e_test:=look_up_etot(depth);

end;

Parameters can also change in time. See Section 11.5.

7.3 Partition-corrected porosity, beta def

The control variable beta def links RnMod3d to the user-defined function where
the partition-corrected porosity β is defined. For example, consider a homogeneous
medium with air porosity (εa) equal to 0.2, water porosity (εw) equal to 0.2, and
a partition coefficient L equal to 0.36, we would write:

Example 24 Homogeneous β.

function my_beta(i:itype;j:jtype;k:ktype):datatype;

var ea,ew,L:datatype;

begin

ea:=0.2;

ew:=0.2;

L:=0.36;

my_beta:=ea+L*ew;

end;

and set beta def to my beta.
The physical meaning of the beta def-procedure is different in radon problems

and in problems of soil-gas transport. This is discussed Section 3.4.

7.4 Generation rate, G def

The gereration rate of radon per pore volume is defined by the function pointed
to by G def. For example, consider a homogeneous medium with generation rate
equal to 0.209838 Bq s−1 per m3. In dry soil this gives a deep-soil radon concen-
tration equal to G/λ ≈ 100 kBq m−3. In that case we would write:

Example 25 Homogeneous G.

function my_G(i:itype;j:jtype;k:ktype):datatype;

begin

my_G:=0.209838;

end;

and set G def to my G.
The physical meaning of the G def-procedure is different in radon problems and

in problems of soil-gas transport. This is discussed in Section 3.4.

48 Risø-R-1201(EN)

7.5 Decay constant, lambda def

The decay constant of radon is defined by the function pointed to by lambda def.
Normally, the decay constant is set to the same value in all parts of the computa-
tional plane:

Example 26 Decay constant λ.

function my_lambda(i:itype;j:jtype;k:ktype):datatype;

begin

my_lambda:=2.09838e-6;

end;

and set lambda def to my lambda. If the soil-gas pollutant in question is not radon,
but some trace chemical being removed from the soil by a first-order process, ”λ”
could indeed change from place to place. Ventilation can also be lumped into ”λ”.
The physical meaning of the lambda def-procedure is different in radon prob-

lems and in problems of soil-gas transport. This is discussed in Section 3.4.

7.6 Diffusivity, D def

The bulk diffusivity of radon is defined by the function pointed to by D def. The
technique is identical to that described for β, ε, G, and λ. Only one thing is differ-
ent: Diffusitivity may be anisotropic. The header of the D def-function therefore
includes a directional parameter. We return to this shortly. In the situation with
homogeneous isotropic soil and a bulk diffusivity equal to 10−6 m2 s−1, we define:

Example 27 Homogeneous isotropic D.

function my_D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

begin

my_D:=1e-6;

end;

with D def set to my D. The dir parameter in the header of the diffusion function
can take the values: xdir, ydir and zdir. If the diffusivity is homogeneous but
anisotropic with D =10−6 m2 s−1 in the x and y directions (i.e. horizontally) and
0.2 · 10−6 m2 s−1 in the z direction (i.e. vertically), we define:

Example 28 Homogeneous anisotropic D.

function my_D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

var dd:datatype;

begin

case dir of

xdir,ydir: dd:=1e-6;

zdir: dd:=0.2e-6;

else

error_std(’my_D’,’Unknown direction’);

end;

my_D:=dd;

end;

Example 29 shows how the diffusion constant found by Rogers and Nielson can
be implemented in RnMod3d.
The physical meaning of the D def-procedure is different in radon problems and

in problems of soil-gas transport. This is discussed in Section 3.4.

7.7 Moisture

RnMod3d uses only the material properties defined by the functions pointed to
by beta def, e def, G def and lambda def. When these parameters are derived

Risø-R-1201(EN) 49

Figure 14. Sketch of the geometry used in case 1 of the ERRICCA model intercom-
parison exercise [An99a]. (A) is the soil column viewed from the top, (B) is a side
view of the column. (C) and (D) are plots of porosity (ε) and moisture saturation
(m = θv), respectively.

from (or related to) some common quantities such as soil moisture content or soil
temperature, it is often helpful to introduce such quantities explicitly in the job file.
The example below shows how case 1 in the ERRICCA model intercomparison
exercise was modelled with RnMod3d (see [An99a]). The problem is sketched in
Figure 14. z goes from 0 at the atmospheric surface to −3.0 m. The function m
describes the moisture profile (i.e. θv as defined page 7). Rogers and Nielson’s
formula [Rog91A, Rog91B] is used for the calculation of diffusivity. pw(x,y) is an
in-built power function that returns xy.

Example 29 Material properties for ERRICCA case 1.

function e(i:itype;j:jtype;k:ktype):datatype;

begin (* Porosity *)

if znod(k)>-1 then e:=0.5 else e:=0.3;

end;

function m(i:itype;j:jtype;k:ktype):datatype;

var mres,depth:datatype;

begin (* Moisture saturation, m=ew/e *)

depth:=znod(k);

mres:=0.20-0.4*depth;

50 Risø-R-1201(EN)

if mres>1 then mres:=1;

if mres<0 then error_std(’m’,’m<0!’);

m:=mres;

end;

function beta(i:itype;j:jtype;k:ktype):datatype;

var ea,ew,L:datatype;

begin (* Partition-corrected porosity *)

ew:=m(i,j,k)*e(i,j,k); (* Water porosity *)

ea:=e(i,j,k)-ew; (* Air porosity *)

L := 0.3565; (* L Ostwald *)

beta:=ea+L*ew;

end;

function D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

const Da=1.1e-5;

var e1,b1,m1:datatype;

begin (* Bulk diffusivity *)

e1:=e(i,j,k);

m1:=m(i,j,k);

b1:=beta(i,j,k);

D:=b1*Da*e1*exp(-6*m1*e1-6*pw(m1,14*e1));

end;

function G(i:itype;j:jtype;k:ktype):datatype;

var Ema,rhog,etot:datatype;

begin (* Radon generation rate *)

Ema:=10.0; (* Emanation rate, atoms/kg/s *)

rhog:=2.65e3; (* Grain density, kq/m3 *)

etot:=e(i,j,k);

if etot<=0 then error_std(’G’,’etot<=0!’);

G:=rhog*(1-etot)/etot*lambda_use*Ema;

end;

function lambda(i:itype;j:jtype;k:ktype):datatype;

begin (* Decay constant *)

Lambda:=lambda_use;;

end;

where we have set:

e_def := e;

beta_def := beta;

G_def := G;

D_def := D;

lambda_def := lambda;

and where lambda use is a user-defined constant set to 2.09838 · 10−6 s−1.

8 Flux probes (Flx1, Flx2 etc.)

The primary output of many simulations is the total flux across some plane surface.
For example, in house simulations the primary output is the radon entry rate or
the soil-gas entry rate into the house.

8.1 Fluxes between individual pairs of control vol-
umes

The basic fluxes in RnMod3d are those that go between individual pairs of (ad-
jacent) control volumes. An example is the flux called je in Figure 11, page 35.

Risø-R-1201(EN) 51

This is the flux in the x-direction between control volume P and E. Such fluxes
can be found with the function called node flux(dir,i,j,k). The parameter dir
tells which side of control volume (i,j,k) that is considered: west, east, south,
north, bottom, or top. For example, to find the east-side flux (je) of control
volume (3,70,4) simply call the function as:

writeln(’je = ’,node_flux(east,3,70,4));

The same value be found if the west-side flux of the adjacent control volume at
(i.e. at (4,70,4)) is looked up:

writeln(’jw = ’,node_flux(west,4,70,4));

If a soil-gas problem is considered, then node flux returns a flow of soil gas inUnits
units of m3 s−1. If a radon problem is considered, then the result is in units of
Bq s−1. If the flux density is needed, then the flux should be divided by the area
of the interface between the control volumes. This area can be found as described
in Section 5.9.

8.2 update flxval

RnMod3d has a way for keeping track of fluxes involving many control volumes.
Essentially it is possible to ask RnMod3d to integrate fluxes over specific areas (not
just between single pairs of control volumes). These ”flux measurement probes”
can be used to monitor fluxes wherever the user wants.
The flux probes are called Flx1, Flx2 etc. These probes are positioned by

the user through the user-defined procedure pointed to by the control variable
flux def. The idea can be explained with the example given below:

Example 30 Simple flux measurements.

procedure myfluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then update_flxval(Flx1,top,i,j,k,plus);

end;

where we have set flux def equal to myfluxes. This procedure defines Flx1 as
the grand sum of the fluxes through the ”top” faces of all single control volumes
that are part of the xy-plane pin-pointed by the in plane function (Ω).

Flx1 =
∑
Ω

jtop(i, j, k) (45)

Essentially, the measurements occur along individual connectors. In the case of
noFlow or nill connectors, there will be no contribution to the flux measurement.
For connectors of the type std, the flux will be assessed using an approximate
versions of equation 41 for radon and equation 43 for soil gas.
It is possible to use any of the control-volume faces for flux measurements–not

just the ”top” as in the above example. To do that simply call to update flxval
with the second parameter set to bottom, east, west, north or south.
Fluxes are taken to be positive if they are in the direction of the x, y or z axis.plus and minus

The last parameter in the update flxval-call can be used to change the sign when
the control-volume fluxes are added. plus means no change of sign, minus means
that the sign should be changed. In example 30, Flx1 will therefore be positive if
the flux is in the (positive) direction of the z-axis. A more complicated example,
demonstrates the use of plus and minus

52 Risø-R-1201(EN)

Example 31 More complex flux measurements.

procedure myfluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then

begin (* zFix1 plane *)

update_flxval(Flx1,top,i,j,k,plus);

update_flxval(Flx3,top,i,j,k,plus);

end;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then

begin (* zFix2 plane *)

update_flxval(Flx2,bottom,i,j,k,plus);

update_flxval(Flx3,bottom,i,j,k,minus);

end;

end;

In this example, Flx1 is the flux across the zFix1 plane as before. The new
fluxes are Flx2 and Flx3. Flx2 is the flux across the zFix2 plane, and Flx3 is
the difference between Flx1 and Flx2. Adding fluxes in this fashion is useful for
example, in house simulations with more than one entry point.
Sometimes it is important to use the ”correct” control-volume face for the flux Flux probes at nill

connectors always return
zero

measurements. In the example below, we consider a cubic grid (it could be a cubic
sample of concrete). We want to measure the flux through each of the six faces
(for example, it could be the total radon exhalation from the sample). If we use
myfluxes not ok for the flux measurements the model will report all fluxes Flx1
to Flx6 to be zero! The problem is that we conduct flux measurements on the
outer rim of the cube (i.e. between the outer control-volume nodes and nowhere;
these connectors are of the type called nill). The fluxes defined by myfluxes ok
are the correct ones.

Example 32 Flux measurements at grid boundaries.

procedure mygrid;

begin

set_FixVal(xFix1,0.0); (* x-axis *)

set_FixVal(xFix2,2.0);

set_axis_single(xFix1,xFix2,5,Focus,1.0);

set_FixVal(yFix1,0.0); (* y-axis *)

set_FixVal(yFix2,2.0);

set_axis_single(yFix1,yFix2,5,Focus,1.0);

set_FixVal(zFix1,0.0); (* z-axis *)

set_FixVal(zFix2,2.0);

set_axis_single(zFix1,zFix2,5,Focus,1.0);

end;

procedure myfluxes_not_ok(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix1,

j,yFix1,yFix2, (* xFix1 plane *)

k,zFix1,zFix2) then update_flxval(Flx1,west,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix2,xFix2,

j,yFix1,yFix2, (* xFix2 plane *)

k,zFix1,zFix2) then update_flxval(Flx2,east,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

Risø-R-1201(EN) 53

j,yFix1,yFix1, (* yFix1 plane *)

k,zFix1,zFix2) then update_flxval(Flx3,south,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix2,yFix2, (* yFix2 plane *)

k,zFix1,zFix2) then update_flxval(Flx4,north,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix1,

j,yFix1,yFix2, (* zFix1 plane *)

k,zFix1,zFix1) then update_flxval(Flx5,bottom,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2, (* zFix2 plane *)

k,zFix2,zFix2) then update_flxval(Flx6,top,i,j,k,plus);

end;

procedure myfluxes_ok(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix1,

j,yFix1,yFix2, (* xFix1 plane *)

k,zFix1,zFix2) then update_flxval(Flx1,east,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix2,xFix2,

j,yFix1,yFix2, (* xFix2 plane *)

k,zFix1,zFix2) then update_flxval(Flx2,west,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix1, (* yFix1 plane *)

k,zFix1,zFix2) then update_flxval(Flx3,north,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix2,yFix2, (* yFix2 plane *)

k,zFix1,zFix2) then update_flxval(Flx4,south,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix1,

j,yFix1,yFix2, (* zFix1 plane *)

k,zFix1,zFix1) then update_flxval(Flx5,top,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2, (* zFix2 plane *)

k,zFix2,zFix2) then update_flxval(Flx6,bottom,i,j,k,plus);

end;

8.3 FlxVal

After each run model call, the results of flux measurements are stored in an array
called FlxVal. This array contains two components: J and Q. In radon simulations,
J is the calculated flux of radon in Bq s−1 and Q is the (imported) soil-gas flow rate
in m3 s−1. For example, we can write the result of the Flx2 probe measurements
as follows:

writeln(’The results are: ’,FlxVal[Flx2].J,’ Bq/s ’,
FlxVal[Flx2].Q,’ m3/s ’);

In a soil-gas simulation FlxVal[Flx2].J is the calculated soil-gas flow rate in
m3 s−1, and FlxVal[Flx2].Q has no meaning.
This is discussed in Section 3.

54 Risø-R-1201(EN)

8.4 Standard flux probe output

The results of flux measurements are available as standard output in the LOG-file
and on the screen. The output is discussed in Section 4.36. The output can be
turned on and off with the control variables:

wr_final_results_log
wr_final_results_screen

Preliminary flux estimates can also be monitored as RnMod3d solves the problem
iteratively. This is done with:

wr_flux_during_calc_log
wr_flux_during_calc_screen

In fact, the flux measurements should normally be part of the requirement for con-
vergence. This is done with the control variable flux convset which can contain
a Pascal set of flux probes. For example, Flx2, Flx4 and Flx6 can be included in
the convergence test with:

flux_concset:=[Flx2,Flx4,Flx6];

See page 25 and Section 10.4 for further details.

9 Field probes (Obs1, Obs2 etc.)

RnMod3d is also equipped with a framework for doing radon concentration measure-
ments (in radon simulations) and pressure measurements (in soil-gas simulations).
The probes are called Obs1, Obs2 etc.

9.1 ObsVal

Probe Obs2 can be set to monitor the radon concentration in control volume
(i,j,k) = (3,4,2) as follows:

Example 33 Simple radon concentration probe.

procedure myprobes;

begin

obsval[obs2]:=GP[3]^[4]^[5].c;

end;

The probe definition must be linked to RnMod3d with the control variable assign-
ment:

probe_def:=myprobes;

The example makes direct access to the main data structure GP, where

GP[i][j][k].c

is the field value. GP also has a record that tells if the field value is valid or not:

GP[i][j][k].valid_fieldvalue

This can be used as follows:

Example 34 Simple radon concentration probe with test of valid fieldvalue.

Risø-R-1201(EN) 55

procedure myprobes;

var i:itype;j:jtype;k:ktype;

begin

i:=3; j:=4; k:=2;

obsval[obs2]:=-999;

if GP[i]^[j]^[k].valid_fieldvalue then

obsval[obs2]:=GP[i]^[j]^[k].c;

end;

This is one way to avoid problems with ”dead nodes” (see page 40). Further details
about GP are given in Section 14.
After each run model call, the results of field-value measurements can be found

in the array called ObsVal. This array is similar to the one used for flux measure-
ments (FlxVal, see Section 8.3). In radon simulations ObsVal is the concentrationUnits
of radon in Bq m−3. In soil-gas simulations, ObsVal is the pressure in Pa. For
example, we can write the result of the Obs4 probe measurements as follows:

writeln(’The result is: ’,ObsVal[Obs4].c,’ Bq/m3 ’)

Normally, we are not interested in field values for specific control volumes
(i,j,k) since their significance change with the grid resolution. Instead we need to
find field values for physical (x, y, z) locations. RnMod3d has four procedures/function
for this purpose. These are described in the Section 9.3 to 9.8.

9.2 Standard field probe output

The results of field measurements are available as standard output in the LOG-file
and on the screen. The output is discussed in Section 4.38. The output can be
turned on and off with the control variables:

wr_final_results_log
wr_final_results_screen

Preliminary field probe estimates can also be monitored as RnMod3d solves the
problem iteratively. This is done with:

wr_probes_during_calc_log
wr_probes_during_calc_screen

In fact, the field probe measurements should normally be part of the requirement
for convergence. This is done with the control variable probe convset which can
contain a Pascal set of field probes. For example, Obs2, Obs4 and Obs6 can be
included in the convergence test with:

probe_concset:=[Obs2,Obs4,Obs6];

See page 25 and Section 10.4 for further details.

9.3 fieldvalue

Assume we need to estimate the radon concentration at some physical location
(x, y, z). We can use the function:

fieldvalue(xp,yp,zp,valid)

for this purpose. The parameter valid is a boolean return variable that tells if the
call was successful or not. The function finds the field value by linear interpolation
among the nearest control volumes. To monitor the radon concentration at (x, y, z)
= (2.3 m,−0.2 m,10 m) with probe Obs4 we could define a procedure as follows:

56 Risø-R-1201(EN)

Example 35 Radon concentration probe at physical location (x, y, z).

procedure myprobes;

var cc:datatype; valid:boolean;

begin

cc:=fieldvalue(2.3,-0.2,10,valid);

if valid then obsval[obs4]:=cc else obsval[obs4]:=0

end;

end;

9.4 fieldvalue2D

In two-dimensional simulations (set by the control variable geometry), there is
no y-coordinate. A special two-dimensional version of fieldvalue therefore is
available:

fieldvalue2D(xp,zp,valid)

9.5 get fieldvalue

In simulations of actual soil-gas radon measurements the physical probe locations
may not be known exactly. For example, we may not know the exact depth from
which some specific soil-gas radon is taken. For example, we may assess that the
sampling depth is ”1 m ± 5 cm”, where the 5 cm is one standard uncertainty.
In a model simulation of the sampling, we may want to assess the influence of
the uncertainty of the sampling depth on the radon concentration determination.
Clearly, the answer depend on the gradient of the radon concentration field at the
sampling location. RnMod3d has a (very) simple procedure which can be used for
the assessment:

get_fieldvalue(xp,dxp,yp,dyp,zp,dzp,c,dc,valid)

(xp,yp,zp) is the (x, y, z)-coordinate of the field location of interest. dxp is the
uncertainty of the xp-coordinate. dyp and dzp are the uncertainties of the two
other coordinates. The estimated field value is returned in the variable c and the
associated uncertainty is in dc. The variable valid tells if the estimated result is
valid or not. The uncertainty is estimated as:

dc =

√(
∂c

∂x
dx
)2

+
(
∂c

∂y
dy
)2

+
(
∂c

∂z
dz
)2

(46)

9.6 get fieldvalue2D

The two-dimensional version of the previous procedure is:

get_fieldvalue2D(xp,dx,zp,dz,c,dc,valid)

9.7 get avgfield

To get the average field over an entire region, the procedure:

get_avgfield(x1,x2,y1,y2,z1,z2,ddd,c,dc)

can be used. The region is a box with the physical coordinates given by x1, x2, y1,
y2, z1 and z2. ddd is the resolution (e.g. 0.01 meter). The main result is returned
in the variable c. The variable dc returns the variability of the result.

Risø-R-1201(EN) 57

9.8 get avgfield2D

The two-dimensional version of the previous procedure is:

get_avgfield2D(x1,x2,z1,z2,ddd,c,dc)

10 Solution procedure

Essentially, RnMod3d solves a matrix equation of the form:

A�c = �b (47)

This equation is set up on the basis of equation 44, page 14. A is a matrix of
coefficients. These tell how the field quantity (i.e. pressure or radon) moves from
one control volume to another. Hence, matrix elements reflect material properties
like diffusivity, the size of control volumes etc. Luckily most of the elements are zero
as transport can take place only between adjacent control volumes. �c represents a
field of radon concentrations or pressures. If there are 10 000 nodes in the grid then
�c is a column vector with 10 000 elements. Likewise, A is a matrix with 10 000 by
10 000 elements. Finally, �b is a vector with coefficients that relate to the source
term. In radon problems, �b reflects the radon generation rate. In time-dependent
problems, �b also include information about the field at the previous time step.
Because of the shear size of a typical matrix A, this equation cannot be solved

by simple matrix inversion. Instead iterative solution procedures are used. The
iterative solution procedures work as follows: First, a solution �c0 is guessed. Then
on the basis of the procedure, an improved guess �c1 is found. From this, a new
field �c2 is found etc. This is continued until convergence is met.

10.1 First guess

There are two possible initial field guesses:

• If the control variable import final field guess is set to true, then the
model imports the initial field guess from the file with the name given by
import field name. The field could come from a file saved after an earlier
calculation, where the computation was not carried out all the way to con-
vergence. The earlier calculation could also have been subject to less strict
criteria for convergence. See Section 4.19, page 17.

• If the control variable import final field guess is set to false, then the
initial field guess equals whatever field is stored in the main data structure
GP. In the very first model run this field is zero all over: �c0 = �0.

10.2 Relaxation

To minimize the time it takes to reach convergence, computations are often over-
relaxed. The idea is quite simple. Take a look at one particular node in the grid.
After the i’th iteration, the field value at this node is ci. After the next iteration a
new value called ci+1 is obtained. Each iteration leads to an improved estimate of
the true value. In the beginning, relatively large steps are taken (i.e. the difference
between ci and ci+1 is large), but eventually step sizes get smaller. Now, if we
know in what ”direction” the true value can be found, why not take a larger step?
With relaxation, we multiply the step size by a factor α:

ci+1,R = ci + α(ci+1 − ci) (48)

58 Risø-R-1201(EN)

If the relaxation factor α is too large, unstability will result. The relaxation factor
can be set by the user with the control variable relax factor, see Section 4.52,
page 25.

10.3 Iterative solution procedures

The two solution procedures available in RnMod3d are both iterative:

• Gauss-Seidel: This is a point-iterative solution procedure. The grid is swept
point by point. For each point, we calculate an improved estimate of the field
value directly from equation 49 as:

cP,i+1 =
aEcE,i + aW cW,i + aNcN,i + aScS,i + aT cT,i + aBcB,i + b

aP
(49)

where cP,i+1 is the new improved estimate and all other field values: cE,i, cW,i

etc. are from the previous iteration.

• Thomas: The Thomas algorithm is similar to that of Gauss-Seidel. The only
difference is that the Thomas procedure works line by line. This means faster
convergence. The reason is that e.g. the impact of boundary conditions can
reach all the way to the other side of the computational plane in one single
iteration. To further speed up convergence, the direction of lines is alternated
from one iteration to the next: First, a line parallel to the x-axis is selected,
then one parallel to the y-axis and finally one parallel to the z-axis.

The solution procedure is selected with the control variable solver def (see Sec-
tion 4.50).

10.4 Criteria for convergence and residuals

In RnMod3d, the convergence criterion consists of three elements:

• The first criteria for convergence is that all flux probes included in flux convset
change by less than the value given by max change (see Section 4.53 and 4.59).
For example, imagine that flux convset := [flx1,flx4] and max change
:= 1e-4, then convergence is not met before the results for flux probe flx1
and probe flx4 change by less than 0.01 % per iteration. The values of other
flux probes (e.g. flx2 and flx3) play no role for the convergence. Observe,
that if the final value of one of the flux probes is close to zero, then this can
be a problematic requirement. It is best to avoid flux probes with values close
to zero in flux convset. Flux probes can be located anywhere in the com-
putational plane as described in Section 8. If none of the flux probes should
be part of the convergence criteria, then simply use: flux convset := [].
The convergence of flux measurements can be monitored during the iterative
procedure as described Section 4.36, page 21.

• The second criteria for convergence is that all field value probes included
in probe convset change by less than the value given by max change. For
example, imagine that probe convset := [obs3] and max change := 1e-4,
then convergence is not met before the results for probe obs3 change by less
than 0.01 % per iteration. It is best to avoid probes with values close to zero
in probe convset. The probes can be located anywhere in the computational
plane as described in Section 9. It seems best to place probes close to regions
of main interest. Probes can also be placed in ”corners” of the computational
plane where the field (by experience) takes a long time to settle down. The
convergence of field-value measurements can be monitored during the iterative
procedure as described Section 4.38, page 21.

Risø-R-1201(EN) 59

• The final requirement for convergence is that the sum of residuals is less
than max residual sum (i.e. sufficiently small). This criterion is based on the
recommendations given by Patankar [Pa88, p. 236]. After the i’th iteration,
the guessed solution of the matrix equation is �ci. To evaluate how close this
solution is to the right one, we insert �ci into equation 47 and calculate the
residual vector �ri:

�ri = A�ci −�b (50)

We then define the absolute sum of residuals Ri (after the i’th iteration) as:

Ri =
∑

|ri| (51)

where (as before) the sum is over all nodes in the grid. In the end, Ri should
approach zero. However, as already mentioned, we consider the problem to be
solved when Ri < max residual sum. To better understand the significance
of Ri, it is sometime of interest to know the value:

R0 =
∑

|b| (52)

where the sum is over all nodes in the grid. This is the value of Ri that
is obtained when �ci = �0. In the end, Ri should reach a value that is low
compared with R0. In fact, RnMod3d gives a warning if Ri multiplied by
the constant residual sum warning limit is not less than R0. By default
residual sum warning limit is set to 100. The results of Ri, R0 and the
maximum value of �ri as well as its location in the computational plane can
be output from RnMod3d during and after the iteration solution procedure,
see Section 4.34. The value of R0 is output as Abs. sum of bs.

It takes time to test for convergence. Therefore it is best not to do so in every
single iteration. How often the convergence is tested can be set by the control
variable conv evaluation period, see Section 4.55.
Convergence is not the only thing that controls when the iterative solution pro-

cedure stops. See min iterations (Section 4.56), max iterations (Section 4.57),
and max time (Section 4.58).

10.5 Scheme (space)

The coefficients aE , aW etc. in equation 44 can be calculated in a number of ways.
Essentially, the different possibilities relate to the assumed field profile between
adjacent nodes. In other words there are different interpolation schemes available.
For example, the so-called central scheme is based on the assumption of a linear
profile. This is a good approximation if diffusion dominates in the region between
the two nodes. On the other hand, if the profile is dominated by advection, then
the profile will be shifted to one side. This is used in the so-called up-wind scheme.
In real problems, the best profile is somewhere between these two extremes. In
RnMod3d the following schemes are available:

powerlaw
central
upwind
hybrid
exact

For example, to use the scheme based on the exact solution of the diffusive-
advection equation, simple set the control variable scheme to exact. See Sec-
tion 4.51, page 25.

60 Risø-R-1201(EN)

10.6 Scheme (time)

The fully implicit scheme is used (see [Pa80, p. 56]). No alternatives have been
implemented.
An important feature of the fully implicit scheme is that steady-state fields can

be calculated in one single (large) time step. Another feature is that solutions are
unconditionally stable. However, the accuracy is only first order in time, so small
time steps are needed to ensure good accuracy [Ve95, p. 173].

11 Time dependency

11.1 solution := steady

If the control variable solution is set to steady, then RnMod3d performs a calcu-
lation as if the conditions defined by the coefficient functions (i.e. D def, beta def
etc.) and the boundary conditions (i.e. boundary conditions def) have existed
since t = −∞. When run model is called, the solution will reflect these condi-
tions. The final solution does not depend on the initial field. This is a so-called
steady-state solution.

11.2 solution := unsteady

If the control variable solution is set to unsteady, then RnMod3d performs a time-
dependent calculation. Each time run model is called, the solution is progressed
by one single time step dtim. Normally it is necessary to split the simulation into
many (small) time steps. Hence run model is called many times.
The ”global” time is given by the variable tim. Both dtim and tim are measured

in seconds. Calculation of time-dependent problems are simple to set up. In the
following example, we first calculate a steady-state field. Then we perform a time-
dependent calculation where each time step is given by dtim. Initially, dtim is
only 10 seconds, but we let dtim expand by 20 % in each step. After 12 hours (i.e.
when tim > 12 ·3600 seconds) we perform one additional steady-state calculation.

Example 36 Prototype time-dependent problem.

solution := steady;

tim := 0;

dtim := 0;

run_model; (* Initial field at t=0 *)

solution := unsteady;

dtim := 10;

repeat

dtim:=dtim*1.2; (* Take larger time steps *)

tim:=tim+dtim; (* Update tim *)

run_model; (* Advance the field by dtim *)

writeln(’’Results for time = ’,tim/3600,’ hr’,’ Flux = ’,FlxVal[Flx1].j,’Bq/s’)

until (tim>12*3600);

solution:= steady;

run_model;

close_model;

The only thing that binds two consecutive model runs together is the calculated
field: The ”old” field (in GP) tells how much radon (or soil gas pressure) is stored in
the computational grid. The new model run simply updates the field in accordance
with the problem specification. In fact almost everything is set up from scratch

Risø-R-1201(EN) 61

before each time step. Hence everything that controls coefficients and boundary
conditions can be time-dependent. The sole purpose of the variable tim is to have
a global time that can be referred to in the procedures that change in time. In
other words, tim is not used explicitly by the model itself.
Observe, that if a control variable such as wr axes is set to true (see Section 4.42,

page 22) then the grid is output every time run model is issued. In a time depen-
dent problem, it is therefore best to set such control variables to false after the
first run. Otherwise the LOG-file will be flooded.

Order of statements

In example 36, the order of the statements:

tim:=tim+dtim;

and

run_model;

is important. The reason is as follows:

1. tim is used to control changes in boundary conditions etc. as described in the
following (see e.g. Section 11.4).

2. When the statement run model is issued, the boundary conditions etc. must
be those that prevail at tim := tim + dtim.

Problems may occur if the order of tim:=tim+dtim and run model is reversed.

11.3 Initial conditions

There are three possible ways to specify initial conditions:

• The initial field may be read from a file. This is accomplished by setting the
control variable: import initialfield to true as described in Section 4.18,
page 17. This is, however, only meaningful if the initial field has been cal-
culated on the basis of a grid identical to that used in the (new) computation.
Also observe, that after the first time step has been taken, import initialfield
should be set to false. A typical example of this type of initial condition is
given next. The initial field is assumed to be in the file called c0.dat.

Example 37 Initial field in a file.

import_field_name := ’c0.dat’

import_initialfield := true;

solution := unsteady;

dtim := 200;

tim := 0;

repeat

tim:=tim+dtim;

run_model;

import_initialfield := false; (* No further imports *)

until (tim>12*3600);

To store any field (for reuse as an initial field in some later calculation) simply
use the control variable export field (see Section 4.20, page 18).

• The initial field is specified in a function. Imagine that the initial field should
equal 3000 Bq m−3 at all grid points. This can be done as follows. First, we
define a function that describes the initial field:

Example 38 Initial field by function (part 1).

62 Risø-R-1201(EN)

function myfunction(i:itype; j:jtype; k:ktype):datatype;

begin

myfunction := 3000

end;

Then we make the appropriate reference in the body of the program with the
control variable initialfield def. For example, we may write:

Example 39 Initial field by a function (part 2).

initialfield_def := myfunction; (* Initial cond. by function *)

solution := unsteady;

dtim := 200;

tim := 0;

repeat

tim:=tim+dtim;

run_model;

initialfield_def:= nil; (* No further initial fields *)

until (tim>12*3600);

It is easy to define more complicated fields. The same methods as given in the
example page 47 can be used. Additional details can be found in Section 4.17,
page 17.

• The initial field is ”calculated on the fly”. For example, we may start a
model simulation by calculation of some steady-state field. This is the method
demonstrated in example 36. The point is that all model runs (steady-state
or time-dependent) end up with a field that can be used as initial condition
for further computations.

11.4 Time-dependent boundary conditions

The first example shows how a boundary condition can change in time. We consider
the problem when the pressure at the boundary (e.g. the atmospheric surface)
changes periodically in time as:

p = cos(
2π
T0

t) (53)

where T0 is a period time (e.g. 12 hours). If the pressure at the boundary is called
fixed1, then we can implement the problem as follows:

Example 40 Time-dependent change of boundary conditions.

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

const T0=12*3600;

begin

cBC[fixed1]:=cos(2*pi/T0*tim);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix3,zFix3) then set_node(i,j,k,fixed1);

end;

As described in Section 6.7, page 41, the fixed-value nodes are controlled by
cBC[fixed1], cBC[fixed2] etc. It is possible also to change the types of nodes
in time. For example, imagine that at tim equal to 200 seconds, the boundary at
zFix1 should change from being fixed at 0 to being closed off for transport. We
could implement this as follows:

Example 41 Time-dependent change of type of boundary conditions.

Risø-R-1201(EN) 63

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then

begin

if (tim<200) then

set_node(i,j,k,fixed1)

else

set_node(i,j,k,free)

end;

end;

The use of set node is described in Section 6.5, page 41.

11.5 Time-dependent material properties

Changes of coefficients in time, can be implemented as follows:

Example 42 Time-dependent diffusivity.

function D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

var DD:datatype;

begin

DD:=1e-5;

if tim>6*3600 then DD:=1e-8;

D:=DD;

end;

In this example, the diffusivity changes from 10−5 to 10−8 m2 s−1 as tim equals
6 hours. Other coefficients like porosity, radon generation rate etc. can be made
time dependent in a similar fashion.

11.6 Time-dependent flow field of soil gas

In radon problems, the imposed flow field of soil gas may change in time. For
example assume, that a flow field has been calculated previously, and that it is
imported into the model run by setting flowfield := import (see Section 4.22,
page 18). For the time period from 0 to 2 hours, we may want to use this flow field
directly in the radon calculation. Then we may want to decrease the flow field to
30 % of the original value (see Section 4.23, page 18). When tim equals 12 hours,
we may want to turn the flow field off. This can all be done as follows:

Example 43 Time-dependent adjustment of flow field in a radon problem.

solution := unsteady;

dtim := 300;

tim := 0;

flowfactor := 1.0;

repeat

tim:=tim+dtim;

run_model;

wr_result_line; (* some user-defined procedure *)

if (tim>2*3600) then flowfactor:=0.3;

if (tim>12*3600) then flowfactor:=0.0;

until (tim>24*3600);

close_model;

Another possibility, is that the flow field changes altogether. For example, imag-
ine two flow fields have been calculated and stored in the files: Nwind.dat and

64 Risø-R-1201(EN)

Wwind.dat. The first could correspond to soil-gas flow created as a result of wind
from the north. The other could reflect wind from the west. We may want to see
the change in the radon field if the wind changes abruptly from north to west
when tim equals 12 hours:

Example 44 Time-dependent shift in flow field in a radon problem.

solution := unsteady;

dtim := 300;

tim := 0;

flowfactor := 1.0;

flowfield_name := ’Nwind.dat’

repeat

tim:=tim+dtim;

run_model;

if (tim>12*3600) then flowfield_name:=’Wwind.dat’;

until (tim>24*3600);

close_model;

11.7 Full time dependency (cBUF1, cBUF2 and qBUF)

In time-dependent problems, RnMod3d simply updates the main data structure GP
by one time step dtim each time run model is called. This procedure works well
if the problem concerns only time-dependent soil-gas transport or if it concerns
only time-dependent radon transport. In the general case, however, when both
problems are time dependent, the radon simulation will destroy the state of the
pressure field (in GP) and likewise, the pressure field simulation will destroy the
state of the radon concentration field. The model cannot ”remember” more than
one field at a time. To treat such problems, it is therefore necessary to be able
to store the state of all calculations in some other variable than the main data
structure GP. RnMod3d can use two buffers called cBUF1 and cBUF2 for the purpose.
These buffers are dynamic variables that are created only when needed. There is
also a buffer called qBUF where the flow of soil gas can be stored. With these three
buffers, RnMod3d can keep track of two time-dependent problems concurrently.
The use of buffers is controlled by the control variable use fieldbuffer. With

use fieldbuffer set to cBUF1 the next run model calculation is encapsulated
by the field buffer cBUF1. This means that the first thing that happens after
run model has been called is that the main data structure GP is reset to the state
in cBUF1 (the list of actions undertaken in run model is described in Section 14.7).
If there is no such state in cBUF1 (which is always the case in the first run in a job
file), GP is not affected by this. Then the computations are performed by RnMod3d
in the usual fashion. The last thing that happens before the run model procedure
ends is that the full state of the computed field is stored in the buffer cBUF1.
Hence, the next time run model is called with use fieldbuffer set to cBUF1, the
computations can resume from the state of this field. If the soil-gas problem is
encapsulated by the buffer cBUF1, then the radon problem can be encapsulated
by cBUF2.
The soil-gas and the radon problems are coupled to each other only by the flow

field of soil gas �q (see equation 40). Luckily radon is present only in trace levels, so
the pressure field does not change with the radon concentration. Hence, there is no
coupling from the radon field back to the soil-gas problem: The soil-gas problem
is completely independent of the radon problem.
There are two methods with which the field of soil-gas flows can be transferred qBUF

from an ”ongoing” soil-gas simulation to an ”ongoing” radon problem:

• A file is used. This means that flowfield should be set to export in the
soil-gas problem, and to import in the radon problem.

Risø-R-1201(EN) 65

• The flow-field buffer (called qBUF) is used. In the soil-gas problem, flowfield
should be set to export to qBUF. In the radon problem, flowfield should
be set to import from qBUF.

A prototype job file with full time dependency is shown in the following example.
Observe how control variables have been split into three groups:

• Those control variables that are common for both the soil-gas and the radon
problem. These variables are given at the beginning of the main body of the
job file, and as they will be not overwritten in the following, these settings re-
main valid throughout the job file. For example, both problems are calculated
with the same grid: grid def := grid.

• Those control variables that are specific for the soil-gas problem. These vari-
ables are collected in the procedure called define soilgas problem. For ex-
ample, here the permeability of the soil is defined.

• Those control variables that are specific for the radon problem. These vari-
ables are collected in the procedure called define radon problem. For exam-
ple, here the radon generation rate is defined.

Example 45 Full time dependency.

program fxxxxprg;

...

procedure define_soilgas_problem;

begin

use_fieldbuffer := cBUF1;

flowfield := export_to_qbuf;

boundary_conditions_def := boundary_conditions_soilgas;

D_def := D_soilgas;

e_def := e_soilgas;

beta_def := beta_soilgas;

G_def := G_soilgas;

lambda_def := lambda_soilgas;

...

end;

procedure define_radon_problem;

begin

use_fieldbuffer := cBUF2;

flowfield := import_from_qbuf;

boundary_conditions_def := boundary_conditions_radon;

D_def := D_Rn;

e_def := e_Rn;

beta_def := beta_Rn;

G_def := G_Rn;

lambda_def := lambda_Rn;

...

end;

begin (* main *)

runid := ’xxxx’;

runtitle := ’Buffer test’;

solution := unsteady;

geometry := cartesian3d;

grid_def := grid;

materials_def := materials;

...

tim :=0;

dtim:=200;

repeat

tim:=tim+dtim;

66 Risø-R-1201(EN)

define_soilgas_problem;

run_model;

define_radon_problem;

run_model;

until (tim>1000);

close_model;

end.

If more problems of the above nature are conducted within the same job file, dispose fieldbuffer
it may be necessary to reset the buffers. This can be done with the procedure
dispose fieldbuffer. An example shows what to do.

Example 46 Use of dispose fieldbuffer.

...

begin (* main *)

runid := ’xxxx’;

runtitle := ’Buffer test’;

solution := unsteady;

geometry := cartesian3d;

grid_def := grid;

materials_def := materials;

...

tim :=0;

dtim:=200;

repeat

tim:=tim+dtim;

define_soilgas_problem;

run_model;

define_radon_problem;

run_model;

until (tim>1000);

grid_def := some_new_grid;

dispose_fieldbuffer(cBUF1); (* Reset buffers *)

dispose_fieldbuffer(cBUF2);

tim :=0;

dtim:=200;

repeat

tim:=tim+dtim;

define_soilgas_problem;

run_model;

define_radon_problem;

run_model;

until (tim>1000);

close_model;

end.

12 Special boundary conditions

The standard boundary conditions in RnMod3d are (as described in Section 6.1
and 6.2):

fixed-value conditions where the field is fixed at a given level regardless of the
transport equations. For example, in a simulation of radon exhalation from

Risø-R-1201(EN) 67

the soil surface into open atmospheric air, we may want to set up a transport
simulation for the soil where the concentration at the soil surface is always
equal to 5 Bq m−3. Such a condition is modelled by setting all control-volumes
at the boundary to be of type fixed1 where cBC[fixed1]:=5.

No-flow conditions where the flux is set to zero. For example, in a simulation
of radon transport in soil, we may assume that at the ground-water level,
there is no transport. This is accomplished by setting all bottom connectors
of the control-volumes next to the ground water to be of type noFlow.

In some radon simulations it is necessary to enforce other boundary conditions.
The most important case is when part of the porous medium is in direct contact
with open air where radon may accumulate. This occurs, for example, in closed-
chamber exhalation measurements. For example, a sample of concrete may be
located in a small closed chamber where the air is well mixed by fans [An99a,
An99b]. This section tells how to do treat such problems.

12.1 Trial-and-error by hand

Clearly the radon concentration in the chamber depends on the flux out of the
sample. However, the opposite is normally also true: the flux depends on the radon
concentration in the chamber. For example, the maximum flux out of the sample
is when the chamber concentration is zero. If there are no other sources than the
concrete sample and if the chamber is closed then in steady-state, the following
mass balance is fulfilled:

J = λV c (54)

where J is the total exhalation rate out of the sample (Bq s−1), λ is the decay
constant (s−1), V is the chamber volume (m3), and c is the concentration of radon
in the chamber (Bq m−3). Simulation of this type of a problem with RnMod3d can
be done as follows:

• The computational grid should only include the concrete. The chamber should
not be made part of the grid because here the air is well mixed and the
transport is not really covered by the transport equation solved by RnMod3d.

• Impose fixed-concentration nodes at the concrete-air boundary. If fixed1 is
used, then set cBC[fixed1]:=0.

• Perform a run with the model and calculate the flux of radon into the cham-
ber. The calculated flux is then inserted into equation 54 and the correspond-
ing chamber radon concentration is found. Observe the difference between the
assumed chamber concentration (0 in the first run) and the calculated value.

• Now increase the imposed chamber concentration cBC[fixed1] by trial-and-
error until there is consistency between flux and chamber concentration as
given in equation 54.

12.2 BC running

As described in the previous subsection, special boundary conditions can be han-
dled by manual change of the value of a fixed concentration at the boundary. It
is, however, sometimes better to let RnMod3d do the trial-and-error part of the
problem. In particular, it is virtually impossible to solve time-dependent problems
”by hand”.
In the lack of a better name, the RnMod3d system for changing the boundary

conditions during the iterative solution procedure is here called running boundary
conditions. The following control variables are used for the purpose:

68 Risø-R-1201(EN)

BC_running
BC_running_update_of_cBCs_def
BC_running_min_iterations
BC_running_max_residual_sum_before_new_BC
BC_running_convergence_def
wr_BC_running_messages_log
wr_BC_running_messages_screen

BC running

This is a boolean variable. If it is set to false then no adjustment of boundary
conditions are carried out. Hence this value must be set to true when ”running
boundary conditions” are needed.

BC running update of cBCs def

This is a pointer to a user-defined procedure that controls how the boundary
conditions (e.g. cBC[fixed1]) are changed. To prevent unstable solutions the
process is normally under-relaxed.

BC running min iterations

This variable is of type integer. It sets the minimum number of iterations that
RnMod3d needs to carry out before it attempts to change the boundary conditions.
If the value is set too low, the solution procedure can become unstable.

BC running max residual sum before new BC

This floating-point variable gives the maximum sum-of-residuals before RnMod3d
attempts to change the boundary conditions. If the value is set too high, the
solution procedure can become unstable.

BC running convergence def

This is a pointer to a user-defined function that returns the value true if some user-
defined criteria for convergence has been met. Otherwise it should return the value
false. For example, in a simulation of exhalation from concrete into a chamber
it can be tested if there is consistency between the assumed fixed-concentration
and the calculated flux.

wr BC running messages log

This is a boolean variable that controls if RnMod3d outputs information about the
problem to the LOG-file.

wr BC running messages screen

This is a boolean variable that controls if RnMod3d outputs information about the
problem to the screen.

Example

An application of running boundary conditions will now be demonstrated. Imagine
that a sample of concrete is placed in a chamber. The chamber volume is V and

Risø-R-1201(EN) 69

the total flux of radon from the sample into the chamber is called J . There are no
other sources of radon in the chamber. The chamber is ventilated with radon-free
air. The ventilation rate is λv in units of s−1 (i.e. the number of air-changes per
second). The first task is to write a boundary condition for the chamber. There
are three obvious possibilities:

• If the ventilation rate (or the chamber volume) is very large then the chamber
radon concentration cch can be maintained at a near-zero level:

cch ≈ 0 (55)

• If system is in steady-state, then the chamber radon concentration must fulfill:

J = (λ + λv)V cch (56)

where λ is the decay constant for radon.

• It the system is not in steady state then some initial condition must be de-
scribed for cch = cch(t) at time zero. For example, the concentration may
initially be zero:

cch(t = 0) ≈ 0 (57)

For t > 0 the following condition applies:

V
dcch
dt

= J − (λ+ λv)V cch (58)

To simulate such conditions with RnMod3d, we first write a function that returns
the value for cch:

function c_chamber:datatype;

const chamber_open=true; (* Open or close the chamber *)

vol=0.050; (* Volume is 50 L *)

lamv=2/3600; (* Air exchange rate is 2 times per hour *)

lamd=2.098e-6; (* Decay constant for radon-222 *)

lam = lamd+lamv;

var J,dc_dt:datatype;

begin

J:=FlxVal[Flx1].J; (* Read flux from probe Flx1 *)

if chamber_open then

c_chamber:=0 (* free exhalation *)

else

begin (* bound exhalation *)

if solution=steady then

c_chamber:=J/(lam*vol)

else

begin (* unsteady *)

dc_dt:=(J-(lam*vol)*c_chamber_old)/vol;

c_chamber:=c_chamber_old+dc_dt*dtim;

end;

end; (* bound exhalation *)

end;

where we assume that flux probe Flx1 monitors the total flux of radon out of the
sample, and where

c_chamber_old

is a floating-point variable declared in the job file which is initially set to zero (i.e.
before RnMod3d is called the first time).
The nodes at the boundary of the concrete is set to be of type fixed1 and the

chamber radon concentration is hence imposed with cBC[fixed1]. For example
the (standard) boundary conditions can be programmed as:

70 Risø-R-1201(EN)

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then set_node(i,j,k,fixed1);

...

end;

A procedure is then needed that can adjust cBC[fixed1] in such a way that the
desired boundary condition is fulfilled. The following procedure could be used:

procedure BC_running_update_of_cBCs;

const relax=0.7;

var cBC_old:datatype;

begin

cBC_old:=cBC[fixed1];

cBC[fixed1]:=cBC_old+relax*(c_chamber-cBC_old);

end;

Observe, that we under-relax the update of cBC[fixed1] compared to the situa-
tion where:

cBC[fixed1]:=c_chamber;

We also need a procedure that measures if there is consistency between the im-
posed chamber concentration (cBC[fixed1]) and the value that can be calculated
from the boundary condition and the measured flux (c chamber). For example,
we could use the following function:

function BC_running_convergence:boolean;

const maxchange=1e-7;

begin

if (cBC[fixed1]>0) and

(abs((cBC[fixed1]-c_chamber)/cBC[fixed1])<maxchange)

then

BC_running_convergence:=true

else

BC_running_convergence:=false;

end;

Then we just need to set the control variables to use the above procedures. For
example the job file could look like this:

program F0027prg;

...

var chamber_open:boolean;

c_chamber_old:datatype;

...

function c_chamber:datatype;

...

end;

function BC_running_convergence:boolean;

...

end;

procedure BC_running_update_of_cBCs;

...

end;

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

...

end;

Risø-R-1201(EN) 71

function initialfield(i:itype;j:jtype;k:ktype):datatype;

...

end;

...

begin (* main *)

runid := ’0027’;

runtitle := ’Test case’;

geometry := cylindrical2d;

grid_def := grid;

force_new_grid_in_every_run := false;

boundary_conditions_def := boundary_conditions;

...

flux_convset := [flx1,flx2];

probe_convset := [obs1..obs3];

conv_evaluation_period := 50;

BC_running := false;

BC_running_convergence_def := nil;

BC_running_update_of_cBCs_def := nil;

BC_running_min_iterations := 0;

BC_running_max_residual_sum_before_new_BC := 1e-5;

wr_BC_running_messages_log := false;

wr_BC_running_messages_screen := false;

min_iterations := 60;

max_iterations := 20000;

max_time := 15*60;

max_change := 1e-9;

max_residual_sum := 1e-19;

solution := steady;

tim := 0;

dtim := 0;

c_chamber_old := 0;

cBC[fixed1] := 0;

run_model; (* Initial field at t= 0*)

solution := unsteady;

dtim := 1800;

c_chamber_old:=cBC[fixed1];

BC_running := true;

BC_running_convergence_def := BC_running_convergence;

BC_running_update_of_cBCs_def := BC_running_update_of_cBCs;;

BC_running_min_iterations := 130;

BC_running_max_residual_sum_before_new_BC := 1e-5;

wr_BC_running_messages_log := false;

wr_BC_running_messages_screen := false;

repeat

tim:=tim+dtim;

run_model;

c_chamber_old:=cBC[fixed1];

until (tim>13*3600);

close_model;

end.

72 Risø-R-1201(EN)

13 Output and debugging

RnMod3d can be set to generate various types of output. This is mainly controlled
by those of the control variables in Section 4 that start with wr . Output may be
directed to the screen or to the LOG-file.

13.1 Standard files

Each model calculation is assigned an identification tag through the control vari-
able called runid. If we set runid := ’0997’ and run the model, then standard
output goes to the files listed in Table 3. The column named file variable shows
the identification that can be used in Pascal write-statements to write to the files.
For example, to write something to the standard result file, simply use:

writeln(RES,’Hi there’);

The standard output files are assigned and opened during the call run model. This
means that the user cannot write to the files before run model has been called.
For example, the following sequence will give run-time error 103: File not open.

Example 47 The following job file gives a run-time error.

program F003prg;

...

begin (* main *)

writeln(RES,’Hi there’);

run_model;

close_model;

end.

Example 48 Correct use of RES-file.

program F003prg;

...

begin (* main *)

run_model;

writeln(RES,’Hi there’);

close_model;

end.

The standard RnMod3d files are closed again by close model. Some of the default
filenames in Table 3 may be changed with the control variables:

import_field_name
export_field_name
flowfield_name

This is explained in Section 4.

13.2 Other file output

Sometimes it is desirable to output results to non-standard files. This can be done
easily. First, a text file variable must be declared, and then a file name should be
assigned to it. Finally, the file should be opened and closed. For example:

Example 49 User-defined output.

program F0997prg;

...

var MyF:text;

Risø-R-1201(EN) 73

Table 3. Standard RnMod3d files if runid := ’0997’. All these files are ASCII
files.
File name File variable Type of output Purpose
f0997LOG.dat LOG Log file User readable file
f0997RES.dat RES Generic result file User readable file

f0997 01.dat PLT1 Plot file User readable file
f0997 02.dat PLT2 Plot file User readable file
f0997 03.dat PLT3 Plot file User readable file

f0997 00.dat File with field (c) Used by RnMod3d
f0997FLW.dat File with soil-gas flow field (�q) Used by RnMod3d
f0997TMP.dat Reserved for later use Used by RnMod3d

...

begin (* main *)

assign(MyF,’myfile.dat’);

rewrite(MyF);

writeln(MyF,’Hi there’);

run_model;

...

close_model;

close(MyF);

end.

13.3 Contour plots: update plotfile

RnMod3d has a system for creating 2D plot files. These files can be used by software
such as Surfer (Golden Software) to create contour plots of the calculated pressure
or radon concentration fields. An example is shown in Figure 15. The user has to

0 5 10 15 20

x [m]

-10

-5

0

z
[m

]

Figure 15. Example of calculated pressure field and streamlines of steady soil-gas
entry into a slab-on-grade house. The pressure field is also shown. The contour
plot was created with Surfer ver. 7 from Golden Software.

write a procedure with specifications about what should be output. For example,
it may be desirable to avoid output for control volumes of the type NOP or to
limit the output in other ways. An example will be shown in the following. In this
case the name of the procedure is myplots. RnMod3d will use this procedure if the
control variable plotfiles def is set as follows:

74 Risø-R-1201(EN)

plotfiles_def := myplots;

The default value for plotfiles def is nil. In this case no plot files will be
generated during a model run. To specify what should be output, the user needs
to use the procedure:

update_plotfile(plt,dir)

where

plt is one of the standard file variables: PLT1, PLT2 or PLT3.

dir is one of the ”directions”: xdir, ydir or zdir.

The first parameter tells where the output should go. One of the three plotting
file variables given in Table 3 can be used (e.g. PLT1). The second parameter gives
the ”direction” of the plot. For example, if xdir is selected, then the 2D plot will
be perpendicular to the x-axis. Hence, a (y, z)-plot will be generated. An example
of a plot file procedure is shown next:

Example 50 A plot file procedure.

procedure myplots(i:itype;j:jtype;k:ktype);

begin

if (j=2) and (GP[i]^[j]^[k].nodetyp<>NOP) then update_plotfile(plt1,ydir);

if (j=2) and (GP[i]^[j]^[k].mat=mat2) then update_plotfile(plt2,ydir);

if (k=5) then update_plotfile(plt3,zdir);

end;

The meaning is as follows: The output directed to the PLT1-file includes all non-
NOP control volumes with j-index equal to 2. The PLT2-file gets the same type
of output except that now only control volumes of material mat2 are included.
Finally, the PLT3-file gets output for all control volumes with k-index equal to 5.
The PLT-output includes index and physical coordinates, field values at the

control-volume nodes, coded node type (where 1=free, 2=fixed1 etc.), coded
material type (where 2=mat1, 3=mat2 etc.), names of the node type, and names
of material. The coded numbers for node type and materials are included to help
create plots (e.g. mat1 can be colored in one color and mat2 in another).

Example 51 Content of a PLT-file created with update plotfile(plt,dir)where
dir has been set to ydir.

i k x z c nodeno matno node mat

1 124 0.000000E+0000 0.000000E+0000 -3.00000000E+0000 2 3 fixed1 mat2

2 1 1.879347E-0001 -1.000000E+0001 -7.80006595E-0001 1 2 free mat1

2 2 1.879347E-0001 -9.984201E+0000 -7.80006595E-0001 1 2 free mat1

...

2 73 1.879347E-0001 -2.500000E-0001 -2.92318620E+0000 1 4 free mat3

2 74 1.879347E-0001 -2.453292E-0001 -2.92319051E+0000 1 4 free mat3

...

4 116 5.641896E+0000 -8.349609E-0002 -2.99910051E+0000 1 6 free mat5

...

133 122 2.000000E+0001 -8.789062E-0004 -1.81602884E-0005 1 2 free mat1

133 123 2.000000E+0001 -9.765625E-0005 -2.01780972E-0006 1 2 free mat1

133 124 2.000000E+0001 0.000000E+0000 0.00000000E+0000 3 2 fixed2 mat1

13.4 Stream lines

In simulations of steady soil-gas transport it is useful to create a plot of the
pressure field in the soil. This can be done with the procedure update plotfile
as described earlier. Often it is desirable also to calculate stream lines as this is a
good way to visualize the flow. RnMod3d does not include a general procedure for
this task. However, it is not difficult to write a procedure for this purpose. The
streamlines in Figure 15 have been calculated with the procedure in Example 52.

Risø-R-1201(EN) 75

Example 52 Calculation of stream lines in the xz-plane.

procedure wr_streamlines;

const streamlinefactor=1e8;

var i:itype;

j:jtype;

k:ktype;

psi,psi_temp:datatype;

QB,QW:datatype;

LM:text;

begin

writeln(’Write streamlines’);

assign(LM,’caflow02.dat’);

rewrite(LM);

psi_temp:=0;

i:=2;

j:=2;

k:=2;

repeat

psi:=psi_temp;

k:=1;

repeat

writeln(LM,xnod(i):20,’ ’,znod(k):20,’ ’,streamlinefactor*psi:20);

QW:=GP[i]^[j]^[k].aW*(GP[i-1]^[j]^[k].c-GP[i]^[j]^[k].c);

psi:=psi+QW;

k:=k+1;

until (k=kmax);

QB:=GP[i]^[j]^[2].aB*(GP[i]^[j]^[1].c-GP[i]^[j]^[2].c);

psi_temp:=psi_temp-QB;

i:=i+1;

until (i=imax);

close(LM);

end;

13.5 Warnings

After computations with warnings, RnMod3d will show a little table indicating the
number of warning flags raised during the run. Further information about where
and why the warnings were given can normally be found in the LOG-file (search
for warning).

Example 53 Table of warnings that were issued during the execution of the job
file.

OBSERVE : Warnings were issued during this session.

Warning: war_interpolation was issued 20 times

Warning: war_other was issued 1 times

Warning: war_convergence was issued 1 times

Warning: war_residual was issued 1 times

RnMod3d uses the following types of warnings. The warnings are listed in order
of importance.

war interpolation This warning can almost always be ignored completely. The
warning is issued by the procedures fieldvalue and fieldvalue2D. To find
the field value at any location (x, y, z) these procedures perform interpolation
between adjacent nodes. If one or more nodes are of the type NOP (and there-
fore without a valid field value) this warning is issued. The available (valid)
nodes are used for the interpolation.

76 Risø-R-1201(EN)

war other This category contains warnings for problems not covered by the other
groups. Examples include warnings from the solver that the maximum number
of iterations was reached or that the grid has been redefined.

war fileimport This warning is issued if attempts are made to import a file that
does not exist or if the field in the imported file does not match the current
grid.

war convergence This warning tells that the run was stopped before the solver
reached convergence. This may or may not be a real problem.

war residual This warning signals that the sum of absolute residuals seems to
be too large compared to the source term (b). See Section 10.4 for further
details.

In jobs with many model runs, it may be useful to include the number of warnings
in the result file. The user has access to the warning table through the array:

warning_table:array[warningtype] of longint;

For example, warning table[war convergence] equals 0 if all runs have reached
convergence. The user can invoke warnings with the procedure:

warning_std(idst,message,war)

where idst and message are descriptive strings that tells where and why the
warning was created. The type of warning is set by war. User-generated warnings
should use war other.

13.6 Error messages

Errors will halt RnMod3d. Normally, the error message includes the name of the pro-
cedure that generated the error and a brief message. If the error cannot be identi-
fied from this try to set wr details, wr main procedure id, or wr all procedure id
to true, and run the job file again. The user can invoke errors messages with the
procedure:

error_std(idst,message)

where idst and message are descriptive strings that tells where and why the error
occurred.

13.7 Critical evaluation of results

It is important to evaluate the output from RnMod3d critically. In particular, it is
important to ascertain that the problem solved by RnMod3d is actually the problem
wanted by the user. Here is a list of things to do:

• Try to start with a very simple version of the problem. Test each level of
complexity, and do not add more complexity before tests have been passed.

• Test that the model agrees with simple calculations. For example, in radon
simulations try to compare the deep-soil radon concentration with the analyt-
ical solution. If the soil is not very deep, then make it so or set the diffusivity
to a low value.

• Test if the geometry has been set up correctly. For example, test that the vol-
ume of materials is as wanted. This can be done through the control variable
wr material volume (see Section 4.47). This procedure also output mate-
rial specific minimum and maximum radon concentrations (or pressures in a
soil-gas simulation). Are these results as expected?

Risø-R-1201(EN) 77

• Test that the boundary conditions have been set up correctly. For example try
to change values and see if the system responds as intended. For example, in
a soil-gas simulation involving constant pressures at one or more boundaries,
try to set the pressure to zero or change the sign of pressures. In a steady
flow situation, the flow of gas into the system must equal the flow out of the
system at the other boundaries. Is this fulfilled in the model?

• If a flux measurement give zero result when it should not, then test if the
probes are really located correctly (see page 53).

• Test that the solution is not sensitive to further grid refinement. For example,
see what results are reached if the number of nodes in the grid is doubled (or
halved). Make sure the grid is sufficiently fine in regions where large gradients
occur. The technique describe in Section 5.11 may be useful for this purpose.

• In time-dependent problems, test that the solution is not sensitive to the
selected time step dtim. Try to see what happens if dtim is doubled (or
halved).

• Make plots of the calculated fields.

14 RnMod3d inside

This section explains a little about the inside part of RnMod3d. This information
may be helpful during debugging. Fortunately, most variable names are long, de-
scriptive and easy to read. For example, in the code file, the variable that flags if
the buffer cBUF1 has been created or not is called:

cBUF1_has_been_created

It is a boolean variable, and can take only the values true or false. Likewise
enumerated data types have been used for many variables. This is discussed in
Section 14.6.

14.1 Index coordinates: i, j, and k

The index coordinates i, j, and k are used in RnMod3d to refer to specific control
volumes. These variables are restricted in range by the associated types defined
as follows:

itype = 1..imaxTot;
jtype = 1..jmaxTot;
ktype = 1..kmaxTot;

The constants imaxTot etc. are set by the user as described in Section 5.1.

14.2 The main data structure: GP

The main data structure in RnMod3d is GP (”grid pointer”). This structure contains
information about all control volumes. Each node in GP point to data which has
been declared as follows:

nodedatatype=record
c:datatype;
aE,aW,aN,aSS,aT,aB,b,ap,ap_old_dt:datatype;
qE,qW,qN,qS,qT,qB:datatype;

78 Risø-R-1201(EN)

nodetyp:nodetyptype;
Wcon,Econ,Scon,Ncon,Bcon,Tcon:nodecontype;
mat:mattype;
valid_fieldvalue:boolean;

end;

The meaning is as follows:

• Field values. The field value of control volume (i,j,k) is stored as:

GP[i]^[j]^[k].c

• a-coefficients. The aE-coefficient of control volume (i,j,k) (see equation 44,
page 14) is stored as:

GP[i]^[j]^[k].aE

The other a-coefficients are stored in a similar fashion. Observe, that the
coefficient ap old dt is not part of equation 44. This coefficient has been
introduced to maintain conservation of mass even if β changes from one time
step to another. Without going into details, we observe, that aP old (see
[Pa80]) should correspond to the time when the last field was calculated. If we
ignore transport, generation and decay we have (symbolically) : β(1) · ca(1) =
β(0) · ca(0), where 0 and 1 represent old and new, respectively. In terms of
coefficients this means, that ap new*ca = ap old*ca old.

• Material type (i.e. mat1, mat2 etc.) is stored as:

GP[i]^[j]^[k].mat

• Soil-gas fluxes. The soil-gas flux through the east interface of the control
volume (i,j,k) is:

GP[i]^[j]^[k].qE

Fluxes through the other interfaces are stored as qW, qN etc.

• Node type. The type of node (e.g. free or fixed1) of the control volume
(i,j,k) is given by:

GP[i]^[j]^[k].nodtyp

• Connector type. The type of connector (e.g. std or NoFlow) through the east
interface of the control volume (i,j,k) is given by:

GP[i]^[j]^[k].Econ

Connectors for the other interfaces are stored as Wcon, Ncon etc.

• Valid field value. GP also contains a flag that tells if the field value is valid or
not. That is given by:

GP[i]^[j]^[k].valid_fieldvalue

14.3 Other variables

This is a list of some other variables that sometimes are needed in job files:

cBC: The fixed values used in fixed-value boundary conditions fixed1 etc. See
Section 6.7.

FlxVal: The results of flux measurements with Flx1 etc. See Section 8.3.

Obsval: The results of field measurements with Obs1 etc. See Section 9.1.

wFixVal: The values of fix points xFix1 etc. See Section 5.4.

x[i], y[j], z[k], dx[i], dy[j], and dz[k]. The location and size of individual
control volumes. See Section 5.9

Risø-R-1201(EN) 79

14.4 datatype

All floating-point computations are done with variables of the type called datatype.
By default datatype is set to equal extended. To decrease the use of memory or to
test the sensitivity of the results to the internal number representation datatype
should be set to double, real or single.

14.5 Memory

Memory is allocated dynamically (during runtime) for the main data structure GP.Maximum grid size
Section 5.1 tells how the maximum grid size can be changed. Other data structures
are static variables.

14.6 Enumerated types

Wherever meaningful, enumerated data types have been used in RnMod3d. For
example, variables that hold the type of node of a control volume are declared to
be of type nodetyptype, which in turn is declared as:

nodetyptype = (nop,

free,

fixed1,

fixed2,

fixed3,

fixed4,

fixed5,

NodX);

The use of enumerated types has four implications: (1) job-file assignments
like: geometry := cartesian3D are readable, (2) it is easy to find the possible
geometries implemented in RnMod3d (just look up the declaration of geometry in
the source file), (3) should there be any problems with one of the geometries, it
is relatively easy to identify those places in the source code where that geometry
is treated, and finally (4) enumerated types can be used in Pascal set calculations
(see example page 25). Most enumerated types have predefined functions that
can convert variables to descriptive strings. For example, the main program file
contains a function that can be used to print out the value of a variable of the
type nodetyptype:

function nodetyp_string(x:nodetyptype):string;

var st:string;

begin

case x of

NOP: st:=’NOP ’;

free: st:=’free ’;

fixed1: st:=’fixed1 ’;

fixed2: st:=’fixed2 ’;

fixed3: st:=’fixed3 ’;

fixed4: st:=’fixed4 ’;

fixed5: st:=’fixed5 ’;

NodX: st:=’unchanged ’;

else

st:=’Unknown !!’;

end; (* case *)

nodetyp_string:=st;

end;

These functions can be useful during debugging.

80 Risø-R-1201(EN)

14.7 Sequence of actions in run model

RnMod3d starts to do computations when the procedure run model is called. The
model may find a steady-state field (if solution has been set to steady) or it
may advance the field by one single time step dtim (if solution has been set to
unsteady). To use RnMod3d with confidence, it is important to know the sequence
of actions in the procedure run model. The details can be read from the exact
programming of run model in the file R3Main03.pas. To learn more, it may also
be useful to let RnMod3d echo procedure names etc. during runtime. This can be
done with the control variables:

wr_details
wr_main_procedure_id
wr_all_procedure_id

The following gives a summary of the actions in run model:

1. Initially two things can happen:

• If this is the first run model call in a job file then all variables will be
initialized. For example the entire field in the main data structure GP is
set to zero:

GP[i]^[j]^[k].c:=0

• If this is not the first run in a session, then two situations can occur:

– If the control variable use fieldbuffer is set to cBUF1, then the
state of RnMod3d is set back to the state RnMod3d ended up in the
last time run model was called with use fieldbuffer set to cBUF1.
Likewise, if use fieldbuffer is set to cBUF2, RnMod3d is restored
to that found in the field buffer cBUF2. If nothing has yet been saved
in the buffer, then nothing is restored. Hence GP will not be changed
(for this reason). This situation is identical to than discussed next
where use fieldbuffer has been set to no cBUF.

– If the control variable use fieldbuffer is set to no cBUF, then no
change of the main data structure GP is performed at this stage.
Hence the results of the previous run (still present in GP) are used
as a starting point in the current computation (unless changed in
one of the steps listed below).

2. If needed, then a grid is generated. Three situations can occur:

• If this is the first run in a job file, then a grid is generated in accordance
with the procedure pointed to be grid def.

• If the control variable grid def has changed from a previous call of
run model, then a new grid is generated (as specified by the procedure
now pointed to by grid def).

• If the control variable force new grid in every run has been set to
true, then a new grid is always generated with the procedure now pointed
to by grid def. This may or may not be a truly new grid (see Sec-
tion 4.7).

3. A flow field of soil gas may be imported. Clearly this is only meaningful if a
radon problem is solved. This field corresponds to �q in Box 1, page 11. Three
situations exist:

• If the control variable flowfield has been set to import, then a flow
field is imported from the file given by flowfield name.

Risø-R-1201(EN) 81

• If the control variable flowfield has been set to import from qbuf then
a flow field is imported from the flow-field buffer called qBUF. Of course
this is possible only if a flow field has been calculated (and saved in the
buffer) earlier in the job file.

• For all other settings of flowfield, the flow field will be set to zero all
over.

4. All nodes and connectors are always (even in time-dependent problems) set
back to the default configuration. As described in Section 6.3, the computa-
tional domain now simulates a ”closed box”.

5. Nodes and connectors are then changed (from the default settings) in accor-
dance with the procedure pointed to by boundary conditions def.

6. If this run is the first in a time-dependent problem (i.e. if solution is set to
unsteady) then an initial field may be set up as follows:

• If import initialfield is set to true then an initial field is imported
from the file given by import field name.

• If initial field def is not set to nil then an initial field is set up from
the procedure pointed to by initial field def.

• In all other cases, the field in the grid pointer GP is taken to be the initial
field. The following situations occur:

– If this is the first run in the job file, then the initial field is zero at all
nodes except those fixed to certain values as given by the procedure
pointed to by boundary conditions def.

– If this is not the first run in the job file, then the result of the
previous calculation is now used as initial field in this run. Observe
that the previous run could have been a steady-state calculation as
well as a time step in a time-dependent calculation.

7. The procedure materials def is called. This means that the control volumes
in the computational domain are set to be of materials mat1, mat2 etc.

8. The coefficient matrix is then set up. This involves calling the user-defined
procedures:

• beta def

• e def

• G def

• D def

• lambda def

If any of the nodes are of the type fixed1, fixed2 etc. then the values of
these nodes are set to equal the values in cBC.

9. The problem has now been fully specified. Before it is solved it is possible to
make a guess of the solution. If import finalfield guess is set to true then
such a guess is imported from the file given by import field name. If such a
guess is not imported, then the field present in GP is used as initial guess. For
example, in time-dependent problems the result of the previous time step is
usually a good guess of the next one.

10. The procedure find field is then called. This procedure in turn calls the
solver pointed to by solver def. When convergence has been reached (or
the solver was stopped for other reasons), the final field is returned in GP.
During the iterative solution procedure it is possible to revise the boundary
conditions (e.g. cBC[fixed1]) as RnMod3d calls the procedure pointed to by

82 Risø-R-1201(EN)

BC_running_update_of_cBCs_def

Such running boundary conditions are described in Section 12. Furthermore,
the procure pointed to by:

user_procedure_each_iter_def

is called during each iteration (see Section 4.28).

11. Various types of output are generated.

12. In a soil-gas problem, it is meaningful to store the resulting flow from node
to node as a flow field. It can then be used in a later radon simulation. Three
situations occur:

• If the control variable flowfield has been set to export then a flow
field is exported to the file given by flowfield name.

• If the control variable flowfield has been set to export to qbuf then
a flow field is exported to the flow-field buffer. It can then be used later
in the current session.

• For all other settings of flowfield, the flow field will not be stored.

13. Finally the state of RnMod3d may be stored for later use:

• If the control variable use fieldbuffer is set to cBUF1 or cBUF2, then
the present state of RnMod3d is stored in buffer cBUF1 or cBUF2, respec-
tively.

• If use fieldbuffer is set to no cBUF, then the state of RnMod3d is not
stored in a buffer.

The results of the computations (GP), will however, in all cases remain intact
and can be used in additional run model calls within the same job file. How-
ever, observe, that all information (in bufferes or GP) are always lost when the
job file ends. To transfer information from one job to another, results have to
be stored in files.

15 Benchmark tests

To verify that RnMod3d gives accurate results, it is necessary to perform benchmark
tests on the basis of problems with known solutions. This section contains some
simple examples. RnMod3d has also been compared with other radon models for
more complicated problems (without known solutions) [An99a].

15.1 F0100prg: Steady flow of soil gas

This problem concerns steady Darcy flow of soil gas in a 1 m x 1 m x 3 m column
with homogeneous sand. The gas permeability k of the sand is 2 · 10−10 m2 and
the dynamic viscosity µ is 17.5 · 10−6 Pa s. The disturbance pressure is 0.0 Pa at
the bottom of the column and −3.0 Pa at the top. Other column sides are closed
off for transport.

Risø-R-1201(EN) 83

Analytical solution

The exact flow through the column is:

Q = A
k

µ

∆p

L
(59)

= 1 m2 2 · 10−10 m2

17.5 · 10−6 Pa s
3 Pa
3 m

(60)

= 1.14285714 . . . · 10−5 m3 s−1 (61)

The pressure in the center of the column is −1.5 Pa.

Model implementation

The full job file can be found in Appendix A. Observe, that the ”diffusivity” is
set to k

µ . This is in accordance with the formalism presented in Table 2, page 12.
Also, observe, that other soil parameters are set to zero. Since the flow is steady,
it is not necessary to assign any value to the ”partition-corrected porosity” β.
In unsteady flow simulations β must be set to εa/P0. A flux-measurement probe
called Flx1 is placed at the bottom of the column, and another probe called Flx2
is placed at the top. A pressure probe called obs1 is placed in the center of the
column (i.e. at (x, y, z) = (0.5 m,0.5 m,−1.5 m)).

Results

The model gives the following results:

Flx1: J = 1.1428571 · 10−5 m3 s−1

Flx2: J = 1.1428571 · 10−5 m3 s−1

Obs1: c = −1.500 Pa
which is in perfect agreement with the true result. Additional results can be found
in the LOG-file, which is listed in Appendix B.

15.2 F0101prg: Steady diffusion of radon

This problem is case 0 of the ERRICCA model intercomparison exercise described
[An99a]. The problem concerns steady diffusion of radon in a sand column. The
job file F0101prg.dpr is listed in Appendix C. The following results are obtained:

Flx1: J = 0.000 Bq s−1

Flx2: J = 4.72197 · 10−2 Bq s−1

Obs1: c = 4.19221 · 104 Bq m−3

The Flx1 flux measurement verify that the no-flow boundary condition is fulfilled
at the bottom. The Flx2 result is in good agreement with the true result: J =
4.722828 · 10−2.

15.3 F0102prg: Diffusion and advection of radon

This problem concerns a column of homogeneous sand of height L = 5 m and cross-
sectional area 1 m2. Both steady Darcy flow of soil gas and combined diffusion
and advection of radon are considered. The problem is sketched in Figure 16. The
sand has the following properties:

The sand is homogeneous and dry

84 Risø-R-1201(EN)

0

p(0) = ∆p

c(0) = cs

p(L) = 0

c(L) = 0

z

q c(z)

L = 5 m

Figure 16. Sketch of the problem treated by F0102prg.

The gas permeability k is 10−11 m2

The radon generation rate G equals λ · 10000 Bq m−3

The porosity ε is 0.3

The bulk diffusivity D is 10−6 m2 s−1

The following boundary conditions apply for the flow of soil gas:

At z = L, the disturbance pressure is 0 Pa.

At z = 0, the disturbance pressure is ∆p. Three cases will be investigated:

• ∆p = −100 Pa
• ∆p = 0 Pa

• ∆p = 100 Pa

Other boundaries are closed for transport.

The following boundary conditions apply for the transport of radon:

At z = L, the radon concentration is set to 0.

At z = 0, the radon concentration is cs = 5000 Bq m−3.

Other boundaries are closed for transport.

The decay constant (λ) is set to 2.09838 · 10−6 s−1 and the dynamic viscosity (µ)
is set to 17.5 · 10−6 Pa s.

Risø-R-1201(EN) 85

0 1 2 3 4 5

0
10

00
20

00
30

00
40

00
50

00

z

c

Flow

0 1 2 3 4 5

0
20

00
40

00
60

00
80

00

z

c

0 1 2 3 4 5

0
10

00
20

00
30

00
40

00
50

00
60

00

z

c

Flow

Figure 17. Radon concentration profiles in the sand column in F0102prg. z is
measured in m and c in Bq m−3. The three plots correspond to ∆p equal to −100 Pa
(top), 0 Pa (middle), and 100 Pa (bottom). The exact results are shown as lines.
RnMod3d results are shown as circles.

86 Risø-R-1201(EN)

Analytical solution

The analytical solution to the above problem can be found in [Co81, p. 26]. The
radon concentration in the column (0 ≤ z ≤ L) is:

c(z) =
G

λ

(
1− exp(qz

2D) sinh L−z
Λ + exp −q(L−z)

2D sinh z
Λ

sinh L
Λ

)

+cs exp(
qz

2D
)
sinh L−z

Λ

sinh L
Λ

(62)

where the soil-gas flow rate in the direction of the z-axis is:

q =
k

µ

∆p

L
(63)

and

Λ =
(

q2

4D2
+ L−2

d

)−0.5

(64)

and where Ld is the diffusion lenght:

Ld =

√
D

ελ
(65)

The flux at z = L is:

j =
(
−D

dc
dz

+ qc

)∣∣∣∣
z=L

(66)

=
G

λ

(
q

2
+

D

Λ
cosh L

Λ − exp qL
2D

sinh L
Λ

)
+ cs

D

Λ
exp qL

2D

sinh L
Λ

Model implementation

Appendix D shows how the problem with ∆p = −100 Pa has been implemented
in RnMod3d. The job file also contains the exact solution.

Comparison of results

Table 4 and Figure 17 show that there is good agreement between the results of
RnMod3d and the analytical solution.

Table 4. Results for the radon flux at z = L.

P RnMod3d Exact Deviation
Pa Bq s−1 Bq s−1 %

−100 5.4545 · 10−4 5.4820 · 10−4 −0.5
0 7.7855 · 10−3 7.7896 · 10−3 −0.05

100 7.0965 · 10−2 7.0973 · 10−2 −0.01

15.4 F0103prg: Time-dependent flow of soil gas

This case concerns unsteady Darcy flow of gas in a finite soil column of height 3.
Initially at t = 0, the disturbance-pressure field in the column equals zero. Then
at t = 0, the disturbance pressure at one end of the column (z = 3) starts to
oscillate as:

patm(t) = p1 sin(ωt+ ϕ) (67)

Risø-R-1201(EN) 87

where p1 is the amplitude of the variations (e.g. 1 Pa), and where the period time
is:

T =
2π
ω

(68)

The disturbance pressure field at the other end of the column (z = 0) remains at
zero. Inside the soil column, the disturbance-pressure field p(z, t) is governed by
equations 42 and 43. The problem geometry is sketched in Figure 18.

z

0

3

pamt(t)

p(z, t)

p = 0

Figure 18. Sketch of problem treated by F0103prg: The disturbance pressure at the
boundary at z = 3 starts to oscillate at t = 0. After some transient period, this in
turn starts oscillations of the same frequency in the soil. The phase and amplitude
change with z (and soil parameters).

Analytical solution

The exact solution to the problem (0 ≤ z ≤ 3 and t ≥ 0) can be found in Carslaw
and Jaeger [Car59, p. 105]:

p(z, t) = p1A sin(ωt+ ϕ+ φ) + (69)

2p1πDp

∞∑
n=1

n(−1)n(Dpn
2π2 sin ε− ω32 cos ε)

D2
pn

4π4 + ω234
sin
(nπz

3

)
exp

(−Dpn
2π2t/32

)
where

A =
∣∣∣∣ sinh θz(1 + i)
sinh θ3(1 + i)

∣∣∣∣ (70)

φ = arg
(
sinh θz(1 + i)
sinh θ3(1 + i)

)
(71)

and where

θ =
(

ω

2Dp

) 1
2

(72)

Dp is defined in Section 3.3.

Parameters

We consider the following parameters:

88 Risø-R-1201(EN)

3 = 5.0 m

k = 10−14 m2

P0 = 1.0 · 105 Pa

εa= 0.2

µ = 17.5 · 10−6 Pa s

p1 = 3.0 Pa

T = 10 hours (period time)

ϕ = π/2

Observe, that with ϕ = π/2, the pressure at z = 3 will ”jump” from 0 to p = 3 Pa
at t = 0+.

Model implementation

The model implementation is shown in Appendix E. The properties of the soil are
set in accordance with Table 2. In particular observe, that the ”diffusivity” is set
to k

µ , and that beta is set to εa
P0
.

The conditions at tim:=0 are calculated with solution:=steady. For the sub-
sequent runs, solution is set to unsteady. Only the boundary condition fixed2
at the atmospheric surface changes in time. The main results of the computations
are written to the file F0103RES.dat. The output includes pressures in the center
of the column:

• obs1 at z = 0.2 m

• obs2 at z = 1.0 m

• obs3 at z = 2.5 m

• obs4 at z = 4.0 m

• obs5 at z = 4.8 m

The computations are stopped after 4 cycles (i.e. when tim equals 40 hours).

Evaluation

As can be seen from Figure 19, the results obtained with RnMod3d agree well with
those of the exact analytical solution in equation 69.

Additional comments

Riley et al. use the same test as just discussed to verify their model code called
RapidSTART [Ri99].
RnMod3d has been tested against also the case described in Carslaw and Jaeger

as 2.6 Semi-infinite solid. Surface temperature a harmonic function of the time
[Car59, p. 64]. Again near-perfect agreement between RnMod3d results and those
of the exact analytical solution was obtained. However, the analytical solution was
relatively difficult to integrate numerically6.

6Peter Kirkegaard at Risø is thanked for performing the integration.

Risø-R-1201(EN) 89

0 10 20 30 40

-
2

-
1

0
1

2

0 10 20 30 40

-
0
.
0
6

-
0
.
0
2

0
.
0
2

0
.
0
6

t [hr]

t [hr]
p
(z

=
0.
2,
t)
[P
a]

p
(z

=
4.
8,
t)
[P
a]

Figure 19. Comparison of results obtained with F0103prg (circles) and the analyt-
ical solution given in equation 69 (line). The top plot is the disturbance pressure
at z = 4.8 m. The bottom plot is for z = 0.2 m.

16 House simulation example

This section demonstrates how RnMod3d can be set up to do calculations of soil gas
and radon entry into a house. The house sketched in Figure 20(A) is considered.
It is a 100 m2 slab-on-grade house. For simplicity, the house is chosen to be
cylindrical. There is a 3 mm gap of air between the slab and the footer along the full
35 m perimeter of the house. This is clearly an important route of entry, however,
transport can also take place through the concrete slab. A highly permeable layer
of gravel exists below the slab. The house is located on a 10 m thick soil block of
20 m radius. The house is constantly depressurized 1 Pa relative to the outdoors.
Further details about parameters etc. will be given in the following.

Geometry

Figure 20(A) shows the geometry of the house. The house is cylindrical, so we set

geometry := cylindrical2D;

With the fix points xFix1 to xFix5 and zFix1 to zFix5, it is possible to give an
accurate representation of all geometrical features of the house. Table 5 gives the
dimensions of the different components. For example, the width (i.e. the radius) of
the slab is 5.6419 m, such that in fact the area of the floor is the required 100 m2.
Accordingly, we assign the fix points as follows:

set_FixVal(xFix1,0.000); (* x-axis *)
set_FixVal(xFix2,Lx_slab-Lx_gap);
set_FixVal(xFix3,Lx_slab);
set_FixVal(xFix4,Lx_slab+Lx_footer);
set_FixVal(xFix5,Lx_soil);

90 Risø-R-1201(EN)

xFix1 xFix5

zFix5
Fixed1

No flow

Fixed2

zFix1
(B)

xFix1 xFix5

zFix5

Flx1

Obs4

Obs5

Obs3

Obs2

Obs1

Flx3Flx2

zFix1
(C)

xFix3

Slab

Gravel

Footer

Soil

Gap

House interior

xFix1 xFix2 xFix5

X-axis

z
-a

x
is

xFix4

zFix2

zFix3
zFix4

zFix5

zFix1
(A)

Figure 20. Sketch of slab-on-grade house.

Risø-R-1201(EN) 91

Table 5. Geometry for the slab-on-grade house. All dimensions are in meters.

Width (x) Thickness (z)

Soil Lx soil = 20.0 Lz soil = 10.0
Slab Lx slab = 5.6419 Lz slab = 0.10
Gravel (as Lx slab) Lz gravel = 0.15
Footer Lx footer = 0.3 Lz footer = 0.80
Gap Lx gap = 0.003 (as Lz slab)

set_FixVal(zFix1,-Lz_soil); (* z-axis *)
set_FixVal(zFix2,-Lz_footer);
set_FixVal(zFix3,-Lz_slab-Lz_gravel);
set_FixVal(zFix4,-Lz_slab);
set_FixVal(zFix5, 0.00);

Observe, that the x-axis goes from 0 to 20 m, and that the z-axis goes from −10 m
at the bottom of the soil to 0 at the atmospheric surface.

Boundary conditions

The soil-gas and the radon problems are based on the same types of boundary con-
ditions. As sketched in Figure 20(B) the interface between the house and the slab
is set to the fixed-value boundary condition: fixed1. Likewise, the atmospheric
surface is set to fixed2. The rest of the boundary is set to no-flow conditions.
In the soil-gas problem we force the house to be depressurized 1 Pa relative to

the atmospheric surface. This is programmed with the assignments:

cBC[fixed1]:=-1; (* Pa *)
cBC[fixed2]:= 0;

For the radon problem, we set both indoor and outdoor radon concentrations to
zero:

cBC[fixed1]:= 0; (* Bq/m3 *)
cBC[fixed2]:= 0;

Flux probes: Flx1 etc.

We are interested in the fluxes indicated in Figure 20(C). Flx1 gives the flux
through the slab (i.e. through the concrete). Flx2 is the flux through the gap.
Flx3 is the flux into the atmosphere. The total entry rate into the house is given
by Flx4. This is the sum of Flx1 and Flx2. Observe, that all fluxes are taken to
be positive if they are in the direction of the z-axis.

Field probes: Obs1 etc.

To monitor the pressure and radon concentration fields, the probes Obs1 to Obs5
are placed as indicated in Figure 20(C). For example, Obs2 is located just below
the footing. The exact positions of the probes can be read from the job file. Notice
that wFixVal is used to find the location of fix points (see Section 5.4).

92 Risø-R-1201(EN)

Materials

Table 6 lists the materials used in the computations and their parameters. Other
constants are: µ = 18 · 10−6 Pa s, λ = 2.09838 · 10−6s−1, L = 0.3 (see equation 19),
and ρg=2.7 · 103 kgm−3.

Table 6. Parameters used in the calculations for the slab-on-grade house: gas per-
meability (k), radium-226 concentration (ARa), fraction of emanation f , total
porosity (ε), volumetric water content (θv), and bulk diffusivity (D).

Name of k ARa f ε θv D

materials m2 Bq kg−1 m2 s−1

Soil mat1 10−11 40 0.2 0.25 0.2 4.3 · 10−7

Slab mat2 10−15 50 0.1 0.20 0 2.0 · 10−8

Gravel mat3 5 · 10−9 40 0.2 0.40 0 1.8 · 10−6

Footer mat4 10−15 0 0 0.20 0 10−10

Gap mat5 7.5 · 10−7 0 0 1.00 0 1.2 · 10−5

Names are assigned to the different materials. For example, the slab material
is called mat2. In the job file, the procedure materials defines exactly what part
of the computational grid that contains mat2. This information is used in other
parts of the job file. For example, the function where the porosity is defined looks
like this:

function e_radon(i:itype;j:jtype;k:ktype):datatype;

var ee:datatype;

begin

ee:=0;

case materials(i,j,k) of

mat1: ee:=0.25;

mat2: ee:=0.20;

mat3: ee:=0.40;

mat4: ee:=0;

mat5: ee:=1.0;

else

error_std(’e_radon’,’Unknown material’);

end;

e_radon:=ee;

end;

The radon generation rate (G) is calculated from equation 20 on the basis of
the given radium concentrations and fractions of emanation. The permeability
assigned to the gap is calculated from [An92]:

k =
d2

12
(73)

where d is the width of the gap. For a 3 mm gap, this corresponds to k =
7.5 · 10−7 m2. The other parameters for the gap corresponds to free air.

Job file

The complete job file is shown in Appendix F.

Results

The main results of the computations are output to the LOG-file as:

Risø-R-1201(EN) 93

The total soil-gas entry into the house is (Flx4) =
1.6532545E-0005 m3/s

The total radon entry into the house is (Flx4) =
1.9368863E+0000 Bq/s

An extended version of this house simulation can be found in [An99c]. Figure 15,
page 74 shows pressure contours and streamlines.

A F0100prg.dpr

program F0100prg;

(* --------------------- RnMod3d jobfile ---------------------- *)

(* Project: User guide example: Steady soil-gas flow, 1D *)

(* Created: May 24, 1999 *)

(* Revised: July 17, 2000 *)

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

procedure grid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,1,FocusA,1.0);

set_FixVal(yFix1,0.0);

set_FixVal(yFix2,1.0);

set_axis_single(yFix1,yFix2,1,FocusA,1.0);

set_FixVal(zFix1,-3.0);

set_FixVal(zFix2, 0.0);

set_axis_double(zFix1,zFix2,30,30,FocusA,FocusB,1.1,1.1,0.5);

end;

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

cBC[fixed2]:=-3.0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then set_node(i,j,k,fixed1);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then set_node(i,j,k,fixed2);

end;

procedure fluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then update_flxval(Flx1,top,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then update_flxval(Flx2,bottom,i,j,k,plus);

end;

94 Risø-R-1201(EN)

procedure probes;

var cc:datatype; valid:boolean;

begin

cc:=fieldvalue(0.5,0.5,-1.5,valid);

if not valid then cc:=0.0;

obsval[obs1]:=cc;

end;

function materials(i:itype;j:jtype;k:ktype):mattype;

begin

materials:=mat1;

end;

function e(i:itype;j:jtype;k:ktype):datatype;

begin

e:=0;

end;

function beta(i:itype;j:jtype;k:ktype):datatype;

begin

beta:=0;

end;

function D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

var mu:datatype;

begin

mu:=17.5e-6;

D:=2e-10/mu;

end;

function G(i:itype;j:jtype;k:ktype):datatype;

begin

G:=0;

end;

function lambda(i:itype;j:jtype;k:ktype):datatype;

begin

lambda:=0;

end;

begin (* main *)

runid := ’0100’;

runtitle := ’User guide example: Steady soil-gas flow, 1D’;

solution := steady;

geometry := cartesian3d;

Ly := 1.0;

grid_def := grid;

force_new_grid_in_every_run := false;

boundary_conditions_def := boundary_conditions;

flux_def := fluxes;

probe_def := probes;

materials_def := materials;

e_def := e;

beta_def := beta;

G_def := G;

lambda_def := lambda;

D_def := D;

initialfield_def := nil;

import_initialfield := false;

import_finalfield_guess := false;

export_field := false;

use_fieldbuffer := no_cBUF;

flowfield := none;

flowfactor := 1.0;

Risø-R-1201(EN) 95

import_field_name := ’’;

export_field_name := ’’;

flowfield_name := ’’;

plotfiles_def := nil;

user_procedure_each_iter_def := nil;

wr_details := false;

wr_main_procedure_id := false;

wr_all_procedure_id := false;

wr_iteration_line_log := false;

wr_iteration_line_screen := true;

wr_residual_during_calc_log := false;

wr_residual_during_calc_screen := false;

wr_flux_during_calc_log := false;

wr_flux_during_calc_screen := false;

wr_probes_during_calc_log := false;

wr_probes_during_calc_screen := false;

wr_final_results_log := true;

wr_final_results_screen := true;

wr_axes := true;

wr_nodes := false;

wr_node_numbers := true;

wr_node_sizes := false;

wr_coefficients := false;

wr_materials_volumes := true;

warning_priority_log := war_other;

warning_priority_screen := war_other;

solver_def := Find_better_field_thomas;

scheme := exact;

relax_factor := 1.0;

flux_convset := [flx1,flx2];

probe_convset := [obs1];

conv_evaluation_period := 100;

min_iterations := 50;

max_iterations := 5000;

max_time := 5*60;

max_change := 1e-9;

max_residual_sum := 3e-20;

dtim := 0;

BC_running := false;

BC_running_update_of_cBCs_def := nil;

BC_running_min_iterations := 100;

BC_running_max_residual_sum_before_new_BC := 1e-9;

BC_running_convergence_def := nil;

wr_BC_running_messages_log := false;

wr_BC_running_messages_screen := false;

press_enter_wanted := true;

run_model;

close_model;

end.

B Output: F0100LOG.dat

Description : Radon and soil gas transport model

Program name : RnMod3d (Copyright, Risoe National Laboratory, Denmark)

Version : Version 0.8 (Sep. 15, 1997 - July 18, 2000)

Documentation : User’s Guide to RnMod3d, Risoe-R-1201(EN)

* Time = 19-07-2000 09:55:04

**** LOG File : f0100LOG.dat

96 Risø-R-1201(EN)

**** RES File : f0100RES.dat

**** RUN ID : 0100

**** RUN TITLE : User guide example: Steady soil-gas flow, 1D

wr_memory_status

imax = 1 jmax = 1 kmax = 1

imaxTot = 100 jmaxTot= 100 kmaxTot = 200

wr_memory_status

imax = 3 jmax = 3 kmax = 63

imaxTot = 100 jmaxTot= 100 kmaxTot = 200

wr_count_nodes

* Type and number of nodes incl. boundary conditions :

* NOP 244

* free 305

* fixed1 9 value = 0.00000000000E+0000

* fixed2 9 value = -3.00000000000E+0000

* fixed3 0 value = 0.00000000000E+0000

* fixed4 0 value = 0.00000000000E+0000

* fixed5 0 value = 0.00000000000E+0000

* unchanged 0

* Total 567

**** RUN ID : 0100

**** RUN TITLE : User guide example: Steady soil-gas flow, 1D

***** Converged

Iteration = 301 (5000) Time = 0.01 min (5.00) Residual = 2.07E-0021

* Abs. sum of bs = 0.00000E+0000

* Abs. sum of residuals = 2.07079E-0021 (change = -9.99979E-0001)

* Max residual = 2.11758E-0022 (change = -9.99851E-0001)

* Max residual at (i,j,k) = (2, 2, 62)

* Max residual at (x,y,z) = (5.000E-0001, 5.000E-0001,-1.716E-0002)

Flx1 : J = 1.1428571E-0005 (change = 9.4091795E-0019) Q = 0.0000000E+0000

Flx2 : J = 1.1428571E-0005 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx3 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx4 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Flx5 : J = 0.0000000E+0000 (change = 0.0000000E+0000) Q = 0.0000000E+0000

Obs1 : c = -1.5000000E+0000 (change = 5.7824116E-0019)

Obs2 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs3 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs4 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

Obs5 : c = 0.0000000E+0000 (change = 0.0000000E+0000)

wr_material_volumes_etc (volume-averaged field values)

mat Avg(conc) Activity Volume N N_invalid

mat1 -1.500000000E+0000 0.000000000E+0000 3.000000000E+0000 61 506

mat Min(conc) i j k x y z

mat1 -2.982838178E+0000 2 2 62 5.000E-0001 5.000E-0001 -1.716E-0002

mat Max(conc) i j k x y z

mat1 -1.779212754E-0002 2 2 2 5.000E-0001 5.000E-0001 -2.982E+0000

Total geometric volume = 3.00000000000E+0000

Total activity = 0.00000000000E+0000

Overall mean concentration = -1.50000000000E+0000

wr_axes_proc

axis i x[i] x[i+1] dx[i] dcdx dcdxnorm Fixpts

x 1 0.00000 0.00000 0.0000000 9.758E-0019 0.00000000 xFix1

x 2 0.00000 1.00000 1.0000000 1.084E-0019 0.00000000 -

x 3 1.00000 1.00000 0.0000000 0.000E+0000 0.00000000 xFix2

axis j y[j] y[j+1] dy[j] dcdy dcdynorm Fixpts

y 1 0.00000 0.00000 0.0000000 9.758E-0019 0.00000000 yFix1

Risø-R-1201(EN) 97

y 2 0.00000 1.00000 1.0000000 1.084E-0019 0.00000000 -

y 3 1.00000 1.00000 0.0000000 0.000E+0000 0.00000000 yFix2

axis k z[k] z[k+1] dz[k] dcdz dcdznorm Fixpts

z 1 -3.00000 -3.00000 0.0000000 0.000E+0000 0.00000000 zFix1

z 2 -3.00000 -2.96442 0.0355843 3.814E-0002 0.69579013 -

z 3 -2.96442 -2.92372 0.0406923 4.178E-0002 0.76227505 -

z 4 -2.92372 -2.88085 0.0428727 4.361E-0002 0.79566866 -

z 5 -2.88085 -2.83650 0.0443531 4.492E-0002 0.81951967 -

z 6 -2.83650 -2.79101 0.0454874 4.595E-0002 0.83830367 -

...

z 60 -0.11493 -0.07357 0.0413539 4.030E-0002 0.73527063 -

z 61 -0.07357 -0.03432 0.0392507 3.679E-0002 0.67114101 -

z 62 -0.03432 0.00000 0.0343236 1.716E-0002 0.31309835 -

z 63 0.00000 0.00000 0.0000000 0.000E+0000 0.00000000 zFix2

* Time = 19-07-2000 09:55:05

C F0101prg.dpr

program F0101prg;

(* --------------------- RnMod3d jobfile ---------------------- *)

(* Project: User guide example: Steady radon diffusion, 1D *)

(* Created: May 24, 1999 *)

(* Revised: July 17, 2000 *)

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

procedure grid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,1,FocusA,1.0);

set_FixVal(yFix1,0.0);

set_FixVal(yFix2,1.0);

set_axis_single(yFix1,yFix2,1,FocusA,1.0);

set_FixVal(zFix1,-3.0);

set_FixVal(zFix2, 0.0);

set_axis_double(zFix1,zFix2,30,30,FocusA,FocusB,1.1,1.1,0.5);

end;

procedure boundary_conditions(i:itype;j:jtype;k:ktype);

begin

cBC[fixed2]:=1000;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then set_node(i,j,k,fixed2);

end;

procedure fluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then update_flxval(Flx1,top,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

98 Risø-R-1201(EN)

j,yFix1,yFix2,

k,zFix2,zFix2) then update_flxval(Flx2,bottom,i,j,k,plus);

end;

procedure probes;

var cc:datatype; valid:boolean;

begin

cc:=fieldvalue(0.5,0.5,-1.5,valid);

if not valid then cc:=0.0;

obsval[obs1]:=cc;

end;

function materials(i:itype;j:jtype;k:ktype):mattype;

begin

materials:=mat1;

end;

function e(i:itype;j:jtype;k:ktype):datatype;

begin

e:=0.3;

end;

function beta(i:itype;j:jtype;k:ktype):datatype;

begin

beta:=e(i,j,k);

end;

function D(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

begin

D:=9.9e-7;

end;

function G(i:itype;j:jtype;k:ktype):datatype;

begin

G:=0.12974983

end;

function lambda(i:itype;j:jtype;k:ktype):datatype;

begin

lambda:=2.09838e-6;

end;

begin (* main *)

runid := ’0101’;

runtitle := ’User guide example: Steady radon diffusion, 1D’;

solution := steady;

geometry := cartesian3d;

Ly := 1.0;

grid_def := grid;

force_new_grid_in_every_run := false;

boundary_conditions_def := boundary_conditions;

flux_def := fluxes;

probe_def := probes;

materials_def := materials;

e_def := e;

beta_def := beta;

G_def := G;

lambda_def := lambda;

D_def := D;

initialfield_def := nil;

import_initialfield := false;

import_finalfield_guess := false;

export_field := false;

use_fieldbuffer := no_cBUF;

Risø-R-1201(EN) 99

flowfield := none;

flowfactor := 1.0;

import_field_name := ’’;

export_field_name := ’’;

flowfield_name := ’’;

plotfiles_def := nil;

user_procedure_each_iter_def := nil;

wr_details := false;

wr_main_procedure_id := false;

wr_all_procedure_id := false;

wr_iteration_line_log := false;

wr_iteration_line_screen := true;

wr_residual_during_calc_log := false;

wr_residual_during_calc_screen := false;

wr_flux_during_calc_log := false;

wr_flux_during_calc_screen := true;

wr_probes_during_calc_log := false;

wr_probes_during_calc_screen := false;

wr_final_results_log := true;

wr_final_results_screen := true;

wr_axes := true;

wr_nodes := false;

wr_node_numbers := true;

wr_node_sizes := false;

wr_coefficients := false;

wr_materials_volumes := false;

warning_priority_log := war_other;

warning_priority_screen := war_other;

solver_def := Find_better_field_thomas;

scheme := exact;

relax_factor := 1.0;

flux_convset := [flx2];

probe_convset := [obs1];

conv_evaluation_period := 200;

min_iterations := 100;

max_iterations := 5000;

max_time := 5*60;

max_change := 1e-9;

max_residual_sum := 1e-15;

dtim := 0;

BC_running := false;

BC_running_update_of_cBCs_def := nil;

BC_running_min_iterations := 100;

BC_running_max_residual_sum_before_new_BC := 1e-9;

BC_running_convergence_def := nil;

wr_BC_running_messages_log := false;

wr_BC_running_messages_screen := false;

press_enter_wanted := true;

run_model;

close_model;

end.

D F0102prg.dpr

program f0102prg;

(* --------------------- RnMod3d jobfile ---------------------- *)

(* Project: User guide example: *)

(* Steady radon diffusion + advection, 1D. *)

(* Created: May 24, 1999 *)

(* Revised: July 17, 2000 *)

100 Risø-R-1201(EN)

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

const lambda_use = 2.09838e-6;

mu = 17.5e-6;

var ksoil,cS,dP,velocity,Lz,Dsoil,esoil,Gsoil:datatype;

procedure grid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,1,FocusA,1.0);

set_FixVal(yFix1,0.0);

set_FixVal(yFix2,1.0);

set_axis_single(yFix1,yFix2,1,FocusA,1.0);

set_FixVal(zFix1, 0.0);

set_FixVal(zFix2, Lz);

set_axis_double(zFix1,zFix2,30,30,FocusA,FocusB,2,2,0.5);

end;

procedure boundary_conditions_Soilgas(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=dP;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then set_node(i,j,k,fixed1);

cBC[fixed2]:=0.0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then set_node(i,j,k,fixed2);

end;

procedure boundary_conditions_Rn(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=cS;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then set_node(i,j,k,fixed1);

cBC[fixed2]:=0.0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then set_node(i,j,k,fixed2);

end;

procedure fluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then update_flxval(Flx1,top,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then update_flxval(Flx2,bottom,i,j,k,plus);

end;

Risø-R-1201(EN) 101

procedure probes;

var cc:datatype; valid:boolean;

begin

cc:=fieldvalue(0.5,0.5,Lz/2,valid);

if not valid then cc:=0.0;

obsval[obs1]:=cc;

end;

function materials(i:itype;j:jtype;k:ktype):mattype;

begin

materials:=mat1;

end;

function e_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

e_soilgas:=0;

end;

function beta_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

beta_soilgas:=0;

end;

function D_soilgas(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

begin

D_soilgas:=ksoil/mu;

end;

function G_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

G_soilgas:=0;

end;

function lambda_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

lambda_soilgas:=0;

end;

function e_Rn(i:itype;j:jtype;k:ktype):datatype;

begin

e_Rn:=esoil;

end;

function beta_Rn(i:itype;j:jtype;k:ktype):datatype;

begin

beta_Rn:=e_Rn(i,j,k);

end;

function D_Rn(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

begin

D_Rn:=Dsoil;

end;

function G_Rn(i:itype;j:jtype;k:ktype):datatype;

begin

G_Rn:=Gsoil;

end;

function lambda_Rn(i:itype;j:jtype;k:ktype):datatype;

begin

lambda_Rn:=lambda_use;

end;

function sinh(x:datatype):datatype;

102 Risø-R-1201(EN)

var z:datatype;

begin

z:=exp(x);

sinh:=(z-1/z)/2

end;

function cosh(x:datatype):datatype;

var z:datatype;

begin

z:=exp(x);

cosh:=(z+1/z)/2

end;

function c_exact(z:datatype):datatype;

var v,D,cinf,s,alpha,Ld:datatype;

(* See NBS technical note 1139, p. 26 *)

begin

D:=Dsoil;

v:=velocity;

alpha:=v/2/D;

Ld:=sqrt(D/esoil/lambda_use);

s:=1/sqrt(sqr(alpha) + sqr(1/Ld));

cinf:=Gsoil/lambda_use;

c_exact:=cinf*(1-1/sinh(Lz/s)*(exp(v*z/2/D)*sinh((Lz-z)/s) + exp(-v*(Lz-z)/2/D)*sinh(z/s)))+

cS*exp(v*z/2/D)*sinh((Lz-z)/s) / sinh(Lz/s);

end;

function j_exact:datatype;

var v,D,cinf,s,alpha,Ld:datatype;

(* See NBS technical note 1139, p. 26 *)

begin

D:=Dsoil;

v:=velocity;

alpha:=v/2/D;

Ld:=sqrt(D/esoil/lambda_use);

s:=1/sqrt(sqr(alpha) + sqr(1/Ld));

cinf:=Gsoil/lambda_use;

j_exact:=cinf*(V/2 + D/s/sinh(Lz/s)*(cosh(Lz/s)-exp(v*Lz/2/D)))+

cS*D/s*exp(v*Lz/2/D)/sinh(Lz/s);

end;

procedure wr_flux;

begin

writeln(LOG,’ dP = ’,dP:6:2);

writeln(LOG,’RnMod3d Rn flux at z=0: ’,FlxVal[flx2].j:16,’ Bq/m2/s’);

writeln(LOG,’Exact Rn flux at z=0: ’,j_exact:16,’ Bq/m2/s’);

writeln(LOG,’Deviation: ’,100*(FlxVal[flx2].j-j_exact)/j_exact:16:4,’ %’);

end;

procedure wr_profile;

var Nsteps,zstart,zstop,dzz,zz,cc:datatype;

valid:boolean;

begin

(* This procedure finds the field at (x,y,z) where x=0.5m *)

(* and y=0.5m, and z is looped through the values from top to *)

(* bottom. *)

Nsteps:=800;

if not (wFixVal[zFix1].defined and wFixVal[zFix2].defined) then

error_std(’wr_profile’,’Undefined fixpoints!’);

zstart:=wFixVal[zFix1].w;

zstop :=wFixVal[zFix2].w;

dzz:=(zstop-zstart)/Nsteps;

zz :=zstart;

Risø-R-1201(EN) 103

writeln(RES,’z’:12,’,’,’c’:12,’,’,’cexact’:12);

while (zz<zstop) do

begin

cc:=fieldvalue(0.5,0.5,zz,valid);

if valid then

writeln(RES,zz:12:6,’,’,cc:12:6,’,’,c_exact(zz):12:6);

zz:=zz+dzz;

end;

end;

begin (* main *)

runid := ’0102’;

runtitle := ’User guide example: Steady Rn diff. and adv.’;

solution := steady;

geometry := cartesian3d;

Ly := 1.0;

grid_def := grid;

flux_def := fluxes;

probe_def := probes;

materials_def := materials;

flux_convset := [flx1,flx2];

probe_convset := [obs1];

conv_evaluation_period := 200;

min_iterations := 100;

max_iterations := 5000;

wr_axes := false;

wr_node_numbers := false;

wr_materials_volumes := false;

(* User-defined constants *)

Lz := 5; (* Column depth *)

ksoil := 1e-11; (* Soil permeability *)

cS := 5000; (* Radon conc. at z=0 *)

dP := -100; (* Pressure difference *)

Dsoil := 1e-6; (* Diffusivity *)

esoil := 0.3; (* Porosity *)

Gsoil := 10000*lambda_use; (* Generation rate *)

velocity:=ksoil/mu*dP/Lz;

(* First, the soil gas problem *)

boundary_conditions_def := boundary_conditions_soilgas;

D_def := D_soilgas;

e_def := e_soilgas;

beta_def := beta_soilgas;

G_def := G_soilgas;

lambda_def := lambda_soilgas;

flowfield := export_to_qBUF;

relax_factor := 1.9;

max_change := 1e-12;

max_residual_sum := 3e-16;

run_model;

(* Second, the radon problem *)

flowfield := import_from_qBUF;

boundary_conditions_def := boundary_conditions_Rn;

D_def := D_Rn;

e_def := e_Rn;

beta_def := beta_Rn;

G_def := G_Rn;

lambda_def := lambda_Rn;

relax_factor := 1.0;

max_change := 1e-12;

max_residual_sum := 3e-16;

104 Risø-R-1201(EN)

run_model;

wr_flux;

wr_profile;

close_model;

end.

E F0103prg.dpr

program f0103prg;

(* --------------------- RnMod3d jobfile ---------------------- *)

(* Project: User guide example: Transient gas flow (1D) *)

(* Created: October 12, 1999 *)

(* Revised: July 17, 2000 *)

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

const mu = 17.5e-6;

easoil = 0.2;

ksoil = 1e-14;

Tper = 10*3600;

phi = pi/2;

p1 = 3;

P0 = 100000;

omega = 2*pi/Tper;

Dp = ksoil*P0/easoil/mu;

Lz = 5.0;

z_obs1 = 0.2; (* probe locations *)

z_obs2 = 1.0;

z_obs3 = 2.5;

z_obs4 = 4.0;

z_obs5 = 4.8;

procedure grid;

begin

set_FixVal(xFix1,0.0);

set_FixVal(xFix2,1.0);

set_axis_single(xFix1,xFix2,1,FocusA,1.0);

set_FixVal(yFix1,0.0);

set_FixVal(yFix2,1.0);

set_axis_single(yFix1,yFix2,1,FocusA,1.0);

set_FixVal(zFix1,0.0);

set_FixVal(zFix2,Lz);

set_axis_double(zFix1,zFix2,10,10,FocusA,FocusB,2,2,0.5);

end;

procedure boundary_conditions_Soilgas(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then set_node(i,j,k,fixed1);

cBC[fixed2]:=0;

if tim>0 then

cBC[fixed2]:=p1 * sin(omega*tim + phi);

Risø-R-1201(EN) 105

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then set_node(i,j,k,fixed2);

end;

procedure fluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix1,zFix1) then update_flxval(Flx1,top,i,j,k,plus);

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix2,zFix2) then update_flxval(Flx2,bottom,i,j,k,plus);

end;

procedure probes;

var valid:boolean;

begin

obsval[obs1]:=fieldvalue(0.5,0.5, z_obs1,valid);

obsval[obs2]:=fieldvalue(0.5,0.5, z_obs2,valid);

obsval[obs3]:=fieldvalue(0.5,0.5, z_obs3,valid);

obsval[obs4]:=fieldvalue(0.5,0.5, z_obs4,valid);

obsval[obs5]:=fieldvalue(0.5,0.5, z_obs5,valid);

end;

function materials(i:itype;j:jtype;k:ktype):mattype;

begin

materials:=mat1;

end;

function e_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

e_soilgas:=0;

end;

function beta_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

beta_soilgas:=easoil/P0;

end;

function D_soilgas(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

begin

D_soilgas:=ksoil/mu;

end;

function G_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

G_soilgas:=0;

end;

function lambda_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

lambda_soilgas:=0;

end;

begin (* main *)

runid := ’0103’;

runtitle := ’User guide example: Transient gas flow in slab’;

solution := steady;

geometry := cartesian3d;

grid_def := grid;

106 Risø-R-1201(EN)

force_new_grid_in_every_run := false;

boundary_conditions_def := boundary_conditions_soilgas;

flux_def := fluxes;

probe_def := probes;

materials_def := materials;

D_def := D_soilgas;

e_def := e_soilgas;

beta_def := beta_soilgas;

G_def := G_soilgas;

lambda_def := lambda_soilgas;

flux_convset := [flx2];

probe_convset := [obs1,obs2,obs3,obs4,obs5];

conv_evaluation_period := 400;

min_iterations := 70;

max_iterations := 10000;

max_time := 5*60;

max_change := 1e-12;

max_residual_sum := 3e-9;

wr_iteration_line_screen := false;

wr_final_results_screen := false;

wr_axes := false;

wr_node_numbers := false;

wr_materials_volumes := false;

(* First do steady-state for t=0 *)

tim:=0;

run_model;

(* Then do the unsteady part *)

solution:=unsteady;

dtim:=Tper/500;

(* Write header w. labels *)

writeln(’tim/Tper’:16,’ ’,’dtim/Tper’:16,’ ’,’cBC[fixed2]’:16,’ ’,’obsval[obs5]’:16);

writeln(RES,’tim’:16,’, ’,

’hr’:16,’, ’,

’Patm’:16,’, ’,

’Q1’:16,’, ’,

’Q*2’:16,’, ’,

’P1’:16,’, ’,

’P2’:16,’, ’,

’P3’:16,’, ’,

’P4’:16,’, ’,

’P5’:16);

repeat

writeln(tim/Tper:16:4,’ ’,dtim/Tper:16:4,’ ’,cBC[fixed2]:16:4,’ ’,obsval[obs5]:16:4);

writeln(RES,tim:16,’, ’,

tim/3600:16,’, ’,

cBC[fixed1]:16,’, ’,

FlxVal[Flx1].j:16,’, ’,

FlxVal[Flx2].j:16,’, ’,

obsval[obs1]:16,’, ’,

obsval[obs2]:16,’, ’,

obsval[obs3]:16,’, ’,

obsval[obs4]:16,’, ’,

obsval[obs5]:16);

tim:=tim+dtim;

run_model;

until tim>4*Tper;

Risø-R-1201(EN) 107

wr_gridfiles;

close_model;

end.

F F0130prg.dpr

program F0130prg;

(* --------------------- RnMod3d jobfile ---------------------- *)

(* Project: User guide example: *)

(* House simulation (slab-on-grade) *)

(* Created: September 26, 1998 *)

(* Revised: July 18, 2000 *)

{$I R3dirs03}

uses R3Defi03,R3Main03,R3Writ03;

const

LambdaRn222 = 2.09838e-6; (* 1/s *)

mu = 18.0e-6; (* Pa s *)

rho_g = 2.7e3; (* kg/m3 *)

LOstwald = 0.30; (* water/gas partitioning *)

deltaP = -1.0; (* Pa *)

(* Horizontal (x) dimensions, m *)

Lx_soil = 20.00;

Lx_slab = 5.6419;

Lx_footer = 0.300;

Lx_gap = 0.003;

(* Vertical (z) dimensions, m *)

Lz_soil = 10.00;

Lz_slab = 0.10;

Lz_gravel = 0.15;

Lz_footer = 0.80;

(* Radium-226 concentration, Bq/kg *)

ARa_soil = 40;

ARa_slab = 50;

ARa_gravel = 40;

ARa_footing = 0;

ARa_gap = 0;

(* Fraction of emanation, - *)

f_soil = 0.2;

f_slab = 0.1;

f_gravel = 0.2;

f_footing = 0;

f_gap = 0;

(* Porosity, - *)

etot_soil = 0.25;

etot_slab = 0.20;

etot_gravel = 0.40;

etot_footing = 0.20;

etot_gap = 1.00;

(* Volumetric water content, - *)

msat_soil = 0.20;

msat_slab = 0.0;

msat_gravel = 0.0;

108 Risø-R-1201(EN)

msat_footing = 0.0;

msat_gap = 0.0;

(* Bulk diffusivity, m2/s *)

D_soil = 4.3e-7;

D_slab = 2.0e-8;

D_gravel = 1.8e-6;

D_footing = 1.0e-10;

D_gap = 1.2e-5;

(* Gas permeability, m2 *)

k_soil = 1e-11;

k_slab = 1e-15;

k_gravel = 5e-9;

k_footing = 1e-15;

k_gap = 7.5e-7;

procedure grid;

begin

(* x-axis *)

set_FixVal(xFix1,0.000);

set_FixVal(xFix2,Lx_slab-Lx_gap);

set_FixVal(xFix3,Lx_slab);

set_FixVal(xFix4,Lx_slab+Lx_footer);

set_FixVal(xFix5,Lx_soil);

set_axis_double(xFix1,xFix2,15,15,FocusB,FocusB,2.1,3.0,0.97);

set_axis_single(xFix2,xFix3,5,FocusA,1.5);

set_axis_double(xFix3,xFix4,4,4,FocusA,FocusB,2.0,2.0,0.5);

set_axis_single(xFix4,xFix5,20,FocusA,2.5);

(* z-axis *)

set_FixVal(zFix1,-Lz_soil);

set_FixVal(zFix2,-Lz_footer);

set_FixVal(zFix3,-Lz_slab-Lz_gravel);

set_FixVal(zFix4,-Lz_slab);

set_FixVal(zFix5, 0.00);

set_axis_double(zFix1,zFix2,6,14,FocusA,FocusB,2.0,2.0,0.5);

set_axis_double(zFix2,zFix3,6,8,FocusA,FocusB,1.8,1.8,0.5);

set_axis_double(zFix3,zFix4,15,5,FocusB,FocusB,2.0,2,0.95);

set_axis_single(zFix4,zFix5,4,FocusB,3.0);

end;

procedure boundary_conditions_soilgas(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=deltaP;

cBC[fixed2]:=0;

if in_plane([inside,eqAB], (* Observe: Full slab, not just the gap *)

i,xFix1,xFix3,

j,yFix1,yFix2,

k,zFix5,zFix5) then

change_node(i,j,k,fixed1,ConX,ConX,ConX,ConX,ConX,ConX);

if in_plane([inside,eqAB], (* Atmospheric surface *)

i,xFix4,xFix5,

j,yFix1,yFix2,

k,zFix5,zFix5) then

change_node(i,j,k,fixed2,ConX,ConX,ConX,ConX,ConX,ConX);

end;

procedure boundary_conditions_radon(i:itype;j:jtype;k:ktype);

begin

cBC[fixed1]:=0;

cBC[fixed2]:=0;

if in_plane([inside,eqAB], (* Observe: Full slab, not just the gap *)

i,xFix1,xFix3,

Risø-R-1201(EN) 109

j,yFix1,yFix2,

k,zFix5,zFix5) then

change_node(i,j,k,fixed1,ConX,ConX,ConX,ConX,ConX,ConX);

if in_plane([inside,eqAB], (* Atmospheric surface *)

i,xFix4,xFix5,

j,yFix1,yFix2,

k,zFix5,zFix5) then

change_node(i,j,k,fixed2,ConX,ConX,ConX,ConX,ConX,ConX);

end;

procedure fluxes(i:itype;j:jtype;k:ktype);

begin

if in_plane([inside,eqAB],

i,xFix1,xFix2,

j,yFix1,yFix2,

k,zFix5,zFix5) then

begin

update_flxval(Flx1,bottom,i,j,k,plus); (* slab *)

update_flxval(Flx4,bottom,i,j,k,plus); (* add to total house entry *)

end;

if in_plane([inside,eqAB],

i,xFix2,xFix3,

j,yFix1,yFix2,

k,zFix5,zFix5) then

begin

update_flxval(Flx2,bottom,i,j,k,plus); (* gap *)

update_flxval(Flx4,bottom,i,j,k,plus); (* add to total house entry *)

end;

if in_plane([inside,eqAB],

i,xFix4,xFix5,

j,yFix1,yFix2,

k,zFix5,zFix5) then

update_flxval(Flx3,bottom,i,j,k,plus); (* atm. surface *)

end; (* fluxes *)

procedure probes;

var c1,dc1:datatype;

valid1:boolean;

begin

get_fieldvalue2d((wFixVal[xfix2].w+wFixVal[xfix3].w)/2,0.0005,

wFixVal[zfix4].w,0.000001,c1,dc1,valid1);

obsval[obs1]:=c1;

get_fieldvalue2d((wFixVal[xfix3].w+wFixVal[xfix4].w)/2,0.001,

wFixVal[zfix2].w-0.05,0.02,c1,dc1,valid1);

obsval[obs2]:=c1;

get_fieldvalue2d(wFixVal[xfix1].w+0.3,0.001,

wFixVal[zfix1].w+0.3,0.02,c1,dc1,valid1);

obsval[obs3]:=c1;

get_fieldvalue2d(wFixVal[xfix5].w-0.3,0.001,

wFixVal[zfix1].w+0.3,0.02,c1,dc1,valid1);

obsval[obs4]:=c1;

get_fieldvalue2d(wFixVal[xfix5].w-0.3,0.001,

wFixVal[zfix5].w-0.3,0.02,c1,dc1,valid1);

obsval[obs5]:=c1;

end; (* probes *)

function materials(i:itype;j:jtype;k:ktype):mattype;

var mat:mattype;

begin

mat:=mat1; (* soil *)

if in_region(i,xFix1,xFix2,[inside,eqab],

j,yFix1,yFix2,[inside,eqab],

k,zFix4,zFix5,[inside,eqab]) then mat:=mat2; (* slab *)

if in_region(i,xFix1,xFix3,[inside,eqab],

110 Risø-R-1201(EN)

j,yFix1,yFix2,[inside,eqab],

k,zFix3,zFix4,[inside,eqab]) then mat:=mat3; (* gravel *)

if in_region(i,xFix3,xFix4,[inside,eqab],

j,yFix1,yFix2,[inside,eqab],

k,zFix2,zFix5,[inside,eqab]) then mat:=mat4; (* footing *)

if in_region(i,xFix2,xFix3,[inside,eqab],

j,yFix1,yFix2,[inside,eqab],

k,zFix4,zFix5,[inside,eqab]) then mat:=mat5; (* gap *)

materials:=mat;

end; (* materials *)

function m(i:itype;j:jtype;k:ktype):datatype;

var mm:datatype;

begin

mm:=0;

case materials(i,j,k) of

mat1: mm:=msat_soil;

mat2: mm:=msat_slab;

mat3: mm:=msat_gravel;

mat4: mm:=msat_footing;

mat5: mm:=msat_gap;

else

error_std(’m’,’Unknown material’);

end;

m:=mm;

end;

function e_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

e_soilgas:=0;

end;

function beta_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

beta_soilgas:=0;

end;

function G_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

G_soilgas:=0;

end;

function Lambda_soilgas(i:itype;j:jtype;k:ktype):datatype;

begin

Lambda_soilgas:=0;

end;

function D_soilgas(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

var kk:datatype;

begin

kk:=0;

case materials(i,j,k) of

mat1: kk:=k_soil;

mat2: kk:=k_slab;

mat3: kk:=k_gravel;

mat4: kk:=k_footing;

mat5: kk:=k_gap;

else

error_std(’D_soilgas’,’Unknown material’);

end;

D_soilgas:=kk/mu

end;

function e_radon(i:itype;j:jtype;k:ktype):datatype;

Risø-R-1201(EN) 111

var ee:datatype;

begin

ee:=0;

case materials(i,j,k) of

mat1: ee:=etot_soil;

mat2: ee:=etot_slab;

mat3: ee:=etot_gravel;

mat4: ee:=etot_footing;

mat5: ee:=etot_gap;

else

error_std(’e’,’Unknown material’);

end;

e_radon:=ee;

end;

function beta_radon(i:itype;j:jtype;k:ktype):datatype;

var ea,ew:datatype;

begin

ew:=m(i,j,k)*e_radon(i,j,k);

ea:=e_radon(i,j,k)-ew;

beta_radon:=ea+LOstwald*ew;

end;

function G_radon(i:itype;j:jtype;k:ktype):datatype;

var GG,ee,lam:datatype;

begin

GG:=0;

ee:=e_radon(i,j,k);

lam:=lambdaRn222;

case materials(i,j,k) of

mat1: GG:=rho_g*(1-ee)/ee*lam*f_soil * ARa_soil;

mat2: GG:=rho_g*(1-ee)/ee*lam*f_slab * ARa_slab;

mat3: GG:=rho_g*(1-ee)/ee*lam*f_gravel * ARa_gravel;

mat4: GG:=rho_g*(1-ee)/ee*lam*f_footing * ARa_footing;

mat5: GG:=rho_g*(1-ee)/ee*lam*f_gap * ARa_gap;

else

error_std(’G’,’Unknown material’);

end;

G_radon:=GG;

end;

function Lambda_radon(i:itype;j:jtype;k:ktype):datatype;

begin

Lambda_radon:=LambdaRn222;

end;

function D_radon(dir:dirtype;i:itype;j:jtype;k:ktype):datatype;

var DD:datatype;

begin

DD:=0;

case materials(i,j,k) of

mat1: DD:=D_soil;

mat2: DD:=D_slab;

mat3: DD:=D_gravel;

mat4: DD:=D_footing;

mat5: DD:=D_gap;

else

error_std(’D_radon’,’Unknown material’);

end;

D_radon:=DD;

end;

begin (* main *)

runid := ’0130’;

112 Risø-R-1201(EN)

solution := steady;

geometry := cylindrical2d;

grid_def := grid;

flux_def := fluxes;

probe_def := probes;

materials_def := materials;

wr_iteration_line_screen := true;

wr_flux_during_calc_screen := true;

wr_axes := false;

(* First do the soil-gas simulation *)

runtitle := ’Slab-on-grade house (pressure)’;

boundary_conditions_def := boundary_conditions_soilgas;

e_def := e_soilgas;

beta_def := beta_soilgas;

G_def := G_soilgas;

lambda_def := lambda_soilgas;

D_def := D_soilgas;

import_finalfield_guess := true;

export_field := true;

flowfield := export;

import_field_name := ’PRES00.dat’;

export_field_name := import_field_name;

relax_factor := 1.98;

flux_convset := [flx1..flx3];

probe_convset := [obs1..obs4];

conv_evaluation_period := 300;

min_iterations := 150;

max_iterations := 10000;

max_time := 60*60;

max_change := 1e-10;

max_residual_sum := 1e-8;

run_model; (* Soil gas run *)

(* Then do the radon simulation *)

runtitle := ’Slab-on-grade house (radon)’;

boundary_conditions_def := boundary_conditions_radon;

e_def := e_radon;

beta_def := beta_radon;

G_def := G_radon;

lambda_def := lambda_radon;

D_def := D_radon;

import_finalfield_guess := true;

export_field := true;

flowfield := import;

import_field_name := ’Rn0000.dat’;

export_field_name := import_field_name;

relax_factor := 1.0;

flux_convset := [flx1..flx3];

probe_convset := [obs1..obs4];

conv_evaluation_period := 300;

min_iterations := 150;

max_iterations := 20000;

max_time := 60*60;

max_change := 1e-10;

max_residual_sum := 1e-8;

run_model; (* Radon run *)

writeln(LOG,’The total soil-gas entry into the house is (Flx4) = ’,FlxVal[Flx4].Q:16,’ m3/s’);

writeln(LOG,’The total radon entry into the house is (Flx4) = ’,FlxVal[Flx4].J:16,’ Bq/s’);

close_model;

end.

Risø-R-1201(EN) 113

References

[An92] C.E. Andersen: Entry of soil gas and radon into houses. Risø-R-
623(EN), Risø National Laboratory, DK-4000 Roskilde, Denmark,
1992.

[An99a] C.E. Andersen, D. Albarraćın, I. Csige, E.R. van der Graaf, M.
Jiránek, B. Rehs, Z. Svoboda, and L. Toro: ERRICCA radon model
intercomparison exercise, Risø-R-1120(EN), Risø National Labo-
ratory, DK-4000 Roskilde, Denmark, 1999 (This document can be
downloaded from Risø’s web-site: www.risoe.dk).

[An99b] C.E. Andersen: Radon-222 exhalation from Danish building mate-
rials: H+H Industri A/S results. Risø-R-1135(EN), Risø National
Laboratory, DK-4000 Roskilde, Denmark, 1999 (This document
can be downloaded from Risø’s web-site: www.risoe.dk).

[An99c] C.E. Andersen: Numerical modelling of radon-222 entry into
houses: An outline of techniques and results. Presented at Radon
in the living environment, April 19–23, 1999, Athens, Greece as
abstract no. 64. Submitted for publication in the workshop pro-
ceedings.

[Bi60] R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport phenom-
ena. John Wiley & Sons, 1960.

[Car59] H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids. Second
edition. Oxford Science Publications, Oxford, 1959.

[Cl79] H.L. Clever (ed.): Solubility data series. Volume 2. Krypton, xenon
and radon - gas solubilities. Pergamon Press, 1979.

[Co81] R. Collé, R.J. Rubin, L.I. Knab, and J.M.R. Hutchinson: Radon
transport through and exhalation from building materials: A Re-
view and assessment. NBS Technical Note 1139. National Bureau
of Standards, U.S. Department of Commerce, 1981.

[Do92] P.A. Domenico and F.W. Schwartz: Physical and Chemical Hydro-
geology. John Wiley and Sons, 1990.

[Fe99] J.H. Ferziger and M. Perić: Computational methods for fluid dy-
namics. Second edition. Springer, Berlin, Germany, 1999.

[He96] R. Helmig: Einführung in die numerischen Methoden der Umwelt-
strömungsmechanik. Institut für Computer Anwendungen im
Bauingenieurwesen, Techniche Universität Braunschweig, Ger-
many, 1996.

[Ho94] D.J. Holford: Rn3D: A finite element code for simulating gas flow
and radon transport in variably saturated, nonisothermal, porous
media: User’s manual, version 1.0. Pacific Northwest Laboratory,
USA, PNL-8943, 1994.

[Lo87] C.O. Loureiro: Simulation of the steady-state transport of radon
from soil into houses with basements under constant negative pres-
sure. LBL-24378, Lawrence Berkeley Laboratory, CA 94720, USA,
1987.

[Na92] W.W. Nazaroff: Radon transport from soil to air. Review of Geo-
physics, vol. 30(2), pp. 137–160, 1992.

114 Risø-R-1201(EN)

[Na88] W.W. Nazaroff, B.A. Moed, and R.G. Sextro: Soil as a source of In-
door Radon: Generation, Migration, and Entry. IN: W.W. Nazaroff
and A.V. Nero (eds.). Radon and its Decay Products in Indoor Air.
Wiley-Interscience, 1988.

[Pa80] S.V. Patankar: Numerical heat transfer and fluid flow. Hemisphere
Publishing Corporation, New York, 1980.

[Pa88] S.V. Patankar: Elliptic systems: Finite-difference method I. IN:
W.J. Minkowycz, E.M. Sparrow, G.E. Schneider, and R.H.
Pletcher: Handbook of numerical heat transfer. John Wiley & Sons
Inc., New York, 1988.

[Ri99] W.J. Riley, A.L. Robinson, A.J. Gadgil, and W.W. Nazaroff: Ef-
fects of variable wind speed and direction on radon transport from
soil into buildings: Model developement and exploratory results.
Atmospheric Environment, vol. 33, pp. 2157–2168, 1999.

[Rog91A] V.C. Rogers and K.K. Nielson: Multiphase radon generation and
transport in porous material. Health Physics, vol. 60, no. 6 (June),
pp. 807–815, 1991.

[Rog91B] V.C. Rogers and K.K. Nielson: Correlations for predicting air
permeabilities and 222radon diffusion coefficients of soils. Health
Physics, vol. 61, no. 2 (August), pp. 225–230, 1991.

[Sp98] W.H. van der Spoel: Radon transport in sand: A laboratory study.
Ph.D. dissertation, Technical University Eindhoven, the Nether-
lands, ISBN 90-386-0647-8, 1998.

[Th97] N.R. Thomson, J.F. Sykes, and D. van Vliet: A numerical investi-
gation into factors affecting gas and aqueous phase plumes in the
subsurface. Journal of Contaminant Hydrology, vol. 28, pp. 39–70,
1997.

[Ve95] H.K. Versteeg and W. Malalasekera: An introduction to computa-
tional fluid dynamics. The finite volume method. Longman, Edin-
burg, England, 1995.

[Wa94] J.W. Washington, A.R. Rose, E.J. Ciolkosz, and R.R. Dobos:
Gaseous diffusion and permeability in four soil profiles in central
Pennsylvania. Soil Science, vol. 157(2), pp. 65–76, 1994.

[Wo92] C.S. Wong, Y-P. Chin, and P.M. Gschwend: Sorption of radon-222
to natural sediments. Geochimica et Cosmochimica Acta, vol. 56,
pp. 3923–3932, 1992.

Risø-R-1201(EN) 115

Bibliographic Data Sheet Risø-R-1201(EN)

Title and author(s)

Radon transport modelling: User’s guide to RnMod3d

Claus E. Andersen

ISBN

87-550-2734-2 (printed edition)
87-550-2733-4 (internet edition)

ISSN

0106-2840

Dept. or group

Nuclear Safety Research Department

Date

August, 2000

Groups own reg. number(s) Project/contract No.

Pages

116

Tables

6

Illustrations

20

References

25

Abstract (Max. 2000 char.)

RnMod3d is a numerical computer model of soil-gas and radon transport in porous
media. It can be used, for example, to study radon entry from soil into houses in
response to indoor-outdoor pressure differences or changes in atmospheric pres-
sure. It can also be used for flux calculations of radon from the soil surface or to
model radon exhalation from building materials such as concrete.
The finite-volume model is a technical research tool, and it cannot be used mean-
ingfully without good understanding of the involved physical equations. Some
understanding of numerical mathematics and the programming language Pascal
is also required. Originally, the code was developed for internal use at Risø only.
With this guide, however, it should be possible for others to use the model.
Three-dimensional steady-state or transient problems with Darcy flow of soil gas
and combined generation, radioactive decay, diffusion and advection of radon can
be solved. Moisture is included in the model, and partitioning of radon between
air, water and soil grains (adsorption) is taken into account. Most parameters can
change in time and space, and transport parameters (diffusivity and permeability)
may be anisotropic.
This guide includes benchmark tests based on simple problems with known so-
lutions. RnMod3d has also been part of an international model intercomparison
exercise based on more complicated problems without known solutions. All tests
show that RnMod3d gives results of good quality.

Descriptors INIS/EDB

ADVECTION; BUILDINGMATERIALS; COMPUTERIZED SIMULATION; COM-
PUTER PROGRAM DOCUMENTATION; DIFFUSION; ENVIRONMENTAL
TRANSPORT; FINITE DIFFERENCEMETHOD; GAS FLOW; HOUSES; RADON
222; R CODES; SOILS

Available on request from:
Information Service Department, Risø National Laboratory
(Afdelingen for Informationsservice, Forskningscenter Risø)
P.O. Box 49, DK–4000 Roskilde, Denmark
Phone (+45) 46 77 46 77, ext. 4004/4005 · Fax (+45) 46 77 40 13
E-mail: risoe@risoe.dk

Risø National Laboratory carries out research within science and technology,
providing Danish society with new opportunities for technological development. The
research aims at strengthening Danish industry and reducing the adverse impact on
the environment of the industrial, energy and agricultural sectors.

Risø advises government bodies on nuclear affairs.

This research is part of a range of Danish and international research programmes and
similar collaborative ventures. The main emphasis is on basic research and
participation in strategic collaborative research ventures and market driven tasks.

Research is carried out within the following programme areas:

• Industrial materials
• New functional materials
• Optics and sensor systems
• Plant production and circulation of matter
• Systems analysis
• Wind energy and atmospheric processes
• Nuclear safety

Universities, research institutes, institutes of technology and businesses are
important research partners to Risø.

A strong emphasis is placed on the education of young researchers through Ph.D.
and post-doctoral programmes.

ISBN 87-550-2734-2
ISBN 87-550-2733-4 (Internet)
ISSN 0106-2840

Copies of this publication
are available from

Risø National Laboratory
Information Service Department
P.O. Box 49
DK-4000 Roskilde
Denmark
Telephone +45 4677 4004
risoe@risoe.dk
Fax +45 4677 4013
Website www.risoe.dk

	Cover (front)
	Title-page
	Abstract and copyright information
	Contents
	1. Introduction
	1.1 What problems can be solved?
	1.2 What problems can not be solved?
	1.3 How to gat a copy of RnMod3d
	1.4 Structure of this guide
	1.5 How to use RnMod3d
	1.6 Making a job file

	2. Installation
	2.1 Pascal compiler (Delphi)
	2.2 Pascal compiler (Borland Pascal 7)
	2.3 Source files
	2.4 Test case: F0000prd.dpr

	3. Method
	3.1 Basic definitions
	3.2 Radon transport equation
	3.3 Soil-gas transport equation
	3.4 RnMod3d treatment of radon and soil gas
	3.5 Finite-volume method

	4. Control variables
	4.1 runid
	4.2 runtitle
	4.3 solution
	4.4 geometry
	4.5 Ly
	4.6 grid_def
	4.7 force_new_grid_in_every_run
	4.8 boundary_conditions_def
	4.9 flux_def
	4.10 probe_def
	4.11 materials_def
	4.12 e_def
	4.13 beta_def
	4.14 G_def
	4.15 lambda_def
	4.16 D_def
	4.17 initialfield_def
	4.18 import_initialfield
	4.19 import_finalfield_guess
	4.20 export_field
	4.21 use_fieldbuffer
	4.22 flowfield
	4.23 flowfactor
	4.24 import_field_name
	4.25 export_field_name
	4.26 flowfield_name
	4.27 plotfiles_def
	4.28 user_procedure_each_iteration_def
	4.29 wr_details
	4.30 wr_main_procedure_id
	4.31 wr_all_procedure_id
	4.32 wr_iteration_line_log
	4.33 wr_iteration_screen
	4.34 wr_residual_during_calc_log
	4.35 wr_residual_during_calc_screen
	4.36 wr_flux_during_calc_log
	4.37 wr_flux_during_calc_screen
	4.38 wr_probes_during_calc_log
	4.39 wr_probes_during_calc_screen
	4.40 wr_final_results_log
	4.41 wr_final_results_screen
	4.42 wr_axes
	4.43 wr_nodes
	4.44 wr_nodes_numbers
	4.45 wr_node_sizes
	4.46 wr_coefficients
	4.47 wr_material_volumes
	4.48 warning_priority_log
	4.49 warning_priority_screen
	4.50 solver_def
	4.51 scheme
	4.52 relax_factor
	4.53 flux_convset
	4.54 probe_convset
	4.55 conv_evaluation_period
	4.56 min_iretations
	4.57 max_iterations
	4.58 max_time
	4.59 max_change
	4.60 max_residual_sum
	4.61 dtim
	4.62 BC_running
	4.63 BC_running_update_of_cBCs_def
	4.64 BC_running_min_iterations
	4.65 BC_running_max_residual_sum_before_new_BC
	4.66 BC_running_convergence_def
	4.67 wr_BC_running_messages_log
	4.68 wr_BC_running_messages_screen
	4.69 press_enter_wanted

	5. Geometry
	5.1 Grid size (memory issues)
	5.2 geometry
	5.3 set_Fixval
	5.4 wFixVal
	5.5 Node spacing
	5.6 set_axis_single
	5.7 set_axis_double
	5.8 set_axis_triple
	5.9 Location and size of specific control volumes
	5.10 Grid inspection: wr_axes
	5.11 Grid evaluation: dcdx and dcdxnorm

	6. Nodes and connectors
	6.1 Node types
	6.2 Connector types
	6.3 Default nodes and connectors
	6.4 Inspection of nodes and connectors
	6.5 set_node
	6.6 change_node
	6.7 boundary_conditions_def
	6.8 in_cube
	6.9 in_plane
	6.10 in_region
	6.11 in_interval

	7. Materials
	7.1 materials_def (mat1, mat2 etc.)
	7.2 Porosity, e_def
	7.3 Partition-corrected porosity, beta_def
	7.4 Generation rate, G_def
	7.5 Decay constant, lambda_def
	7.6 Diffusivity, D_def
	7.7 Moisture

	8. Flux probes (Flx1, Flx2 etc.)
	8.1 Fluxes between individual pairs of control volumes
	8.2 update_flxval
	8.3 FlxVal
	8.4 Standard flux probe output

	9. Field probes (Obs1, Obs2 etc.)
	9.1 ObsVal
	9.2 Standard field probe output
	9.3 fieldvalue
	9.4 fieldvalue2D
	9.5 get_fieldvalue
	9.6 get_fieldvalue2D
	9.7 get_avgfield
	9.8 get_avgfield2D

	10. Solution procedure
	10.1 First guess
	10.2 Relaxation
	10.3 Iterative solution procedures
	10.4 Criteria for convergence and residuals
	10.5 Scheme (space)
	10.6 Scheme (time)

	11. Time dependency
	11.1 solution := steady
	11.2 solution := unsteady
	11.3 Initial conditions
	11.4 Time-dependent boundary conditions
	11.5 Time-dependent material properties
	11.6 Time-dependent flow field of soil gas
	11.7 Full time dependency (cBUF1, cBUF2 and qBUF)

	12. Special boundary conditions
	12.1 Trial-and-error by hand
	12.2 BC_running

	13. Output ans debugging
	13.1 Standard files
	13.2 Other file output
	13.3 Contour plots: update_plotfile
	13.4 Stream lines
	13.5 Warnings
	13.6 Error messages
	13.7 Critical evaluation of results

	14. RnMod3d inside
	14.1 Index coordinates: i, j, and k
	14.2 The main data structure: GP
	14.3 Other variables
	14.4 datatype
	14.5 Memory
	14.6 Enummerated types
	14.7 Sequence of actions in run_model

	15. Benchmark tests
	15.1 F0100prg: Steady flow of soil gas
	15.2 F0101prg: Steady diffusion of radon
	15.3 F0102prg: Diffusion and advection of radon
	15.4 F0103prg: Time-dependent flow of soil gas

	16. House simulation example
	Appendix
	A. F0100prg.dpr
	B. Output: F0100LOG.dat
	C. F0101prg.dpr
	D. F0102prg.dpr
	E. F0103prg.dpr
	F. F0130prg.dpr

	References
	Bibliographic data sheet
	Cover (back)

