

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

User and programmers guide to the neutron ray-tracing package McStas, version 1.2

Nielsen, Kristian; Lefmann, K.

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, K., & Lefmann, K. (2000). User and programmers guide to the neutron ray-tracing package McStas,
version 1.2. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1175(EN)).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13769417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/user-and-programmers-guide-to-the-neutron-raytracing-package-mcstas-version-12(af495d7f-2018-449e-9063-2e5ce2f8a674).html

Risø–R–1175(EN)

User and Programmers Guide to the
Neutron Ray-Tracing Package
McStas, Version 1.2

Kristian Nielsen, Kim Lefmann

Risø National Laboratory, Roskilde, Denmark
January 2000

Abstract

The software package McStas is a tool for writing Monte Carlo ray-tracing simula-
tions of neutron scattering instruments with very high complexity and precision. The
simulations can compute all aspects of the performance of instruments and can thus be
used to optimize the use of existing equipment as well as the design of new instrumen-
tation. McStas is based on a unique design where an automatic compilation process
translates high-level textual instrument descriptions into efficient ANSI C code. This
design makes it simple to set up typical simulations and also give essentially unlimited
freedom to handle more unusual needs.
This report constitutes the reference manual for McStas, and contains full doc-

umentation for all ascpects of the program. It covers the various ways to compile
and run simulations; a description of the metalanguage used to define simulations;
a full description of all algorithms used to calculate the effects of the various opti-
cal components in instruments; and some example simulations performed with the
program.

This report documents McStas version 1.2, released January 31, 2000.

Front page illustration:

Simulated scattering from a vanadium sample taking into account the secondary extinc-
tion. See section D.1.

ISBN 87–550–2683–4
ISBN 87–550–2684–2 (Internet)
ISSN 0106–2840

Information Service Department · Risø · 2000

Contents

Preface and acknowledgements 7

1 Introduction to McStas 8
1.1 Background . 8

1.1.1 The goals of McStas . 8
1.2 The design of McStas . 9
1.3 Overview . 11

2 Running McStas 12
2.1 Using the graphical user interface . 12
2.2 Obtaining McStas . 13
2.3 Compiling McStas from source . 13
2.4 Running the instrument compiler . 14

2.4.1 Code generation options . 15
2.4.2 Specifying the location of files . 15
2.4.3 Embedding the generated simulations in other programs 16
2.4.4 Running the C compiler . 16

2.5 Running the simulations . 17
2.6 Using simulation front-ends . 18

2.6.1 The graphical user interface . 18
2.6.2 Running simulations with automatic compilation 21
2.6.3 Scans — varying simulation parameters over multiple runs 21
2.6.4 Graphical display of simulations . 22
2.6.5 Plotting the results of a simulation 22
2.6.6 Plotting resolution functions . 23

2.7 Analyzing and visualizing the simulation results 23

3 The McStas kernel and meta-language 25
3.1 Notational conventions . 25
3.2 Syntactical conventions . 26
3.3 Writing instrument definitions . 27

3.3.1 The instrument definition head . 27
3.3.2 The DECLARE section . 28
3.3.3 The INITIALIZE section . 28
3.3.4 The TRACE section . 28
3.3.5 The FINALLY section . 29

Risø–R–1175(EN) 3

3.3.6 The end of the instrument definition 29
3.4 Writing component definitions . 29

3.4.1 The component definition header . 29
3.4.2 The DECLARE section . 30
3.4.3 The INITIALIZE section . 31
3.4.4 The TRACE section . 31
3.4.5 The FINALLY section . 32
3.4.6 The MCDISPLAY section . 34
3.4.7 The end of the component definition 35

4 Monte Carlo Techniques and simulation strategy 36
4.1 The neutron weight, p . 36

4.1.1 Statistical errors of non-integer counts 37
4.2 Weight factor transformations during a Monte Carlo choice 38
4.3 Focusing components . 38
4.4 Transformation of random numbers . 39

5 The component library 41
5.1 Source components . 41

5.1.1 Source flat: A circular continuous source with a flat energy spectrum 42
5.1.2 Source flat lambda: A continous source with flat wavelength spectrum 42
5.1.3 Source flux lambda: A continuous source with absolute flux 42
5.1.4 Source div: A divergent source . 43
5.1.5 Moderator: A time-of-flight source 43
5.1.6 Source adapt: A neutron source with adaptive importance sampling 43

5.2 Simple optical components: Arms, slits, collimators, filters 46
5.2.1 Arm: The generic component . 47
5.2.2 Slit: The rectangular slit . 47
5.2.3 Circular slit: The circular slit . 47
5.2.4 Beamstop rectangular: The rectangular beam stop 47
5.2.5 Beamstop circular: The circular beam stop 47
5.2.6 Soller: The simple Soller blade collimator 47
5.2.7 Filter: A transmission filter . 49

5.3 Advanced optical components: mirrors and guides 49
5.3.1 Mirror reflectivity . 49
5.3.2 Mirror: The single mirror . 50
5.3.3 Guide: The guide section . 50
5.3.4 Channeled guide: A guide section component with multiple channels 52

5.4 Chopper-like components . 53
5.4.1 V selector: The rotating velocity selector 53
5.4.2 Chopper: The disc chopper . 53
5.4.3 First chopper: The first disc chopper 54

5.5 Detectors and monitors . 55
5.5.1 Monitor: The single monitor . 56
5.5.2 Monitor 4PI: The 4π monitor . 56
5.5.3 PSD monitor: The PSD monitor . 56

4 Risø–R–1175(EN)

5.5.4 PSD monitor 4PI: The 4π PSD monitor 56
5.5.5 PSD monitor 4PI log: The 4π PSD monitor with log scale 57
5.5.6 TOF monitor: The time-of-flight monitor 57
5.5.7 E monitor: The energy sensitive monitor 57
5.5.8 L monitor: The wavelength sensitive monitor 57
5.5.9 Divergence monitor: The divergence sensitive monitor 57
5.5.10 DivPos monitor: The divergence-position sensitive monitor 58
5.5.11 DivLambda monitor: The divergence-wavelength sensitive monitor . 58
5.5.12 Res monitor: The resolution monitor 58
5.5.13 Adapt check: The simple adaptive importance sampling monitor . . 59

5.6 Bragg scattering single crystals, monochromators 60
5.6.1 Mosaic simple: An infinitely thin mosaic crystal with a single scat-

tering vector . 60
5.6.2 Mosaic anisotropic: The crystal with anisotropic mosaic 63
5.6.3 Single crystal: The single crystal component 63
5.6.4 Monochromator: The monochromator crystal 69

5.7 Powder-like sample components . 69
5.7.1 Weight transformation in samples; focusing 69
5.7.2 V sample: An incoherent scatterer, the V-sample 70
5.7.3 Powder1: A general powder sample 71

5.8 Inelastic scattering kernels . 74
5.8.1 Res sample: A uniform scatterer for resolution calculation 74

6 The instrument library 78
6.1 A test instrument for the component V sample 78
6.2 The triple axis spectrometer TAS1 . 78
6.3 The time-of-flight spectrometer PRISMA 80

7 Planned expansions of McStas in the future 82

A Kernel calls and conversion constants 83
A.1 Kernel calls and functions . 83
A.2 Constants for unit conversion etc. 84

B McStas source code for the component library 86
B.1 Source components . 88

B.1.1 Source flat . 88
B.1.3 Source flux lambda . 90
B.1.4 Source div . 92
B.1.5 Moderator . 94
B.1.6 Source adapt . 96

B.2 Simple components . 100
B.2.1 Arm . 100
B.2.2 Slit . 101
B.2.6 Soller . 102
B.2.7 Filter . 104

Risø–R–1175(EN) 5

B.3 Beam optical components . 106
B.3.3 Guide . 106
B.3.4 Channeled Guide . 109

B.4 Chopper-like components . 113
B.4.1 V selector.comp . 113
B.4.2 Chopper.comp . 115

B.5 Detectors and monitors . 116
B.5.1 Monitor . 116
B.5.3 PSD monitor . 118
B.5.4 PSD monitor 4PI . 120
B.5.6 TOF monitor . 122
B.5.7 E monitor . 124
B.5.12 Res monitor . 126
B.5.13 Adapt check . 128

B.6 Crystals . 129
B.6.1 Mosaic simple . 129
B.6.3 Single crystal . 133

B.7 Powder-like samples . 146
B.7.2 V sample . 146
B.7.3 Powder1 . 149

B.8 Inelastic samples . 152
B.8.1 Res sample . 152

C McStas instrument definitions 156
C.1 Code for the instrument vanadium example.instr 156
C.2 Code for the instrument linup-7.instr . 157
C.3 Code for the instrument prisma2 . 161

D Test results 168
D.1 Scattering from the V-sample test instrument 168
D.2 Simulated and measured resolution of TAS1 168
D.3 Simple spectra from the PRISMA instrument 170

E The McStas terminology 173

Bibliography 174

6 Risø–R–1175(EN)

Preface and acknowledgements

This document contains information on the Risø Monte Carlo neutron ray-tracing program
McStas version 1.2, an update to the initial release 1.0 as presented in Ref. [2]. The reader
of this document is supposed to have some knowledge of neutron scattering, whereas only
little knowledge about simulation techniques is required. In a few places, we also assume
familiarity with the use of C, UNIX and of the world wide web (WWW).
It is a pleasure to thank Prof. Kurt N. Clausen for his continuous support to this

project and for having initiated the work in the first place. Both he and our other col-
laborators, Henrik M. Rønnow and Mark Hagen have made major contributions to the
project. Also the contributions from our test users, the students Asger Abrahamsen, Niels
Bech Christensen, and Erik Lauridsen, are gratefully acknowledged; they gave us an ex-
cellent opportunity to pinpoint a vast amount of serious errors in the test version. Useful
comments to this document itself have been given by Bella Lake and Alan Tennant. We
have also benefited from discussions with many other people in the neutron scattering
community, too numerous to mention here.
Philipp Bernhardt contributed the two chopper components in sections 5.4.2 and 5.4.3,

for which we are very grateful. We encourage other users to contribute components with
manual entries for inclusion in future versions of McStas.
This project has been supported by the European Union through the XENNI program

and the RTD “Cool Neutrons” and “SCANS” programs. This version of the project was
released January 31, 2000.

In case any errors, questions, suggestions, or other need for support should arise, do
not hesitate to contact the authors

Kristian Nielsen, Condensed Matter Physics and Chemistry Department,
Risø National Laboratory, 4000 Roskilde, Denmark.
phone +45 46 77 55 15, e-mail kristian.nielsen@risoe.dk

Kim Lefmann, Condensed Matter Physics and Chemistry Department,
Risø National Laboratory, 4000 Roskilde, Denmark.
phone +45 46 77 47 13, e-mail kim.lefmann@risoe.dk

or consult the McStas WWW home page [1].

Risø–R–1175(EN) 7

Chapter 1

Introduction to McStas

Efficient design and optimization of neutron spectrometers is a formidable challenge.
Monte Carlo techniques are well matched to meeting this challenge. However, no existing
package offers a general framework for tackling the problems currently faced at reactor
and spallation sources. The McStas project is designed to provide such a framework.
McStas (Monte Carlo Simulations of Triple Axis Spectrometers) is a fast and versatile

software tool for neutron ray-tracing simulations. It is based on a meta-language specially
designed for neutron simulation. Specifications are written in this language by users and
automatically translated into efficient simulations written in ANSI-C. The present version
supports both continuous and pulsed source type instruments, and includes a library
of standard components including single, position-sensitive, and time-of flight detectors,
supermirror guides, monochromators/analysers, a velocity selector and a disk chopper,
and powder and vanadium samples.
The McStas package is written in ANSI-C and is freely available for down-load from

the project home page [1]. The package is actively being developed and supported at Risø.
The system is well tested and is supplied with several examples and with documentation
in the form of this manual.

1.1 Background

The McStas project is the main part of a major effort in Monte Carlo simulations for
neutron scattering at Risø National Laboratory. Simulation tools are urgently needed,
not only to better utilize existing instruments (RITA [3, 4]), but also to design instrument
upgrades (TAS7), and to plan completely new instruments for new sources (European
Spallation Source, ESS [5]). Writing programs in C or FORTRAN for each of the different
cases involves a huge effort, with debugging presenting particularly difficult problems. A
higher level tool specially designed for the needs of simulating neutron instruments is
needed. As there was no existing simulation software that would fulfill our needs, the
McStas project was initiated.

1.1.1 The goals of McStas

The McStas project has four main goals:

8 Risø–R–1175(EN)

Correctness It is essential to minimize the potential for bugs in computer simulations.
When a word processing program contains bugs, it will produce bad-looking output or may
even crash. This is a nuisance, but at least you know that something is wrong. However,
when a simulation contains bugs it produces wrong results, and unless the results are far
off, you may not know about it! Complex simulations involve hundreds or even thousands
of lines of formulae, and “to err is human”. Thus the system should be designed from
the start to help minimize the potential for bugs to be introduced in the first place, and
provide good tools for testing to maximize the chances of finding the bugs that do creep
in.

Flexibility When you commit yourself to using a tool for an important project, you
need to know if the tool will satisfy not only your present, but also your future needs.
The tool must not have fundamental limitations that restrict its potential usage. Thus
the McStas systems needs to be flexible enough to simulate different kinds of instruments
(triple-axis, time-of-flight and possible hybrids) as well as many different kind of optical
components, and it must also be extensible so that future, as yet unforeseen, needs can
be satisfied.

Power “Simple things should be simple; complex things should be possible”. New ideas
should be easy to try out; the time from thought to action should be as short as possible.
If you are faced with the prospect of programming for two weeks before getting any results
on a new idea, you will most likely drop it. Ideally, if you have a good idea at lunch, then
the simulation should be running in the afternoon.

Efficiency Monte Carlo simulations are computationally intensive, hardware capacities
are finite (albeit impressive), and humans are impatient. Thus the system must assist in
producing simulations that run as fast as possible, without placing unreasonable burdens
on the user in order to achieve this.

1.2 The design of McStas

In order to meet its ambitious goals, it was decided that McStas should be based on
its own meta-language, specially designed for the needs of simulating neutron scattering
instruments. Simulations are written in this meta-language by the user, and the McStas
compiler automatically translates them into efficient simulation programs written in ANSI-
C.
In realizing the design of McStas, the task of doing simulations was separated into four

conceptual layers:

1. Modeling the physical processes of neutron scattering, i.e. the calculation of the
fate of a neutron that passes through the individual components of the instrument
(absorption, scattering at a particular angle, etc.)

2. Modeling of the overall instrument geometry, mainly consisting of the type and
position of the individual components.

Risø–R–1175(EN) 9

3. Accurate calculation, using Monte Carlo techniques, of instrument properties such
as resolution function from the result of ray tracing of a large number of neutrons.
This includes estimating the accuracy of the calculation.

4. Presentation of the calculations, graphical or otherwise.

Though obviously interrelated, these four layers can be usefully treated independently,
and this is reflected in the overall system architecture of McStas. The user will in many
situations be interested in knowing the details only in some of the layers. For example,
one user may merely look at some results prepared by others, without worrying about the
details of the calculation. Another user might want to simulate a new instrument without
having to reinvent the code for simulating the individual components in the instrument.
A third user may write an intricate simulation of a complex analyser such as the one
in the RITA spectrometer, and expect other users to easily benefit from his/her work,
and so on. McStas attempts to make it possible to work at any combination of layers in
isolation by separating the layers as much as possible in the design of the system and in
the meta-language in which simulations are written.
The usage of a special meta-language and an automatic compiler has several advan-

tages over writing a big monolithic program or a set of library functions in C, FORTRAN,
or another general-purpose programming language. The meta-language is more powerful ;
specifications are much simpler to write and easier to read when the syntax of the speci-
fication language reflects the problem domain. For example, the geometry of instruments
would be much more complex if it were specified in C code with static arrays and pointers.
The compiler can also take care of the low-level details of interfacing the various parts of
the specification with the underlying C implementation language and each other. This
way, users do not need to know about McStas internals to write new component or instru-
ment definitions, and even if those internals change in later versions of McStas, existing
definitions can be used without modification.
The McStas system also utilizes the meta-language to let the McStas compiler generate

as much code as possible automatically, letting the compiler handle some of the things
that would otherwise be the task of the user/programmer. Correctness is improved by
having a well-tested compiler generate code that would otherwise need to be specially
written and debugged by the user for every instrument or component. Efficiency is also
improved by letting the compiler optimize the generated code in ways that would be
time-consuming or difficult for humans to do. And the compiler can generate several
different simulations from the same specification, for example to optimize the simulations
in different ways, to generate a simulation that graphically displays neutron trajectories,
and possibly other things in the future that were not even considered when the original
instrument specification was written.
The design of McStas makes it well suited for doing “what if. . . ” types of simulations.

Once an instrument has been defined, questions such as “what if a slit was inserted”, “what
if a focusing monochromator was used instead of a flat one”, “what if the sample was offset
2 mm from the center of the axis” and so on are easy to answer; in a matter of minutes
the instrument definition can be modified and a new simulation program generated. It
also makes it simple to debug new components in isolation. A test instrument definition is
written containing a neutron source, the component to be tested, and whatever detectors

10 Risø–R–1175(EN)

are useful, and the component can be thoroughly tested before being used in a complex
simulation with many different components.
The McStas system is based on ANSI-C, making it both efficient and portable. The

meta-language allows the user to embed arbitrary C code in the specifications. Flexibility
is thus ensured since the full power of the C language is available if needed.

1.3 Overview

The McStas system consists of the following major parts:

• The McStas compiler. Section 2.3 explains how to compile and install the compiler
and associated files, while section 2.4 explains how to run the compiler to produce
simulations. Section 2.5 explains how to run the generated simulations.

• The McStas meta-language, described in chapter 3. This chapter also describes a
library of kernel functions and definitions that aid in the writing of simulations.

• The McStas component library. A collection of already written, well-tested optical
components that can be used in simulations. This library is documented in detail in
chapter 5. Code for the components can be found in appendix B.

• A collection of example instrument definitions, described in chapter 6, with source
code given in appendix C.

• A number of front-end programs that are used to run the generated simulations
and aid in the data collection and analysis from the results. These are described in
section 2.6

In addition, some of the results that have been obtained from simulations produced
with McStas are described in appendix D. An explanation of McStas terminology can be
found in appendix E. Some planned extensions are listed in chapter 7, and a list of library
calls that are used in component definitions appears in appendix A.

Risø–R–1175(EN) 11

Chapter 2

Running McStas

This is a tutorial for the first time user in how to make McStas work – either via down-
loading the ANSI-C source code over the WWW, or on direct connection to the host
computer. This release of McStas assumes that the user will compile the software himself
on a Unix-like system. Binary installations for Digital Unix, ix86 Linux, and HPUX will
be made available on request.
To use McStas one first writes an instrument definition file which describes the in-

strument to be simulated (or obtains a definition from the examples/ directory in the
distribution or from another source). This is then compiled with the McStas compiler to
produce a C program. The C program can then be compiled with a C compiler and run in
combination with various front-end programs to for example output the intensity at the
detector as a motor position is varied.

2.1 Using the graphical user interface

This section gives an ultra-brief overview of how to use McStas once it has been prop-
erly installed. It is intended for those who do not read manuals if they can avoid
it. For details on the different steps, see the following sections. This section uses the
vanadium_example.instr file supplied in the examples/ directory of the McStas distri-
bution, see appendix C.1.
To start the graphical user interface of McStas, run the command mcgui. This will

open a window with some menus etc, see figure 2.1.
To load an instrument, select “Open instrument” from the “File” menu. Open the file

vanadium_example.instr in the McStas distribution. Select “Run simulation” from the
“Simulation” menu. McStas will translate the definition into an executable program and
pop up a dialog window. Type a value for the “ROT” parameter (eg. 90), check the “Plot
results” option, and select “Start”. The simulation will run, and when it finishes after a
while the results will be plotted in a window.
To debug the simulation graphically, repeat the steps but check the “Trace” option

instead of the “Simulate” option. A windowwill pop up showing a sketch of the instrument.
The left mouse button starts a new neutron, the middle button zooms, and the right button
resets the zoom. The Q key quits.
For a slightly longer gentle introduction to McStas, see the McStas tutorial (available

12 Risø–R–1175(EN)

Figure 2.1: The graphical user interface mcgui.

from [1]).

2.2 Obtaining McStas

The source code for McStas may be obtained from Risø on a CD-Rom, or it may be
downloaded from the McStas WWW home page [1]. In either case, the source should
be available in a file named mcstas.tar.gz (the CD-Rom also contains this file under
the name mcstas.tgz for systems that do not understand long filenames, as well as the
unpacked sources in the directory mcstas/).
The conditions on the use of McStas can be read in the files LICENSE and LICENSE.LIB

in the distribution. Essentially, McStas may be used freely, but copies of McStas may not
be passed on to others. We are considering releasing future versions of McStas under a
more liberal license.

2.3 Compiling McStas from source

Compilation and installation of McStas proceeds in three simple steps. First, the sources
must be unpacked:

gunzip -c mcstas.tar.gz | tar xf -
cd mcstas/

Next, the configure script must be run to configure McStas for the particular machine
and operating system, and the software must be compiled:

./configure
make

Finally, McStas must be installed:

Risø–R–1175(EN) 13

make install

By default, McStas will be installed in the usr/local/ directory (this typically requires su-
peruser privileges). To install in another directory, the --prefix option of the configure
script can be used. For example, to install in /home/joe instead:

./configure --prefix=/home/joe
make
make install

Depending on which directory McStas is installed in, it may be necessary to add the bin/
subdirectory of the installation directory to the default path, or to run McStas with the
full pathname of the program (/usr/local/bin/mcstas by default).
The configure command will guess some reasonable defaults for the C compiler to

use. These will be used to compile McStas itself as well as the simulations produced by
McStas. To override1 the defaults, the environment variables CC and CFLAGS can be set to
the file name of the compiler to use and any special compiler options needed (for example
to enable optimization), respectively.
McStas has been tested on x86 Linux, Digital Unix, and HPUX. It should run on most

other Unix-like systems without trouble. The main thing to ensure is that an ANSI-C
compliant compiler is available (GCC works well). In case any difficulties arise, the authors
should be contacted so that the problems may be fixed in a later release of McStas.
To use the McStas front-end programs (see section 2.6), certain auxiliary packages must

be installed, as described in the README file in the distribution. These packages are all
freely available, and have been included on the McStas CD-Rom and on the WWW home
page. Some of these packages may be supplied with the operating system; for example,
all needed packages are included with Debian/GNU Linux [6].
Note that the core parts of McStas, including the McStas compiler and any generated

simulations, can work with no additional software apart from an ANSI-C compiler.

2.4 Running the instrument compiler

This section describes how to run the McStas compiler manually. Often, it will be more
convenient to use the front-end program mcgui (section 2.6.1) or mcrun (section 2.6.2).
These front-ends will compile and run the simulations automatically.
The compiler for the McStas instrument definition is invoked by typing a command of

the form

mcstas name.instr

This will read the instrument definition name.instr which must be written in the McStas
meta-language. The compiler will translate the instrument definition into a Monte-Carlo
simulation program written in ANSI-C. The output is by default written to a file in the
current directory with the same name as the instrument file, but with extension .c rather
than .instr. This can be overridden using the -o option as follows:

1It may be necessary to remove the file config.cache before re-installing McStas to have the new
settings take effect

14 Risø–R–1175(EN)

mcstas -o code.c name.instr

This writes the output to the file code.c. A single dash ‘-’ may be used for both input
and output filename to represent standard input and standard output, respectively.

2.4.1 Code generation options

By default, the output files from the McStas compiler are in ANSI-C with some extensions
(currently the only extension is the creation of new directories, which is not possible in
pure ANSI-C). The use of extensions may be disabled with the -p or --portable option.
With this option, the output is strictly ANSI-C compliant, at the cost of some slight
reduction in capabilities.
The -t or --trace option puts special “trace” code in the output. This code makes it

possible to get a complete trace of the path of every neutron through the instrument, as
well as the position and orientation of every component. This option is mainly used with
the mcdisplay front-end, described in section 2.6.4.
The code generation options can also be controlled by using preprocessor macros in the

C compiler, without the need to re-run the McStas compiler. If the preprocessor macro
MC_PORTABLE is defined, the same result is obtained as with the --portable option of
the McStas compiler. The effect of the --trace option may be obtained by defining the
MC_TRACE_ENABLED macro. Most Unix-like C compilers allow preprocessor macros to be
defined using the -D option, eg.

cc -DMC_TRACE_ENABLED -DMC_PORTABLE ...

2.4.2 Specifying the location of files

The McStas compiler needs to be able to find various files during compilation, some
explicitly requested by the user (such as component definitions and files referenced by
%include), and some used internally to generate the simulations. McStas looks for these
files in three places: first in the current directory, then in a list of directories given by the
user, and finally in a special McStas directory. Usually, the user will not need to worry
about this as McStas will automatically find the required files. But if users build their
own component library in a separate directory, or if McStas is installed in an unusual way,
it will be necessary to tell the compiler where to look for files.
The location of the special McStas directory is set when McStas is compiled. It defaults

to /usr/local/lib/mcstas, but it can be changed to something else if necessary, see
section 2.3 for details. The location can be overridden by setting the environment variable
MCSTAS:

setenv MCSTAS /home/joe/mcstas

for csh/tcsh users, or

export MCSTAS=/home/joe/mcstas

for bash/Bourne shell users.
To make McStas search additional directories for component definitions and include

files, use the -I switch for the McStas compiler:

Risø–R–1175(EN) 15

mcstas -I/home/joe/components -I/home/joe/neutron/include name.instr

Multiple -I options can be given, as shown.

2.4.3 Embedding the generated simulations in other programs

By default, McStas will generate a stand-alone C program, which is what is needed in
most cases. However, for advanced usage, such as embedding the generated simulation
in another program or even including two or more simulations in the same program, a
stand-alone program is not appropriate. For such usage, the McStas compiler provides
the following options:

• --no-main This option makes McStas omit the main() function in the generated
simulation program. The user must then arrange for the function mcstas_main()
to be called in some way.

• --no-runtime Normally, the McStas compiler copies into the generated simulation
program all the run-time C code necessary for declaring functions, variables, etc.
used during the simulation. This option makes McStas omit the run-time code from
the generated simulation program; the user must then explicitly link with the file
mcstas-r.c from the McStas distribution.

Users that need these options are encouraged to contact the authors for further help; see
page 7 for contact addresses.

2.4.4 Running the C compiler

After the source code for the simulation program has been generated with the McStas
compiler, it must be compiled with the C compiler to produce an executable. The gen-
erated C code obeys the ANSI-C standard, so it should be easy to compile it using any
ANSI-C (or C++) compiler. E.g. a typical Unix-style command would be

cc -O -o name.out name.c -lm

The -O option typically enables the optimization phase of the compiler, which can make
quite a difference in speed of McStas generated simulations. The -o name.out sets the
name of the generated executable. The -lm options is needed on many systems to link in
the math runtime library (like the cos() and sin() functions).
Monte Carlo simulations are computationally intensive, and it is often desirable to

have them run as fast as possible. Some success can be had in this respect by adjusting
the compiler optimization options. Here are some example platform and compiler combi-
nations that have been found to perform well (up-to-date information will be available on
the McStas WWW home page [1]):

• Intel x86 (“PC”) with Linux and GCC, using options gcc -O3.

• Intel x86 with Linux and EGCS (GCC derivate) using options egcc -O6.

• Intel x86 with Linux and PGCC (pentium-optimized GCC derivate), using options
gcc -O6 -mstack-align-double.

16 Risø–R–1175(EN)

• HPPA machines running HPUX with the optional ANSI-C compiler, using the op-
tions -Aa +Oall -Wl,-a,archive (the -Aa option is necessary to enable the ANSI-C
standard).

A warning is in place here: it is tempting to spend far more time fiddling with compiler
options and benchmarking than is actually saved in computation times. Even worse,
compiler optimizations are notoriously buggy; the options given above for PGCC on Linux
and the ANSI-C compiler for HPUX have been known to generate incorrect code in some
compiler versions. McStas actually puts an effort into making the task of the C compiler
easier, by in-lining code and using variables in an efficient way. As a result, McStas
simulations generally run quite fast, often fast enough that further optimizations are not
worthwhile.

2.5 Running the simulations

Once the simulation program has been generated by the McStas compiler and an exe-
cutable has been obtained with the C compiler, the simulation can be run in various ways.
The simplest is to run it directly from the command line or shell:

./name.out

Note the leading dot, which is needed if the current directory is not in the path searched
by the shell. When used in this way, the simulation will prompt for the values of any
instrument parameters such as motor positions, and then run the simulation and output
the results. This will output only a single data point compared to the tens of points
usually needed in a scan (such as of motor positions in a triple-axis instrument). Often
the simulation will be run using one of several available front-ends, as described in the
next section. These front-ends help manage output from the potentially many detectors
in the instruments, as well as running the simulation for each data point in a scan.
The generated simulations accept a number of options and arguments. The full list

can be obtained using the --help option:

./name.out --help

The values of instrument parameters may be specified as arguments using the syntax
name=val. For example

./vanadium_example.out ROT=90

The number of neutron histories to simulate may be set using the --ncount or -n option,
for example --ncount=2e5. The initial seed for the random number generator is by default
chosen based on the current time so that it is different for each run. However, for debugging
purposes it is sometimes convenient to use the same seed for several runs, so that the same
sequence of random numbers is used each time. To achieve this, the random seed may be
set using the --seed or -s option.
By default, McStas simulations write their results into several data files in the current

directory, overwriting any previous files stored there. The --dir=dir or -ddir option
causes the files to be placed instead in a newly created directory dir ; to prevent overwriting

Risø–R–1175(EN) 17

-s seed
--seed=seed

Set the initial seed for the random number generator. This may
be useful for testing to make each run use the same random
number sequence.

-n count
--ncount=count

Set the number of neutron histories to simulate. The default is
1,000,000.

-d dir
--dir=dir

Create a new directory dir and put all data files in that direc-
tory.

-f file
--file=file

Write all data into a single file file

-a
--ascii-only

Do not put any headers in the data files.

-h
--help

Show a short help message with the options accepted, including
the names of the parameters of the instrument.

-i
--info

Show extensive information on the simulation and the instru-
ment definition it was generated from.

-t
--trace

This option makes the simulation output the state of every
neutron as it passes through every component. Requires that
the -t (or --trace) option is also given to the McStas compiler
when the simulation is generated.

param=value Set the value of an instrument parameter, rather than having
to prompt for each one.

Table 2.1: Options accepted by McStas generated simulations

previous results it is an error if the directory already exists. Alternatively, all output may
be written instead to a single file file using the --file=file or -ffile option.
By default, data files contain header lines with information about the simulation from

which they originate. In case the data must be analyzed with programs that cannot read
files with such headers, they may be turned off using the --ascii-only or -a option.
The format of the output files from McStas simulations is described in more detail in

section 2.7. The complete list of options and arguments accepted by McStas simulations
appears in table 2.1.

2.6 Using simulation front-ends

McStas includes a number of front-end programs that extend the functionality of the
generated simulations. The front-end programs sit between the user and the simulations,
running the simulations and presenting the output in various ways to the user.
An extended set of front-end programs is planned for future versions of McStas, in-

cluding a NeXus data format option [7].

2.6.1 The graphical user interface

The front-end mcgui provides a graphical user interface that interfaces the various parts
of the McStas package. It is started using simply the command

18 Risø–R–1175(EN)

mcgui

The program may optionally be given the name of a simulation definition to load.
When the front-end is started, a main window is opened. This window displays the

output from compiling and running simulations, and also contains a few menus and but-
tons. The main purpose of the front-end is to edit and compile instrument definitions, run
the simulations, and visualize the results.

The menus

The “File” menu has the following features:

Open instrument This selects the name of an instrument file to use for other operations.

Edit current This opens a simple editor window for editing the current instrument def-
inition. This function is also available from the “Edit” button to the right of the
name of the instrument definition in the main window.

Spawn editor This starts the editor defined in the environment variable VISUAL or
EDITOR on the current instrument file. It is also possible to start an external editor
manually; in any case mcgui will recompile instrument definitions as necessary based
on the modification dates of the files on the disk.

Compile instrument This forces a recompile of the instrument definition, regardless of
file dates. This is for example useful to pick up changes in component definitions,
which the front-end will not notice automatically. See section 2.3 for how to override
which C compiler and options are used to compile simulations.

Quit Exit the graphical user interface front-end.

The “Simulation” menu has the following features:

Read old simulation This prompts for the name of a file from a previous run of a McStas
simulation (usually called mcstas.sim). The file will be read and any detector data
plotted using the mcplot front-end. The parameters used in the simulation will also
be made the defaults for the next simulation run. This function is also available
using the “Read” button to the right of the name of the current simulation data.

Run simulation This opens the run dialog window, explained further below.

Plot results This plots (using mcplot) the results of the last simulation run or loaded.

The run dialog

The run dialog is used to run simulations. It allows the entry of instrument parameters as
well as the specifications of options for running the simulation (see section 2.5 for details).
It also allows to run the mcdisplay (section 2.6.4) and mcplot (section 2.6.5) front-ends
together with the simulation.
The meaning of the different fields is as follows:

Risø–R–1175(EN) 19

Figure 2.2: The run dialog in mcgui.

Instrument parameters This allows the setting of the values for the input parameters
of the instrument.

Output to This allows the entry of a directory to store the resulting data files in (like
the --dir option). If no name is given, the results are put in the current directory,
to be overwritten by the next simulation.

Neutron count This sets the number of neutron histories to simulate (the --ncount
option).

Plot results If checked, the mcplot front-end will be run after the simulation has finished,
and the plot dialog will pop up (see below).

Random seed/Set seed to This selects between using a random seed (different in each
simulation) for the random number generator, or using a fixed seed (to reproduce
results for debugging).

Simulate/Trace This selects between running the simulation normally, or using the
mcdisplay front-end.

Start Run the simulation.

Cancel Abort the dialog.

Before running the simulation, the instrument definition is automatically compiled if it
is newer that the generated C file (or if the C file is newer than the executable simulation).
The executable simulation is assumed to have a .out suffix in the filename.

The plot dialog

Monitors and detectors This lists all the one- and two-dimensional detectors in the
instrument. Double-clicking one plots the data in the plot window.

Plot This plots the selected detector in the plot window, just like double-clicking its
name.

Overview plot This plots all the detectors together in the plot window.

20 Risø–R–1175(EN)

B&W postscript This prompts for a file name and saves the current plot as a black and
white postscript file. This can subsequently be printed on a postscript printer.

Colour postscript This creates a colour postscript file of the current plot.

Close This ends the dialog.

To use the mcgui front-end, the programs Perl, Perl/Tk, PGPLOT, PgPerl, and PDL
must all be properly installed on the system. It may be necessary to set the PGPLOT_DIR
environment variable; consult the documentation for PGPLOT on the local system in case
of difficulty.

2.6.2 Running simulations with automatic compilation

The mcrun front-end is a command-line program that implements the same automatic
compilation feature that is used in mcgui. The command

mcrun sim.instr parms ...

will compile the instrument definition sim.instr (if necessary) into an executable simu-
lation sim.out. It will then run sim.out, passing the parameters parms. See section 2.5
for details on the format of parms.
The mcrun front-end requires a working installation of Perl to run.

2.6.3 Scans — varying simulation parameters over multiple runs

The front-end gscan extends McStas generated simulations with the ability to run a series
of simulations, varying one or more parameters with each run, and collecting the results
in a data file. We refer to such a series of runs as a scan. The gscan front-end is typically
used to simulate scans on triple-axis instruments.
To run a scan with a simulation sim that has been previously generated with McStas

and compiled with the C compiler, run a command like

gscan M N sim file params ...

Here, M is the number of simulations to run, N is the number of neutrons to simulate
in each run, and file is the name of the file in which to output the results. The params
argument is a list of assignments of values to instrument parameters. It may take one of
two forms: param=value to assign a constant value to param, or param=low,high to vary
param linearly between low and high. For example

gscan 21 1e6 ./instrum.out output.dat TTM=74 TT=-5,5 TTA=74

The output file is in ASCII format, with one line for each simulation run. Each line
contains the values for the non-constant instrument parameters followed by the simulated
intensity, the estimated statistical error, and the neutron event count of each detector in
the instrument. I.e. in the simple case of an instrument with a single detector where a
single instrument parameter is scanned, there will be four numbers on each line: the value
of the scanned parameter, the detector intensity, the estimated detector error, and the
neutron event count.
The gscan front-end requires a working installation of Perl to run.

Risø–R–1175(EN) 21

2.6.4 Graphical display of simulations

The front-end mcdisplay is a graphical debugging tool. It presents a schematic drawing
of the instrument definition, showing the position of the components and the paths of
the simulated neutrons through the instrument. It is thus very useful for debugging a
simulation, for example to spot components in the wrong position or to find out where
neutrons are getting lost. The graphics is shown on an X Windows display.
To use the mcdisplay front-end with a simulation, run it as follows:

mcdisplay sim.out args . . .

where sim is the name of the simulation program generated with McStas and args . . . are
the normal command line arguments for the simulation, as explained under gscan. This
will view the instrument from above. A multi-display that shows the instrument from
three directions simultaneously can be shown using the --multi option:

mcdisplay --multi sim.out args . . .

The mcdisplay front-end can also be run from the mcgui front-end.
Click the left mouse button in the graphics window or hit the space key to see the

display of successive neutron trajectories. The ‘P’ key saves a postscript file containing
the current display that can be sent to the printer to obtain a hardcopy; the ‘C’ key
produces color postscript for those fortunate enough to have a color printer. To stop
the simulation prematurely, type ‘Q’ or use control-C as normal in the window in which
mcdisplay was started.
To see details in the instrument, it is possible to zoom in on a part of the instrument

using the middle mouse button (or the ‘Z’ key on systems with a one- or two-button
mouse). The right mouse button (or the ‘X’ key) resets the zoom. Note that after
zooming, the units on the different axes may no longer be equal, and thus the angles as
seen on the display may not match the actual angles.
Another way to see detail while maintaining an overview of the instrument is to use the

--zoom=factor option. This magnifies the display of each component along selected axis
only, eg. a Soller collimator is magnified perpendicular to the neutron beam but not along
it. This option may produce rather strange visual effects as the neutron passes between
components with different coordinate magnifications, but it is occationally useful.
When debugging, it is often the case that one is interested only in neutrons that reach

a particular component in the instrument. For example, if there is a problem with the
sample one may prefer not to see the neutrons that are absorbed in the monochromator
shielding. For these cases, the --inspect=comp option is useful. With this option, only
neutrons that reach the component named comp are shown in the graphics display.
See section 3.4.6 for how to make new components work with the mcdisplay front-end.

The mcdisplay front-end requires the Perl, the PGPLOT, and the PGPerl packages to
work.

2.6.5 Plotting the results of a simulation

The front-end mcplot is a program that produces plots of all the detectors in a simulation,
and it is thus useful to get a quick overview of the simulation results.
In the simplest case, the front-end is run simply by typing

22 Risø–R–1175(EN)

mcplot

This will plot any simulation data stored in the current directory, which is where simu-
lations put their results by default. If the --dir or --file options have been used (see
section 2.5), the name of the file or directory should be passed to mcplot, eg. “mcplot
dir” or “mcplot file”.
The initial display shows plots for each detector in the simulation. Clicking the left

mouse button on a plot produces a full-window version of that plot. The ‘P’ key saves
a postscript file containing the current plot that can be sent to the printer to obtain a
hardcopy; the ‘C’ key produces color postscript for those fortunate enough to have a color
printer. The ‘Q’ key quits the program (or CTRL-C in the controlling terminal may be
used as normal).
To use the mcplot front-end, the programs Perl, PGPLOT, PgPerl, and PDL must all

be properly installed on the system.

2.6.6 Plotting resolution functions

The mcresplot front-end is used to plot the resolution function of a triple-axis or inverse
geometry time-of-flight spectrometer, as calculated by the Res sample component (see
section 5.8.1). This front-end is still experimental, however it has been included in the
release since it may be useful despite its somewhat rough user interface.
The mcresplot front-end is run with the command

mcresplot file

Here, file is the name of a file output from a simulation using the Res monitor component
(section 5.5.12). The front-end will open two windows. One shows a three-dimensional
visualization of the resolution function using the two components of Q in the scattering
plane and ω. The plot may be rotated using the mouse while pressing the left button, and
zoomed while pressing the right button.
The other window displays the covariance matrix of the resolution function and the re-

sulting resolution matrix. This is mainly useful for triple-axis spectrometers. The bottom
four plots visualize the covariance matrix using four different projections. The top left
corner shows histograms of the resolution function along the three axes of Q and along
the ω axis.
Pressing the “Q” key while the three-dimensional window is active switches to a com-

bined plot where the yellow dots show the resolution function and the red dots show the
covariance matrix. A second press of the “Q” key ends the front-end program.
To use the mcresplot front-end, the programs Perl, PGPLOT, PgPerl, and PDL must

all be properly installed on the system.

2.7 Analyzing and visualizing the simulation results

To analyze simulation results, one uses the same tools as for analyzing experimental data,
i.e. programs such as the MATLAB packages Mview and Mfit [8] used at Risø. The output
files from simulations are simply columns of ASCII text that most programs should be
able to read. A future version of McStas will support output in the NeXus format [7].

Risø–R–1175(EN) 23

One-dimensional histogram detectors (time-of-flight, energy-sensitive) write one line
for each histogram bin. Each line contains a number identifying the bin (i.e. the time-of-
flight) followed by three numbers: The simulated intensity, an estimate of the statistical
error as explained in section 4.1.1, and the number of neutron events for this bin.
Two-dimensional histogram detectors (position sensitive detectors) output M lines of

N numbers representing neutron intensities, whereM and N are the number of bins in the
two dimensions. The two-dimentional detectors do not store any error estimates since this
is seldom useful, however if needed it can be obtained using MC_GETPAR in the FINALLY
section of the instrument definition, see section 3.4.2.
Single-point detectors output the neutron intensity, the estimated error, and the neu-

tron event count as numbers on the terminal. (The results from a series of simulations
may be combined in a data file using the gscan front-end as explained in section 2.6.3).
Both one- and two-dimentional detector output by default start with a header of com-

ment lines, all beginning with the ‘#’ character. This header gives such information as the
name of the instrument used in the simulation, the values of any instrument parameters,
the name of the detector component for this data file, etc. The headers may be disabled
using the --ascii-only option in case the file must be read by a program that cannot
handle the headers.
In addition to the files written for each one- and two-dimensional detector component,

another file (by default named mcstas.sim) is also created. This file is in a special
McStas ASCII format. It contains all available information about the instrument definition
used for the simulation, the parameters and options used to run the simulation, and the
detector components present in the instrument. It is read by the mcplot front-end (see
section 2.6.5). This file stores the results from single detectors, but by default contains
only pointers (in the form of file names) to data for one- and two-dimensional detectors.
By storing data in separate files, reading the data with programs that do not know the
special McStas file format is simplified. The --file option may be used to store all data
inside the mcstas.sim file instead of in separate files.
Note that the neutron event counts in detectors is typically not very meaningful except

as a way to measure the performance of the simulation. Use the simulated intensity instead
whenever analysing simulation data.

24 Risø–R–1175(EN)

Chapter 3

The McStas kernel and
meta-language

Instrument definitions are written in a special McStas meta-language which is translated
automatically by the McStas compiler into a C program that performs the simulation. The
meta-language is custom-designed for neutron scattering and serves two main purposes:
to specify the interaction of a single neutron with a single optical component, and to build
a simulation by constructing a complete instrument from individual components.
For maximum flexibility and efficiency, the meta-language is based on C. Instrument

geometry, propagation of neutrons between the different components, parameters, data
input/output etc. is handled in the meta-language and by the McStas compiler. Com-
plex calculations are done by C code embedded in the meta-language description of the
components. It is possible to set up an instrument from existing components and run a
simulation without writing a single line of C code, working entirely in the meta-language.
On the other hand, the full power of the C language is available for special-purpose setups
in advanced simulations, and for computing neutron trajectories in the components.
Apart from the meta-language proper, McStas also includes a number of C library

functions and definitions that are useful for ray-tracing simulations, listed in appendix A.
This includes functions for computing the intersection between a neutron flight-path and
various objects (such as cylinders and spheres), functions for generating random numbers
with various distributions, convenient conversion factors between relevant units, etc.
The McStas meta-language was designed to be readable, with a verbose syntax and

explicit mention of otherwise implicit information. The recommended way to get started
with the meta-language is to start by looking at the examples supplied with McStas,
modifying them as necessary for the application at hand.

3.1 Notational conventions

Simulations generated by McStas use a semi-classical description of the neutron to com-
pute the neutron trajectory through the instrument and its interaction with the different
components. In the current version of McStas the effect of gravity is not taken into ac-
count by the existing components, though it is perfectly possible to handle gravity in
user-written components if so desired.

Risø–R–1175(EN) 25

z

x

y

Figure 3.1: conventions for the orientations of the axis in simulations.

An instrument consists of a list of components through which the neutron passes one
after the other. Thus the order of components is significant; McStas does not automatically
check which component is the next to interact with the neutron at a given point in the
simulation.
The instrument is given a global, absolute coordinate system. In addition, every

component in the instrument has its own local coordinate system that can be given any
desired position and orientation (though the position and orientation must remain fixed
for the duration of a single simulation). By convention, the z axis points in the direction
of the beam, the x axis is perpendicular to the beam in the horizontal plane pointing left
as seen from the source, and the y axis points upwards. See figure 3.1. Nothing in McStas
enforces this convention, but if every component used different conventions the user would
be faced with a severe headache! So it is recommended that the convention be followed if
at all possible.
In the instrument definitions, units of length (e.g. component positions) are given in

meters and units of angles (e.g. rotations) are given in degrees. The state of the neutron
is given by its position (x, y, z) in meters, its velocity (vx, vy, vz) in meters per second,
the time t in seconds, and the spin1 s1, s2 having no dimension. In addition, the outgoing
neutron has an associated weight p which is used to model fractional neutrons in the
Monte Carlo simulation (so p = 0.2 means that a neutron following this path has a 20%
chance of reaching the present position without being absorbed or scattered away from
the instrument).

3.2 Syntactical conventions

Comments follow the normal C syntax “/* ... */”. C++ style comments “// ...” may
also be used.
Keywords are not case-sensitive, so for example “DEFINE”, “define”, and “dEfInE”

1The spin is ignored in the current version 1.2 of McStas. However, while not documented in this
manual, preliminary support for components that handle the neutron spin is implemented using the PO-
LARISATION PARAMETER construct. We are currently working together with Trefor Roberts at the
ILL to get a correct handling of the spin.

26 Risø–R–1175(EN)

are all equivalent. However, by convention we always write keywords in uppercase to
distinguish them from identifiers and C language keywords. In contrast, McStas identifiers,
like C identifiers and keywords, are case sensitive, another good reason to use a consistent
case convention for keywords.
It is possible, and usual, to split the input instrument definition across several different

files. For example, if a component is not explicitly defined in the instrument, McStas will
search for a file containing the component definition in the standard component library (as
well as in the current directory and any user-specified search directories, see section 2.4.2).
It is also possible to explicitly include another file using a line of the form

%include "file"

Beware of possible confusion with the C language “#include” statement, especially when
it is used in C code embedded within the McStas meta-language. Files referenced with
“%include” are read when the instrument is translated into C by the McStas compiler,
and must contain valid McStas meta-language input. Files referenced with “#include”
are read when the C compiler generates an executable from the generated C code, and
must contain valid C.
Embedded C code is used in several instances in the McStas meta-language. Such code

is copied by the McStas compiler into the generated simulation C program. Embedded C
code is written by putting it between the special symbols %{ and %}, as follows:

%{
. . . Embedded C code . . .

%}

The “%{” and “%}” must appear on a line by themselves.

3.3 Writing instrument definitions

The purpose of the instrument definition is to specify a sequence of components, along with
their position and parameters, which together make up an instrument. Each component
is given its own local coordinate system, the position and orientation of which may be
specified by its translation and rotation relative to another component. Some complete
examples of instrument definitions can be found in appendix C.
An instrument definition looks as follows:

3.3.1 The instrument definition head

DEFINE INSTRUMENT name (a1, a2, . . .)

This marks the beginning of the definition. It also gives the name of the instrument
and the list of instrument parameters. Instrument parameters describe the configuration
of the instrument, and usually correspond to setting parameters of the components. A
motor position is a typical example of an instrument parameter. The input parameters of
the instrument constitute the input that the user (or possibly a front-end program) must
supply when the generated simulation is run.

Risø–R–1175(EN) 27

3.3.2 The DECLARE section

DECLARE
%{

. . . C declarations of global variables etc. . . .
%}

This gives C declarations that may be referred in the rest of the instrument definition. A
typical use is to declare global variables or small functions that are used elsewhere in the
instrument. This section is optional.

3.3.3 The INITIALIZE section

INITIALIZE
%{

. . . C initializations. . . .
%}

This gives code that is executed when the simulation starts. This section is optional.

3.3.4 The TRACE section

The TRACE keyword starts a section giving the list of components that constitute the
instrument
Components are declared like this:

COMPONENT name = comp(p1 = v1, p2 = v2, . . .)

This declares a component named name that is an instance of the component definition
named comp. The parameter list gives the setting and definition parameters for the
component. The values v1, v2, . . . may be constant numbers, strings, names of instrument
parameters, or names of C identifiers. To assign the value of a general expression to a
parameter, it is currently necessary to declare a variable in the DECLARE section, assign
the value to the variable in the INITIALIZE section, and use the variable as the value for
the parameter. A future version of McStas will make it possible to write the expression
directly in the argument list of the component.
The McStas program takes care to rename parameters appropriately in the output so

that no conflicts occur between different component definitions or between component and
instrument definitions. It is thus quite possible (and usual) to use a component definition
multiple times in an instrument description.
The McStas compiler will automatically search for a file containing a definition of the

component if it has not been previously declared. The definition is searched for in a file
called “name.comp”, “name.cmp”, or “name.com”. See section 2.4.2 for details on which
directories are searched. This facility is often used to refer to existing component defini-
tions in standard component libraries. It is also possible to write component definitions in
the main file before the instrument definitions, or to explicitly read definitions from other
files using %include.
The position of a component is specified using an AT modifier following the component

declaration:

28 Risø–R–1175(EN)

AT (x, y, z) RELATIVE name

This places the component at position (x, y, z) in the coordinate system of the previ-
ously declared component name. Placement may also be absolute (not relative to any
component) by writing

AT (x, y, z) ABSOLUTE

The AT modifier is required.
Rotation is achieved similarly by writing

ROTATED (φx, φy, φz) RELATIVE name

This will result in a coordinate system that is rotated first the angle φx (in degrees) around
the x axis, then φy around the y axis, and finally φz around the z axis. Rotation may also
be specified using ABSOLUTE rather than RELATIVE. If no rotation is specified, the default
is (0, 0, 0) using the same relative or absolute specification used in the AT modifier.

3.3.5 The FINALLY section

FINALLY
%{

. . . C code to execute at end of simulation . . .
%}

This gives code that will be executed when the simulation has ended.

3.3.6 The end of the instrument definition

The end of the instrument definition is marked using the keyword

END

3.4 Writing component definitions

The purpose of a component definition is to model the interaction of a neutron with the
component. Given the state of the incoming neutron, the component definition calculates
the state of the neutron when it leaves the component. The calculation of the effect of
the component on the neutron is performed by a block of embedded C code. Complete
examples of component definitions can be found in appendix B.
A component definition looks as follows:

3.4.1 The component definition header

DEFINE COMPONENT name

This marks the beginning of the definition, and defines the name of the component.

DEFINITION PARAMETERS (d1, d2, . . .)

Risø–R–1175(EN) 29

This declares the definition parameters of the component. Definition parameters define
properties of the component that cannot change for a given physical incarnation of the
component, but which might vary among different components of the same type. Typical
examples are physical dimensions, crystal plane distances, etc.

SETTING PARAMETERS (s1, s2, . . .)

This declares the setting parameters of the component. Setting parameters define the
configuration of the component and typically changes during an experiment. An example
is the position of a motor.
The reason for the distinction between definition and setting parameters is mainly

historical. In the current McStas version, there is not much difference between them in
practice, and the use of one or the other is often just a question of conventions. There
is one important difference, though. The argument for a setting parameter must be of
numeric type (e.g. a C double). If a parameter is of non-numeric type (e.g. a string or a
macro definition), it must be made a definition parameter.
It is possible that setting and definition parameters will be merged in a future version,

though they will both be supported for backward compatibility.

OUTPUT PARAMETERS (s1, s2, . . .)

This declares a list of C identifiers that are output parameters for the component. Output
parameters are used to hold values that are computed by the component itself, rather than
being passed as input. This could for example be a count of neutrons in a detector or a
constant that is precomputed to speed up computation. Output parameters will typically
be declared as C variables in the DECLARE section, see section 3.4.2 below for an example.
The OUTPUT PARAMETERS section is optional.

STATE PARAMETERS (x, y, z, vx, vy, vz, t, s1, s2, p)

This declares the parameters that define the state of the incoming neutron. The task of
the component code is to assign new values to these parameters based on the old values
and the values of the definition and setting parameters.

3.4.2 The DECLARE section

DECLARE
%{

. . . C code declarations . . .
%}

This gives C declarations of global variables etc. that are used by the component code.
This may for instance be used to declare a neutron counter for a detector component.
This section is optional.
Note that any variables declared in a DECLARE section are global. Thus a name conflict

may occur if two instances of a component are used in the same instrument. To avoid this,
variables declared in the DECLARE section should be output parameters of the component;
McStas will then take care to rename variables as necessary to avoid conflicts. For example,
a simple detector might be defined as follows:

30 Risø–R–1175(EN)

DEFINE COMPONENT Detector
OUTPUT PARAMETERS (counts)
DECLARE
%{
int counts;

%}
...

The idea is that the counts variable counts the number of neutrons detected. In the
instrument definition, the counts parameter may be referenced using the MC_GETPAR C
macro, as in the following example instrument fragment:

COMPONENT d1 = Detector()
...
COMPONENT d2 = Detector()
...
FINALLY
%{
printf("Detector counts: d1 = %d, d2 = %d\n",

MC_GETPAR(d1,counts), MC_GETPAR(d2,counts));
%}

3.4.3 The INITIALIZE section

INITIALIZE
%{

. . . C code initialization . . .
%}

This gives C code that will be executed once at the start of the simulation, usually to
initialize any variables declared in the DECLARE section. This section is optional.

3.4.4 The TRACE section

TRACE
%{

. . . C code to compute neutron interaction with component . . .
%}

This performs the actual computation of the interaction between the neutron and the com-
ponent. The C code should perform the appropriate calculations and assign the resulting
new neutron state to the state parameters.
The C code may also execute the special macro ABSORB to indicate that the neutron

has been absorbed in the component; the simulation of that neutron will then be aborted.
If the component simulates multiple events (for example multiple reflections in a guide,
or multiple scattering in a powder sample), the special macro SCATTER should be called.
This does not affect the results of the simulation in any way, but it allows the front-end
programs to visualize the scattering events properly. The SCATTER macro should be called

Risø–R–1175(EN) 31

with the state parameters set to the proper calues for the scattering event. For an example
of SCATTER, see the Channeled guide component (section 5.3.4).

3.4.5 The FINALLY section

FINALLY
%{

. . . C code to execute at end of simulation . . .
%}

This gives code that will be executed when the simulation has ended. This might be used
to print out results from components, e.g. the simulated intensity in a detector.
In order to work properly with the common output file format used in McStas, all

monitor/detector components should use standard macros for outputting data in the FI-
NALLY section, as explained below. In the following, we use p =

∑
i pi to denote the sum

of the weights of detected neutrons, N =
∑

i p
0
i to denote the count of detected neutron

events, and p2 =
∑

i p
2
i to denote the sum of the squares of the weights, as explained in

section 4.1.1.

Single detectors/monitors The results of a single detector/monitor is output using
the following macro:

DETECTOR OUT 0D(t, N, p, p2)

Here, t is a string giving a short descriptive title for the results, eg. “Single monitor”.

One-dimensional detectors/monitors The results of a one-dimensional detector/
monitor are output using the following macro:

DETECTOR OUT 1D(t, xlabel, ylabel, xvar, xmin, xmax, m,
&N [0], &p[0], &p2 [0], filename)

Here,

• t is a string giving a descriptive title (eg. “Energy monitor”),

• xlabel is a string giving a descriptive label for the X axis in a plot (eg. “Energy
[meV]”),

• ylabel is a string giving a descriptive label for the Y axis of a plot (eg. “Intensity”),

• xvar is a string giving the name of the variable on the X axis (eg. “E”),

• xmin is the lower limit for the X axis,

• xmax is the upper limit for the X axis,

• m is the number of elements in the detector arrays,

• &N [0] is a pointer to the first element in the array of N values for the detector
component (or NULL, in which case no error bars will be computed),

32 Risø–R–1175(EN)

• &p[0] is a pointer to the first element in the array of p values for the detector
component,

• &p2 [0] is a pointer to the first element in the array of p2 values for the detector
component (or NULL, in which case no error bars will be computed),

• filename is a string giving the name of the file in which to store the data.

Two-dimensional detectors/monitors The results of a two-dimensional detector/
monitor are output using the following macro:

DETECTOR OUT 2D(t, xlabel, ylabel, xmin, xmax, ymin, ymax, m, n,
&N [0][0], &p[0][0], &p2 [0][0], filename)

Here,

• t is a string giving a descriptive title (eg. “PSD monitor”),

• xlabel is a string giving a descriptive label for the X axis in a plot (eg. “X position
[cm]”),

• ylabel is a string giving a descriptive label for the Y axis of a plot (eg. “Y position
[cm]”),

• xmin is the lower limit for the X axis,

• xmax is the upper limit for the X axis,

• ymin is the lower limit for the Y axis,

• ymax is the upper limit for the Y axis,

• m is the number of elements in the detector arrays along the X axis,

• n is the number of elements in the detector arrays along the Y axis,

• &N [0][0] is a pointer to the first element in the array of N values for the detector
component,

• &p[0][0] is a pointer to the first element in the array of p values for the detector
component,

• &p2 [0][0] is a pointer to the first element in the array of p2 values for the detector
component,

• filename is a string giving the name of the file in which to store the data.

Note that for a two-dimensional detector array, the first dimension is along the X axis
and the second dimension is along the Y axis. This means that element (ix, iy) can be
obtained as p[ix ∗ n+ iy] if p is a pointer to the first element.

Risø–R–1175(EN) 33

3.4.6 The MCDISPLAY section

MCDISPLAY
%{

. . . C code to draw a sketch of the component . . .
%}

This gives C code that draws a sketch of the component in the plots produced by the
mcdisplay front-end (see section 2.6.4). The section can contain arbitrary C code and may
refer to the parameters of the component, but usually it will consist of a short sequence of
the special commands described below that are only available in the MCDISPLAY section.
When drawing components, all distances and positions are in meters and specified in the
local coordinate system of the component.
The MCDISPLAY section is optional. If it is omitted, mcdisplay will use a default

symbol (a small circle) for drawing the component.

The magnify command This command, if present, must be the first in the section. It
takes a single argument: a string containing zero or more of the letters “x”, “y” and “z”.
It causes the drawing to be enlarged along the specified axis in case mcdisplay is called
with the --zoom option. For example:

magnify("xy");

The line command The line command takes the following form:

line(x1, y1, z1, x2, y2, z2)

It draws a line between the points (x1, y1, z1) and (x2, y2, z2).

The multiline command The multiline command takes the following form:

multiline(n, x1, y1, z1, ..., xn, yn, zn)

It draws a series of lines through the n points (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn). It
thus accepts a variable number of arguments depending on the value of n. This exposes it
to one of the nasty quirks of C, in that no type checking is performed by the C compiler.
It is thus very important that all arguments to multiline (except n) are valid numbers
of type double. A common mistake is to write

multiline(3, x, y, 0, ...)

which will silently produce garbage output. This must instead be written as

multiline(3, (double)x, (double)y, 0.0, ...)

The circle command The circle command takes the following form:

circle(plane, x, y, z, r)

Here plane should be either "xy", "xz", or "yz". The command draws a circle in the
specified plane with the center at (x, y, z) and the radius r.

34 Risø–R–1175(EN)

3.4.7 The end of the component definition

END

This marks the end of the component definition.

Risø–R–1175(EN) 35

Chapter 4

Monte Carlo Techniques and
simulation strategy

This chapter explains the simulation strategy and the Monte Carlo techniques used in
McStas. We first explain the concept of the neutron weight factor, and discuss the statis-
tical errors in dealing with sums of neutron weights. After, we give an expression for how
the weight factor should transform under a Monte Carlo choice and specialize this to the
concept of focusing components. Finally, we present a way of generating random numbers
with arbitrary distributions.

4.1 The neutron weight, p

A totally realistic semi-classical simulation will require that each neutron is at any time
either present or not (it might be ABSORB’ed or lost in another way). In many set-
ups, e.g. triple axis spectrometers, only a small fraction of the initial neutrons will ever
be detected, and simulations of this kind will therefore waste much time in dealing with
neutrons that get lost.
A very important means of speeding up calculations is to introduce a neutron weight

for each simulated neutron and to adjust this weight according to the path of the neutron.
If e.g. the reflectivity of a certain optical component is 10%, and only reflected neutrons
are considered in the simulations, the neutron weight will be multiplied by 0.10 by passage
of this component, but every neutron is allowed to reflect in the component. In contrast,
the totally realistic simulation of the component would require in average ten incoming
neutrons for each reflected one.
Let the initial neutron weight be p0 and let us denote the weight multiplication factor

in the j’th component by πj. The resulting weight factor for the neutron after passage of
the whole instrument must eventually be equal to the product of all the contributions

p = p0
n∏
j=1

πj . (4.1)

For convenience, the value of p is updated within each component.
Simulation by weight adjustment is performed whenever possible. This includes

36 Risø–R–1175(EN)

• Transmission through filter.

• Transmission through Soller blade collimator (in the approximation which does not
take each blade into account).

• Reflection from monochromator (and analyser) crystals with finite reflectivity and
mosaicity.

• Scattering from samples.

4.1.1 Statistical errors of non-integer counts

In a typical simulation, the result will consist of a count of neutrons with different weights.1

One may write the counting result as

I =
∑
i

pi = Np, (4.2)

where N is the number of neutrons in the detector and the vertical bar denote averaging.
By performing the weight transformations, the (statistical) mean value of I is unchanged.
However, N will in general be enhanced, and this will improve the statistics of the simu-
lation.
To give some estimate of the statistical error, we proceed as follows: Let us first for

simplicity assume that all the counted neutron weights are almost equal, pi ≈ p, and
that we observe a large number of neutrons, N ≥ 10. Then N almost follows a normal
distribution with the uncertainty σ(N) =

√
N 2. Hence, the statistical uncertainty of the

observed intensity becomes
σ(I) =

√
Np = I/

√
N, (4.3)

as is used in real neutron experiments (where p ≡ 1). For a better approximation we
return to (4.2). Allowing variations in both N and p, we calculate the variance of the
resulting intensity, assuming that the two variables are independent and both follow a
Gaussian distribution.

σ2(I) = σ2(N)p2 +N 2σ2(p) = Np2 +N 2σ2(p). (4.4)

Assuming that the individual weights, pi, follow a Gaussian distribution (which in many
cases is far from the truth) we have N 2σ2(p) = σ2(

∑
i pi) = Nσ

2(pi) and reach

σ2(I) = N
(
p2 + σ2(pi)

)
. (4.5)

The statistical variance of the pi’s is estimated by σ2(pi) ≈ (N − 1)−1(
∑

i p
2
i −Np2). The

resulting variance then reads

σ2(I) =
N

N − 1

(∑
i

p2i − p2
)
. (4.6)

1The sum of these weights is an estimate of the mean number of neutrons hitting the monitor (or
detector) in a “real” experiment where the number of neutrons emitted from the source is the same as the
number of simulated neutrons.

2This is not correct in a situation where the detector counts a large fraction of the neutrons in the
simulation, but we will neglect that for now.

Risø–R–1175(EN) 37

For large values of N , this is very well approximated by the simple expression

σ2(I) ≈
∑
i

p2i . (4.7)

In order to compute the intensities and uncertainties, the detector components in
McStas thus must keep track of N =

∑
i p
0
i , I =

∑
i p
1
i , and M2 =

∑
i p
2
i .

4.2 Weight factor transformations during a Monte Carlo
choice

When a Monte Carlo choice must be performed, e.g. when the initial energy and direction
of the neutron is decided at the source, it is important to adjust the neutron weight so
that the combined effect of neutron weight change and Monte Carlo probability equals the
actual physical properties of the component.
Let us follow up on the example of a source. In the “real” semi-classical world, there is a

distribution (probability density) for the neutrons in the six dimensional (energy, direction,
position) space of Π(E,Ω, r) = dP/(dEdΩd3r) depending upon the source temperature,
geometry etc. In the Monte Carlo simulations, the six coordinates are for efficiency reasons
in general picked from another distribution: fMC(E,Ω, r) 	= Π(E,Ω, r), since one would
e.g. often generate only neutrons within a certain parameter interval. However, we must
then require that the weights are adjusted by a factor πj (in this case: j = 1) so that

fMC(E,Ω, r)πj(E,Ω, r) = Π(E,Ω, r). (4.8)

For the sources present in version 1.2, only the (Ω, r) dependence of the correction factors
are taken into account.
The weight factor transformation rule (4.8) is of course also valid for other types of

Monte Carlo choices, although the probability distributions may depend upon different
parameters. An important example is elastic scattering from a powder sample, where
the Monte-Carlo choices are the scattering position and the final neutron direction. See
subsection 5.7.
It should be noted that the πj’s found in the weight factor transformation are multiplied

by the πj ’s found by the weight adjustments described in subsection 4.1 to yield the final
neutron weight given by Eq. (4.1).

4.3 Focusing components

An important application of weight transformation is focusing. Assume that the sample
scatters the neutrons in many directions. In general, only neutrons flying in some of
these directions will stand any chance of being detected. These directions we call the
interesting directions. The idea in focusing is to avoid wasting computation time on
neutrons scattered in the uninteresting directions. This trick is an instance of what in
Monte Carlo terminology is known as importance sampling.
If e.g. a sample scatters isotropically over the whole 4π solid angle, and all interesting

directions are known to be contained within a certain solid angle interval ∆Ω, only these

38 Risø–R–1175(EN)

solid angles are used for the Monte Carlo choice of scattering direction. According to (4.8),
the weight factor will then have to be changed by the (fixed) amount πj = |∆Ω|/(4π). One
thus ensures that the mean simulated intensity is unchanged during a ”correct” focusing,
while a too narrow focusing will result in a lower (i.e. wrong) intensity, since one cuts
away neutrons that would otherwise have counted..
One could also think of using adaptive importance sampling, so that McStas during

the simulations will determine the most interesting directions and gradually change the
focusing according to that. A first implementation of this idea is found in the Source adapt
component, described in section 5.1.6.

4.4 Transformation of random numbers

In order to perform the Monte Carlo choices, one needs to be able to pick a random
number from a given distribution. However, most random number generators only give
uniform distributions over a certain interval. We thus need to be able to transform between
probability distributions, and we here give a short explanation on how to do this.
Assume that we pick a random number, x, from a distribution φ(x). We are now

interested in the shape of the distribution of the transformed y = f(x), assuming f(x) is
monotonous. All random numbers lying in the interval [x; x+ dx] are transformed to lie
within the interval [y; y+f ′(x)dx], so the resulting distribution must be φ(y) = φ(x)/f ′(x).
If the random number generator selects numbers uniformly in the interval [0; 1], we

have φ(x) = 1, and one may evaluate the above expression further

φ(y) =
1

f ′(x)
=
d

dy
f−1(y). (4.9)

By indefinite integration we reach∫
φ(y)dy = f−1(y) = x, (4.10)

which is the essential formula for finding the right transformation of the initial random
numbers. Let us illustrate with a few examples of transformations used within the McStas
components.

The circle For finding a random point within the circle of radius R, one would like
to choose the polar angle from a uniform distribution in [0; 2π] and the radius from the
normalised distribution φ(r) = 2r/R2. The polar angle is found simply by multiplying a
random number with 2π. For the radius, we like to find r = f(x), where again x is the
generated random number. Left side of Eq. (4.10) gives

∫
φ(r)dr =

∫
2r/R2dr = r2/R2,

which should equal x. Hence r = R
√
x.

Exponential decay In a simple time-of-flight source, the neutron flux decays expo-
nentially after the initial activation at t = 0. We thus want to pick an initial neutron
emission time from the normalised distribution φ(t) = exp(−t/τ)/τ . Use of Eq. (4.10)
gives x = − exp(−t/τ), which is a number in the interval [−1; 0]. If we want to pick a
positive random number instead, we will have to change sign by x1 = −x and thus reach
t = −τ ln(x1).

Risø–R–1175(EN) 39

The sphere For finding a random point on the surface of the unit sphere, one needs to
determine the two angles, (θ, ψ). As for a circle, ψ is chosen from a uniform distribution
in [0; 2π]. The probability distribution of θ should be φ(θ) = sin(θ) (for θ ∈ [0; π/2]),
whence θ = cos−1(x).

40 Risø–R–1175(EN)

Chapter 5

The component library

This section is devoted to a description of components included in the component library.
The component library is maintained by the Risø group. All components were written at
Risø except the chopper components in sections 5.4.2 and 5.4.3 which have been kindly
contributed by Philipp Bernhardt, Lehrstuhl für Kristallographie und Strukturphysik.
Users are encouraged to send contributions to us for inclusion in future releases.

In the explanations of the individual components we will use the usual symbols r for
the position (x, y, z) of the particle (unit m), and v for the particle velocity (vx, vy, vz)
(unit m/s). Another frequently used symbol is the wave vector k = mNv/~ , where mN is
the neutron mass. k is usually given in Å−1, while neutron energies are given in meV. In
general, vectors are denoted by boldface symbols. Subscripts ”i” and ”f” denotes ”initial”
and ”final”, respectively, and are used in connection with the neutron state before and
after a scattering event. Note that all mentioning of component geometry refer to the
local coordinate system of the individual component.

The source code for components is listed in Appendix B. The components follow the
same numbering in the Appendix as in the main text, e.g. component Arm, subsection
5.2.1, appears in the Appendix as B.2.1. Source code for many of the more trivial com-
ponents are not included in this manual. All sources may be found in the lib/mcstas/
subdirectory of the McStas installation; the default is /usr/local/lib/mcstas/.

5.1 Source components

The main function of the source components is to determine a set of initial parameters
(r, v), or equivalent (r, v,Ω), for each neutron. This is done by Monte Carlo choices. In
the current sources no polarization dependence is implemented, whence we let s = (0, 0).

The sources to be presented in the following all make their Monte Carlo choices on the
basis of simple analytical expressions (e.g. the energy distribution). More realistic sources
would require that (at least) the Monte-Carlo choice for the initial energy was made on
basis of a measured, tabulated energy spectrum. This is planned to be implemented in a
later version of McStas.

Risø–R–1175(EN) 41

5.1.1 Source flat: A circular continuous source with a flat energy spec-
trum

This component Source flat is a simple continous source with a flat energy distribution.
The time-of-flight aspect is not relevant for this component, so we put t = 0 for all
neutrons.
The initial neutron position is chosen randomly from within a circle of radius rs in the

z = 0 plane. This is a fair approximation of a cylindrical cold source with the beam going
out along the cylinder axis, like the one at Risø.
The initial neutron velocity direction is focused within a solid angle, defined by a

rectangular target of width w, height h, parallel to the xy plane placed at (0, 0, zf). A
small angle approximation is used, assuming that w, h� zf .
The weight multiplier of the created neutron, π1, is set to the solid angle of the focusing

opening divided by 4π, see discussion in 4.3
The input parameters of Source flat are the source radius, rs, the distance to the

target, zf , the dimensions of the target, w and h, and the centre and spread of the energy
distribution, E0 and ∆E.

5.1.2 Source flat lambda: A continous source with flat wavelength spec-
trum

The component Source flat lambda is similar to the Source flat component, except that
the spectrum is flat in wavelength, rather than in energy.
The input parameters for Source flat lambda are radius to set the source radius in

meters; dist, xw, and yh to set the focusing as for Source flat; and lambda 0 and d lambda
to set the range of wavelength emitted (the range will be from lambda 0 − d lambda to
lambda 0+ d lambda).

5.1.3 Source flux lambda: A continuous source with absolute flux

The component Source flux lambda is a variation on the Source flat lambda compo-
nent. The only difference is the possibility to specify the absolute flux of the source. The
specified flux is used to adjust the initial neutron weight so that the intensity in the de-
tectors is directly comparable to a measurement of one second on a real source with the
same flux. This also makes the simulated detector intensities independent of the number
of neutron histories simulated, easing the comparison between different simulation runs
(though of course more neutron histories will give better statistics).
The flux Φ is the number of neutrons emitted per second from a one cm2 area on the

source surface, with direction within a a one steradian solid angle, and with wavelength
within a one Ångstrøm interval. The total number of neutrons emitted towards a given
diaframe in one second is therefore

Ntotal = ΦAΩ∆λ

where A is the source area, Ω is the solid angle of the diaframe as seen from the source
surface, and ∆λ is the width of the wavelength interval in which neutrons are emitted (as-
suming a uniform wavelength spectrum). If Nsim denotes the number of neutron histories

42 Risø–R–1175(EN)

to simulate, the initial neutron weight p0 must be set to

p0 =
Ntotal
Nsim

=
Φ
Nsim

AΩ∆λ

The input parameters for Source flux lambda are radius to set the source radius in
meters; dist, xw, and yh to set the focusing as for Source flat; lambda 0 and d lambda
to set the range of wavelength emitted (the range will be from lambda 0 − d lambda to
lambda 0+ d lambda); and flux to set the source flux in units of cm−2st−1Å.

5.1.4 Source div: A divergent source

Source div is a rectangular source which emits a beam of a certain divergence around the
main exit direction (the direction of the z axis). The beam intensity and divergence are
uniform over the whole of the source, and the energy distribution of the beam is uniform.
This component may be used as a simple model of the beam profile at the end of a

guide or at the sample position.
The input parameters for Source div are the source dimensions w and h (in m), the

divergencies δh and δv (FWHM in degrees), and the mean energy E0 and the energy spread
dE (both in meV). The neutron energy range is (E0 − dE;E0+ dE).

5.1.5 Moderator: A time-of-flight source

The simple time-of-flight source component Moderator resembles the source component
Source flat described in 5.1.1. Like Source flat, Moderator is circular and focuses on
a rectangular target. Further, the initial velocity is chosen with a linear distribution within
an interval, defined by the minimum and maximum energies, E0 and E1, respectively.
The initial time of the neutron is determined on basis of a simple heuristical model for

the time dependence of the neutron intensity from a time-of-flight source. For all neutron
energies, the flux decay is assumed to be exponential,

Ψ(E, t) = exp(−t/τ(E)), (5.1)

where the decay constant is given by

τ(E) =
{

τ0 ;E < Ec
τ0/[1 + (E − Ec)2/γ2] ;E ≥ Ec

(5.2)

The input parameters for Moderator are the source radius, rs, the minimum and
maximum energies, E0 and E1 (in meV), the distance to the target, zf , the dimensions of
the target, w and h, and the decay parameters τ0 (in µs), Ec, and γ (both in meV).

5.1.6 Source adapt: A neutron source with adaptive importance sam-
pling

The Source adapt component is a neutron source that uses adaptive importance sam-
pling to improve the efficiency of the simulations. It works by changing on-the-fly the
probability distributions from which the initial neutron state is sampled so that samples
in regions that contribute much to the accuracy of the overall result are preferred over

Risø–R–1175(EN) 43

samples that contribute little. The method can achive improvements of a factor of ten
or sometimes several hundred in simulations where only a small part of the initial phase
space contains useful neutrons.
The physical characteristics of the source are similar to those of Source flat (see sec-

tion 5.1.1). The source is a thin rectangle in the X-Y plane with a flat energy spectrum
in a user-specified range. The flux per area per steradian per Ångstrøm per second is
specified by the user; the total weight of neutrons emitted from the source will then be
the same irrespectively of the number of neutron histories simulated, corresponding to one
second of measurements.
The initial neutron weight is given by (see section 5.1.3 for details)

p0 =
Ntotal
Nsim

=
Φ
Nsim

AΩ∆λ

Here ∆λ is the total wavelength range of the source; since the spectrum is flat in energy
(but not in wavelength), the flux will actually be different for different energies. A later
version of this component will probably adapt (in a backward-compatible way) a more sen-
sible way to specify the flux. For now, an energy or wavelength monitor (see sections 5.5.7
and 5.5.8) placed just after the source will show the actual energy-dependent flux.

The adaption algorithm

The adaptive importance sampling works by subdividing the initial neutron phase space
into a number of equal-sized bins. The division is done on the three dimensions of energy,
horizontal position, and horizontal divergence, using Neng, Npos, and Ndiv number of bins
in each dimension, respectively. The total number of bins is therefore

Nbin = NengNposNdiv

Each bin i is assigned a sampling weight wi; the probability of emitting a neutron within
bin i is

P (i) =
wi∑Nbin
j=1 wj

In order to avoid false learning, the sampling weight of a bin is kept larger than wmin,
defined as

wmin =
β

Nbin

Nbin∑
j=1

wj, 0 ≤ β ≤ 1

This way a (small) fraction β of the neutrons are sampled uniformly from all bins, while
the fraction (1− β) are sampled in an adaptive way.
Compared to a uniform sampling of the phase space (where the probability of each bin

is 1/Nbin), the neutron weight must be adjusted by the amount

πi =
1/Nbin
P (i)

=

∑Nbin
j=1 wj

Nbinwi

In order to set the criteria for adaption, the Adapt check component is used (see
section 5.5.13). The source attemps to sample only from bins from which neutrons are

44 Risø–R–1175(EN)

not absorbed prior to the position in the instrument at which the Adapt check component
is placed. Among those bins, the algorithm attemps to minimize the variance of the
neutron weights at the Adapt check position. Thus bins that would give high weights at
the Adapt check position are sampled more often (lowering the weights), while those with
low weights are sampled less often.
Let π = p1/p0 denote the ratio between the neutron weight p1 at the Adapt check

position and the initial weight p0 just after the source. For each bin, the component keeps
track of the sum ψ of π’s as well as of the total number of neutrons ni from that bin. The
average weight at the Adapt source position of bin i is thus ψi/ni.
We now distribute a total sampling weight of β uniformly among all the bins, and

a total weight of (1 − β) among bins in proportion to their average weight ψi/ni at the
Adapt source position:

wi =
β

Nbin
+ (1− β) ψi/ni∑Nbins

j=1 ψj/nj

After each neutron event originating from bin i, the sampling weight wi is updated.
This basic idea can be improved with a small modification. The problem is that until

the source has had the time to learn the right sampling weights, neutrons may be emitted
with high neutron weights (but low probability). These low probability neutrons may
account for a large fraction of the total intensity in detectors, causing large variances in
the result. To avoid this, the component emits early neutrons with a lower weight, and
later neutrons with a higher weight to compensate. This way the neutrons that are emitted
with the best adaption contribute the most to the result.
The factor with which the neutron weights are adjusted is given by a logistic curve

F (j) = C
y0

y0 + (1− y0)e−r0j
(5.3)

where j is the index of the particular neutron history, 1 ≤ j ≤ Nhist. The constants y0,
r0, and C are given by

y0 =
2
Nbin

(5.4)

r0 =
1
α

1
Nhist

log
(
1− y0
y0

)
(5.5)

C = 1+ log
(
y0 +

1− y0
Nhist

e−r0Nhist

)
(5.6)

The number α is given by the user and specifies (as a fraction between zero and one) the
point at which the adaption is considered good. The initial fraction α of neutron histories
are emitted with low weight; the rest are emitted with high weight:

p0(j) =
Φ
Nsim

AΩ∆λ

∑Nbin
j=1 wj

Nbinwi
F (j)

The choice of the constants y0, r0, and C ensure that∫ Nhist

t=0
F (j) = 1

Risø–R–1175(EN) 45

so that the total intensity over the whole simulation will be correct
Similarly, the adjustment of sampling weights is modified so that the actual formula

used is
wi(j) =

β

Nbin
+ (1− β) y0

y0 + (1− y0)e−r0j
ψi/ni∑Nbins

j=1 ψj/nj

The implementation

The heart of the algorithm is a discrete distribution p. The distribution has N bins,
1 . . .N . Each bin has a value vi; the probability of bin i is then vi/(

∑N
j=1 vj).

Two basic operations are possible on the distribution. An update adds a number a to
a bin, setting vnewi = voldi + a. A search finds, for given input b, the minimum i such that

b ≤
i∑

j=1

vj.

The search operation is used to sample from the distribution p. If r is a uniformly dis-
tributed random number on the interval [0;

∑N
j=1 vj] then i = search(r) is a random

number distributed according to p. This is seen from the inequality

i−1∑
j=1

vj < r ≤
i∑

j=1

vj,

from which r ∈ [
∑i−1

j=1 vj; vi +
∑i−1

j=1 vj] which is an interval of length vi. Hence the
probability of i is vi/(

∑N
j=1 vj). The update operation is used to adapt the distribution

to the problem at hand during a simulation. Both the update and the add operation can
be performed very efficiently; how this is achieved will be described elsewhere.
The input parameters for Source adapt are xmin, xmax, ymin, and ymax in meters

to set the source dimensions; dist, xw, and yh to set the focusing as for Source flat (sec-
tion 5.1.1); E0 and dE to set the range of energies emitted, in meV (the range will be
from E0−dE to E0+dE); flux to set the source flux Φ in cm−2st−1Ås−1; Neng, Npos, and
Ndiv to set the number of bins in each dimensions; alpha and beta to set the parameters α
and β as described above; and filename to give the name of a file in which to output the
final sampling destribution.
A good general-purpose value for α and β is α = β = 0.25. The number of bins

to choose will depend on the application. More bins will allow better adaption of the
sampling, but will require more neutron histories to be simulated before a good adaption
is obtained. The output of the sampling distribution is only meant for debugging, and the
units on the axis are not necessarily meaningful. Setting the filename to NULL disables the
output of the sampling distribution.

5.2 Simple optical components: Arms, slits, collimators, fil-
ters

Below we list a number of simple optical components which require only a minimum of
explanation.

46 Risø–R–1175(EN)

5.2.1 Arm: The generic component

The component Arm is empty; is resembles an optical bench and has no effect on the
neutron. The function of this component is only to set up a local frame of reference within
the instrument definition. Other components of the same arm/optical bench may then
be positioned relative to the arm component using the McStas meta-language. The use
of arm components in the instrument definitions is not required but is recommended for
clarity.

Arm has no input parameters. For more about the use of this component, see the
sample instrument definitions listed in Appendix C.

5.2.2 Slit: The rectangular slit

The component Slit is a very simple construction. It sets up a rectangular opening at
z = 0, and propagates the neutrons onto the plane of this rectangle by the kernel call
PROP Z0.
Neutrons within the slit opening are unaffected, while all other neutrons (no matter

how far from the opening their paths intersect the plane) are discarded by the kernel call
ABSORB. By this simplification, some neutrons contributing to the background in a real
experiment will be neglected. These are the ones that scatter off the inner side of the slit,
penetrates the slit material, or that clear one of the outer edges of the slit.
The input parameters of Slit are the four coordinates, (xmin, xmax, ymin, ymax) defining

the opening of the rectangle.

5.2.3 Circular slit: The circular slit

The component Circular slit defines a circle in the z = 0 plane, centered in the origin.
In analogy with Slit, neutrons are propagated to this plane, and those which intersect the
plane outside the circle are ABSORB’ed.
The only input parameter of Circular slit is the radius, r, of the circle.

5.2.4 Beamstop rectangular: The rectangular beam stop

The component Beamstop rectangular models a thin, infinitely absorbing rectangle in
the X-Y plane, centered on the origin. The input parameters are xmin, xmax, ymin, and
ymax defining the edges of the slit in meters.

5.2.5 Beamstop circular: The circular beam stop

The component Beamstop circular models a thin, infinitely absorbing circular disk in
the X-Y plane, centered on the origin. It takes a single input parameter radius to define
the circle radius in meters.

5.2.6 Soller: The simple Soller blade collimator

The component Soller defines two rectangular openings like the one in Slit. Neutrons not
clearing both these openings are ABSORB’ed, see the discussion in 5.2.2. The collimating
effect is taken care of by employing an ideal triangular transmission through the collimator,

Risø–R–1175(EN) 47

x

y

z

L

d

L

xmin xmax

ymin

ymax

δ

Figure 5.1: The geometry of a simple Soller blade collimators: The real Soller collimator,
seen from the top (left), and a sketch of the component Soller (right). The symbols are
defined in the text.

as explained below. For a more detailed Soller collimator simulation the Channeled guide
component can be employed, see section 5.3.4.
Let the collimation angle be δ = tan−1(d/L), where L is the length of the collimator

and d is the distance between the blades, and let φ be the divergence angle between the
neutron path and a vertical plane along the collimator axis, see Fig. 5.1. Neutrons with a
large divergence angle |φ| ≥ δ will always hit at least one collimator blade and will thus
be absorbed. For smaller divergence angles, |φ| < δ, the fate of the neutron depends on
its exact entry point. Assuming that a typical collimator has many blades, the absolute
position of each blade perpendicular to the collimator axis is somewhat uncertain (and
also unimportant). A simple statistical consideration now shows that the transmission
probability is T = 1− tan |φ|/ tanδ.
We simulate the collimator by transmitting all neutrons with |φ| < δ, but adjusting

their weight with the amount

πi = T = 1− tan |φ|/ tanδ, (5.7)

while all others are discarded by the kernel call ABSORB.
The input parameters for Soller are the coordinates (xmin, xmax, ymin, ymax), defining

the identical entry and exit apertures, the length, l, between the slits, and the collimator

48 Risø–R–1175(EN)

divergence δ. If δ = 0, the collimating effect is disabled, so that πi = 1 whenever the
neutron clears the two apertures.

5.2.7 Filter: A transmission filter

A neutron transmission filter act in much of the same way as two identical slits, one after
the other. The only difference is that the transmission of the filter varies with the neutron
energy.
In the simple component Filter, we have not tried to simulate the details of the trans-

mission process (which includes absorption, incoherent scattering, and Bragg scattering
in a polycrystalline sample, e.g. Be). Instead, the transmission is parametrised to be
πi = T0 when E ≤ Emin, πi = T1 when E ≥ Emax, and linearly interpolated between the
two values in the intermediate interval.

πi =

T0 E ≤ Emin
T1 + (T0 − T1) Emax−E

Emax−Emin
Emin < E < Emax

T1 E≥Emax

(5.8)

If T1 = 0, the neutrons with E > Emax are ABSORB’ed.
The input parameters are the four slit coordinates, (xmin, xmax, ymin, ymax), the dis-

tance, l, between the slits, and the transmission parameters T0, T1, Emin, and Emax. The
energies are given in meV.

5.3 Advanced optical components: mirrors and guides

This section describes advanced neutron optical components such as supermirrors and
guides. The first subsection, however, contains only a description of the reflectivity of a
supermirror.

5.3.1 Mirror reflectivity

To compute the reflectivity of the supermirrors, we use an empirical formula derived from
experimental data (see figure 5.2). The reflectivity is given by the following formula

R =
{
R0 if Q ≤ Qc
1
2R0(1− tanh[(Q−mQc)/W])(1− α(Q−Qc)) if Q > Qc

(5.9)

Here Q is the length of the scattering vector (in Å−1) defined by

Q = |ki − kf | =
mn
~

|vi − vf |, (5.10)

mn being the neutron mass. The value m is a parameter determined by the mirror materi-
als, the bilayer sequence, and the number of bilayers. As can be seen, R = R0 for Q < Qc,
which is the critical scattering wave vector for a single layer of the mirror material. At
higher values of Q, the reflectivity starts falling linearly with a slope α until a cut-off at
Q = mQc. The width of the cut-off is denoted W . For the curve in figure 5.2, the values
are

m = 4 R0 = 1 Qc = 0.02 Å
−1

α = 6.49 Å W = 1/300 Å−1

Risø–R–1175(EN) 49

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Momentum transfer Q [Å−1]

R
ef

le
ct

iv
ity

 p

Supermirror reflectivity, m = 4

Figure 5.2: A typical reflectivity curve for a supermirror, Eq. (5.10).

As a special case, if m = 0 then the reflectivity is zero for all Q, ie. the surface is
completely absorbing.
In the components, the neutron weight is adjusted with the amount πi = R. To avoid

spending large amounts of computation time on very low-weight neutrons, neutrons for
which the reflectivity is lower than about 10−10 are ABSORB’ed.

5.3.2 Mirror: The single mirror

The component Mirror models a single rectangular neutron mirror plate. It can be
used to e.g. assemble a complete neutron guide by putting multiple mirror components at
appropriate locations and orientations in the instrument definition, much like a real guide
is build from individual mirrors.
The mirror is assumed to lie in the first quadrant of the x-y plane, with one corner

at (0, 0, 0). If the neutron trajectory intersects the mirror plate, it is reflected, otherwise
it is left untouched. Since the mirror lies in the x-y plane, an incoming neutron with
velocity vi = (vx, vy, vz) is reflected with velocity vf = (vx, vy,−vz). The computation of
the reflectivity is handled as detailed in section 5.3.1.
The input parameters of this component are the rectangular mirror dimensions (l, h)

and the values of R0, m,Qc,W , and α for the mirror.

5.3.3 Guide: The guide section

The component Guide models a guide tube consisting of four flat mirrors. The guide
is centered on the z axis with rectangular entrance and exit openings parallel to the x-y
plane. The entrance has the dimensions (w1, h1) and placed at z = 0. The exit is of
dimensions (w2, h2) and is placed at z = l where l is the guide length. See figure 5.3.

50 Risø–R–1175(EN)

h1

w1

h2

w2 Z

Y

X

Figure 5.3: The geometry used for the guide component.

Neutrons not clearing the guide entrance are ABSORB’ed. For a more general guide
simulation, see the Channeled guide component in section 5.3.4.
For computations on the guide geometry, we define the planes of the four guide sides

by giving their normal vectors (pointing into the guide) and a point lying in the plane:

nv1 = (l, 0, (w2−w1)/2) Ov
1 = (−w1/2, 0, 0)

nv2 = (−l, 0, (w2− w1)/2) Ov
2 = (w1/2, 0, 0)

nh1 = (0, l, (h2− h1)/2) Oh
1 = (0,−h1/2, 0)

nh2 = (0,−l, (h2− h1)/2) Oh
2 = (0, h1/2, 0)

In the following, we refer to an arbitrary guide side by its origin O and normal n.
With these definitions, the time of intersection of the neutron with a guide side can be

computed by considering the projection onto the normal:

t1 =
(O− r0) · n

v · n (5.11)

For a neutron that leaves the guide through the guide exit we have

t2 =
l− z0
vz

(5.12)

To compute the interaction of the neutron with the guide, the neutron is initially propa-
gated to the z = 0 plane of the guide entrance. If it misses the entrance, it is ABSORB’ed.
Otherwise, we repeatedly compute the time of intersection with the four mirror sides and
the guide exit. The smallest positive t thus found gives the time of the next intersection
with the guide (or in the case of the guide exit, the time when the neutron leaves the
guide). The neutron is propagated to this point, the reflection from the side is computed
and the process is repeated until the neutron leaves the guide.
The reflected velocity vf of the neutron with incoming velocity vi is computed by the

formula
vf = vi − 2

n · vi
|n|2 n (5.13)

Risø–R–1175(EN) 51

n

n
n 2

n v- .
i

iv

vf

Figure 5.4: Neutron reflecting from mirror. vi and vf are the initial and final velocities,
respectively, and n is a vector normal to the mirror surface.

This expression is arrived at by again considering the projection onto the mirror nor-
mal (see figure 5.4). The reflectivity of the mirror is taken into account as explained in
section 5.3.1.
There are a few optimizations possible here to avoid redundant computations. Since the

neutron is always inside the guide during the computations, we always have (O−r0)·n ≤ 0.
Thus t ≤ 0 if v · n ≥ 0, so in this case there is no need to actually compute t. Some
redundant computations are also avoided by utilizing symmetry and the fact that many
components of n and O are zero.
The input parameters of this component are the opening sizes of the entry and exit

point of the guide, (w1, h1) and (w2, h2), respectively, the guide length, l, and the values
of R0, m,Qc,W , and α for the mirror.

5.3.4 Channeled guide: A guide section component with multiple chan-
nels

The component Channeled guide is a more flexible variation of the Guide component
described in the previous section. It allows the specification of different supermirror pa-
rameters for the horizontal and vertical mirrors, and also implements guides with multiple
channels as used in neutron bender devices. By setting the m value of the supermirror
coatings to zero, nonreflecting walls are simulated; this may be used to simulate a Soller
collimator.
The channel walls are assumed to be infinitely absorbing. The implementation is

basen on that of the Guide component. Initially, the channel which the neutron will enter
is computed. The x coordinate is then shifted so that the channel can be simulated as
a single instance of the Guide component. Finally the coordinates are restored when the
neutron exits the guide or is absorbed.
The input parameters are w1, h1, w2, h2, and l to set the guide dimensions in meters

as for the Guide component (entry window, exit window, and length); k to set the number
of channels; d to set the thickness of the channel walls, in meters; and R0, W, Qcx, Qcy,
alphax, alphay, mx, and my to set the supermirror parameters as described above (the
names with x denote the vertical mirrors, and those with y denote the horizontal ones).

52 Risø–R–1175(EN)

5.4 Chopper-like components

In this section, we will present rotating components such as chopppers, velocity selectors,
etc.

5.4.1 V selector: The rotating velocity selector

The componentV selectormodels a rotating velocity selector constructed from a number
of collimator blades arranged radially on an axis. Two identical slits at a 12 o’clock position
allow neutron passage at the position of the blades. The blades are ”twisted” on the axis
so that a stationary velocity selector does not transmit any neutrons; the total twist angle
is denoted φ. By rotating the selector you allow transmittance of neutrons around certain
velocities, given by

V0 = ωL/φ, (5.14)

which means that the selector has turned the twist angle φ during the neutron flight time
L/V0.
Neutrons having a velocity slightly smaller or larger than V0 will either be transmitted

or absorbed depending on the exact position of the rotator blades when the neutron enters
the selector. Assuming this position to be unknown (and assuming infinitely thin blades),
we arrive at

T =
{
1− (N/2π)|φ− ωL/V | if − 1 < (N/2π)(φ− ωL/V) < 1
0 otherwise

(5.15)

where N is the number of collimator blades.
A horisontal divergence changes the above formula because of the angular difference

between the entry and exit points of the neutron. The resulting transmittance resembles
the one above, only with V replaced by Vz and φ replaced by (φ+ψ), where ψ is the angular
difference due to the divergence. An additional vertical divergence does not change this
formula, but it may contribute to ψ. (We have here ignored the very small non-linearity
of ψ along the neutron path in case of both vertical and horisontal divergence).
Adding the effect of a finite blade thickness, t, reduces the transmission by the overall

amount
dT = (Nt)/(2πr), (5.16)

where r is the distance from the rotation axis. We ignore the variation of r along the
neutron path and use just the average value.
The input parameters for V selector are the slit dimensions, width, height (in m), the

distance between apertures, L0 (in m), the length of the collimator blades, L1 (in m), the
height from rotation axix to the slit centre, r0 (in m), the rotation speed ω (in rpm) the
twist angle φ (in degrees), the blade thickness t (in m), and the number of blades, N .
The local coordinate system is centered at the slit centre.

5.4.2 Chopper: The disc chopper

This component was contributed by Philipp Bernhardt, Lehrstuhl für Kristallographie
und Strukturphysik.

Risø–R–1175(EN) 53

To cut a continuous neutron beam into short pulses, you can use a disc chopper (fig-
ure 5.5). This is a fast rotating disc with the rotating axis parallel to the neutron beam.
The disk consists of neutron absorbing materials. To form the pulses there are slits through
which the neutrons can pass.

disc

R

y

x

-f

+fslit

coordinate system of the chopper

w

Figure 5.5: disc chopper

This component simulates choppers with more than one slit. The slits are symmetri-
cally disposed on the disc. You can set the direction of rotation, which allows to simulate
double choppers. You can also define the phase by setting the time at which one slit is
positioned at the top. The sides of the slits are pointing towards the center of the disc.
The thickness of the disc is neglected. There is no parameter for the height of the slits,
so if you like to limit the neutrons in the y-direction, just use a slit component in front of
the chopper.
If you use a rectangular shaped beam and the beam has nearly the same size as the

slit, you will get an almost triangular shape of the transmission curve (figure 5.6).
The input parameters for this component are the width w of the slit at the radius R

of the disc, the phase pha, the number of slits n and the angular frequency f . The sign of
f defines the direction of rotation, as can be seen in figure 5.5.

5.4.3 First chopper: The first disc chopper

This component was contributed by Philipp Bernhardt, Lehrstuhl für Kristallographie
und Strukturphysik.
The disadvantage of the component ‘Chopper’ is the bad statistic, because most of the

neutrons of a continuous beam are absorbed. Furthermore TOF-instruments define the
starting time of the neutrons at the position of the first chopper and not at the source.
Therefore this component is useful. This ‘first disc chopper‘ has the same geometrical and

54 Risø–R–1175(EN)

time

tr
an

sm
is

si
on

Figure 5.6: example transmission curve for the disc chopper

physical attributes as the normal disc chopper before. But it does not check if the neutron
can pass the disc chopper, it instead gives the neutron a time at which it is possible to
pass. There is no absorption in this component, all neutrons will be used.
Because the value t of the incoming neutron will be overwritten, this chopper can only

be used as a first chopper.
The input parameters are, again, the width w of the slit at the radius R of the disc,

the phase pha of the chopper, the number of slits n and the angular frequency f (sign
defines direction of rotation). With the additional parameter a you can set the number of
pulses. This is useful if you want to investigate frame overlaps.

5.5 Detectors and monitors

In real neutron experiments, detectors and monitors play quite different roles. One wants
the detectors to be as efficient as possible, counting all neutrons (and absorbing them in
the process), while the monitors measure the intensity of the incoming beam, and must
as such be almost transparent, interacting only with (roughly) 0.1-1% of the neutrons
passing by. In computer simulations, it is of course possible to detect every neutron
without absorbing it or disturbing any of its parameters. Hence, the two components
have very similar functions in the simulations, and we do not distinguish between them.
For simplicity, they are from here on just called monitors, since they do not absorb the
neutron.
Another difference between computer simulations and real experiments is that one may

Risø–R–1175(EN) 55

allow the monitor to be sensitive to any neutron property, as e.g. direction, energy, and
polarization, in addition to what is found in advanced existing monitors (space and time).
One may, in fact, let the monitor have several of these properties at the same time, as
seen for example in the energy sensitive monitor in section 5.5.7.

5.5.1 Monitor: The single monitor

The component Monitor consists of a rectangular opening — like that for slit. The
neutron is propagated to the plane of the monitor by the kernel call PROP Z0. Any
neutron that passes within the opening is counted — the number counting variable is
incremented: Ni = Ni−1+1, the neutron weight pi is added to the weight counting variable:
Ii = Ii−1 + pi, and the second moment of the weight is updated: M2,i =M2,i−1+ p2i . The
input parameters forMonitor are the opening coordinates xmin, xmax, ymin, ymax, and the
output parameters are the three count numbers, N, I , and M2.

5.5.2 Monitor 4PI: The 4π monitor

The componentMonitor 4PI does not model any physical monitor but may be thought of
as a spherical monitor completely surrounding the previous component. It simply detects
all neutrons that have not been absorbed at the position in the instrument in which it
is placed. If this monitor is placed in the instrument file after another component, e.g.
a sample, it will count any neutron scattered from this component. This may be useful
during tests.
The output parameters forMonitor 4PI are the three count numbers, N, I , and M2.

5.5.3 PSD monitor: The PSD monitor

The component PSD monitor closely resemblesMonitor. In the PSD monitor, though,
the rectangular monitor window is divided into n × m pixels, each of which acts like a
single monitor.
The input parameters for PSDmonitor are the opening coordinates xmin, xmax, ymin,

ymax, the array dimensions (n,m), and a name of a file in which to store I(x, y). The
output parameters are three two-dimensional arrays of counts: N (x, y), I(x, y),M2(x, y).

5.5.4 PSD monitor 4PI: The 4π PSD monitor

The component PSD monitor 4PI represents a PSD monitor shaped as a sphere, much
likeMonitor 4PI. It subdivides the surface of the sphere into pixels of equal area (using
a projection onto a cylinder with an axis which is vertical in the local coordinate system)
and distributes the incoming neutron counts into the respective pixels.
The 4π PSD monitor is typically placed around another component. Used in this way,

the 4π PSD monitor is very useful for debugging components.
The input parameters for PSD monitor 4PI are the monitor radius, the number

of pixels, (nx, ny) – where y is the vertical direction, and the name of the file in which
to store I(x, y). The output parameters of the component are the three count arrays
N (x, y), I(x, y), and M2(x, y).

56 Risø–R–1175(EN)

5.5.5 PSD monitor 4PI log: The 4π PSD monitor with log scale

The component PSD monitor 4PI log is the same as PSD monitor 4PI described in
the previous section, except that the output histograms contain the base-10 logarithm of
the intensities rather than the intensities themselves. Currently, this does not work well
together with the McStas mechanism to output detector results (see section 3.4.5), so the
total intensity as output by McStas from this detector component will be wrong. However,
the component was sufficiently useful in Laue-type diffraction instruments to be included
here nevertheless. A future version of McStas may implement a better way to get log-scale
in output files.
The input parameters for PSD monitor 4PI log are the same as for PSD monitor 4PI.

5.5.6 TOF monitor: The time-of-flight monitor

TOF monitor is a rectangular single monitor which is sensitive to the absolute time,
where the neutron is hits the component. Like in a real time-of-flight detector, the time
dimension is binned into small time intervals of length dt, whence this monitor updates a
one-dimensional array of counts.
The input parameters for TOF monitor are the opening coordinates xmin, xmax, ymin,

ymax, the number of time bins (beginning from t = 0), nchan, the time spacing between
bins, dt (in µs), and the name of the output file. Output parameters of the component
are the three count arrays N (i), I(i), and M2(i), where i is the bin number.

5.5.7 E monitor: The energy sensitive monitor

The component E monitor resembles TOF monitor to a very large extent. Only this
monitor is sensitive to the neutron energy, which in binned in nchan bins between Emin
and Emax.
The input parameters for E monitor are the opening coordinates xmin, xmax, ymin,

ymax, the total energy interval given by Emin and Emax (in meV), and nchan and the
name of the output file. Output parameters of the component are the three count arrays
N (i), I(i), and M2(i), i being the bin number.

5.5.8 L monitor: The wavelength sensitive monitor

The component L monitor is a rectangular monitor with an opening in the x-y plane
which is sensitive to the neutron wavelength. The wavelength spectrum is output in a
one-dimensional histogram. Only neutrons with wavelength λ0 < λ < λ1 are detected.
The input parameters for L monitor are the opening coordinates xmin, xmax, ymin,

and ymax defining the edges of the slit in meters; the lower and upper wavelength limit
lambda 0 and lambda 1 in Ångstrøm; the number of histogram bins nchan; and filename,
a string giving the name of the file to store the data in.

5.5.9 Divergence monitor: The divergence sensitive monitor

The component Divergence monitor is a rectangular monitor with an opening in the
x-y plane, which is sensitive to the neutron divergence, i.e. the angle between the neutron
path and the monitor surface normal.

Risø–R–1175(EN) 57

The divergence is divided into horisontal and vertical divergencies, which are calcu-
lated as δh = tan−1(vx/vz) and δv = tan−1(vy/vz), respectively. Only neutrons within
a divergence window of δh = (−δh,max; δh,max), δv = (−δv,max; δv,max) are detected. The
counts are binned in an array of nh × nv pixels.
The input parameters for the Divergence monitor component are the opening coordi-

nates (xmin, xmax, ymin, ymax), the number of pixels (nh, nv), the parameters (δh,max, δv,max)
defining the divergence interval, and a name of the file in which to store the detected in-
tensities.
Note that a divergence sensitive monitor with a small opening may be thought of as a

non-reversing pinhole camera.

5.5.10 DivPos monitor: The divergence-position sensitive monitor

The component DivPos monitor is a rectangular monitor with an opening in the x-y
plane, which is sensitive to both the horizontal neutron divergence and the horizontal
neutron position. The neutron intensity as a function of position and divergence is output
in a two-dimensional histogram. This output may be directly compared to an accep-
tance diagram, an analytical technique that is sometimes used to calculate neutron guide
performances.
The horizontal divergence is calculated as δh = tan−1(vx/vz) . Only neutrons within

a divergence window of δh = (−δh,max; δh,max) are detected.
The input parameters for the DivPos monitor component are the opening coordinates

xmin, xmax, ymin, and ymax in meters; the number of histogram bins npos and ndiv
in position and divergence; the maximum divergence maxdiv to detect, in degrees; and
filename, a string giving the name of the file to store the data in.

5.5.11 DivLambda monitor: The divergence-wavelength sensitive mon-
itor

The component DivLambda monitor is a rectangular monitor with an opening in the x-
y plane, which is sensitive to both the horizontal neutron divergence and the wavelength.
The neutron intensity as a function of wavelength and divergence is output in a two-
dimensional histogram.
The horizontal divergence is calculated as δh = tan−1(vx/vz) . Only neutrons within

a divergence window of δh = (−δh,max; δh,max) and with wavelength λ0 < λ < λ1 are
detected.
The input parameters for the DivLambda monitor component are the opening coor-

dinates xmin, xmax, ymin, and ymax in meters; the number of histogram bins nlam and
ndiv in wavelength and divergence; the maximum divergence maxdiv to detect, in degrees;
lambda 0 and lambda 1 to define the wavelength window, in Ångstrøm; and filename, a
string giving the name of the file to store the data in.

5.5.12 Res monitor: The resolution monitor

The component Res monitor is used together with the Res sample component (de-
scribed in section 5.8.1) and the mcresplot front-end (described in section 2.6.6). It

58 Risø–R–1175(EN)

works like a normal single detector, but also records all scattering events in the resolution
sample and writes them to a file that can later be read by mcresplot.
The instrument definition should contain an instance of the Res sample component,

the name of which should be passed as an input parameter to Res monitor. For example

COMPONENT mysample = Res_sample(...)
...
COMPONENT det = Res_monitor(res_sample_comp = mysample, ...)
...

The output file is in ASCII format, one line per scattering event, with the following
columns:

• ki, the three components of the initial wave vector.

• kf , the three components of the final wave vector.

• r, the three components of the position of the scattering event in the sample.

• pi, the neutron weight just after the scattering event.

• pf , the relative neutron weight adjustment from sample to detector (so the total
weight in the detector is pipf).

From ki and kf , we may compute Q = ki − kf and ω = (2.072 meV·Å2)(k2i − k2f).
The vectors are given in the local coordinate system of the resolution sample compo-

nent. The wave vectors are in units of Å−1, the scattering position in units of meters.
The input parameters for Res monitor are the opening coordinates xmin, xmax, ymin,

ymax as for the single monitor component, the name of the file to write in filename, and
res sample comp which should be set to the name of the resolution sample component used
in the instrument. The output parameters are the three count numbers, Nsum, psum, and
p2sum, and the handle file of the output file.

5.5.13 Adapt check: The simple adaptive importance sampling monitor

The component Adapt check is used together with the Source adapt component — see
section 5.1.6 for details. When placed somewhere in an instrument using Source adapt, the
source will optimize for neutrons that reach that point without being absorbed (regardless
of neutron position, direction, wavelength, etc).
The Adapt check component takes a single input parameter source comp. This should

be set to the name given to the Source adapt component in the instrument, for example

...
COMPONENT mysource = Source_adapt(...)
...
COMPONENT mycheck = Adapt_check(source_comp = mysource)
...

Risø–R–1175(EN) 59

5.6 Bragg scattering single crystals, monochromators

In this class of components, we are concerned with elastic Bragg scattering from single
crystals. The Mosaic anisotropic component is a replacement for the Monochromator
component from previous releases; it uses a better algorithm that works in some cases
where the old component would give wrong results. The Mosaic simple component is
similar, but has an isotropic mosaic and allows a scattering vector that is not perpendicular
to the surface. The Single crystal component is a general single crystal sample that allows
the input of an arbitrary unit cell and a list of structure factors, and also allows a ∆d/d
lattice space variation.
Thus in this version of McStas, either non-perpendicular scattering vectors (in Mo-

saic simple and Single crystal) or anisotropic mosaic (in Mosaic anisotropic), but not
both, is allowed. The reason for this is not the difficulty of simulating both together, but
rather the difficulty of finding a good way for the user to specify the mosaic of a crystal
that works for scattering vectors in all directions. Suggestions for this are much welcomed
by the authors!

5.6.1 Mosaic simple: An infinitely thin mosaic crystal with a single scat-
tering vector

The component Mosaic simple simulates an infinitely thin single crystal with a single
scattering vector and a mosaic spread. A typical use for this component is to simulate a
monocromator or an analyzer.
The physical model used in the component is a rectangular piece of material composed

of a large number of small micro-crystals. The orientation of the microcrystals deviates
from the nominal crystal orientation so that the probability of a given microcrystal ori-
entation is proportional to a gaussian of the angle between the given and the nominal
orientation. The width of the gaussian is given by the mosaic spread of the crystal. The
mosaic spread is assumed to be large compared to the Bragg width of the scattering vector.
As a further simplification, the crystal is assumed to be infinitely thin. This means

that multiple scattering effects are not simulated. It also means that the total reflectivity
can be used as a parameter for the model rather than the atomic scattering cross section.
When a neutron trajectory intersects the crystal, the first step in the computation is

to determine the probability of scatttering. This probability is then used in a Monte Carlo
choice desiding whether to scatter or transmit the neutron. The scattering probability is
the sum of the probabilities of first-order scattering, second-order, . . . , up to the highest
order that permits Bragg scattering at the given neutron wave length. However, in most
cases at most one order will have a significant scattering probability, and the computation
thus considers only the order that best matches the neutron wavelength. Bragg’s law is

nQ0 = 2ki sin θ

Thus, the scattering order is obtained simply as the integer multiple n of the nominal
scattering vector Q0 which is closest to the projection of 2ki onto Q0 (see figure 5.7).
Once n has been determined, the Bragg angle θ can be computed. The angle d that the
nominal scattering vectorQ0 makes with the closest scattering vector q that admits Bragg

60 Risø–R–1175(EN)

θ

2ki

Q0

2Q0

3Q0

4Q0

Figure 5.7: Selection of the Bragg order (“2” in this case).

θ

2ki

2kf

Q0
d

q

Figure 5.8: Computing the deviation d from the nominal scattering direction.

scattering is then used to compute the probability of reflection from the mosaic

preflect = R0e−d
2/2σ2

,

where R0 is the reflectivity at the Bragg angle (see figure 5.8). The probability preflect is
used in a Monte Carlo choice to decide whether the neutron is transmitted or reflected.
In the case of reflection, the neutron will be scattered into the Debye-Scherrer cone,

with the probability of each point on the cone being determined by the mosaic. The
Debye-Scherrer cone can be described by the equation

kf = ki cos 2θ + sin 2θ(c cosϕ+ b sinϕ), ϕ ∈ [−π; π], (5.17)

where b is a vector perpendicular to ki and Q0, c is perpendicular to ki and b, and both
b and c have the same length as ki (see figure 5.9). In the component, ϕ is sampled from
a gaussian distribution with twice the mosaic width, since the scattering angle is twice the
Bragg angle.

Risø–R–1175(EN) 61

2θ

2ki

2kf

nQ0

q

Figure 5.9: Scattering into the part of the Debye-Scherrer cone covered by the mosaic.

What remains is to get the neutron weight right. The distribution from which the
scattering event is sampled is a gaussian in ϕ of width 2σ,

fMC(ϕ) =
1√
2π2σ

e−ϕ
2/2(2σ)2

In the physical model, the probability of the scattering event is proportional to a gaussian
in the angle between the nominal scattering vector Q0 and the actual scattering vector
q. The normalisation condition is that the integral over all ϕ should be 1. Thus the
probability of the scattering event in the physical model is

Π(ϕ) = e
−d(ϕ)2

2σ2 /

∫ π

−π
e

−d(ϕ)2

2σ2 dϕ (5.18)

where d(ϕ) denotes the angle between the nominal scattering vector and the actual scat-
tering vector corresponding to ϕ. According to equation (4.8), the weight adjustment πj
is then given by

πj = Π(ϕ)/fMC(ϕ).

In the component, the integral in (5.18) is computed using a 15-order Gaussian quadrature
formula, with the integral restricted to an inteval 5 times wider than the mosaic width σ.
The input parameters for Mosaic simple are zmin, zmax, ymin, and ymax to define the

surface of the crystal in the Y-Z plane; mosaic to give the FWHM of the mosaic spread;
R0 to give the reflectivity at the Bragg angle, and Qx, Qy, and Qz to give the scattering
vector.

62 Risø–R–1175(EN)

5.6.2 Mosaic anisotropic: The crystal with anisotropic mosaic

The component Mosaic anisotropic is a modified version of the Mosaic simple com-
ponent, intended to replace the Monocromator component from previous releases. It
restricts the scattering vector to be perpendicular to the crystal surface, but extends
the Mosaic simple component by allowing different mosaics in the horizontal and vertical
direction.
The code is largely similar to that for Mosaic simple, and the documentation for the

latter should be consulted for details. The differences are mainly due to two reasons:

• Some simplifications have been done since two of the components of the scattering
vector are known to be zero.

• The computation of the Gaussian for the mosaic is done done using different mosaics
for the two axes.

The input parameters for the component Mosaic anisotropic are zmin, zmax, ymin,
and ymax to define the size of the crystal (in meters); mosaich and mosaicv to define the
mosaic (in minutes of arc); r0 to define the reflectivity (no unit); and Q to set the length
of the scattering vector (in Å−1).

5.6.3 Single crystal: The single crystal component

The physical model

The textbook expression for the scattering cross-section of a crystal is [9]:
(
dσ

dΩ

)
coh.el.

= N
(2π)3

V0

∑
�

δ(τ − κ)|F� |2

Here |F� |2 is the structure factor, N is the number of unit cells, V0 is the volume of an
individual unit cell, and κ = ki − kf is the scattering vector. δ(x) is a 3-dimensional
delta function in reciprocal space, so for given incoming wave vector ki and lattice vector
τ , only a single final wave vector kf is allowed. In a real crystal, however, reflections are
not perfectly sharp. Because of imperfection and finite-size effects, there will be a small
region around τ in reciprocal space of possible scattering vectors.
The Single crystal component simulates a crystal with a mosaic spread η and a lattice

plane spacing uncertainty ∆d/d. In such crystals the reflections will not be completely
sharp; there will be a small region around each reciprocal lattice point of the crystal that
contains valid scattering vectors.
We model the mosaicity and ∆d/d of the crystal with 3-dimensional Gaussian functions

in reciprocal space (see figure 5.10). Two of the axes of the Gaussian are perpendicular
to the reciprocal lattice vector τ and model the mosaicity. The third one is parallel to τ
and models ∆d/d. We use an isotropic mosaicity, so the two axes perpendicular to τ are
of equal length η. We assume that the mosaicity is small so that the possible directions of
the scattering vector may be approximated with a Gaussian in rectangular coordinates.
We now derive a quantitative expression for the scattering cross-section of the crystal

in the model. For this, we introduce a local coordinate system for each reciprocal lattice

Risø–R–1175(EN) 63

ki

kf

τ

η

∆d/d

Ewald
Sphere

Figure 5.10: Ewald sphere construction for a single neutron showing the Gaussian broad-
ening of reciprocal lattice points in their local coordinate system.

point τ and use x for vectors written in local coordinates. The origin is τ , the first axis
is parallel to τ and the other two axes are perpendicular to τ . In the local coordinate
system, the 3-dimensional Gaussian is given by

G(x1, x2, x3) =
1

(
√
2π)3

1
σ1σ2σ3

e
−1

2
(

x2
1

σ2
1
+

x2
2

σ2
2
+

x2
3

σ2
3
)

(5.19)

The axes of the Gaussian are σ1 = τ∆d/d and σ2 = σ3 = ητ . Here we used the assumption
that η is small, so that tanη ≈ η (with η given in radians). By introducing the diagonal
matrix

D =

 1

2σ
2
1 0 0
0 1

2σ
2
2 0

0 0 1
2σ
2
3

equation (5.19) can be written as

G(x) =
1

(
√
2π)3

1
σ1σ2σ3

e−x
TDx (5.20)

again with x = (x1, x2, x3) written in local coordinates.
To get an expression in the coordinates of the reciprocal lattice of the crystal, we

introduce a matrix U such that if y = (y1, y2, y3) are the global coordinates of a point in

64 Risø–R–1175(EN)

the crystal reciprocal lattice, then U(y + τ) are the coordinates in the local coordinate
system for τ . The matrix U is given by

UT = (û1, û2, û3),

where û1, û2, and û3 are the axes of the local coordinate system, written in the global
coordinates of the reciprocal lattice. Thus û1 = τ/τ , and û2 and û3 are unit vectors
perpendicular to û1 and to each other. The matrix U is unitarian, that is U−1 = UT. The
translation between global and local coordinates is

x = U(y + τ) y = UTx − τ

The expression for the 3-dimensional Gaussian in global coordinates is

G(y) =
1

(
√
2π)3

1
σ1σ2σ3

e−(U(y+�))
TD(U(y+�)) (5.21)

The elastic coherent cross-section is then given by(
dσ

dΩ

)
coh.el.

= N
(2π)3

V0

∑
�

G(τ − κ)δ(ki − kf)|F� |2 (5.22)

where the δ-function specifies the condition that the scattering must be elastic.
The user must specify a list of reciprocal lattice vectors τ to consider along with their

structure factors |F� |2. The user must also specify the coordinates (in direct space) of the
unit cell axes a, b, and c, from which the reciprocal lattice will be computed.
In this version of the Single crystal component, no account is taken of extinction (the

sample is assumed to be so thin that extinction is not important). A future version will
include secondary extinction and multiple scattering.

The algorithm

The overview of the algorithm used in the Single crystal component is as follows:

1. Check if the neutron intersects the crystal, and if so, select at random a point of
scattering inside the crystal.

2. Search through a list of reciprocal lattice points of interest, selecting those that are
close enough to the Ewald sphere to have a non-vanishing scattering probability.

3. Of the selected reciprocal lattice points, choose one at random for this scattering
event.

4. Select an outgoing wave vector kf from the intersection between the Ewald sphere
and the Gaussian ellipsoid.

5. Adjust the neutron weight to get the correct cross-section in (5.22).

For point 1, since no extinction is considered the scattering point is chosen uniformly
on the potential flight path through the crystal. For point 2, the distance dist between a
reciprocal lattice point and the Ewald sphere is considered small enough to allow scattering
if it is less than five times the maximum axis of the Gaussian, dist ≤ 5max(σ1, σ2, σ3).

Risø–R–1175(EN) 65

ki

kf

ρ

τ

x

Ewald

Sphere

Tangential

plane

Figure 5.11: The scattering triangle in the single crystal.

Choosing the outgoing wave vector The final wave vector kf must lie on the in-
tersection between the Ewald sphere and the Gaussian ellipsoid. Since η and ∆d/d are
assumed small, the intersection can be approximated with a plane tangential to the sphere,
see figure 5.11. The tangential point is taken to lie on the line between the center of the
Ewald sphere −ki and the reciprocal lattice point τ . Since the radius of the Ewald sphere
is ki, this point is

o = (1− ki/ρ)ρ− τ

where ρ = ki − τ .
The equation for the plane is

P (t) = o+Bt, t ∈ R2 (5.23)

Here B = (b1, b2) is a 3×2 matrix with the two generators for the plane b1 and b2. These
are (arbitrary) unit vectors in the plane, being perpendicular to each other and to the
plane normal n = ρ/ρ.
Each t defines a potential final wave vector kf(t) = ki + P (t). The value of the

3-dimensional Gaussian for this kf is

G(x(t)) =
1

(
√
2π)3

1
σ1σ2σ3

e−x(t)
TDx(t) (5.24)

where x(t) = τ − (ki − kf(t)) is given in local coordinates for τ . It can be shown that
equation (5.24) can be re-written as

G(x(t)) =
1

(
√
2π)3

1
σ1σ2σ3

e−αe−(t−t0)
TN(t−t0) (5.25)

66 Risø–R–1175(EN)

where N = BTDB is a 2× 2 symmetric and positive definite matrix, t0 = −N−1BTDo is
a 2-vector, and α = −tT0Nt0+oTDo is a real number. Note that this is a two-dimensional
Gaussian (not necessarily normalized) in t with center t0 and axis defined by N .
To choose kf we sample t from the 2-dimensional Gaussian distribution (5.25). To do

this, we first construct the Cholesky decomposition of the matrix (12N
−1). This gives a

2× 2 matrix L such that LLT = 1
2N

−1 and is possible since N is symmetric and positive
definite. It is given by

L =

(√
ν11 0
ν12√
ν11

√
ν22 − ν2

12
ν11

)
where

1
2
N−1 =

(
ν11 ν12
ν12 ν22

)

Now let g = (g1, g2) be two random numbers drawn form a Gaussian distribution with
mean 0 and standard deviation 1, and let t = Lg + t0. The probability of a particular t
is then

P (t)dt =
1
2π
e−

1
2
g
T
gdg (5.26)

=
1
2π

1
detL

e−
1
2
(L−1(t−t0))T(L−1(t−t0))dt (5.27)

=
1
2π

1
detL

e−(t−t0)
TN(t−t0)dt (5.28)

where we used that g = L−1(t− t0) so that dg = 1
detLdt. This is just the normalized form

of (5.25). Finally we set k′
f = ki + P (t) and kf = (ki/k′f)k

′
f to normalize the length of

kf to correct for the (small) error introduced by approximating the Ewald sphere with a
plane.

Adjusting the neutron weight We now calculate the correct neutron weight adjust-
ment. The probability of a neutron with initial wave vector ki that hits the crystal within
a small area A being scattered with a wave vector kf within a small solid angle dΩ is
nin/nout, where nin and nout are the number of incident and scattered neutrons, respec-
tively. The definition of the cross-section is(

dσ

dΩ

)
coh.el.

= nout/φin

where φin = nin/A is the incoming flux. We can thus express the scattering probability in
terms of the cross-section as follows:

Π(τ , kf) =
nout
φinA

=
1
A

(
dσ

dΩ

)
coh.el.

The volume of the crystal as seen by a beam with cross-section A is BA = NV0 where B is
the path length of the beam all the way through the crystal. The probability of scattering
in the physical model is thus

Π(τ , kf) =
B

NV0

(
dσ

dΩ

)
coh.el.

(5.29)

=
B(2π)3

V 20
δ(ki − kf)|F� |2

1
(
√
2π)3

1
σ1σ2σ3

e−x
TDx (5.30)

Risø–R–1175(EN) 67

where x = τ − (ki − kf).
The Monte Carlo probability f(τ , kf) of the scattering event taking place in the sim-

ulation is the product of the probability of selecting the particular reciprocal lattice point
τ and the probability of selecting the particular kf . Let a be the number of reciprocal
lattice vectors closer than dist to the Ewald sphere. From (5.28) we then have

f(τ , kf)dΩ =
1
a

1
2π

1
detL

e−(t−t0)
TN(t−t0)dt (5.31)

=
1
a

1
2π

k2i
detL

δ(ki − kf)eαe−x
TDxdΩ (5.32)

where we used equations (5.24) and (5.25), as well as the fact that dt = k2i dΩ. We also
introduced a δ-function since by construction, f(τ , kf) is non-zero only when ki = kf .
We can now use equation (4.8) to get the correct weight adjustment:

π(τ , kf) =
Π(τ , kf)
f(τ , kf)

(5.33)

=
B

V 20
|F� |2(2π)5/2

detL
k2i

a
e−α

σ1σ2σ3
(5.34)

The implementation

The equations describing the Single crystal simulation are quite complex, and consequently
the code is fairly sizeable. Most of it is just the expansion of the vector and matrix
equations in individual coordinates, and should thus be straightforward to follow.
The implementation pre-computes a lot of the necessary values in the INITIALIZE

section. It is thus actually very efficient despite the complexity. If the list of reciprocal
lattice points is big, however, the search through the list will be slow. The precomputed
data is stored in the structures hkl info and in an array of hkl data structures (one for
each reciprocal lattice point in the list). In addition, for every neutron event an array
of tau data is computed with one element for each reciprocal lattice point close to the
Ewald sphere. Except for the search for possible τ vectors, all computations are done in
local coordinates using the matrix U to do the necessary transformations.
The list of reciprocal lattice points is specified in an ASCII data file. Each line contains

seven numbers, separated by white space. The first three numbers are the (h, k, l) indices
of the reciprocal lattice point, and the last number is the value of the structure factor
|F� |2, in barns. The middle three numbers are not used; they are nevertheless required
since this makes the file format compatible with the output from the Crystallographica
program [10].
The input parameters for the components are xwidth, yheight, and zthick to define

the dimensions of the crystal in meters; delta d d and mosaic to give the value of ∆d/d
(no unit) and η (in minutes of arc); (ax, ay, az), (bx, by, bz), and (cx, cy, cz) to define the
axes of the direct lattice of the crystal (the sides of the unit cell) in units of Ångstrøm;
and reflections, a string giving the name of the file with the list of structure factors to
consider.

68 Risø–R–1175(EN)

5.6.4 Monochromator: The monochromator crystal

The component Monochromator is obsolete as from McStas version 1.2. Use the com-
ponent Mosaic anisotropic instead.

5.7 Powder-like sample components

In this section, we consider elastic coherent and incoherent scattering from polycrystalline
samples. We have chosen to simulate the correct physical processes within the powder
samples on a quite detailed level.
Within many samples, the incident beam is attenuated by scattering and absorption,

so that the illumination varies considerably throughout the sample. For single crystals,
this phenomenon is known as secondary extinction [11], but the effect is also important
in powders. In analytical treatments, attenuation is difficult to deal with, and is thus
often ignored, making a thin sample approximation. In Monte Carlo simulations, the
beam attenuation is easily taken care of, as will be shown below. For simplicity we ignore
multiple scattering, which will be implemented in a later version of McStas.

5.7.1 Weight transformation in samples; focusing

Let us look in detail on how to simulate the physics of the scattering process within the
powder. The sample has an absorption cross section per unit cell of σac and a scatter-
ing cross section per unit cell of σsc . The neutron path length in the sample before the
scattering event is denoted by l1, and the path length within the sample after the scat-
tering is denoted by l2, see figure 5.12. We then define the inverse penetration lengths as
µs = σsc/Vc and µa = σac/Vc, where Vc is the volume of a unit cell. Physically, the beam
along this path is attenuated according to

P (l) = exp(−l(µs + µa)), (5.35)

where the normalization is taken to be P (0) = 1.
The probability for a neutron to be scattered from within the interval [l1; l1+ dl] will

be
Π(l1)dl = µsP (l1)dl, (5.36)

while the probability for a neutron to be scattered from within this interval into the solid
angle Ω and not being scattered further or absorbed on the way out of the sample is

Π(l1,Ω)dldΩ= µsP (l1)P (l2)γ(Ω)dΩdl, (5.37)

where γ(Ω) is the directional distribution of the scattered neutrons, and l2 is determined
by l1, Ω, and the sample geometry, see figure 5.12.
In our Monte-Carlo simulations, we will often choose the scattering parameters by

making a Monte-Carlo choice of l1 and Ω from a distribution different from Π(l1,Ω). By
doing this, we must adjust πi according to the probability transformation rule (4.8). If
we e.g. choose the scattering depth, l1, from a flat distribution in [0; lfull], and choose the
directional dependence from g(Ω), we have a Monte Carlo probability

f(l1,Ω) = g(Ω)/lfull, (5.38)

Risø–R–1175(EN) 69

l1

l2

lfull

Figure 5.12: The geometry of a scattering event within a powder sample.

lfull is here the path length through the sample as taken by a non-scattered neutron
(although we here assume that all simulated neutrons are being scattered). According to
(4.8), the neutron weight factor is now adjusted by the amount

πi(l1,Ω) = µslfull exp [−(l1 + l2)(µa + µs)]
γ(Ω)
g(Ω)

. (5.39)

In analogy with the source components, it is possible to define interesting directions for
the scattering. One will then try to focus the scattered neutrons, choosing a g(Ω), which
peaks around these directions. To do this, one uses (5.39), where the fraction γ(Ω)/g(Ω)
corrects for the focusing. One must choose a proper distribution so that g(Ω) > 0 in every
interesting direction. If this is not the case, the Monte Carlo simulation gives incorrect
results.
All samples of the powder type have been constructed with a focusing and a non-

focusing option.

5.7.2 V sample: An incoherent scatterer, the V-sample

A vanadium sample is frequently being used for calibration purposes, as almost all of the
scattering from the sample occurs incoherently.
In the componentV sample, shown in B.7.2 we assume only absorption and incoherent

scattering. For the sample geometry, we have assumed the shape of a hollow cylinder
(which has the solid cylinder as a limiting case). The sample dimensions are: Inner radius
ri, outer radius ro, and height h, see figure 5.13.
When calculating the neutron path length within the sample material, the kernel func-

tion CYLINDER_INTERSECT is used twice, once for the outer radius and once for the inner
radius.

70 Risø–R–1175(EN)

ri ro

h

Figure 5.13: The geometry of the hollow-cylinder vanadium sample.

The incoherent scattering gives a completely uniform angular distribution of the scat-
tered neutrons from each V-nucleus: γ(Ω) = 1/4π. For the focusing we choose to have a
uniform distribution on a target sphere of radius rt, at the position (xt, yt, zt) in the local
coordinate system. This gives an angular distribution (in a small angle approximation) of

g(Ω) =
1
4π
x2t + y

2
t + z

2
t

(πr2t)
. (5.40)

The input parameters for the component V sample are the sample dimensions (ri, ro,
and h), the packing factor for the V-sample (pack), and the focusing parameters (xt, yt, zt,
and rt) for the target sphere. The relevant material parameters for V (σsc, σac , and the
unit cell volume Vc) are contained within the component.
Note: When simulating a realistic V-sample of this geometry one finds that the result-

ing direction dependence of the scattered intensity is not isotropic. This is explained by
the variation of attenuation with scattering angle. One test result is shown in Appendix
D.

5.7.3 Powder1: A general powder sample

General considerations

An ideal powder sample consists of many small crystallites, although each crystallite is
sufficiently large not to cause size broadening. The orientation of the crystallites is evenly
distributed, and there is thus always a certain number of crystallites oriented to fulfill the
Bragg condition

nλ = 2d sinθ, (5.41)

where n is the order of the scattering (an integer), λ is the neutron wavelength, d is
the lattice spacing of the sample, and 2θ is the scattering angle, see figure 5.14. As all
crystal orientations are realised in a powder sample, the neutrons are scattered within a
Debye-Scherrer cone of opening angle 4θ [11].
Equation (5.41) may be cast into the form

|Q| = 2|k| sinθ, (5.42)

Risø–R–1175(EN) 71

2θ

Figure 5.14: The scattering geometry of a powder sample showing the Debye-Scherrer
cone and the Debye-Scherrer circle.

where Q is a vector of the reciprocal lattice, and k is the wave vector of the neutron.
It is seen that only reciprocal vectors fulfilling |Q| < 2|k| contribute to the scattering.
For a complete treatment of the powder sample, one needs to take into account all these
Q-values, since each of them contribute to the attenuation.
The textbook expression for the scattering intensity from one reflection in a slab-shaped

powder sample, much larger than the beam cross section, reads [11]

P

P0
=

λ3ls
4πr

ρ′

ρ
tjN 2c |F (Q)|2 exp(−2W)

exp(−µat/cosθ)
sin2(2θ)

(5.43)

|F (Q)|2 =

∣∣∣∣∣∣
∑
j

bj exp(Rj ·Q)

∣∣∣∣∣∣
2

, (5.44)

where the sum in the structure factor runs over all atoms in one unit cell. The meanings
and units of the symbols are

P0 s−1 Incoming intensity of neutrons
P s−1 Detected intensity of neutrons
ls m Height of detector
r m Distance from sample to detector
ρ′/ρ 1 Packing factor of the powder
t m Slab thickness
j 1 Multiplicity of the reflection
Nc m−3 Density of unit cells in bulk material

|F (Q)|2 m2 Structure factor
exp(−2W) 1 Debye-Waller factor

µa m−1 Linear attenuation factor due to absorption.

72 Risø–R–1175(EN)

In analogy with this, the textbook expression for a cylinder shaped powder sample, com-
pletely illuminated by the beam, reads [11]

P

Ψ0
=
V ρ′

ρ
N 2c |F (Q)|2j exp(−2W)

Ahkl
sin(θ) sin(2θ)

ls
2πr

λ3

4
, (5.45)

where the new symbols are

Ψ0 s−1m−2 Incoming beam flux
V m3 Sample volume
Ahkl 1 Attenuation factor.

Eq. (5.43) for a slab shaped sample may be cast into the form of the cylinder expression
above by using the substitutions

Incoming flux P0/(wh cos θ) → Ψ0
Sample volume wht → V
Absorption factor exp(−µat/ cos θ) → Ahkl,

where h and w are the height and width of the sample, respectively. Often, one defines
the scattering power as

Q ≡ N 2
|F (Q)|2λ3
V sin(2θ)

= N 2c V
ρ′

ρ

|F (Q)|2λ3
sin(2θ)

, (5.46)

where N is the number of unit cells.
A cut though the Debye-Scherrer cone perpendicular to its axis is a circle. At the

distance r from the sample, the radius of this circle is r sin(2θ). Thus, the detector (in a
small angle approximation) only counts a fraction fd = ls/(2πr sin(2θ)) of the scattered
neutrons. One may now calculate the linear attenuation coefficient in the material due to
scattering (from one Q-value only):

µs ≡ − 1
P0

d(P/fd)
dl

=
Q

V
j exp(−2W) cos(θ). (5.47)

A powder sample will in general have several allowed reflections Qj, which will all con-
tribute to the attenuation. These reflections will have different values of |F (Qj)|2 (and
hence of Qj), jj, exp(−2Wj), and θj. The total attenuation through the sample due to
scattering is given by µs = µsinc +

∑
j µ

s
j , where µ

s
inc represents the incoherent scattering.

This implementation

For component Powder1, we assume that the sample has the shape of a solid cylinder.
Further, the incoherent scattering is only taken into account by the attenuation of the
beam, given by (5.47) and σac . The incoherently scattered neutrons are not propagated
through to the detector, but rather not generated at all. Focusing is performed by only
scattering into one angular interval, dφ of the Debye-Scherrer circle. The center of this
interval is located at the point where the Debye-Scherrer circle intersects the half-plane
defined by the initial velocity, vi, and a user-specified vector, f. Multiple scattering is not
implemented.

Risø–R–1175(EN) 73

The input parameters for this component are

r m Radius of cylinder
h m Height of cylinder
σac fm2 Absorption cross section per unit cell (at 2200 m/s)
σsi,c (fm)2 Incoherent scattering cross section per unit cell
ρ′/ρ 1 Packing factor
Vc Å3 Volume of unit cell
Q Å−1 The reciprocal lattice vector under consideration

|F (Qj)|2 (fm)2 Structure factor
j 1 Multiplicity of reflection

exp(−2W) 1 Debye-Waller factor
dφ deg Angular interval of focusing
fx m
fy m Focusing vector
fz m

The source text for the component is shown in Appendix B.7.3.
In a later version, more reciprocal lattice vectors will be allowed. Further, we intent

to include the effect of multiple scattering.

5.8 Inelastic scattering kernels

In this section, samples with inelastic scattering are described. Currently, only a single
sample is available that scatters uniformly in (Q, ω) and is used for computing resolution
functions in tripple-axis instruments.

5.8.1 Res sample: A uniform scatterer for resolution calculation

The component Res samplemodels an inelastic sample that scatters completely homoge-
neous in position and energy; regardless of the state of the incoming neutron, all directions
and energies for the scattered neutron have the same probability. This clearly does not
correspond any physically realizable samples, but the component is very useful for com-
putation of the resolution function and may also be used for test and debugging purposes.
The component is designed to be used together with the Res monitor component, de-
scribed in section 5.5.12.
The shape of the sample is either a hollow cylinder (like the vanadium sample described

in section 5.7.2) or a rectangular box. The hollow cylinder shape is specified with inner
and outer radius radius i and radius o and height h. If radius o is negative, the shape is
instead a box of width radius i along the X axis, height h, and thickness −radius o along
the Z axis, centered on the Z axis and with the front face in the X-Y plane. See figure 5.15.
The component only propagates the neutrons that are scattered; neutrons that would

pass through or miss the sample are absorbed. There is no modeling of the cross section
of the sample, secondary extinction etc.; the scattering probability is proportional to
the neutron flight path length inside the sample, with the constant of proportionality
arbitrarily set to 1/(2|radius o|). The reason for this is that the component is designed

74 Risø–R–1175(EN)

radius i radius o

h

radius i

−radius o

h X

Y

Z

Figure 5.15: The two possible shapes of the Res sample component.

for computing the resolution function of an instrument, including the sample size but
independent of any sample properties such as scattering and absorbtion cross sections.

The point of scattering in the sample is chosen at a random position along the neutron
flight path inside the sample, and the scattered neutron is given a random energy and
direction. The energy is selected in a user-specified interval [E0−∆E;E0+∆E] which must
be chosen large enough to cover all interesting neutrons, but preferably not excessively
large for reasons of efficiency. Similarly, the direction is chosen in a user-specified range;
the range is such that a sphere of given center and radius is fully illuminated.

A special feature, used when computing resolution functions, is that the component
stores complete information about the scattering event in the output parameter res struct.
The information includes initial and final wave vectors, the coordinates of the scattering
point, and the neutron weight after the scattering event. From this information the scatter-
ing parameters (Qi, ωi) for every scattering event i may be recorded and used to compute
the resolution function of an instrument, as explained below. For an example of how to
use the information in the output parameter, see the description of the Res monitor
component in section 5.5.12.

The input parameters to the Res sample components are the sample dimensions
radius i, radius o, and h, all in meters; the center of the scattered energy range E0 and
the energy spread dE in meV; and the target sphere position in the local coordinate system
target x, target y, target z, and radius focus r, in meters. The only output parameter is
res struct containing information about the scattering event, with all vectors given in the
local coordinate system of the component in units of meter.

Risø–R–1175(EN) 75

Background

In an experiment, as well as in the simulation, the expected intensity is by definition of
the resolution function given by

I =
∫
R(Q, ω)σ(Q, ω)dQdω

Here I(Q0, ω0) is the measured or simulated intensity in the detector, R is the resolution
function for the instrument in a given setup, σ is the scattering cross section of the sample,
and (Q, ω) denote the scattering vector and energy transfer in the sample. For the uniform
scatterer, σ(Q, ω) = 1/V0 is a constant, so we have

I = 1/V0
∫
R(Q, ω)dQdω

If we instead consider only the intensity contributed by scattering with parameters (Q, ω)
that lie within a small part ∆Ω of the total phase space and has volume ∆V ,

I∆Ω = 1/V0
∫
∆Ω
R(Q, ω)dQdω =

∆V
V0
R(∆Ω)

(where R(∆Ω) denotes the average value of R over ∆Ω), we get a good approximation of
the value of R provided that ∆Ω is sufficiently small. This is useful with the output from
the simulations, since I∆Ω is approximated by

I∆Ω ≈
∑

(Qi,ωi)∈∆Ω
pi

This can be used to histogram the resolution function or visualize it in different ways.
The 3D visualization of the resolution function produced by the mcresplot program for
example uses this by displaying a cloud of dots, the local density of which is proportional
to the resolution function.
The mcresplot program also computes the covariance and resolution matrices. Let-

ting (x1i , x
2
i , x

3
i , x

4
i) denote the (Qi, ωi) values obtained from the scattering events in the

simulation and µj = (
∑

i pix
j
i)/(

∑
i pi) the mean value of x

j
i , the covariance matrix is

computed as
Cjk =

(∑
i

pi(x
j
i − µj)(xki − µk)

)
/
(∑

i

pi

)
This covariance matrix is given in the local coordinate system of the sample component.
The mcresplot program actually outputs the covariance matrix in another coordinate
system which is rotated around the Y axis so that the projection to the X-Z plane of the
average scattering vector Qavg = (

∑
i piQi)/(

∑
i pi) is parallel to the X axis.

The resolution matrixM is the inverse of the covariance matrix and is also output in
the rotated coordinate system by mcresplot. The 4-dimensional gaussian distribution,
defined by

f(X) = e−
1
2
XT MX (5.48)

where X = (Q, ω), has covariance matrix C and thus defines the gaussian resolution
function with the same covariance as the resolution computed by the simulation.

76 Risø–R–1175(EN)

The mcresplot program provides for the simultaneous visualization of the computed
and the gaussian resolution function by obtaining an appropriate number of random points
with the statistical distribution (5.48). Each point X is obtained as follows: A vector Y is
generated of four individually gaussian distributed random numbers with mean zero and
variance one. Using the Cholesky decomposition of C, C = LLT , we have

X = LY.

Risø–R–1175(EN) 77

Chapter 6

The instrument library

Here, we give a short description of three selected instruments. We present the McStas
versions of the Risø triple axis spectrometer TAS1 (6.2) and the ISIS time-of-flight spec-
trometer PRISMA (6.3). Before that, however, we present one example of a component
test instrument: the instrument to test the component V sample (6.1).
The source text for the three instrument definitions is listed in Appendix C. These

files are also included in the McStas distribution in the examples/ directory.

6.1 A test instrument for the component V sample

This instrument is one of many test instruments written with the purpose of testing the
individual components. We have picked this instrument both because we would like to
present an example test instrument and because it despite its simplicity has produced
quite non-trivial results, also giving rise to the McStas logo, see Appendix D.
The instrument consists of a narrow source, a 60’ collimator, a V-sample shaped as a

hollow cylinder with height 15 mm, inner diameter 16 mm, and outer diameter 24 mm at
a distance of 1 m from the source. The sample is in turn surrounded by an unphysical
4π-PSD monitor with 50 × 100 pixels and a radius of 106 m. The set-up is shown in
figure 6.1.

6.2 The triple axis spectrometer TAS1

With this instrument definition, we have tried to create a very detailed model of the con-
ventional cold source triple axis spectrometer TAS1 at Risø National Laboratory. Except
for the cold source itself, all components used have quite realistic properties. Further, the
overall geometry of the instrument has been adapted from the detailed technical drawings
of the real spectrometer. The TAS 1 simulations are by far the most extensive work yet
performed with the McStas package, and a few of the simulation results are shown in
Appendix D. For further details see reference [12].
At the spectrometer, the channel from the cold source to the monochromator is asym-

metric, since the first part of the channel is shared with other instruments. In the instru-
ment definition, this is represented by three slits. For the cold source, we use one with a
flat energy distribution (component Source flat) focusing on the third slit.

78 Risø–R–1175(EN)

Source
Collimator Vanadium

4π PSD

Figure 6.1: A sketch of the test instrument for the component V sample.

The real monochromator consist of seven blades, vertically focusing on the sample.
The angle of curvature is constant so that the focusing is perfect at 5.0 meV (20.0 meV
for 2nd order reflections) for a 1 cm by 1 cm sample. This is modeled directly in the
instrument definition using seven Monochromator components. The mosaicity of the
pyrolytic graphite crystals is nominally 30’ in both directions. However, the simulations
indicated that the horisontal mosaicities of both monochromator and analyser were more
likely 45’. This was used for all mosaicities in the final instrument definition.
The monochromator scattering angle, in effect determining the incoming neutron en-

ergy, is for the real spectrometer fixed by four holes in the shielding, corresponding to the
energies 3.6, 5.0, 7.2, and 13.7 meV for first order neutrons. In the instrument definition,
we have adapted the angle corresponding to 5.0 meV in order to test the simulations
against measurements performed on the spectrometer.
The exit channel from the monochromator may on the spectrometer be narrowed down

from initially 40 mm to 20 mm by an insert piece. In the simulations, we have chosen the
narrow option and modeled the channel with two slits to match the experimental set-up.
In the test experiments, we used two standard samples: An Al2O3 powder sample and

a vanadium sample. The instrument definitions use either of these samples of the correct
size. Both samples are chosen to focus on the opening aperture of collimator 2 (the one
between the sample and the analyser). Two slits, one before and one after the sample, are
in the instrument definition set to the opening values which were used in the experiments.
The analyser of the spectrometer is flat and made from pyrolytic graphite. It is placed

between an entry and an exit channel, the latter leading to a single detector. All this has
been copied into the instrument definition, where the graphite mosaicity has been set to
45’.
On the spectrometer, Soller collimators may be inserted at three positions: Between

monochromator and sample, between sample and analyser, and between analyser and
detector. In our instrument definition, we have used 30’, 28’, and 67’ collimators on these
three positions, respectively.
An illustration of the TAS1 instrument is shown in figure 6.2. Test results and data

from the real spectrometer are shown in Appendix D.2.

Risø–R–1175(EN) 79

Source

Slits

Focusing
monochromator

Slits

Sample

Collimator 2

Analyser

Collimator 3 Detector
Collimator 1

Slits

Figure 6.2: A sketch of the TAS1 instrument.

6.3 The time-of-flight spectrometer PRISMA

In order to test the time-of-flight aspect of McStas, we have in collaboration with Mark
Hagen, ISIS, written a simple simulation of a time-of-flight instrument loosely based on
the ISIS spectrometer PRISMA. The simulation was used to investigate the effect of using
a RITA-style analyser instead of the normal PRISMA backend.
We have used the simple time-of-flight source Tof source, as described under the

component library. The neutrons pass through a beam channel and scatter off from a
vanadium sample, pass through a collimator on to the analyser.
The RITA-style analyser consists of seven analyser crystals that can be rotated in-

dependently around a vertical axis. After the analysers we have placed a PSD and a
time-of-flight detector.
To illustrate some of the things that can be done in a simulation as opposed to a

real-life experiment, this example instrument further discriminates between the scattering
off each individual analyser crystal when the neutron hits the detector. The analyser
component is modified so that a global variable neu_color keeps track of which crystal
scatters the neutron. The detector component is then modified to construct seven different
time-of-flight histograms, one for each crystal (see the source code for the instrument in
appendix C for details). One way to think of this is that the analyser blades paint a color
on each neutron which is then observed in the detector.
An illustration of the instrument is shown in figure 6.3. Test results are shown in

Appendix D.3.

80 Risø–R–1175(EN)

7-blade
analyser

Collimator

Moderator

Slit Slit

Monitor

Slit

Sample

PSD
Detector

Figure 6.3: A sketch of the PRISMA instrument.

Risø–R–1175(EN) 81

Chapter 7

Planned expansions of McStas in
the future

During the work so far on McStas, we have run across a number of points we would like
to include in McStas in the future.

For the McStas meta-language itself, these points include:

• Facilities for making a Monte-Carlo choice on the basis of tabulated values. This
would be useful in source and filter components.

• Facilities for assembling a number of existing components into one compound com-
ponent, like a multi-bladed analyser.

We also would like to improve on the component and instrument libraries:

• Output in NeXus format.

• Allow multiple scattering in sample components.

• More samples for inelastic scattering.

• A powder sample with more than one reflection.

• Handle gravitation.

• The RITA spectrometer.

• The new Risø TAS7 spectrometer.

• A detailed version of the ISIS PRISMA spectrometer.

Further, we would like to make improvements on the interface software:

• Interface to existing control software (e.g. the Risø program TASCOM)

82 Risø–R–1175(EN)

Appendix A

Kernel calls and conversion
constants

The McStas kernel contains a number of built-in functions and conversion constants which
are useful when constructing components. Here, we bring a short list of these additional
features.

A.1 Kernel calls and functions

Here we list a number of preprogrammed macros which may ease the task of writing
components

• ABSORB. This macro issues an order to the overall McStas simulator to interrupt
the simulation of the current neutron history and to start a new one.

• DETECTOR OUT 0D(). Used to output the results from a single detector. The
name of the detector is output together with the simulated intensity and estimated
statistical error. The output is produced in a format that can be read by McStas
front-end programs. See section 3.4.5 for details.

• DETECTOR OUT 1D(). Used to output the results from a one-dimentional
detector. See section 3.4.5 for details.

• DETECTOR OUT 2D(). Used to output the results from a two-dimentional
detector. See section 3.4.5 for details.

• MC GETPAR(). This may be used in the finally section of an instrument defini-
tion to reference the output parameters of a component. See page 31 for details.

• NORM(x, y, z). Normalizes the vector (x, y, z) to have length 1.

• PROP Z0. Propagates the neutron to the z = 0 plane, by adjusting (x, y, z) and t.
If the neutron velocity points away from the z = 0 plane, the neutron is absorbed.

• PROP DT(dt). Propagates the neutron through the time interval dt, adjusting
(x, y, z) and t.

Risø–R–1175(EN) 83

• SCATTER. This macro is used to denote a scattering event inside a component,
see section 3.4.4.

• scalar prod(ax, ay, az, bx, by, bz). Returns the scalar product of the two vectors
(ax, ay, az) and (bx, by, bz).

• vecprod(ax, ay, az, bx, by, bz, cx, cy, cz). Sets (ax, ay, az) equal to the vector product
(bx, by, bz)× (cx, cy, cz).

• rotate(x, y, z, vx, vy, vz, ϕ, ax, ay, az). Set (x, y, z) to the result of rotating the vector
(vx, vy, vz) the angle ϕ (in radians) around the vector (ax, ay, az).

And here we list a number of preprogrammed C functions.

• cylinder intersect(&t1, &t2, x, y, z, vx, vy, vz, r, h). Calculates the (0, 1, or
2) intersections between the neutron path and a cylinder of height h and radius
r, centered at the origin for a neutron with the parameters (x, y, z, vx, vy, vz). The
times of intersection are returned in the variables t1 and t2, with t1 < t2. In the
case of less than two intersections, t1 (and possibly t2) are returned with a negative
value.

• mcget ncount(). Returns the number of neutron histories to simulate.

• rand01(). Returns a random number distributed uniformly between 0 and 1.

• randnorm(). Returns a random number from a normal distribution centered around
0 and with σ = 1. The algorithm used to get the normal distribution is explained
in [13], chapter 7.

• randpm1(). Returns a random number distributed uniformly between -1 and 1.

• randvec target sphere(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz, rf). Generates
a random vector (vx, vy, vz), of the same length as (aimx, aimy, aimz), which is
targeted at a sphere centered at (aimx, aimy, aimz) with radius rf . All directions
that intersect the sphere are chosen with equal probability. The solid angle of the
sphere as seen from the position of the neutron is returned in dΩ.

• sphere intersect(&t1, &t2, x, y, z, vx, vy, vz, r). Similar to cylinder intersect,
but using a sphere of radius r.

A.2 Constants for unit conversion etc.

The following predefined constants are useful for conversion between units

84 Risø–R–1175(EN)

Name Value Conversion from Conversion to
DEG2RAD 2π/360 Degrees radians
RAD2DEG 360/(2π) Radians degrees
MIN2RAD 2π/(360 · 60) Minutes of arc radians
RAD2MIN (360 · 60)/(2π) Radians minutes of arc
V2K 1010 ·mN/~ Velocity (m/s) k-vector (Å−1)
K2V 10−10 · ~/mN k-vector (Å−1) Velocity (m/s)
VS2E mN/(2e) Velocity squared (m2 s−2) Energy (meV)
SE2V

√
2e/mN Square root of energy

(meV1/2)
Velocity (m/s)

FWHM2RMS 1/
√
8 log(2) Full width half maximum Root mean square (stan-

dard deviation)
RMS2FWHM

√
8 log(2) Root mean square (stan-

dard deviation)
Full width half maximum

Further, we have defined the constants PI= π and HBAR= ~.

Risø–R–1175(EN) 85

Appendix B

McStas source code for the
component library

List of component input and output parameters

Before listing the source code for the components, we bring a list of the components with
their input and output parameters.

Source flat Input: (radius, dist, xw, yh, E0, dE)
Output: (hdiv, vdiv, p in)

Source flat lambda Input: (radius, dist, xw, yh, lambda 0, d lambda)
Output: (hdiv, vdiv, p in)

Source flux lambda Input: (radius, dist, xw, yh, lambda 0, d lambda, flux)
Output: (hdiv, vdiv, p in)

Source div Input: (width, height, hdiv, vdiv, E0, dE)
Moderator Input: (radius, E0, E1, dist, xw, yh, t0, Ec, gam)
Source adapt Input: (xmin, xmax, ymin, ymax, dist, xw, yh, E0, dE, flux)

(n E, N xpos, N xdiv, alpha, beta, filename)
Arm Input: ()
Slit Input: (xmin, xmax, ymin, ymax)
Circular slit Input: (radius)
Beamstop rectangular Input: (xmin, xmax, ymin, ymax)
Beamstop circular Input: (radius)
Soller Input: (xmin, xmax, ymin, ymax, len, divergence)
Filter Input: (xmin, xmax, ymin, ymax, len, T0, T1, Emin, Emax)
Mirror Input: (xlength, yheight, R0, Qc, alpha, m, W)
Guide Input: (w1, h1, w2, h2, l, R0, Qc, alpha, m, W)
Channeled Guide Input: (w1, h1, w2, h2, l, d, k)

(R0, Qcx, Qcy, alphax, alphay, mx, my, W)

86 Risø–R–1175(EN)

V selector Input: (width, height, l0, r0, phi, l1, tb, rot, nb)
Chopper Input: (w, R, f, n, pha)

Output: (Tg, To)
First Chopper Input: (w, R, f, n, pha, a)

Output: (Tg, To)
Monitor Input: (xmin, xmax, ymin, ymax)

Output: (Nsum, psum, p2sum)
Monitor 4PI Output: (Nsum, psum, p2sum)
PSD monitor Input: (xmin, xmax, ymin, ymax, nx, ny, filename)

Output: (PSD N, PSD p, PSD p2)
PSD monitor 4PI Input: (radius, nx, ny, filename)

Output: (PSD N, PSD p, PSD p2)
PSD monitor 4PI log Input: (radius, nx, ny, filename)

Output: (PSD N, PSD p, PSD p2)
TOF monitor Input: (xmin, xmax, ymin, ymax, nchan, dt, filename)

Output: (TOF N, TOF p, TOF p2)
E monitor Input: (xmin, xmax, ymin, ymax, Emin, Emax, nchan, filename)

Output: (E N, E p, E p2)
L monitor Input: (xmin, xmax, ymin, ymax, Lmin, Lmax, nchan, filename)

Output: (L N, L p, L p2)
Divergence monitor Input: (xmin, xmax, ymin, ymax, nh, nv)

(h maxdiv, v maxdiv, filename)
Output: (Div N, Div p, Div p2)

DivPos monitor Input: (xmin, xmax, ymin, ymax, npos, ndiv, maxdiv, filename)
Output: (Div N, Div p, Div p2)

DivLambda monitor Input: (xmin, xmax, ymin, ymax, nlam, ndiv, maxdiv)
(lambda 0, lambda 1, filename)

Output: (Div N, Div p, Div p2)
Res monitor Input: (xmin, xmax, ymin, ymax, filename, res sample comp)

Output: (Nsum, psum, p2sum, file)
Adapt check Input: (source comp)
Mosaic simple Input: (zmin, zmax, ymin, ymax, mosaic, R0, Qx, Qy, Qz)
Mosaic anisotropic Input: (zmin, zmax, ymin, ymax, mosaich, mosaicv, r0, Q)
Single crystal Input: (xwidth, yheight, zthick, delta d d, mosaic)

(ax, ay, az, bx, by, bz, cx, cy, cz, reflections)
V sample Input: (radius i,radius o,h,pack,focus r)

(target x, target y, target z)
Powder1 Input: (d phi0, radius, h, pack, Vc, sigma a, j, q, F2, DW)

(target x, target y, target z)
Output: (my s v2, my a v, q v)

Res sample Input: (radius i, radius o, h, focus r, E0, dE)
(target x, target y, target z)

Output: (res struct)

Risø–R–1175(EN) 87

B.1 Source components

B.1.1 Source flat

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Source_flat

*

* Written by: KL, October 30, 1997

* Modified by: KL, KN, October 5, 1998

*

* The routine is a circular neutron source, which aims at a square target

* centered at the beam (in order to improve MC-acceptance rate). The angular

* divergence is then given by the dimensions of the target. The neutron energy is

* uniformly distrubuted between E0-dE and E0+dE.

*

* ToDo: More flexible specification of E distribution.

*

* radius: (m) Radius of circle in (x,y,0) plane where neutrons

* are generated.

* dist: (m) Distance to target along z axis.

* xw: (m) Width(x) of target

* yh: (m) Height(y) of target

* E0: (meV) Mean energy of neutrons.

* dE: (meV) Energy spread of neutrons.

*

***/

DEFINE COMPONENT Source_flat

DEFINITION PARAMETERS (radius, dist, xw, yh, E0, dE)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (hdiv, vdiv, p_in)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double hdiv,vdiv;

double p_in;

%}

INITIALIZE

%{

hdiv = atan(xw/(2.0*dist));

vdiv = atan(yh/(2.0*dist));

p_in = (4*hdiv*vdiv)/(4*PI); /* Small angle approx. */

%}

TRACE

%{

double theta0,phi0,chi,theta,phi,E,v,r;

p=p_in;

z=0;

chi=2*PI*rand01(); /* Choose point on source */

r=sqrt(rand01())*radius; /* with uniform distribution. */

88 Risø–R–1175(EN)

x=r*cos(chi);

y=r*sin(chi);

theta0= -atan(x/dist); /* Angles to aim at target centre */

phi0= -atan(y/dist);

theta=theta0+hdiv*randpm1(); /* Small angle approx. */

phi=phi0+vdiv*randpm1();

E=E0+dE*randpm1(); /* Assume linear distribution */

v=sqrt(E)*SE2V;

vz=v*cos(phi)*cos(theta);

vy=v*sin(phi);

vx=v*cos(phi)*sin(theta);

%}

MCDISPLAY

%{

magnify("xy");

circle("xy",0,0,0,radius);

%}

END

Risø–R–1175(EN) 89

B.1.3 Source flux lambda

/***

*

* McStas, the neutron ray-tracing package

* Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright 1997-2000 Risoe National Laboratory, Roskilde, Denmark

*

* Component: Source_flux_lambda

*

* Modified by: KN, 1998 from Source_flat.comp

*

* The routine is a circular neutron source, which aims at a square target

* centered at the beam (in order to improve MC-acceptance rate). The angular

* divergence is then given by the dimensions of the target. The neutron

* wavelength is uniformly distrubuted between lambda_0 - d_lambda and

* lambda_0 + d_lambda. The source flux is specified in neutrons per steradian

* per square cm per AAngstroem.

*

* radius: (m) Radius of circle in (x,y,0) plane where neutrons

* are generated.

* dist: (m) Distance to target along z axis.

* xw: (m) Width(x) of target

* yh: (m) Height(y) of target

* lambda_0: (AA) Mean wavelength of neutrons.

* d_lambda: (AA) Wavelength spread of neutrons.

* flux: (1/(cm**2*st*AA) Source flux

*

***/

DEFINE COMPONENT Source_flux_lambda

DEFINITION PARAMETERS (radius, dist, xw, yh, lambda_0, d_lambda, flux)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (hdiv, vdiv, p_in)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double hdiv,vdiv;

double p_in;

%}

INITIALIZE

%{

double factor, delta_lambda, source_area;

hdiv = atan(xw/(2.0*dist));

vdiv = atan(yh/(2.0*dist));

delta_lambda = 2*d_lambda;

source_area = radius*radius*PI*1e4; /* cm^2 */

factor = flux/mcget_ncount()*delta_lambda*source_area;

p_in = (4*hdiv*vdiv)*factor; /* Small angle approx. */

%}

TRACE

%{

double theta0,phi0,chi,theta,phi,lambda,v,r;

90 Risø–R–1175(EN)

p=p_in;

z=0;

chi=2*PI*rand01(); /* Choose point on source */

r=sqrt(rand01())*radius; /* with uniform distribution. */

x=r*cos(chi);

y=r*sin(chi);

theta0= -atan(x/dist); /* Angles to aim at target centre */

phi0= -atan(y/dist);

theta=theta0+hdiv*randpm1(); /* Small angle approx. */

phi=phi0+vdiv*randpm1();

lambda = lambda_0+d_lambda*randpm1();

v = K2V*(2*PI/lambda);

vz=v*cos(phi)*cos(theta);

vy=v*sin(phi);

vx=v*cos(phi)*sin(theta);

%}

MCDISPLAY

%{

magnify("xy");

circle("xy",0,0,0,radius);

%}

END

Risø–R–1175(EN) 91

B.1.4 Source div

/***

*

* McStas, version 1.1, released ??

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Source_div

*

* Written by: KL, November 20, 1998

*

* The routine is a rectangular neutron source, which has a gaussian

* divergent output in the forward direction.

* The neutron energy is uniformly distrubuted between E0-dE and E0+dE.

*

* ToDo: More flexible specification of E distribution.

*

* width: (m) Width of source

* height (m) Height of source

* hdiv (deg) FWHM of horisontal divergence

* vdiv (deg) FWHM of vertical divergence

* E0: (meV) Mean energy of neutrons.

* dE: (meV) Energy spread of neutrons.

*

***/

DEFINE COMPONENT Source_div

DEFINITION PARAMETERS (width, height, hdiv, vdiv, E0, dE)

SETTING PARAMETERS ()

OUTPUT PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double thetah, thetav, sigmah, sigmav, tan_h, tan_v;

%}

INITIALIZE

%{

sigmah = DEG2RAD*hdiv/(2.0*sqrt(2.0*log(2.0)));

sigmav = DEG2RAD*vdiv/(2.0*sqrt(2.0*log(2.0)));

%}

TRACE

%{

double E,v;

p=1;

z=0;

t=0;

x=randpm1()*width/2.0;

y=randpm1()*height/2.0;

E=E0+dE*randpm1(); /* Assume linear distribution */

v=sqrt(E)*SE2V;

thetah = randnorm()*sigmah;

thetav = randnorm()*sigmav;

92 Risø–R–1175(EN)

tan_h = tan(thetah);

tan_v = tan(thetav);

/* Perform the correct treatment - no small angle approx. here! */

vz = v / sqrt(1 + tan_v*tan_v + tan_h*tan_h);

vy = tan_v * vz;

vx = tan_h * vz;

%}

END

Risø–R–1175(EN) 93

B.1.5 Moderator

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Moderator

*

* Written by: KN, M.Hagan, August 1998

*

* Produces a simple time-of-flight spectrum, with a flat energy disstribution

*

* Input parameters:

*

* radius: (m) Radius of source

* E0: (meV) Lower edge of energy distribution

* E1: (meV) Upper edge of energy distribution

* dist: (m) Distance from source to the focusing rectangle

* xw: (m) Width of focusing rectangle

* yh: (m) Height of focusing rectangle

* t0: (mus) decay constant for low-energy neutrons

* Ec: (meV) Critical energy, below which the flux decay is constant

* gam: (meV) energy dependence of decay time

*

***/

DEFINE COMPONENT Moderator

DEFINITION PARAMETERS (radius, E0, E1, dist, xw, yh, t0, Ec, gam)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (hdiv,vdiv,p_in)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double hdiv,vdiv;

double p_in;

%}

INITIALIZE

%{

hdiv = atan(xw/(2.0*dist));

vdiv = atan(yh/(2.0*dist));

p_in = (4*hdiv*vdiv)/(4*PI);

%}

TRACE

%{

double theta0,phi0,chi,theta,phi,v,r,tauv,E;

p=p_in;

z=0;

chi = 2*PI*rand01(); /* Choose point on source */

r = sqrt(rand01())*radius; /* with uniform distribution. */

x = r*cos(chi);

y = r*sin(chi);

theta0 = -atan(x/dist); /* Angles to aim at target centre */

94 Risø–R–1175(EN)

phi0 = -atan(y/dist);

theta = theta0 + hdiv*randpm1(); /* Small angle approx. */

phi = phi0 + vdiv*randpm1();

E = E0+(E1-E0)*rand01(); /* Assume linear distribution */

v = SE2V*sqrt(E);

vz = v*cos(phi)*cos(theta); /* Small angle approx. */

vy = v*sin(phi);

vx = v*cos(phi)*sin(theta);

if(E < Ec)

{

tauv = t0;

}

else

{

double tmp = ((E - Ec) / gam);

tauv = t0 / (1 + (tmp*tmp));

}

t = -tauv*log(rand01())*1E-6;

%}

MCDISPLAY

%{

magnify("xy");

circle("xy",0,0,0,radius);

%}

END

Risø–R–1175(EN) 95

B.1.6 Source adapt

/***

*

* McStas, the neutron ray-tracing Monte-Carlo software.

* Copyright(C) 1999 Risoe National Laboratory.

*

* Component: Source_adapt

*

* Written by Kristian Nielsen 1999

*

* Rectangular source with flat energy distribution that uses adaptive

* importance sampling to improve simulation efficiency. Works

* together with the Adapt_check component.

*

* The source divides the three-dimensional phase space of (energy,

* horizontal position, horizontal divergence) into a number of

* rectangular bins. The probability for selecting neutrons from each

* bin is adjusted so that neutrons that reach the Adapt_check

* component with high weights are emitted more frequently than those

* with low weights. The adjustment is made so as to attemt to make

* the weights at the Adapt_check components equal.

*

* Focosing is achieved by only emitting neutrons towards a rectangle

* perpendicular to and placed at a certain distance along the Z axis.

* Focusing is only approximate (for simplicity); neutrons are also

* emitted to pass slightly above and below the focusing rectangle,

* more so for wider focusing.

*

* In order to prevent false learning, a parameter beta sets a

* fraction of the neutrons that are emitted uniformly, without regard

* to the adaptive distribution. The parameter alpha sets an initial

* fraction of neutrons that are emitted with low weights; this is

* done to prevent early neutrons with rare initial parameters but

* high weight to ruin the statistics before the component adapts its

* distribution to the problem at hand. Good general-purpose values

* for these parameters are alpha = beta = 0.25.

*

* INPUT PARAMETERS:

*

* xmin: (m) Left edge of rectangular source

* xmax: (m) Right edge

* ymin: (m) Lower edge

* ymax: (m) Upper edge

* dist: (m) Distance to target rectangle along z axis

* xw: (m) Width(x) of target

* yh: (m) Height(y) of target

* E0: (meV) Mean energy of neutrons

* dE: (meV) Energy spread (energy range is from E0-dE to E0+dE)

* flux: (1/(cm**2*AA**st) Absolute source flux

* N_E: (1) Number of bins in energy dimension

* N_xpos: (1) Number of bins in horizontal position

* N_xdiv: (1) Number of bins in horizontal divergence

* alpha: (1) Learning cut-off factor (0 < alpha <= 1)

* beta: (1) Aggressiveness of adaptive algorithm (0 < beta <= 1)

* filename: (string) Optional filename for adaptive distribution output

*

96 Risø–R–1175(EN)

* OUTPUT PARAMETERS:

*

* p_in: Internal, holds initial neutron weight

* y_0: Internal

* C: Internal

* r_0: Internal

* count: Internal, counts neutrons emitted

* adpt: Internal structure shared with the Adapt_check component

***/

DEFINE COMPONENT Source_adapt

DEFINITION PARAMETERS (xmin,xmax,ymin,ymax, dist, xw, yh, E0, dE, flux,

N_E, N_xpos, N_xdiv, alpha, beta, filename)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (p_in, y_0, C, r_0, count, adpt)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

struct source_adapt

{

struct adapt_tree *atree; /* Adaptive search tree */

int idx; /* Index of current bin */

double *psi, *n; /* Arrays of weight sums, neutron counts */

double psi_tot; /* Total weight sum */

double pi, num; /* Initial p, number of bins in tree */

double factor; /* Adaption quality factor */

double a_beta; /* Adaption agression factor */

} adpt;

double count; /* Neutron counter */

double y_0, C, r_0;

double p_in;

%}

INITIALIZE

%{

int i;

double a, lambda_min, lambda_max, delta_lambda, source_area;

adpt.num = N_E*N_xpos*N_xdiv;

adpt.a_beta = beta;

lambda_min = sqrt(81.81/(E0+dE)); /* AAngstroem */

lambda_max = sqrt(81.81/(E0-dE));

delta_lambda = lambda_max - lambda_min;

source_area = (xmax - xmin)*(ymax - ymin)*1e4; /* cm^2 */

p_in = flux/mcget_ncount()*delta_lambda*source_area;

adpt.atree = adapt_tree_init(adpt.num);

adpt.psi = malloc(adpt.num*sizeof(*adpt.psi));

adpt.n = malloc(adpt.num*sizeof(*adpt.n));

if(!(adpt.psi && adpt.n))

{

fprintf(stderr, "Fatal error: out of memory.\n");

exit(1);

}

for(i = 0; i < adpt.num; i++)

{

adapt_tree_add(adpt.atree, i, 1.0/adpt.num);

adpt.psi[i] = adpt.n[i] = 0;

Risø–R–1175(EN) 97

}

adpt.psi_tot = 0;

count = 0;

y_0 = adpt.num > 8 ? 2.0/adpt.num : 0.25;

r_0 = 1/(double)alpha*log((1 - y_0)/y_0)/(double)mcget_ncount();

C = 1/(1 + log(y_0 + (1 - y_0)*exp(-r_0*mcget_ncount()))/(r_0*mcget_ncount()));

%}

TRACE

%{

double thmin,thmax,phmin,phmax,theta,phi,E,v,r;

double new_v;

int i_E, i_xpos, i_xdiv;

/* Randomly select a bin in the current distribution */

r = rand01();

adpt.idx = adapt_tree_search(adpt.atree, adpt.atree->total*r);

if(adpt.idx >= adpt.num)

{

fprintf(stderr,

"Hm, idx is %d, num is %d, r is %g, atree->total is %g\n",

adpt.idx, (int)adpt.num, r, adpt.atree->total);

adpt.idx = adpt.num - 1;

}

/* Now find the bin coordinates. */

i_xdiv = adpt.idx % (int)N_xdiv;

i_xpos = (adpt.idx / (int)N_xdiv) % (int)N_xpos;

i_E = (adpt.idx / (int)N_xdiv) / (int)N_xpos;

/* Compute the initial neutron parameters, selecting uniformly randomly

within each bin dimension. */

x = xmin + (i_xpos + rand01())*((xmax - xmin)/(double)N_xpos);

y = ymin + rand01()*(ymax - ymin);

z=0;

thmin = atan2(-xw/2.0 - x, dist);

thmax = atan2(xw/2.0 - x, dist);

theta = thmin + (i_xdiv + rand01())*((thmax - thmin)/(double)N_xdiv);

phmin = atan2(-yh/2.0 - y, dist);

phmax = atan2(yh/2.0 - y, dist);

phi = phmin + rand01()*(phmax - phmin);

E = E0 - dE + (i_E + rand01())*(2.0*dE/(double)N_E);

v = sqrt(E)*SE2V;

vy = v*sin(phi);

vx = v*cos(phi)*sin(theta);

vz = v*cos(phi)*cos(theta);

t = 0;

/* Adjust neutron weight. */

p = p_in;

adpt.factor = y_0/(y_0 + (1 - y_0)*exp(-r_0*count));

count++;

p /= adpt.atree->v[adpt.idx]/(adpt.atree->total/adpt.num);

p *= C*adpt.factor*(thmax - thmin)*(sin(phmax) - sin(phmin));

/* Update distribution, assuming absorbtion. */

if(adpt.n[adpt.idx] > 0)

adpt.psi_tot -= adpt.psi[adpt.idx]/

(adpt.n[adpt.idx]*(adpt.n[adpt.idx] + 1));

adpt.n[adpt.idx]++;

if(adpt.psi_tot != 0)

98 Risø–R–1175(EN)

{

new_v = (1 - adpt.a_beta)*adpt.factor*adpt.psi[adpt.idx]/

(adpt.n[adpt.idx]*adpt.psi_tot) +

adpt.a_beta/adpt.num;

adapt_tree_add(adpt.atree, adpt.idx, new_v - adpt.atree->v[adpt.idx]);

}

/* Remember initial neutron weight. */

adpt.pi = p;

%}

FINALLY

%{

double *p1 = NULL;

int i;

if(filename)

{

p1 = malloc(adpt.num*sizeof(double));

if(!p1)

fprintf(stderr, "Warning: Source_adapt: "

"not enough memory to write distribution.\n");

}

if(p1)

{

for(i = 0; i < adpt.num; i++)

p1[i] = adpt.atree->v[i]/adpt.atree->total;

DETECTOR_OUT_1D("Adaptive source energy distribution",

"Energy [meV]",

"Probability",

"E", E0 - dE, E0 + dE, adpt.num,

NULL, p1, NULL, filename);

free(p1);

}

adapt_tree_free(adpt.atree);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 99

B.2 Simple components

B.2.1 Arm

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Arm

*

* Written by: KL, KN, September 1997

*

* An arm does not actually do anything, it is just there to set

* up a new coordinate system.

*

* Input parameters:

*

* (none)

*

***/

DEFINE COMPONENT Arm

DEFINITION PARAMETERS ()

SETTING PARAMETERS ()

STATE PARAMETERS ()

TRACE

%{

%}

MCDISPLAY

%{

/* A bit ugly; hard-coded dimensions. */

magnify("");

line(0,0,0,0.2,0,0);

line(0,0,0,0,0.2,0);

line(0,0,0,0,0,0.2);

%}

END

100 Risø–R–1175(EN)

B.2.2 Slit

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Slit

*

* Written by: KL, HMR June 16, 1997

*

* A simple rectangular slit. No transmission around the slit is allowed.

*

* INPUT PARAMETERS

*

* xmin: Lower x bound (m)

* xmax: Upper x bound (m)

* ymin: Lower y bound (m)

* ymax: Upper y bound (m)

*

***/

DEFINE COMPONENT Slit

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

TRACE

%{

PROP_Z0;

if (x<xmin || x>xmax || y<ymin || y>ymax)

ABSORB;

%}

MCDISPLAY

%{

double xw, yh;

magnify("xy");

xw = (xmax - xmin)/2.0;

yh = (ymax - ymin)/2.0;

multiline(3, xmin-xw, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, ymax+yh, 0.0);

multiline(3, xmax+xw, (double)ymax, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmax, ymax+yh, 0.0);

multiline(3, xmin-xw, (double)ymin, 0.0,

(double)xmin, (double)ymin, 0.0,

(double)xmin, ymin-yh, 0.0);

multiline(3, xmax+xw, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, ymin-yh, 0.0);

%}

END

Risø–R–1175(EN) 101

B.2.6 Soller

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Soller

*

* Written by: KN, August 1998

*

* Soller collimator with rectangular opening and specified length. The

* transmission function is an average and does not utilize knowledge of the

* actual neutron trajectory.

* A zero divergence disables collimation (then the component works as a double slit).

*

* INPUT PARAMETERS:

*

* xmin: (m) Lower x bound on slits

* xmax: (m) Upper x bound on slits

* ymin: (m) Lower y bound on slits

* ymax: (m) Upper y bound on slits

* len: (m) Distance between slits

* divergence: (minutes of arc) Divergence angle (calculated as atan(d/len),

* where d is the blade spacing)

*

***/

DEFINE COMPONENT Soller

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, len, divergence)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (slope)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double slope;

%}

INITIALIZE

%{

slope = tan(MIN2RAD*divergence);

%}

TRACE

%{

double phi, dt;

PROP_Z0;

if (x<xmin || x>xmax || y<ymin || y>ymax)

ABSORB;

dt = len/vz;

PROP_DT(dt);

if (x<xmin || x>xmax || y<ymin || y>ymax)

ABSORB;

if(slope > 0.0)

{

102 Risø–R–1175(EN)

phi = fabs(vx/vz);

if (phi > slope)

ABSORB;

else

p *= 1.0 - phi/slope;

}

%}

MCDISPLAY

%{

double x;

int i;

magnify("xy");

for(x = xmin, i = 0; i <= 3; i++, x += (xmax - xmin)/3.0)

multiline(5, x, (double)ymin, 0.0, x, (double)ymax, 0.0,

x, (double)ymax, (double)len, x, (double)ymin, (double)len,

x, (double)ymin, 0.0);

line(xmin, ymin, 0, xmax, ymin, 0);

line(xmin, ymax, 0, xmax, ymax, 0);

line(xmin, ymin, len, xmax, ymin, len);

line(xmin, ymax, len, xmax, ymax, len);

%}

END

Risø–R–1175(EN) 103

B.2.7 Filter

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Filter

*

* Written by: KL, KN, Sept. 14 1998

*

* Be-type filter defined by two identical rectangular opening apertures.

* The transmission is interpolated liniearly between the high- and low-energy

* transmissions beyond the upper and lower cut-off energies.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound (m)

* xmax: Upper x bound (m)

* ymin: Lower y bound (m)

* ymax: Upper y bound (m)

* len: Distance between apertures (m)

* T0: Transmittance of low energy neutrons (1)

* T1: Transmittance of high energy neutrons (1)

* Emin: Lower cut-off energy (meV)

* Emax: Upper cut-off energy (meV)

*

***/

DEFINE COMPONENT Filter

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, len, T0, T1, Emin, Emax)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

TRACE

%{

double E;

double dt;

PROP_Z0;

E=VS2E*(vx*vx+vy*vy+vz*vz);

if (x<xmin || x>xmax || y<ymin || y>ymax)

ABSORB;

dt = len/vz;

PROP_DT(dt);

if (x<xmin || x>xmax || y<ymin || y>ymax)

ABSORB;

if(E>=Emax)

if(T1==0)

ABSORB;

else

p*=T1;

else if(E<=Emin)

if(T0==0)

ABSORB;

104 Risø–R–1175(EN)

else

p*=T0;

else

p*= T1+(T0-T1)*(Emax-E)/(Emax-Emin);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

multiline(5, (double)xmin, (double)ymin, (double)len,

(double)xmax, (double)ymin, (double)len,

(double)xmax, (double)ymax, (double)len,

(double)xmin, (double)ymax, (double)len,

(double)xmin, (double)ymin, (double)len);

line(xmin, ymin, 0.0, xmin, ymin, len);

line(xmax, ymin, 0.0, xmax, ymin, len);

line(xmin, ymax, 0.0, xmin, ymax, len);

line(xmax, ymax, 0.0, xmax, ymax, len);

%}

END

Risø–R–1175(EN) 105

B.3 Beam optical components

B.3.3 Guide

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Guide.

*

* Written by: KN, September 2 1998

* Modified by: KL, October 6, 1998

*

* Models a rectangular guide tube centered on the Z axis. The entrance lies

* in the X-Y plane.

* For details on the geometry calculation see the description in the McStas

* reference manual.

*

* INPUT PARAMETERS:

*

* w1: (m) Width at the guide entry

* h1: (m) Height at the guide entry

* w2: (m) Width at the guide exit

* h2: (m) Height at the guide exit

* l: (m) length of guide

* R0: (1) Low-angle reflectivity

* Qc: (AA-1) Critical scattering vector

* alpha: (AA) Slope of reflectivity

* m: (1) m-value of material. Zero means completely absorbing.

* W: (AA-1) Width of supermirror cut-off

*

* Example values: m=4 Qc=0.02 W=1/300 alpha=6.49 R0=1

***/

DEFINE COMPONENT Guide

DEFINITION PARAMETERS (w1, h1, w2, h2, l, R0, Qc, alpha, m, W)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

TRACE

%{

double t1,t2; /* Intersection times. */

double av,ah,bv,bh,cv1,cv2,ch1,ch2,d; /* Intermediate values */

double vdotn_v1,vdotn_v2,vdotn_h1,vdotn_h2; /* Dot products. */

int i; /* Which mirror hit? */

double q; /* Q [1/AA] of reflection */

double vlen2,nlen2; /* Vector lengths squared */

/* ToDo: These could be precalculated. */

double ww = .5*(w2 - w1), hh = .5*(h2 - h1);

double whalf = .5*w1, hhalf = .5*h1;

double lwhalf = l*whalf, lhhalf = l*hhalf;

/* Propagate neutron to guide entrance. */

PROP_Z0;

106 Risø–R–1175(EN)

if(x <= -whalf || x >= whalf || y <= -hhalf || y >= hhalf)

ABSORB;

for(;;)

{

/* Compute the dot products of v and n for the four mirrors. */

av = l*vx; bv = ww*vz;

ah = l*vy; bh = hh*vz;

vdotn_v1 = bv + av; /* Left vertical */

vdotn_v2 = bv - av; /* Right vertical */

vdotn_h1 = bh + ah; /* Lower horizontal */

vdotn_h2 = bh - ah; /* Upper horizontal */

/* Compute the dot products of (O - r) and n as c1+c2 and c1-c2 */

cv1 = -whalf*l - z*ww; cv2 = x*l;

ch1 = -hhalf*l - z*hh; ch2 = y*l;

/* Compute intersection times. */

t1 = (l - z)/vz;

i = 0;

if(vdotn_v1 < 0 && (t2 = (cv1 - cv2)/vdotn_v1) < t1)

{

t1 = t2;

i = 1;

}

if(vdotn_v2 < 0 && (t2 = (cv1 + cv2)/vdotn_v2) < t1)

{

t1 = t2;

i = 2;

}

if(vdotn_h1 < 0 && (t2 = (ch1 - ch2)/vdotn_h1) < t1)

{

t1 = t2;

i = 3;

}

if(vdotn_h2 < 0 && (t2 = (ch1 + ch2)/vdotn_h2) < t1)

{

t1 = t2;

i = 4;

}

if(i == 0)

break; /* Neutron left guide. */

PROP_DT(t1);

switch(i)

{

case 1: /* Left vertical mirror */

nlen2 = l*l + ww*ww;

q = V2Q*(-2)*vdotn_v1/sqrt(nlen2);

d = 2*vdotn_v1/nlen2;

vx = vx - d*l;

vz = vz - d*ww;

break;

case 2: /* Right vertical mirror */

nlen2 = l*l + ww*ww;

q = V2Q*(-2)*vdotn_v2/sqrt(nlen2);

d = 2*vdotn_v2/nlen2;

vx = vx + d*l;

vz = vz - d*ww;

break;

Risø–R–1175(EN) 107

case 3: /* Lower horizontal mirror */

nlen2 = l*l + hh*hh;

q = V2Q*(-2)*vdotn_h1/sqrt(nlen2);

d = 2*vdotn_h1/nlen2;

vy = vy - d*l;

vz = vz - d*hh;

break;

case 4: /* Upper horizontal mirror */

nlen2 = l*l + hh*hh;

q = V2Q*(-2)*vdotn_h2/sqrt(nlen2);

d = 2*vdotn_h2/nlen2;

vy = vy + d*l;

vz = vz - d*hh;

break;

}

/* Now compute reflectivity. */

if(m == 0)

ABSORB;

if(q > Qc)

{

double arg = (q-m*Qc)/W;

if(arg < 10)

p *= .5*(1-tanh(arg))*(1-alpha*(q-Qc));

else

ABSORB; /* Cutoff ~ 1E-10 */

}

p *= R0;

}

%}

MCDISPLAY

%{

double x;

int i;

magnify("xy");

multiline(5,

-w1/2.0, -h1/2.0, 0.0,

w1/2.0, -h1/2.0, 0.0,

w1/2.0, h1/2.0, 0.0,

-w1/2.0, h1/2.0, 0.0,

-w1/2.0, -h1/2.0, 0.0);

multiline(5,

-w2/2.0, -h2/2.0, (double)l,

w2/2.0, -h2/2.0, (double)l,

w2/2.0, h2/2.0, (double)l,

-w2/2.0, h2/2.0, (double)l,

-w2/2.0, -h2/2.0, (double)l);

line(-w1/2.0, -h1/2.0, 0, -w2/2.0, -h2/2.0, (double)l);

line(w1/2.0, -h1/2.0, 0, w2/2.0, -h2/2.0, (double)l);

line(w1/2.0, h1/2.0, 0, w2/2.0, h2/2.0, (double)l);

line(-w1/2.0, h1/2.0, 0, -w2/2.0, h2/2.0, (double)l);

%}

END

108 Risø–R–1175(EN)

B.3.4 Channeled Guide

/***

*

* McStas, the neutron ray-tracing package

* Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright 2000 Risoe National Laboratory, Roskilde, Denmark

*

* Component: Channeled_guide.

*

* Written by: KN, 1999

*

* Models a rectangular guide tube centered on the Z axis. The entrance lies

* in the X-Y plane.

* The guide may be tapered, and may have vertical subdivisions (used for

* bender devices).

*

* INPUT PARAMETERS:

*

* w1: (m) Width at the guide entry

* h1: (m) Height at the guide entry

* w2: (m) Width at the guide exit

* h2: (m) Height at the guide exit

* l: (m) Length of guide

* d: (m) Thickness of subdividing walls

* k: (1) Number of channels in the guide (>= 1)

* R0: (1) Low-angle reflectivity

* Qcx: (AA-1) Critical scattering vector for left and right vertical

* mirrors in each channel

* Qcy: (AA-1) Critical scattering vector for top and bottom mirrors

* alphax: (AA) Slope of reflectivity for left and right vertical

* mirrors in each channel

* alphay: (AA) Slope of reflectivity for top and bottom mirrors

* mx: (1) m-value of material for left and right vertical mirrors

* in each channel. Zero means completely absorbing.

* my: (1) m-value of material for top and bottom mirrors. Zero

* means completely absorbing.

* W: (AA-1) Width of supermirror cut-off for all mirrors

*

* Example values: mx=4 my=2 Qcx=Qcy=0.02 W=1/300 alphax=alphay=6.49 R0=1

***/

DEFINE COMPONENT Channeled_guide

DEFINITION PARAMETERS (w1, h1, w2, h2, d, k, l,

R0, Qcx, Qcy, alphax, alphay, mx, my, W)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (w1c,w2c,ww,hh,whalf,hhalf,lwhalf,lhhalf)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double w1c;

double w2c;

double ww, hh;

double whalf, hhalf;

double lwhalf, lhhalf;

%}

Risø–R–1175(EN) 109

INITIALIZE

%{

w1c = (w1 + d)/(double)k;

w2c = (w2 + d)/(double)k;

ww = .5*(w2c - w1c);

hh = .5*(h2 - h1);

whalf = .5*(w1c - d);

hhalf = .5*h1;

lwhalf = l*whalf;

lhhalf = l*hhalf;

%}

TRACE

%{

double t1,t2; /* Intersection times. */

double av,ah,bv,bh,cv1,cv2,ch1,ch2,dd; /* Intermediate values */

double vdotn_v1,vdotn_v2,vdotn_h1,vdotn_h2; /* Dot products. */

int i; /* Which mirror hit? */

double q; /* Q [1/AA] of reflection */

double vlen2,nlen2; /* Vector lengths squared */

double edge;

double hadj; /* Channel displacement */

/* Propagate neutron to guide entrance. */

PROP_Z0;

if(x <= w1/-2.0 || x >= w1/2.0 || y <= -hhalf || y >= hhalf)

ABSORB;

/* Shift origin to center of channel hit (absorb if hit dividing walls) */

x += w1/2.0;

edge = floor(x/w1c)*w1c;

if(x - edge > w1c - d)

{

x -= w1/2.0; /* Re-adjust origin */

ABSORB;

}

x -= (edge + (w1c - d)/2.0);

hadj = edge + (w1c - d)/2.0 - w1/2.0;

for(;;)

{

/* Compute the dot products of v and n for the four mirrors. */

av = l*vx; bv = ww*vz;

ah = l*vy; bh = hh*vz;

vdotn_v1 = bv + av; /* Left vertical */

vdotn_v2 = bv - av; /* Right vertical */

vdotn_h1 = bh + ah; /* Lower horizontal */

vdotn_h2 = bh - ah; /* Upper horizontal */

/* Compute the dot products of (O - r) and n as c1+c2 and c1-c2 */

cv1 = -whalf*l - z*ww; cv2 = x*l;

ch1 = -hhalf*l - z*hh; ch2 = y*l;

/* Compute intersection times. */

t1 = (l - z)/vz;

i = 0;

if(vdotn_v1 < 0 && (t2 = (cv1 - cv2)/vdotn_v1) < t1)

{

t1 = t2;

110 Risø–R–1175(EN)

i = 1;

}

if(vdotn_v2 < 0 && (t2 = (cv1 + cv2)/vdotn_v2) < t1)

{

t1 = t2;

i = 2;

}

if(vdotn_h1 < 0 && (t2 = (ch1 - ch2)/vdotn_h1) < t1)

{

t1 = t2;

i = 3;

}

if(vdotn_h2 < 0 && (t2 = (ch1 + ch2)/vdotn_h2) < t1)

{

t1 = t2;

i = 4;

}

if(i == 0)

break; /* Neutron left guide. */

PROP_DT(t1);

switch(i)

{

case 1: /* Left vertical mirror */

nlen2 = l*l + ww*ww;

q = V2Q*(-2)*vdotn_v1/sqrt(nlen2);

dd = 2*vdotn_v1/nlen2;

vx = vx - dd*l;

vz = vz - dd*ww;

break;

case 2: /* Right vertical mirror */

nlen2 = l*l + ww*ww;

q = V2Q*(-2)*vdotn_v2/sqrt(nlen2);

dd = 2*vdotn_v2/nlen2;

vx = vx + dd*l;

vz = vz - dd*ww;

break;

case 3: /* Lower horizontal mirror */

nlen2 = l*l + hh*hh;

q = V2Q*(-2)*vdotn_h1/sqrt(nlen2);

dd = 2*vdotn_h1/nlen2;

vy = vy - dd*l;

vz = vz - dd*hh;

break;

case 4: /* Upper horizontal mirror */

nlen2 = l*l + hh*hh;

q = V2Q*(-2)*vdotn_h2/sqrt(nlen2);

dd = 2*vdotn_h2/nlen2;

vy = vy + dd*l;

vz = vz - dd*hh;

break;

}

/* Now compute reflectivity. */

if((i <= 2 && mx == 0) || (i > 2 && my == 0))

{

x += hadj; /* Re-adjust origin */

ABSORB;

Risø–R–1175(EN) 111

}

if((i <= 2 && q > Qcx) || (i > 2 && q > Qcy))

{

if (i <= 2)

{

double arg = (q - mx*Qcx)/W;

if(arg < 10)

p *= .5*(1-tanh(arg))*(1-alphax*(q-Qcx));

else

{

x += hadj; /* Re-adjust origin */

ABSORB; /* Cutoff ~ 1E-10 */

}

} else {

double arg = (q - my*Qcy)/W;

if(arg < 10)

p *= .5*(1-tanh(arg))*(1-alphay*(q-Qcy));

else

{

x += hadj; /* Re-adjust origin */

ABSORB; /* Cutoff ~ 1E-10 */

}

}

}

p *= R0;

x += hadj; SCATTER; x -= hadj;

}

x += hadj; /* Re-adjust origin */

%}

MCDISPLAY

%{

double x;

int i;

magnify("xy");

for(i = 0; i < k; i++)

{

multiline(5,

i*w1c - w1/2.0, -h1/2.0, 0.0,

i*w2c - w2/2.0, -h2/2.0, (double)l,

i*w2c - w2/2.0, h2/2.0, (double)l,

i*w1c - w1/2.0, h1/2.0, 0.0,

i*w1c - w1/2.0, -h1/2.0, 0.0);

multiline(5,

(i+1)*w1c - d - w1/2.0, -h1/2.0, 0.0,

(i+1)*w2c - d - w2/2.0, -h2/2.0, (double)l,

(i+1)*w2c - d - w2/2.0, h2/2.0, (double)l,

(i+1)*w1c - d - w1/2.0, h1/2.0, 0.0,

(i+1)*w1c - d - w1/2.0, -h1/2.0, 0.0);

}

line(-w1/2.0, -h1/2.0, 0.0, w1/2.0, -h1/2.0, 0.0);

line(-w2/2.0, -h2/2.0, (double)l, w2/2.0, -h2/2.0, (double)l);

%}

END

112 Risø–R–1175(EN)

B.4 Chopper-like components

B.4.1 V selector.comp

/***

*

* McStas, version 1.1, released ?

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: V_selector

*

* Written by: KL, Nov 25, 1998

* Last change: KL, Jan 22, 1999

*

* Velocity selector consisting of rotating Soller-like blades

* defining a helically twisted passage.

* Geometry defined by two identical, centered apertures at 12 o’clock

* position, Origo is at the centre of the selector.

* Transmission is analytical assuming a continuous source.

*

* INPUT PARAMETERS:

*

* width: (m) Width of aperture

* height: (m) Height of aperture

* l0: (m) Distance between apertures

* r0: (m) Height from aperture centre to rotation axis

* phi: (rad) Twist angle along the cylinder

* l1: (m) Length of cylinder (less than l0)

* tb: (m) Thickness of blades

* rot: (rpm) Cylinder rotation speed, counter-clockwise

* nb: (1) Number of Soller blades

*

***/

DEFINE COMPONENT V_selector

DEFINITION PARAMETERS (width, height, l0, r0, phi, l1, tb, rot, nb)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double RPM2OM, omega, phi_rad, dt0, dt1, r_i, r_f, r_mean, theta_i, theta_f, A, d_s_phi;

%}

INITIALIZE

%{

RPM2OM = 2*PI/60.0;

omega=rot*RPM2OM;

phi_rad = phi*DEG2RAD;

%}

TRACE

%{

if (vz == 0)

ABSORB;

dt1= (-l0/2.0 - z)/vz;

PROP_DT(dt1); /* Propagate to the entry aperture */

if (x<(-width/2.0) || x>(width/2.0) || y<(-height/2.0) || y>(height/2.0))

Risø–R–1175(EN) 113

ABSORB;

dt0 = (l0-l1)/(2.0*vz); /* Propagate to the cylinder start */

PROP_DT(dt0);

r_i = sqrt(x*x+(y+r0)*(y+r0));

theta_i = atan2(x,y+r0);

dt1 = l1/vz; /* Propagate along the cylinder length */

PROP_DT(dt1);

r_f = sqrt(x*x+(y+r0)*(y+r0));

theta_f = atan2(x,y+r0);

dt0 = (l0-l1)/(2.0*vz); /* Propagate to the exit aperture */

PROP_DT(dt0);

if (x<(-width/2.0) || x>(width/2.0) || y<(-height/2.0) || y>(height/2.0))

ABSORB;

/* Calculate analytical transmission assuming continuous source */

r_mean = (r_i + r_f)/2.0; /* Approximation using mean radius */

d_s_phi = theta_f-theta_i;

A = nb/(2*PI)*(tb/r_mean + fabs(phi_rad+d_s_phi-omega*l1/vz));

if (A >= 1)

ABSORB;

p*= (1-A);

%}

END

114 Risø–R–1175(EN)

B.4.2 Chopper.comp

/**

*

* Component: Chopper

*

* Written by: Philipp Bernhardt, Januar 22 1999

*

* Models a disc chopper with n identical slits, which are symmetrically disposed on the disc.

*

* INPUT PARAMETERS:

*

* w: (m) Width of the slits at the bottom side

* R: (m) Radius of the disc

* f: (rad/s) angular frequency of the Chopper (algebraic sign defines the direction

* of rotation

* n: (1) Number of slits

* pha: (s) Phase

*

* Example values: w=0.05 R=0.5 f=2500 n=3 pha=0

**/

DEFINE COMPONENT Chopper

DEFINITION PARAMETERS (w, R, f, n, pha)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (Tg, To)

STATE PARAMETERS (x, y, z, vx, vy, vz, t, s1, s2, p)

DECLARE

%{

double Tg,To;

%}

INITIALIZE

%{

/* time between two pulses */

Tg=2*PI/fabs(f)/n;

/* how long can neutrons pass the Chopper at a single point */

To=2*atan(w/R/2.0)/fabs(f);

%}

TRACE

%{

double toff;

PROP_Z0;

toff=fabs(t-atan2(x,y+R)/f-pha)+To/2.0;

/* does neutron hit the slit? */

if (fmod(toff,Tg)>To)

ABSORB;

%}

END

Risø–R–1175(EN) 115

B.5 Detectors and monitors

B.5.1 Monitor

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: Monitor

*

* Written by: KL, October 4, 1997

*

* Sums neutrons (0th, 1st, and 2nd moment of p) flying through

* the rectangular monitor opening. May also be used as detector.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound of opening

* xmax: Upper x bound of opening

* ymin: Lower y bound of opening

* ymax: Upper y bound of opening

*

* OUTPUT PARAMETERS:

*

* Nsum: Number of neutron hits

* psum: Sum of neutron weights

* p2sum: 2nd moment of neutron weights

*

***/

DEFINE COMPONENT Monitor

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (Nsum, psum, p2sum)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int Nsum;

double psum, p2sum;

%}

INITIALIZE

%{

psum = 0;

p2sum = 0;

Nsum = 0;

%}

TRACE

%{

PROP_Z0;

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

Nsum++;

psum += p;

p2sum += p*p;

}

116 Risø–R–1175(EN)

%}

FINALLY

%{

DETECTOR_OUT_0D("Single monitor", Nsum, psum, p2sum);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 117

B.5.3 PSD monitor

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: PSD_monitor

*

* Written by: KL, Feb 3, 1998

*

* An (n times m) pixel PSD monitor. This component may also be used as a beam

* detector.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound of detector opening (m)

* xmax: Upper x bound of detector opening (m)

* ymin: Lower y bound of detector opening (m)

* ymax: Upper y bound of detector opening (m)

* nx: Number of pixel columns (1)

* ny: Number of pixel rows (1)

* filename: Name of file in which to store the detector image (text)

*

* OUTPUT PARAMETERS:

*

* PSD_N: Array of neutron counts

* PSD_p: Array of neutron weight counts

* PSD_p2: Array of second moments

*

***/

DEFINE COMPONENT PSD_monitor

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, nx, ny, filename)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (PSD_N, PSD_p, PSD_p2)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int PSD_N[nx][ny];

double PSD_p[nx][ny];

double PSD_p2[nx][ny];

%}

INITIALIZE

%{

int i,j;

for (i=0; i<nx; i++)

for (j=0; j<ny; j++)

{

PSD_N[i][j] = 0;

PSD_p[i][j] = 0;

PSD_p2[i][j] = 0;

}

%}

118 Risø–R–1175(EN)

TRACE

%{

int i,j;

PROP_Z0;

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

i = floor((x - xmin)*nx/(xmax - xmin));

j = floor((y - ymin)*ny/(ymax - ymin));

PSD_N[i][j]++;

PSD_p[i][j] += p;

PSD_p2[i][j] += p*p;

}

%}

FINALLY

%{

DETECTOR_OUT_2D(

"PSD monitor",

"X position [cm]",

"Y position [cm]",

xmin*100.0, xmax*100.0, ymin*100.0, ymax*100.0,

nx, ny,

&PSD_N[0][0],&PSD_p[0][0],&PSD_p2[0][0],

filename);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 119

B.5.4 PSD monitor 4PI

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: PSD_monitor_4PI

*

* Written by: KL and KN, April 17, 1998

*

* An (n times m) pixel spherical PSD monitor using a cylindrical projection.

* Mostly for test and debugging purposes.

* INPUT PARAMETERS:

*

* radius: Radius of detector (m)

* nx: Number of pixel columns (1)

* ny: Number of pixel rows (1)

* filename: Name of file in which to store the detector image (text)

*

* OUTPUT PARAMETERS:

*

* PSD_N: Array of neutron counts

* PSD_p: Array of neutron weight counts

* PSD_p2: Array of second moments

*

***/

DEFINE COMPONENT PSD_monitor_4PI

DEFINITION PARAMETERS (radius, nx, ny, filename)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (PSD_N, PSD_p, PSD_p2)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int PSD_N[nx][ny];

double PSD_p[nx][ny];

double PSD_p2[nx][ny];

%}

INITIALIZE

%{

int i,j;

for (i=0; i<nx; i++)

for (j=0; j<ny; j++)

{

PSD_N[i][j] = 0;

PSD_p[i][j] = 0;

PSD_p2[i][j] = 0;

}

%}

TRACE

%{

double t0, t1, phi;

int i,j;

120 Risø–R–1175(EN)

if(sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius) && t1 > 0)

{

if(t0 < 0)

t0 = t1;

/* t0 is now time of intersection with the sphere. */

PROP_DT(t0);

phi = atan2(z,x);

i = floor(nx*(phi/(2*PI) + 0.5));

if(i == nx)

i--; /* Special case for phi = PI. */

else if(i < 0)

y = 0;

j = floor(ny*(y/(2*radius) + 0.5));

if(j == ny)

j--; /* Special case for y = radius. */

else if(j < 0)

j = 0;

PSD_N[i][j]++;

PSD_p[i][j] += p;

PSD_p2[i][j] += p*p;

}

%}

FINALLY

%{

DETECTOR_OUT_2D(

"4PI PSD monitor",

"Longitude [deg]",

"Lattitude [deg]",

-180, 180, -90, 90,

nx, ny,

&PSD_N[0][0],&PSD_p[0][0],&PSD_p2[0][0],

filename);

%}

MCDISPLAY

%{

magnify("");

circle("xy",0,0,0,radius);

circle("xz",0,0,0,radius);

circle("yz",0,0,0,radius);

%}

END

Risø–R–1175(EN) 121

B.5.6 TOF monitor

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: TOF-monitor

*

* Written by: KN, M. Hagan, August 1998

* Modified by: KL, October 7, 1998

*

* Rectangular Time-of-flight monitor.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound of detector opening (m)

* xmax: Upper x bound of detector opening (m)

* ymin: Lower y bound of detector opening (m)

* ymax: Upper y bound of detector opening (m)

* nchan: Number of time bins (1)

* dt: Length of each time bin (mu-s)

* filename: Name of file in which to store the detector image (text)

*

* OUTPUT PARAMETERS:

*

* TOF_N: Array of neutron counts

* TOF_p: Array of neutron weight counts

* TOF_p2: Array of second moments

*

***/

DEFINE COMPONENT TOF_monitor

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, nchan, dt, filename)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (TOF_N, TOF_p, TOF_p2)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int TOF_N[nchan];

double TOF_p[nchan];

double TOF_p2[nchan];

%}

INITIALIZE

%{

int i;

for (i=0; i<nchan; i++)

{

TOF_N[i] = 0;

TOF_p[i] = 0;

TOF_p2[i] = 0;

}

%}

TRACE

%{

122 Risø–R–1175(EN)

int i;

PROP_Z0;

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

i = floor(1E6*t/dt); /* Bin number */

if(i >= nchan) i = nchan - 1;

if(i < 0)

{

printf("FATAL ERROR: negative time-of-flight.\n");

exit(1);

}

TOF_N[i]++;

TOF_p[i] += p;

TOF_p2[i] += p*p;

}

%}

FINALLY

%{

DETECTOR_OUT_1D(

"Time-of-flight monitor",

"Time-of-flight [\\gms]",

"Intensity",

"t", 0.0, nchan*(double)dt, nchan,

&TOF_N[0],&TOF_p[0],&TOF_p2[0],

filename);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 123

B.5.7 E monitor

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: E_monitor

*

* Written by: KN,KL, April 20, 1998

* Modified by: KL, Octorber 7, 1998

*

* A square single monitor that measures the energy of the incoming neutrons.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound of detector opening (m)

* xmax: Upper x bound of detector opening (m)

* ymin: Lower y bound of detector opening (m)

* ymax: Upper y bound of detector opening (m)

* Emin: Minimum energy to detect (meV)

* Emax: Maximum energy to detect (meV)

* nchan: Number of energy channels (1)

* filename: Name of file in which to store the detector image (text)

*

* OUTPUT PARAMETERS:

*

* E_N: Array of neutron counts

* E_p: Array of neutron weight counts

* E_p2: Array of second moments

*

***/

DEFINE COMPONENT E_monitor

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, Emin, Emax, nchan, filename)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (E_N, E_p, E_p2)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int E_N[nchan];

double E_p[nchan], E_p2[nchan];

%}

INITIALIZE

%{

int i;

for (i=0; i<nchan; i++)

{

E_N[i] = 0;

E_p[i] = 0;

E_p2[i] = 0;

}

%}

TRACE

%{

124 Risø–R–1175(EN)

int i;

double E;

PROP_Z0;

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

E = VS2E*(vx*vx + vy*vy + vz*vz);

i = floor((E-Emin)*nchan/(Emax-Emin));

if(i >= 0 && i < nchan)

{

E_N[i]++;

E_p[i] += p;

E_p2[i] += p*p;

}

}

%}

FINALLY

%{

DETECTOR_OUT_1D(

"Energy monitor",

"Energy [meV]",

"Intensity",

"E", Emin, Emax, nchan,

&E_N[0],&E_p[0],&E_p2[0],

filename);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 125

B.5.12 Res monitor

/***

*

* McStas, the neutron ray-tracing package

* Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright 1977-2000 Risoe National Laboratory, Roskilde, Denmark

*

* Component: Res_monitor

*

* Written by: KN 1999

*

* A single detector/monitor, used together with the Res_sample component to

* compute instrument resolution functions. Outputs a list of neutron

* scattering events in the sample along with their intensities in the

* detector. The output file may be analyzed with the mcresplot front-end.

*

* INPUT PARAMETERS:

*

* xmin: Lower x bound of detector opening (m)

* xmax: Upper x bound of detector opening (m)

* ymin: Lower y bound of detector opening (m)

* ymax: Upper y bound of detector opening (m)

* filename: Name of output file (string)

* res_sample_comp: Name of Res_sample component in the instrument definition

*

* OUTPUT PARAMETERS:

*

* Nsum: Number of neutron hits

* psum: Sum of neutron weights

* p2sum: 2nd moment of neutron weights

*

***/

DEFINE COMPONENT Res_monitor

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, filename, res_sample_comp)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (Nsum, psum, p2sum, file)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int Nsum;

double psum, p2sum;

FILE *file;

%}

INITIALIZE

%{

psum = 0;

p2sum = 0;

Nsum = 0;

file = filename ? fopen(filename, "w") : 0;

if(!file && filename)

fprintf(stderr, "Warning: could not open output file ’%s’\n", filename);

%}

TRACE

%{

PROP_Z0;

126 Risø–R–1175(EN)

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

Nsum++;

psum += p;

p2sum += p*p;

/* Now fetch data from the Res_sample. */

if(p != 0 && file)

{

struct Res_sample_struct *s =

&(MC_GETPAR(res_sample_comp, res_struct));

if(s->pi != 0)

fprintf(file, "%g %g %g %g %g %g %g %g %g %g %g\n",

s->ki_x, s->ki_y, s->ki_z, s->kf_x, s->kf_y, s->kf_z,

s->rx, s->ry, s->rz, s->pi, p/s->pi);

}

}

%}

FINALLY

%{

if(file)

fclose(file);

DETECTOR_OUT_0D("Single monitor", Nsum, psum, p2sum);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

(double)xmin, (double)ymin, 0.0);

%}

END

Risø–R–1175(EN) 127

B.5.13 Adapt check

/***

*

* McStas, the neutron ray-tracing Monte-Carlo software.

* Copyright(C) 1999,2000 Risoe National Laboratory.

*

* Component: Adapt_check

*

* Written by Kristian Nielsen 1999

*

* This components works together with the Source_adapt component, and

* is used to define the criteria for selecting which neutrons are

* considered "good" in the adaptive algorithm. The name of the

* associated Source_adapt component in the instrument definition is

* given as parameter. The component is special in that its position

* does not matter; all neutrons that have not been absorbed prior to

* the component are considered "good".

*

*

* INPUT PARAMETERS:

*

* source_comp: The name of the Source_adapt component in the

* instrument definition.

*

***/

DEFINE COMPONENT Adapt_check

DEFINITION PARAMETERS (source_comp)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

TRACE

%{

double new_v, psi;

struct source_adapt *adpt = &(MC_GETPAR(source_comp, adpt));

if(p == 0)

ABSORB;

psi = p/adpt->pi;

adpt->psi[adpt->idx] += psi;

adpt->psi_tot += psi/adpt->n[adpt->idx];

new_v = (1 - adpt->a_beta)*adpt->factor*adpt->psi[adpt->idx]/

(adpt->n[adpt->idx]*adpt->psi_tot) +

adpt->a_beta/adpt->num;

adapt_tree_add(adpt->atree, adpt->idx, new_v - adpt->atree->v[adpt->idx]);

%}

MCDISPLAY

%{

magnify("");

%}

END

128 Risø–R–1175(EN)

B.6 Crystals

B.6.1 Mosaic simple

/***

*

* McStas, version 1.2

* Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright (C) Risoe National Laboratory 1999

*

* Component: Mosaic_simple

*

* Flat, infinitely thin mosaic crystal, useful as a monochromator or analyzer.

* The mosaic is isotropic gaussian, with a given FWHM perpendicular to the

* scattering vector.

* For an unrotated monochromator component, the crystal plane lies in the y-z

* plane (ie. parallel to the beam).

*

* INPUT PARAMETERS:

*

* zmin: Lower z-bound of crystal (m)

* zmax: Upper z-bound of crystal (m)

* ymin: Lower y-bound of crystal (m)

* ymax: Upper y-bound of crystal (m)

* mosaic: Mosaic (FWHM) (arc minutes)

* R0: Maximum reflectivity (1)

* Qx: X coordinate of scattering vector (AA-1)

* Qy: X coordinate of scattering vector (AA-1)

* Qz: X coordinate of scattering vector (AA-1)

*

***/

DEFINE COMPONENT Mosaic_simple

DEFINITION PARAMETERS (zmin, zmax, ymin, ymax, mosaic, R0, Qx, Qy, Qz)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (X,W,Q,mos_rms)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

/* ToDo: Define these arrays only once for all instances. */

/* Values for Gauss quadrature. Taken from Brice Carnahan, H. A. Luther and

James O Wilkes, "Applied numerical methods", Wiley, 1996, page 103. */

double X[] = {-0.987992518020485, 0.937273392400706, 0.848206583410427,

0.724417731360170, 0.570972172608539, 0.394151347077563,

0.201194093997435, 0, 0.201194093997435,

0.394151347077563, 0.570972172608539, 0.724417731360170,

0.848206583410427, 0.937273392400706, 0.987992518020485};

double W[] = {0.030753241996117, 0.070366047488108, 0.107159220467172,

0.139570677926154, 0.166269205816994, 0.186161000115562,

0.198431485327111, 0.202578241925561, 0.198431485327111,

0.186161000115562, 0.166269205816994, 0.139570677926154,

0.107159220467172, 0.070366047488108, 0.030753241996117};

double Q; /* Length of scattering vector */

double q0ux, q0uy, q0uz; /* Unit vector parrallel to nominal Q */

double mos_rms; /* root-mean-square of mosaic, in radians */

#define GAUSS(x,mean,rms) \

Risø–R–1175(EN) 129

(exp(-((x)-(mean))*((x)-(mean))/(2*(rms)*(rms)))/(sqrt(2*PI)*(rms)))

%}

INITIALIZE

%{

Q = sqrt(Qx*Qx + Qy*Qy + Qz*Qz);

q0ux = Qx/Q;

q0uy = Qy/Q;

q0uz = Qz/Q;

mos_rms = MIN2RAD*mosaic/sqrt(8*log(2));

%}

TRACE

%{

double y1,z1,t1,dt,kix,kiy,kiz,ratio,order,q0x,q0y,q0z,k,q0,theta;

double bx,by,bz,kux,kuy,kuz,ax,ay,az,phi;

double cos_2theta,k_sin_2theta,cos_phi,sin_phi,kfx,kfy,kfz,q_x,q_y,q_z;

double delta,p_reflect,total,c1x,c1y,c1z,width,tmp;

int i;

if(vx != 0.0 && (dt = -x/vx) >= 0.0)

{ /* Moving towards crystal? */

y1 = y + vy*dt; /* Propagate to crystal plane */

z1 = z + vz*dt;

t1 = t + dt;

if (z1>zmin && z1<zmax && y1>ymin && y1<ymax)

{ /* Intersect the crystal? */

kix = V2K*vx; /* Initial wave vector */

kiy = V2K*vy;

kiz = V2K*vz;

/* Get reflection order and corresponding nominal scattering vector q0

of correct length and direction. Only the order with the closest

scattering vector is considered */

ratio = -2*(kix*Qx + kiy*Qy + kiz*Qz)/(Q*Q);

order = floor(ratio + .5);

if(order == 0.0)

order = ratio < 0 ? -1 : 1;

/* Order will be negative when the neutron enters from the back, in

which case the direction of Q0 is flipped. */

if(order < 0)

order = -order;

/* Make sure the order is small enough to allow Bragg scattering at the

given neutron wavelength */

k = sqrt(kix*kix + kiy*kiy + kiz*kiz);

kux = kix/k; /* Unit vector along ki */

kuy = kiy/k;

kuz = kiz/k;

if(order > 2*k/Q)

order--;

if(order > 0) /* Bragg scattering possible? */

{

q0x = order*Qx;

q0y = order*Qy;

q0z = order*Qz;

if(ratio < 0)

{

130 Risø–R–1175(EN)

q0x = -q0x; q0y = -q0y; q0z = -q0z;

}

q0 = order*Q;

theta = asin(q0/(2*k)); /* Actual bragg angle */

/* Make MC choice: reflect or transmit? */

delta = asin(-(kux*q0x + kuy*q0y + kuz*q0z)/q0) - theta;

p_reflect = R0*exp(-delta*delta/(2*mos_rms*mos_rms));

if(rand01() < p_reflect)

{ /* Reflect */

cos_2theta = cos(2*theta);

k_sin_2theta = k*sin(2*theta);

/* Get unit normal to plane containing ki and most probable kf */

vec_prod(bx, by, bz, kix, kiy, kiz, q0x, q0y, q0z);

NORM(bx,by,bz);

bx *= k_sin_2theta;

by *= k_sin_2theta;

bz *= k_sin_2theta;

/* Get unit vector normal to ki and b */

vec_prod(ax, ay, az, bx, by, bz, kux, kuy, kuz);

/* Compute the total scattering probability at this ki */

total = 0;

width = 5*mos_rms;

c1x = kix*(cos_2theta-1);

c1y = kiy*(cos_2theta-1);

c1z = kiz*(cos_2theta-1);

for(i = 0; i < (sizeof(X)/sizeof(double)); i++)

{

phi = width*X[i];

cos_phi = cos(phi);

sin_phi = sin(phi);

q_x = c1x + cos_phi*ax + sin_phi*bx;

q_y = c1y + cos_phi*ay + sin_phi*by;

q_z = c1z + cos_phi*az + sin_phi*bz;

tmp = (q_x*q0x + q_y*q0y + q_z*q0z)/

(sqrt(q_x*q_x + q_y*q_y + q_z*q_z)*q0);

delta = tmp < 1 ? acos(tmp) : 0; /* Avoid rounding errors */

p_reflect = GAUSS(delta,0,mos_rms);

total += W[i]*p_reflect;

}

total *= width;

/* Choose point on Debye-Scherrer cone. Use the double

crystal mosaic (since the scattering angle is two times

the Bragg angle), and correct for any error by adjusting

the neutron weight later */

phi = 2*mos_rms*randnorm();

/* Compute final wave vector kf and scattering vector q = ki - kf */

cos_phi = cos(phi);

sin_phi = sin(phi);

q_x = c1x + cos_phi*ax + sin_phi*bx;

q_y = c1y + cos_phi*ay + sin_phi*by;

q_z = c1z + cos_phi*az + sin_phi*bz;

tmp = (q_x*q0x + q_y*q0y + q_z*q0z)/

(sqrt(q_x*q_x + q_y*q_y + q_z*q_z)*q0);

delta = tmp < 1 ? acos(tmp) : 0; /* Avoid rounding errors */

p_reflect = GAUSS(delta,0,mos_rms);

x = 0;

Risø–R–1175(EN) 131

y = y1;

z = z1;

t = t1;

vx = K2V*(kix+q_x);

vy = K2V*(kiy+q_y);

vz = K2V*(kiz+q_z);

p *= p_reflect/(total*GAUSS(phi,0,2*mos_rms));

} /* End MC choice to reflect or transmit neutron */

} /* End bragg scattering possible */

} /* End intersect the crystal */

} /* End neutron moving towards crystal */

%}

MCDISPLAY

%{

double len = 0.5*sqrt((ymax-ymin)*(ymax-ymin) + (zmax-zmin)*(zmax-zmin));

magnify("zy");

multiline(5, 0.0, (double)ymin, (double)zmin,

0.0, (double)ymax, (double)zmin,

0.0, (double)ymax, (double)zmax,

0.0, (double)ymin, (double)zmax,

0.0, (double)ymin, (double)zmin);

line(0, 0, 0, /* Draw Q0 vector */

(double)Qx/Q*len, (double)Qy/Q*len, (double)Qz/Q*len);

%}

END

132 Risø–R–1175(EN)

B.6.3 Single crystal

/***

*

* McStas, Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright 1997-2000 Risoe National Laboratory, Roskilde, Denmark

*

* Component: Single_crystal

*

* Written by: KN December 1999

*

* Single crystal with mosaic. Delta-D/D option for finite-size effects.

* Rectangular geometry.

* Crystal structure is specified with an ascii data file. Each line

* contains seven numbers, separated by white space. The first three numbers

* are the (h,k,l) indices of the reciprocal lattice point, and the last

* number is the value of the structure factor |F|**2, in barns. (The rest of

* the numbers are not used; the file is in the format output by the

* Crystallographica program).

*

* INPUT PARAMETERS:

*

* xwidth : Width of crystal (m)

* yheight : Height of crystal (m)

* zthick : Thichness of crystal (no extinction simulated) (m)

* delta_d_d : Lattice spacing variance, gaussian RMS (1)

* mosaic : Crystal mosaic (anisotropic), gaussian RMS (arc minutes)

* ax,ay,az : Coordinates of first unit cell vector (AA)

* bx,by,bz : Coordinates of second unit cell vector (AA)

* cx,cy,cz : Coordinates of third unit cell vector (AA)

* reflections : File name containing structure factors of reflections (string)

*

* OUTPUT PARAMETERS:

*

* hkl_info : Internal

*

***/

/*

Overview of algorithm:

(1). The neutron intersects the crystal at (x,y,z) with given

incoming wavevector ki=(kix,kiy,kiz).

(2). Every reciprocal lattice point tau of magnitude less than 2*ki

is considered for scattering. The scattering probability is the

area of the intersection of the Ewald sphere (approximated by

the tangential plane) with the 3-D Gaussian mosaic of the point

tau.

(3). The total coherent scattering cross section is computed as the

sum over all tau. Together with the absorption and incoherent

scattering cross section and known potential flight-length

l_full through the sample, we can compute the probability of

the four events absorption, coherent scattering, incoherent

scattering, and transmission.

Risø–R–1175(EN) 133

(4). Absorption is never simulated explicitly, just incorporated in

the neutron weight.

(5). Transmission in the first event is selected with the Monte

Carlo probability p_transmit, which will usually be set to

0. After the first event, transmission is selected with the

correct Monte Carlo probability.

(6). Incoherent scattering is done simply by selecting a random

direction for the outgoing wave vector kf.

(7). For coherent scattering, a reciprocal lattice point is selected

using the relative probabilities computed in (2), and the

weight is adjusted with the contribution from the structure

factors (this way all reflections will get equally good

statistics in the detector).

(8). The outgoing wave vector direction is picked at random using

the intersecting 2-D Gauss computed in (2). The vector is

normalized to the length of ki (elastic scattering) to account

for the error caused by the planar approximation of the Ewald

sphere.

(9). The process is repeated from (2) with kf as new initial wave

vector ki.

*/

DEFINE COMPONENT Single_crystal

DEFINITION PARAMETERS(reflections)

SETTING PARAMETERS(xwidth, yheight, zthick, delta_d_d, mosaic,

ax, ay, az, bx, by, bz, cx, cy, cz

/* , p_transmit /* = 0 ToDo */)

OUTPUT PARAMETERS(hkl_info)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

#ifndef SINGLE_CRYSTAL_DECL

#define SINGLE_CRYSTAL_DECL

/* Compute normal vector to (x,y,z).

ToDo: Move to McStas kernel. */

void normal_vec(double *nx, double *ny, double *nz,

double x, double y, double z)

{

double ax = fabs(x);

double ay = fabs(y);

double az = fabs(z);

double l;

if(x == 0 && y == 0 && z == 0)

{

*nx = 0;

*ny = 0;

*nz = 0;

134 Risø–R–1175(EN)

return;

}

if(ax < ay)

{

if(ax < az)

{ /* Use X axis */

l = sqrt(z*z + y*y);

*nx = 0;

*ny = z/l;

*nz = -y/l;

return;

}

}

else

{

if(ay < az)

{ /* Use Y axis */

l = sqrt(z*z + x*x);

*nx = z/l;

*ny = 0;

*nz = -x/l;

return;

}

}

/* Use Z axis */

l = sqrt(y*y + x*x);

*nx = y/l;

*ny = -x/l;

*nz = 0;

}

/* Make sure a list is big enough to hold element COUNT.

ToDo: Move to McStas kernel. */

void extend_list(int count, void **list, int *size, size_t elemsize)

{

if(count >= *size)

{

void *oldlist = *list;

if(*size > 0)

*size *= 2;

else

*size = 32;

*list = malloc(*size*elemsize);

if(!*list)

{

fprintf(stderr, "\nFatal error: Out of memory.\n");

exit(1);

}

if(oldlist)

{

memcpy(*list, oldlist, count*elemsize);

free(oldlist);

}

}

}

Risø–R–1175(EN) 135

/* If intersection with box dt_in and dt_out is returned */

/* This function written by Stine Nyborg, 1999. */

int box_intersect(double *dt_in, double *dt_out,

double x, double y, double z,

double vx, double vy, double vz,

double dx, double dy, double dz)

{

double x_in, y_in, z_in, tt, t[6], a, b;

int i, count, s;

/* Calculate intersection time for each of the six box surface planes

* If the box surface plane is not hit, the result is zero.*/

if(vx != 0)

{

tt = -(dx/2 + x)/vx;

y_in = y + tt*vy;

z_in = z + tt*vz;

if(y_in > -dy/2 && y_in < dy/2 && z_in > -dz/2 && z_in < dz/2)

t[0] = tt;

else

t[0] = 0;

tt = (dx/2 - x)/vx;

y_in = y + tt*vy;

z_in = z + tt*vz;

if(y_in > -dy/2 && y_in < dy/2 && z_in > -dz/2 && z_in < dz/2)

t[1] = tt;

else

t[1] = 0;

}

else

t[0] = t[1] = 0;

if(vy != 0)

{

tt = -(dy/2 + y)/vy;

x_in = x + tt*vx;

z_in = z + tt*vz;

if(x_in > -dx/2 && x_in < dx/2 && z_in > -dz/2 && z_in < dz/2)

t[2] = tt;

else

t[2] = 0;

tt = (dy/2 - y)/vy;

x_in = x + tt*vx;

z_in = z + tt*vz;

if(x_in > -dx/2 && x_in < dx/2 && z_in > -dz/2 && z_in < dz/2)

t[3] = tt;

else

t[3] = 0;

}

else

t[2] = t[3] = 0;

if(vz != 0)

136 Risø–R–1175(EN)

{

tt = -(dz/2 + z)/vz;

x_in = x + tt*vx;

y_in = y + tt*vy;

if(x_in > -dx/2 && x_in < dx/2 && y_in > -dy/2 && y_in < dy/2)

t[4] = tt;

else

t[4] = 0;

tt = (dz/2 - z)/vz;

x_in = x + tt*vx;

y_in = y + tt*vy;

if(x_in > -dx/2 && x_in < dx/2 && y_in > -dy/2 && y_in < dy/2)

t[5] = tt;

else

t[5] = 0;

}

else

t[4] = t[5] = 0;

/* The intersection is evaluated and *dt_in and *dt_out are assigned */

a = b = s = 0;

count = 0;

for(i = 0; i < 6; i=i++)

if(t[i] == 0)

s = s+1;

else if(count == 0)

{

a = t[i];

count = 1;

}

else

{

b = t[i];

count = 2;

}

if (a == 0 && b == 0)

return 0;

else if(a < b)

{

*dt_in = a;

*dt_out = b;

return 1;

}

else

{

*dt_in = b;

*dt_out = a;

return 1;

}

}

Risø–R–1175(EN) 137

struct hkl_info

{

struct hkl_data *list; /* Reflection array */

int count; /* Number of reflections */

struct tau_data *tau_list; /* Reflections close to Ewald Sphere */

double mosaic; /* Isotropic mosaic (FWHM minutes) */

double delta_d_d; /* Delta-d/d FWHM */

double ax,ay,az; /* First unit cell axis (direct space, AA) */

double bx,by,bz; /* Second unit cell axis */

double cx,cy,cz; /* Third unit cell axis */

double asx,asy,asz; /* First reciprocal lattice axis (1/AA) */

double bsx,bsy,bsz; /* Second reciprocal lattice axis */

double csx,csy,csz; /* Third reciprocal lattice axis */

double V0; /* Unit cell volume (AA**3) */

};

struct hkl_data

{

int h,k,l; /* Indices for this reflection */

double F2; /* Value of structure factor */

double tau_x, tau_y, tau_z; /* Coordinates in reciprocal space */

double tau; /* Length of (tau_x, tau_y, tau_z) */

double u1x, u1y, u1z; /* First axis of local coordinate system */

double u2x, u2y, u2z; /* Second axis of local coordinate system */

double u3x, u3y, u3z; /* Third axis of local coordinate system */

double sig1, sig2, sig3; /* RMSs of Gauss axis */

double sig123; /* The product sig1*sig2*sig3 */

double m1, m2, m3; /* Diagonal matrix representation of Gauss */

double cutoff; /* Cutoff value for Gaussian tails */

};

struct tau_data

{

int index; /* Index into reflection table */

double refl;

double F2_contrib;

double xsect;

double sigma_1, sigma_2;

/* The following vectors are in local koordinates. */

double kix, kiy, kiz; /* Initial wave vector */

double rho_x, rho_y, rho_z; /* The vector ki - tau */

double rho; /* Length of rho vector */

double ox, oy, oz; /* Origin of Ewald sphere tangent plane */

double nx, ny, nz; /* Normal vector of Ewald sphere tangent */

double b1x, b1y, b1z; /* Spanning vectors of Ewald sphere tangent */

double b2x, b2y, b2z;

double l11, l12, l22; /* Cholesky decomposition L of 2D Gauss */

double det_L; /* Determinant of L */

double y0x, y0y; /* 2D Gauss center in tangent plane */

double alpha; /* Offset of 2D Gauss center from 3D center */

};

struct hkl_data *

read_hkl_data(char *file, struct hkl_info *info)

{

struct hkl_data *list = NULL;

138 Risø–R–1175(EN)

int size = 0;

FILE *f;

int i;

f = fopen(file, "r");

if(!f)

{

fprintf(stderr, "Single crystal: Error: file ’%s’ cannot be opened.\n",

file);

exit(1);

}

i = 0;

while(!feof(f))

{

double h, k, l, multiplicity, d, ttheta, F2;

int ret;

ret = fscanf(f, "%lf %lf %lf %lf %lf %lf %lf\n",

&h, &k, &l, &multiplicity, &d, &ttheta, &F2);

if(ret == EOF)

break;

if(ret != 7)

{

fprintf(stderr,

"Single crystal: Error reading from file ’%s’, line %d\n",

file, i + 1);

exit(1);

}

/* Extend list if not large enough. */

extend_list(i, (void **)&list, &size, sizeof(*list));

list[i].h = h;

list[i].k = k;

list[i].l = l;

list[i].F2 = F2;

/* Precompute some values */

list[i].tau_x = h*info->asx + k*info->bsx + l*info->csx;

list[i].tau_y = h*info->asy + k*info->bsy + l*info->csy;

list[i].tau_z = h*info->asz + k*info->bsz + l*info->csz;

list[i].tau = sqrt(list[i].tau_x*list[i].tau_x +

list[i].tau_y*list[i].tau_y +

list[i].tau_z*list[i].tau_z);

list[i].u1x = list[i].tau_x/list[i].tau;

list[i].u1y = list[i].tau_y/list[i].tau;

list[i].u1z = list[i].tau_z/list[i].tau;

normal_vec(&list[i].u2x, &list[i].u2y, &list[i].u2z,

list[i].u1x, list[i].u1y, list[i].u1z);

vec_prod(list[i].u3x, list[i].u3y, list[i].u3z,

list[i].u1x, list[i].u1y, list[i].u1z,

list[i].u2x, list[i].u2y, list[i].u2z);

list[i].sig1 = FWHM2RMS*info->delta_d_d*list[i].tau;

list[i].sig2 = FWHM2RMS*list[i].tau*MIN2RAD*info->mosaic;

list[i].sig3 = FWHM2RMS*list[i].tau*MIN2RAD*info->mosaic;

list[i].sig123 = list[i].sig1*list[i].sig2*list[i].sig3;

list[i].m1 = 1/(2*list[i].sig1*list[i].sig1);

list[i].m2 = 1/(2*list[i].sig2*list[i].sig2);

list[i].m3 = 1/(2*list[i].sig3*list[i].sig3);

/* Set Gauss cutoff to 5 times the maximal sigma. */

Risø–R–1175(EN) 139

if(list[i].sig1 > list[i].sig2)

if(list[i].sig1 > list[i].sig3)

list[i].cutoff = 5*list[i].sig1;

else

list[i].cutoff = 5*list[i].sig3;

else

if(list[i].sig2 > list[i].sig3)

list[i].cutoff = 5*list[i].sig2;

else

list[i].cutoff = 5*list[i].sig3;

i++;

}

fclose(f);

printf("Single_crystal: Read %d reflections from file ’%s’\n", i, file);

info->list = list;

info->count = i;

info->tau_list = malloc(i*sizeof(*info->tau_list));

if(!info->tau_list)

{

fprintf(stderr, "Single_crystal: Error: Out of memory!\n");

exit(1);

}

}

#endif /* !SINGLE_CRYSTAL_DECL */

struct hkl_info hkl_info;

%}

INITIALIZE

%{

double tmp_x, tmp_y, tmp_z;

hkl_info.mosaic = mosaic;

hkl_info.delta_d_d = delta_d_d;

hkl_info.ax = ax;

hkl_info.ay = ay;

hkl_info.az = az;

hkl_info.bx = bx;

hkl_info.by = by;

hkl_info.bz = bz;

hkl_info.cx = cx;

hkl_info.cy = cy;

hkl_info.cz = cz;

/* Compute reciprocal lattice vectors. */

vec_prod(tmp_x, tmp_y, tmp_z, bx, by, bz, cx, cy, cz);

hkl_info.V0 = scalar_prod(ax, ay, az, tmp_x, tmp_y, tmp_z);

hkl_info.asx = 2*PI/hkl_info.V0*tmp_x;

hkl_info.asy = 2*PI/hkl_info.V0*tmp_y;

hkl_info.asz = 2*PI/hkl_info.V0*tmp_z;

vec_prod(tmp_x, tmp_y, tmp_z, cx, cy, cz, ax, ay, az);

hkl_info.bsx = 2*PI/hkl_info.V0*tmp_x;

hkl_info.bsy = 2*PI/hkl_info.V0*tmp_y;

hkl_info.bsz = 2*PI/hkl_info.V0*tmp_z;

vec_prod(tmp_x, tmp_y, tmp_z, ax, ay, az, bx, by, bz);

hkl_info.csx = 2*PI/hkl_info.V0*tmp_x;

140 Risø–R–1175(EN)

hkl_info.csy = 2*PI/hkl_info.V0*tmp_y;

hkl_info.csz = 2*PI/hkl_info.V0*tmp_z;

/* Read in structure factors, and do some pre-calculations. */

read_hkl_data(reflections, &hkl_info);

%}

TRACE

%{

double t1, t2; /* Entry and exit times in sample */

double dt; /* Flight time to next scattering event */

struct hkl_data *L; /* Structure factor list */

int i; /* Index into structure factor list */

struct tau_data *T; /* List of reflections close to Ewald sphere */

int j; /* Index into reflection list */

int firstevent; /* True for the first scattering event only */

double kix, kiy, kiz, ki; /* Initial wave vector [1/AA] */

double kfx, kfy, kfz; /* Final wave vector */

double v; /* Neutron velocity */

double tau_max; /* Max tau allowing reflection at this ki */

double rho_x, rho_y, rho_z; /* the vector ki - tau */

double rho;

double diff; /* Deviation from Bragg condition */

double ox, oy, oz; /* Origin of Ewald sphere tangent plane */

double b1x, b1y, b1z; /* First vector spanning tangent plane */

double b2x, b2y, b2z; /* Second vector spanning tangent plane */

double n11, n12, n22; /* 2D Gauss description matrix N */

double det_N; /* Determinant of N */

double inv_n11, inv_n12, inv_n22; /* Inverse of N */

double l11, l12, l22; /* Cholesky decomposition L of 1/2*inv(N) */

double det_L; /* Determinant of L */

double Bt_D_O_x, Bt_D_O_y; /* Temporaries */

double y0x, y0y; /* Center of 2D Gauss in plane coordinates */

double d_x, d_y, d_z; /* Vector deviation from Bragg condition */

int tau_count; /* Number of reflections within cutoff */

double V0; /* Volume of unit cell */

double l_full; /* Neutron path length for transmission */

double abs_xsect, abs_xlen; /* Absorbtion cross section and length */

double inc_xsect, inc_xlen; /* Incoherent cross section and length */

double coh_xsect, coh_xlen; /* Coherent cross section and length */

double tot_xsect, tot_xlen; /* Total cross section and length */

double z1, z2, y1, y2; /* Temporaries to choose kf from 2D Gauss */

double adjust,arg, refl; /* Temporaries */

firstevent = 1;

for(;;) /* Loop over multiple scattering events */

{

/* (1). Compute incoming wave vector ki */

v = sqrt(vx*vx + vy*vy + vz*vz);

/* Compute intersection between neutron flight path and sample. */

if(!box_intersect(&t1, &t2, x, y, z, vx, vy, vz,

xwidth, yheight, zthick) || t2 <= 0)

ABSORB;

if(t1 <= 0)

fprintf(stderr,

"Single_crystal: Warning: neutron started inside crystal!\n");

/* Select a point at which to scatter the neutron. No extinction. */

dt = randminmax(t1, t2);

Risø–R–1175(EN) 141

PROP_DT(dt);

l_full = (t2 - t1)*v;

kix = V2K*vx;

kiy = V2K*vy;

kiz = V2K*vz;

ki = V2K*v;

/* (2). Intersection of Ewald sphere with recipprocal lattice points */

L = hkl_info.list;

T = hkl_info.tau_list;

/* Max possible tau with 5*sigma delta-d/d cutoff. */

tau_max = 2*ki/(1 - 5*delta_d_d);

for(i = j = 0; i < hkl_info.count; i++)

{

/* Assuming reflections are sorted, stop search when max tau exceeded. */

if(L[i].tau > tau_max)

break;

/* Check if this reciprocal lattice point is close enough to the

Ewald sphere to make scattering possible. */

rho_x = kix - L[i].tau_x;

rho_y = kiy - L[i].tau_y;

rho_z = kiz - L[i].tau_z;

rho = sqrt(rho_x*rho_x + rho_y*rho_y + rho_z*rho_z);

diff = fabs(rho - ki);

/* Check if scattering is possible (cutoff of Gaussian tails). */

if(diff <= L[i].cutoff)

{

/* Store reflection. */

T[j].index = i;

/* Get ki vector in local coordinates. */

T[j].kix = kix*L[i].u1x + kiy*L[i].u1y + kiz*L[i].u1z;

T[j].kiy = kix*L[i].u2x + kiy*L[i].u2y + kiz*L[i].u2z;

T[j].kiz = kix*L[i].u3x + kiy*L[i].u3y + kiz*L[i].u3z;

T[j].rho_x = T[j].kix - L[i].tau;

T[j].rho_y = T[j].kiy;

T[j].rho_z = T[j].kiz;

T[j].rho = rho;

/* Compute the tangent plane of the Ewald sphere. */

T[j].nx = T[j].rho_x/T[j].rho;

T[j].ny = T[j].rho_y/T[j].rho;

T[j].nz = T[j].rho_z/T[j].rho;

ox = (ki - T[j].rho)*T[j].nx;

oy = (ki - T[j].rho)*T[j].ny;

oz = (ki - T[j].rho)*T[j].nz;

T[j].ox = ox;

T[j].oy = oy;

T[j].oz = oz;

/* Compute unit vectors b1 and b2 that span the tangent plane. */

normal_vec(&b1x, &b1y, &b1z, T[j].nx, T[j].ny, T[j].nz);

vec_prod(b2x, b2y, b2z, T[j].nx, T[j].ny, T[j].nz, b1x, b1y, b1z);

T[j].b1x = b1x;

T[j].b1y = b1y;

T[j].b1z = b1z;

T[j].b2x = b2x;

T[j].b2y = b2y;

T[j].b2z = b2z;

142 Risø–R–1175(EN)

/* Compute the 2D projection of the 3D Gauss of the reflection. */

/* The symmetric 2x2 matrix N describing the 2D gauss. */

n11 = L[i].m1*b1x*b1x + L[i].m2*b1y*b1y + L[i].m3*b1z*b1z;

n12 = L[i].m1*b1x*b2x + L[i].m2*b1y*b2y + L[i].m3*b1z*b2z;

n22 = L[i].m1*b2x*b2x + L[i].m2*b2y*b2y + L[i].m3*b2z*b2z;

/* The (symmetric) inverse matrix of N. */

det_N = n11*n22 - n12*n12;

inv_n11 = n22/det_N;

inv_n12 = -n12/det_N;

inv_n22 = n11/det_N;

/* The Cholesky decomposition of 1/2*inv_n (lower triangular L). */

l11 = sqrt(inv_n11/2);

l12 = inv_n12/(2*l11);

l22 = sqrt(inv_n22/2 - l12*l12);

T[j].l11 = l11;

T[j].l12 = l12;

T[j].l22 = l22;

det_L = l11*l22;

T[j].det_L = det_L;

/* The product B^T D o. */

Bt_D_O_x = b1x*L[i].m1*ox + b1y*L[i].m2*oy + b1z*L[i].m3*oz;

Bt_D_O_y = b2x*L[i].m1*ox + b2y*L[i].m2*oy + b2z*L[i].m3*oz;

/* Center of 2D Gauss in plane coordinates. */

y0x = -(Bt_D_O_x*inv_n11 + Bt_D_O_y*inv_n12);

y0y = -(Bt_D_O_x*inv_n12 + Bt_D_O_y*inv_n22);

T[j].y0x = y0x;

T[j].y0y = y0y;

/* Factor alpha for the distance of the 2D Gauss from the origin. */

T[j].alpha = L[i].m1*ox*ox + L[i].m2*oy*oy + L[i].m3*oz*oz -

(y0x*y0x*n11 + y0y*y0y*n22 + 2*y0x*y0y*n12);

j++;

}

}

tau_count = j;

if(tau_count == 0)

{

/* printf("** No nearby reflections.\n"); */

ABSORB; /* No reflections possible */

}

/* (3). Probabilities of the different possible interactions. */

V0 = hkl_info.V0;

abs_xsect = (0 /* ToDo: absorbtion at 2200m/s */) / v;

abs_xlen = abs_xsect/V0;

inc_xsect = 0 /* ToDo: Incoherent cross section */;

inc_xlen = inc_xsect/V0;

coh_xsect = 0 /* ToDo: Coherent cross section */;

coh_xlen = coh_xsect/V0;

tot_xsect = abs_xsect + inc_xsect + coh_xsect;

tot_xlen = tot_xsect/V0;

/* (5). Transmission */

/* p_trans = exp(-tot_xlen*l_full); */

/* if(firstevent) { */

/* mc_trans = p_transmit; */

/* } else { */

/* mc_trans = p_trans; */

/* } */

Risø–R–1175(EN) 143

/* firstevent = 0; */

/* if(rand01() < mc_trans) /* Transmit */

/* { */

/* p *= p_trans/mc_trans; */

/* break; */

/* } */

/* dP(l) = exp(-tot_xlen*l)dl

P(l<l_0) = [-1/tot_xlen*exp(-tot_xlen*l)]_0^l_0

= (1 - exp(-tot_xlen*l0))/tot_xlen

l = -log(1 - tot_xlen*rand0max(P(l<l_full)))/tot_xlen

*/

/* l = -log(1 - rand0max((1 - exp(-tot_xlen*l0))))/tot_xlen; */

/* (4). Account for the probability of absorbtion */

/* p *= (coh_xlen + inc_xlen)/tot_xlen; */

/* Choose between coherent and incoherent scattering */

/* if(rand0max(coh_xlen + inc_xlen) < inc_xlen) */

/* { */

/* /* (6). Incoherent scattering */

/* randvec_target_sphere(kix, kiy, kiz, NULL, 0, 0, 0, 1); */

/* kix *= ki; */

/* kiy *= ki; */

/* kiz *= ki; */

/* continue; /* Go for next scattering event */

/* } */

/* 7. Coherent scattering. Select reciprocal lattice point. */

/* r = rand0max(coh_xsect); */

/* sum = 0; */

/* for(j = 0; j < tau_count; j++) */

/* { */

/* sum += T[j].refl; */

/* if(sum > r) */

/* break; */

/* } */

j = floor(rand0max(tau_count));

if(j >= tau_count)

{

/* fprintf(stderr, "Single_crystal: Error: Illegal tau search " */

/* "(r = %g, sum = %g).\n", r, sum); */

j = tau_count - 1;

}

i = T[j].index;

/* p *= T[i].F2_contrib; */

/* (8). Pick scattered wavevector kf from 2D Gauss distribution. */

z1 = randnorm();

z2 = randnorm();

y1 = T[j].l11*z1 + T[j].y0x;

y2 = T[j].l12*z1 + T[j].l22*z2 + T[j].y0y;

kfx = T[j].rho_x + T[j].ox + T[j].b1x*y1 + T[j].b2x*y2;

kfy = T[j].rho_y + T[j].oy + T[j].b1y*y1 + T[j].b2y*y2;

kfz = T[j].rho_z + T[j].oz + T[j].b1z*y1 + T[j].b2z*y2;

/* Normalize kf to length of ki, to account for planer

approximation of the Ewald sphere. */

adjust = ki/sqrt(kfx*kfx + kfy*kfy + kfz*kfz);

kfx *= adjust;

kfy *= adjust;

kfz *= adjust;

144 Risø–R–1175(EN)

/* Adjust neutron weight (see manual for explanation). */

p *= l_full*1e10*L[i].F2*1e-4*pow(2*PI, 2.5)*

T[j].det_L*tau_count*exp(-T[j].alpha)/

(V0*V0*ki*ki*L[i].sig123);

vx = K2V*(L[i].u1x*kfx + L[i].u2x*kfy + L[i].u3x*kfz);

vy = K2V*(L[i].u1y*kfx + L[i].u2y*kfy + L[i].u3y*kfz);

vz = K2V*(L[i].u1z*kfx + L[i].u2z*kfy + L[i].u3z*kfz);

break;

/* Repeat loop for next scattering event. */

}

%}

MCDISPLAY

%{

double xmin = -0.5*xwidth;

double xmax = 0.5*xwidth;

double ymin = -0.5*yheight;

double ymax = 0.5*yheight;

double zmin = -0.5*zthick;

double zmax = 0.5*zthick;

magnify("xyz");

multiline(5, xmin, ymin, zmin,

xmax, ymin, zmin,

xmax, ymax, zmin,

xmin, ymax, zmin,

xmin, ymin, zmin);

multiline(5, xmin, ymin, zmax,

xmax, ymin, zmax,

xmax, ymax, zmax,

xmin, ymax, zmax,

xmin, ymin, zmax);

line(xmin, ymin, zmin, xmin, ymin, zmax);

line(xmax, ymin, zmin, xmax, ymin, zmax);

line(xmin, ymax, zmin, xmin, ymax, zmax);

line(xmax, ymax, zmin, xmax, ymax, zmax);

%}

END

Risø–R–1175(EN) 145

B.7 Powder-like samples

B.7.2 V sample

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: V-sample

*

* Written by: KL, KN 15.4.98

*

* A Double-cylinder shaped incoherent scatterer (a V-sample)

* No multiple scattering. Absorbtion included.

*

* INPUT PARAMETERS:

*

* radius_i : Inner radius of sample in (x,z) plane (m)

* radius_o : Outer radius of sample in (x,z) plane (m)

* h : Height of sample y direction (m)

* pack : Packing factor (1)

* focus_r : Radius of sphere containing target. (m)

* target_x :

* target_y : position of target to focus at (m)

* target_z :

*

* Variables calculated in the component

*

* V_my_s : Attenuation factor due to scattering (m^-1)

* V_my_a : Attenuation factor due to absorbtion (m^-1)

*

***/

DEFINE COMPONENT V_sample

DEFINITION PARAMETERS (radius_i,radius_o,h,pack,focus_r)

SETTING PARAMETERS (target_x, target_y, target_z)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

/* ToDo: Should be component local names. */

#define V_sigma_a 5.08 /* Absorption cross section per atom (barns) */

#define V_sigma_i 4.935 /* Incoherent scattering cross section per atom (barns) */

#define V_rho (2*pack/(3.024*3.024*3.024)) /* Density of atoms (AA-3) */

#define V_my_s (V_rho * 100 * V_sigma_i)

#define V_my_a_v (V_rho * 100 * V_sigma_a * 2200)

%}

INITIALIZE

%{

%}

TRACE

%{

double t0, t3; /* Entry/exit time for outer cylinder */

double t1, t2; /* Entry/exit time for inner cylinder */

double v; /* Neutron velocity */

double dt0, dt1, dt2, dt; /* Flight times through sample */

146 Risø–R–1175(EN)

double l_full; /* Flight path length for non-scattered neutron */

double l_i, l_o; /* Flight path lenght in/out for scattered neutron */

double my_a; /* Velocity-dependent attenuation factor */

double solid_angle; /* Solid angle of target as seen from scattering point */

double aim_x, aim_y, aim_z; /* Position of target relative to scattering point */

if(cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius_o, h))

{

if(t0 < 0)

ABSORB;

/* Neutron enters at t=t0. */

if(!cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius_i, h))

t1 = t2 = t3;

dt0 = t1-t0; /* Time in sample, ingoing */

dt1 = t2-t1; /* Time in hole */

dt2 = t3-t2; /* Time in sample, outgoing */

v = sqrt(vx*vx + vy*vy + vz*vz);

l_full = v * (dt0 + dt2); /* Length of full path through sample */

dt = rand01()*(dt0+dt2); /* Time of scattering (relative to t0) */

l_i = v*dt; /* Penetration in sample */

if (dt > dt0)

dt += dt1;

PROP_DT(dt+t0); /* Point of scattering */

aim_x = target_x-x; /* Vector pointing at target (anal./det.) */

aim_y = target_y-y;

aim_z = target_z-z;

randvec_target_sphere(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);

NORM(vx, vy, vz);

vx *= v;

vy *= v;

vz *= v;

if(!cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius_o, h))

{

/* ??? did not hit cylinder */

printf("FATAL ERROR: Did not hit cylinder from inside.\n");

exit(1);

}

dt = t3;

if(cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius_i, h) &&

t2 > 0)

dt -= (t2-t1); /* Subtract hollow part */

l_o = v*dt;

my_a = V_my_a_v/v;

p *= l_full*V_my_s*exp(-(my_a+V_my_s)*(l_i+l_o));

p /= 4*PI/solid_angle;

}

else

ABSORB;

%}

MCDISPLAY

Risø–R–1175(EN) 147

%{

magnify("xyz");

circle("xz", 0, h/2.0, 0, radius_i);

circle("xz", 0, h/2.0, 0, radius_o);

circle("xz", 0, -h/2.0, 0, radius_i);

circle("xz", 0, -h/2.0, 0, radius_o);

line(-radius_i, -h/2.0, 0, -radius_i, +h/2.0, 0);

line(+radius_i, -h/2.0, 0, +radius_i, +h/2.0, 0);

line(0, -h/2.0, -radius_i, 0, +h/2.0, -radius_i);

line(0, -h/2.0, +radius_i, 0, +h/2.0, +radius_i);

line(-radius_o, -h/2.0, 0, -radius_o, +h/2.0, 0);

line(+radius_o, -h/2.0, 0, +radius_o, +h/2.0, 0);

line(0, -h/2.0, -radius_o, 0, +h/2.0, -radius_o);

line(0, -h/2.0, +radius_o, 0, +h/2.0, +radius_o);

%}

END

148 Risø–R–1175(EN)

B.7.3 Powder1

/***

*

* McStas, version 1.0, released October 26, 1998

* Maintained by Kristian Nielsen and Kim Lefmann,

* Risoe National Laboratory, Roskilde, Denmark

*

* Component: General powder sample (powder1)

*

* Written by: E.M.Lauridsen, N.B.Christensen, A.B.Abrahamsen 4.2.98

* Rewritten by: KL, KN 20.3.98

*

* INPUT PARAMETERS

*

* d_phi0 : Focussing angle corresponding to the vertical dimensions

* of the detector placed at the right distance (deg)

* radius : Radius of sample in (x,z) plane (m)

* h : Height of sample y direction (m)

* pack : Packing factor (1)

* Vc : Volume of unit cell (AA^3)

* sigma_a : Absorption cross section per unit cell at 2200 m/s (fm^2)

*

* q : Scattering vector of reflection (AA^-1)

* j : Multiplicity of reflection (1)

* F2 : Structure factor of reflection (fm^2)

* DW : Debye-Waller factor of reflection (1)

* target_x :

* target_y : position of target to focus at (m)

* target_z :

*

* Variables calculated in the component

*

* my_s : Attenuation factor due to scattering (m^-1)

* my_a : Attenuation factor due to absorbtion (m^-1)

***/

DEFINE COMPONENT Powder1

DEFINITION PARAMETERS (d_phi0, radius, h, pack, Vc, sigma_a, j, q, F2, DW)

SETTING PARAMETERS (target_x, target_y, target_z)

OUTPUT PARAMETERS (my_s_v2, my_a_v, q_v)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

double my_s_v2, my_a_v, q_v;

%}

INITIALIZE

%{

my_a_v = sigma_a/Vc*2200; /* Is not yet divided by v */

my_s_v2 = PI*PI*PI*pack*j*F2*DW/(Vc*Vc*V2K*V2K*q);

/* Is not yet divided by v^2 */

q_v = q*K2V;

%}

TRACE

%{

double t0, t1, v, l_full, l, l_1, dt, d_phi, theta, my_s;

double aim_x, aim_y, aim_z, axis_x, axis_y, axis_z;

Risø–R–1175(EN) 149

double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;

if(cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, h))

{

if(t0 < 0)

ABSORB;

/* Neutron enters at t=t0. */

v = sqrt(vx*vx + vy*vy + vz*vz);

l_full = v * (t1 - t0); /* Length of full path through sample */

dt = rand01()*(t1 - t0) + t0; /* Time of scattering */

PROP_DT(dt); /* Point of scattering */

l = v*dt; /* Penetration in sample */

/* Choose point on Debye-Scherrer cone */

d_phi = d_phi0*DEG2RAD/2.0*randpm1();

p *= d_phi0/360.0;

arg = q_v/(2.0*v);

if(arg > 1)

ABSORB; /* No bragg scattering possible*/

theta = asin(arg); /* Bragg scattering law */

aim_x = target_x-x; /* Vector pointing at target (anal./det.) */

aim_y = target_y-y;

aim_z = target_z-z;

vec_prod(axis_x, axis_y, axis_z, vx, vy, vz, aim_x, aim_y, aim_z);

rotate(tmp_vx, tmp_vy, tmp_vz, vx, vy, vz, 2*theta, axis_x, axis_y, axis_z);

rotate(vout_x, vout_y, vout_z, tmp_vx, tmp_vy, tmp_vz, d_phi, vx, vy, vz);

vx = vout_x;

vy = vout_y;

vz = vout_z;

if(!cylinder_intersect(&t0, &t1, x, y, z,

vout_x, vout_y, vout_z, radius, h))

{

/* Strange error: did not hit cylinder */

printf("FATAL ERROR: Did not hit cylinder from inside.\n");

exit(1);

}

l_1 = v*t1;

my_s = my_s_v2/(v*v);

p *= l_full*my_s*exp(-(my_a_v/v+my_s)*(l+l_1));

}

else

ABSORB;

%}

MCDISPLAY

%{

magnify("xyz");

circle("xz", 0, h/2.0, 0, radius);

circle("xz", 0, -h/2.0, 0, radius);

line(-radius, -h/2.0, 0, -radius, +h/2.0, 0);

line(+radius, -h/2.0, 0, +radius, +h/2.0, 0);

line(0, -h/2.0, -radius, 0, +h/2.0, -radius);

line(0, -h/2.0, +radius, 0, +h/2.0, +radius);

150 Risø–R–1175(EN)

%}

END

Risø–R–1175(EN) 151

B.8 Inelastic samples

B.8.1 Res sample

/***

*

* McStas, the neutron ray-tracing package

* Maintained by Kristian Nielsen and Kim Lefmann,

* Copyright 1977-2000 Risoe National Laboratory, Roskilde, Denmark

*

* Component: Res_sample

*

* Written by: KN 1999

*

* An inelastic sample with completely uniform scattering in both Q and

* energy. This sample is used together with the Res_monitor component and

* (optionally) the mcresplot front-end to compute the resolution function of

* triple-axis or inverse-geometry time-of-flight instruments.

*

* The shape of the sample is either a hollow cylinder or a rectangular box. The

* hollow cylinder shape is specified with an inner and outer radius. If the

* outher radius is negative, the shape is instead a box.

*

* The scattered neutrons will have directions towards a given sphere and

* energies betweed E0-dE and E0+dE.

*

* INPUT PARAMETERS:

*

* radius_i : Inner radius of hollow cylinder in (x,z) plane, or width of

* box along X (m)

* radius_o : Outer radius of hollow cylinder, or negative box depth along Z (m)

* h : Height of box or cylinder along Y (m)

* focus_r : Radius of sphere containing target. (m)

* target_x :

* target_y : position of target to focus at (m)

* target_z :

* E0 : Center of scattered energy range

* dE : half width of scattered energy range

*

***/

DEFINE COMPONENT Res_sample

DEFINITION PARAMETERS (radius_i,radius_o,h,focus_r,E0,dE)

SETTING PARAMETERS (target_x, target_y, target_z)

OUTPUT PARAMETERS (res_struct)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

struct Res_sample_struct

{

double ki_x,ki_y,ki_z,kf_x,kf_y,kf_z;

double rx,ry,rz,pi;

} res_struct;

%}

INITIALIZE

%{

%}

152 Risø–R–1175(EN)

TRACE

%{

double t0, t3; /* Entry/exit time for outer cylinder */

double t1, t2; /* Entry/exit time for inner cylinder */

double v; /* Neutron velocity */

double E;

double l_full; /* Flight path length for non-scattered neutron */

double dt0, dt1, dt2, dt; /* Flight times through sample */

double solid_angle; /* Solid angle of target as seen from scattering point */

double aim_x, aim_y, aim_z; /* Position of target relative to scattering point */

double scat_factor; /* Simple cross-section model */

if(radius_o < 0.0)

{ /* Flat sample */

PROP_Z0;

if(x <= -0.5*radius_i || x >= 0.5*radius_i ||

y <= -0.5*h || y >= 0.5*h)

ABSORB;

t0 = 0;

t1 = t2 = t3 = (-radius_o)/vz;

scat_factor = -2*radius_o;

}

else

{ /* Hollow cylinder sample */

if(!cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius_o, h))

ABSORB;

if(t0 < 0)

ABSORB;

/* Neutron enters at t=t0. */

if(!cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius_i, h))

t1 = t2 = t3;

scat_factor = 2*radius_o;

}

dt0 = t1-t0; /* Time in sample, ingoing */

dt1 = t2-t1; /* Time in hole */

dt2 = t3-t2; /* Time in sample, outgoing */

v = sqrt(vx*vx + vy*vy + vz*vz);

l_full = v * (dt0 + dt2); /* Length of full path through sample */

p *= l_full/scat_factor; /* Scattering probability */

dt = rand01()*(dt0+dt2); /* Time of scattering (relative to t0) */

if (dt > dt0)

dt += dt1;

PROP_DT(dt+t0); /* Point of scattering */

/* Store initial neutron state. */

if(p == 0) ABSORB;

res_struct.pi = p;

res_struct.ki_x = V2K*vx;

res_struct.ki_y = V2K*vy;

res_struct.ki_z = V2K*vz;

res_struct.rx = x;

res_struct.ry = y;

res_struct.rz = z;

aim_x = target_x-x; /* Vector pointing at target (anal./det.) */

Risø–R–1175(EN) 153

aim_y = target_y-y;

aim_z = target_z-z;

randvec_target_sphere(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);

NORM(vx, vy, vz);

E=E0+dE*randpm1();

v=sqrt(E)*SE2V;

vx *= v;

vy *= v;

vz *= v;

/* Store final neutron state. */

res_struct.kf_x = V2K*vx;

res_struct.kf_y = V2K*vy;

res_struct.kf_z = V2K*vz;

%}

MCDISPLAY

%{

magnify("xyz");

if(radius_o < 0.0)

{ /* Flat sample. */

double xmin = -0.5*radius_i;

double xmax = 0.5*radius_i;

double ymin = -0.5*h;

double ymax = 0.5*h;

double len = -radius_o;

multiline(5, xmin, ymin, 0.0,

xmax, ymin, 0.0,

xmax, ymax, 0.0,

xmin, ymax, 0.0,

xmin, ymin, 0.0);

multiline(5, xmin, ymin, len,

xmax, ymin, len,

xmax, ymax, len,

xmin, ymax, len,

xmin, ymin, len);

line(xmin, ymin, 0.0, xmin, ymin, len);

line(xmax, ymin, 0.0, xmax, ymin, len);

line(xmin, ymax, 0.0, xmin, ymax, len);

line(xmax, ymax, 0.0, xmax, ymax, len);

}

else

{

circle("xz", 0, h/2.0, 0, radius_i);

circle("xz", 0, h/2.0, 0, radius_o);

circle("xz", 0, -h/2.0, 0, radius_i);

circle("xz", 0, -h/2.0, 0, radius_o);

line(-radius_i, -h/2.0, 0, -radius_i, +h/2.0, 0);

line(+radius_i, -h/2.0, 0, +radius_i, +h/2.0, 0);

line(0, -h/2.0, -radius_i, 0, +h/2.0, -radius_i);

line(0, -h/2.0, +radius_i, 0, +h/2.0, +radius_i);

line(-radius_o, -h/2.0, 0, -radius_o, +h/2.0, 0);

line(+radius_o, -h/2.0, 0, +radius_o, +h/2.0, 0);

line(0, -h/2.0, -radius_o, 0, +h/2.0, -radius_o);

line(0, -h/2.0, +radius_o, 0, +h/2.0, +radius_o);

}

154 Risø–R–1175(EN)

%}

END

Risø–R–1175(EN) 155

Appendix C

McStas instrument definitions

In this appendix is listed the source code for the instrument definitions presented in sec-
tion 6.

C.1 Code for the instrument vanadium example.instr

DEFINE INSTRUMENT test_v_sample(ROT)

DECLARE

%{

double coll_div = 60;

%}

TRACE

COMPONENT arm = Arm() AT (0,0,0) ABSOLUTE

COMPONENT source = Source_flat(radius = 0.015, dist = 1,

xw=0.024, yh=0.015, E0=5, dE=0.2)

AT (0,0,0) RELATIVE arm

COMPONENT collimator = Soller(len = 0.2, divergence = coll_div,

xmin = -0.02, xmax = 0.02, ymin = -0.03, ymax = 0.03)

AT (0, 0, 0.4) RELATIVE arm

COMPONENT target = V_sample(radius_i = 0.008, radius_o = 0.012,

h = 0.015, focus_r = 0, pack = 1,

target_x = 0, target_y = 0, target_z = 1)

AT (0,0,1) RELATIVE arm

COMPONENT PSD_4pi = PSD_monitor_4PI(radius=1e6, nx=101, ny=51,

filename="vanadium.psd")

AT (0,0,0) RELATIVE target ROTATED (ROT,0,0) RELATIVE arm

END

156 Risø–R–1175(EN)

C.2 Code for the instrument linup-7.instr

DEFINE INSTRUMENT TAS1(PHM,TTM,TT,OMA,TTA,C1,OMC1,C2,C3)

DECLARE

%{

/* Mosaicity used on monochromator and analysator */

double tas1_mono_mosaic = 45; /* Measurements indicate its really 45’ */

double tas1_ana_mosaic = 45; /* Measurements indicate its really 45’ */

/* Q vector for bragg scattering with monochromator and analysator */

double tas1_mono_q = 2*1.87325; /* Fake 2nd order scattering for 20meV */

double tas1_mono_r0 = 0.6;

double tas1_ana_q = 1.87325; /* 20meV */

double tas1_ana_r0 = 0.6;

double OMC1_d;

double alu_focus_x;

double mpos0, mpos1, mpos2, mpos3, mpos4, mpos5, mpos6, mpos7;

double mrot0, mrot1, mrot2, mrot3, mrot4, mrot5, mrot6, mrot7;

%}

INITIALIZE

%{

double d = 0.0125; /* 12.5 mm between slab centers. */

double phi = 0.5443; /* Rotation between adjacent slabs. */

mpos0 = -3.5*d; mrot0 = -3.5*phi;

mpos1 = -2.5*d; mrot1 = -2.5*phi;

mpos2 = -1.5*d; mrot2 = -1.5*phi;

mpos3 = -0.5*d; mrot3 = -0.5*phi;

mpos4 = 0.5*d; mrot4 = 0.5*phi;

mpos5 = 1.5*d; mrot5 = 1.5*phi;

mpos6 = 2.5*d; mrot6 = 2.5*phi;

mpos7 = 3.5*d; mrot7 = 3.5*phi;

OMC1_d = OMC1/60.0;

alu_focus_x = TT >= 0 ? 1000 : -1000;

%}

TRACE

COMPONENT a1 = Arm()

AT (0,0,0) ABSOLUTE

COMPONENT source = Source_flat(

radius = 0.060,

dist = 3.288,

xw = 0.042, yh = 0.082,

E0 = 20,/* 20 meV */

dE = 0.82) /* Sufficient for TAS1 geometry */

AT (0,0,0) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1

COMPONENT slit1 = Slit(

xmin=-0.020, xmax=0.065,

ymin = -0.075, ymax = 0.075)

AT (0, 0, 1.1215) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1

Risø–R–1175(EN) 157

COMPONENT slit2 = Slit(

xmin = -0.020, xmax = 0.020,

ymin = -0.040, ymax = 0.040)

AT (0,0,1.900) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1

COMPONENT slit3 = Slit(

xmin = -0.021, xmax = 0.021,

ymin = -0.041, ymax = 0.041)

AT (0,0,3.288) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1

COMPONENT focus_mono = Arm()

AT (0, 0, 3.56) RELATIVE a1 ROTATED (0, PHM, 0) RELATIVE a1

COMPONENT m0 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos0, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot0) RELATIVE focus_mono

COMPONENT m1 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos1, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot1) RELATIVE focus_mono

COMPONENT m2 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos2, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot2) RELATIVE focus_mono

COMPONENT m3 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos3, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot3) RELATIVE focus_mono

COMPONENT m4 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos4, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot4) RELATIVE focus_mono

COMPONENT m5 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos5, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot5) RELATIVE focus_mono

158 Risø–R–1175(EN)

COMPONENT m6 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos6, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot6) RELATIVE focus_mono

COMPONENT m7 = Monochromator(

zmin=-0.0375,zmax=0.0375,ymin=-0.006,ymax=0.006,

mosaich=tas1_mono_mosaic,mosaicv=tas1_mono_mosaic,

r0=tas1_mono_r0, Q=tas1_mono_q)

AT (0, mpos7, 0) RELATIVE focus_mono

ROTATED (0, 0, mrot7) RELATIVE focus_mono

COMPONENT a2 = Arm()

AT (0,0,0) RELATIVE focus_mono ROTATED (0, TTM, 0) RELATIVE a1

COMPONENT slitMS1 = Slit(

xmin = -0.0105, xmax = 0.0105, ymin = -0.035, ymax = 0.035)

AT (0,0,0.565) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT slitMS2 = Slit(

xmin = -0.0105, xmax = 0.0105, ymin = -0.035, ymax = 0.035)

AT (0,0,0.855) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT c1 = Soller(

xmin = -0.02, xmax = 0.02, ymin = -0.0375, ymax = 0.0375,

len = 0.250, divergence = C1)

AT (0, 0, 0.87) RELATIVE a2 ROTATED (0,OMC1_d,0) RELATIVE a2

COMPONENT slitMS3 = Circular_slit(radius = 0.025)

AT (0,0,1.130) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT slitMS4 = Circular_slit(radius = 0.025)

AT (0,0,1.180) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT slitMS5 = Circular_slit(radius = 0.0275)

AT (0,0,1.230) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT mon = Monitor(

xmin = -0.025, xmax = 0.025, ymin = -0.0375, ymax = 0.0375)

AT (0, 0, 1.280) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT emon1 = E_monitor(

xmin = -0.01, xmax = 0.01, ymin = -0.1, ymax = 0.1,

Emin = 19.25, Emax = 20.75, nchan = 35,

filename = "linup_7_1.vmon")

AT(0, 0, 1.5) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT sample = Powder1(

radius = 0.007,

h = 0.015,

q = 1.8049,

d_phi0 = 4,

pack = 1, j = 6, DW = 1,

F2 = 56.8,

Risø–R–1175(EN) 159

Vc = 85.0054, sigma_a = 0.463,

target_x = alu_focus_x, /* ToDo: GET_X(ana) */

target_y = 0, target_z = 1000)

AT (0, 0, 1.565) RELATIVE a2 ROTATED (0,0,0) RELATIVE a2

COMPONENT a3 = Arm()

AT (0,0,0) RELATIVE sample ROTATED (0, TT, 0) RELATIVE a2

COMPONENT c2 = Soller(

xmin = -0.02, xmax = 0.02, ymin = -0.0315, ymax = 0.0315,

len = 0.300, divergence = C2)

AT (0, 0, 0.370) RELATIVE a3 ROTATED (0,0,0) RELATIVE a3

COMPONENT ana = Monochromator(

zmin = -0.0375, zmax = 0.0375,

ymin = -0.024, ymax = 0.024,

mosaich = tas1_ana_mosaic, mosaicv = tas1_ana_mosaic,

r0 = tas1_ana_r0, Q = tas1_ana_q)

AT (0, 0, 0.770) RELATIVE a3 ROTATED (0, OMA, 0) RELATIVE a3

COMPONENT a4 = Arm()

AT (0, 0, 0) RELATIVE ana ROTATED (0, TTA, 0) RELATIVE a3

COMPONENT c3 = Soller(

xmin = -0.02, xmax = 0.02, ymin = -0.05, ymax = 0.05,

len = 0.270, divergence = C3)

AT (0,0,0.104) RELATIVE a4 ROTATED (0,0,0) RELATIVE a4

COMPONENT sng = Monitor(

xmin = -0.01, xmax = 0.01, ymin = -0.045, ymax = 0.045)

AT(0, 0, 0.43) RELATIVE a4 ROTATED (0,0,0) RELATIVE a4

COMPONENT emon2 = E_monitor(

xmin = -0.0125, xmax = 0.0125, ymin = -0.05, ymax = 0.05,

Emin = 19.25, Emax = 20.75, nchan = 35,

filename = "linup_7_2.vmon")

AT(0, 0, 0.430001) RELATIVE a4 ROTATED (0,0,0) RELATIVE a4

END

160 Risø–R–1175(EN)

C.3 Code for the instrument prisma2

/***

* Simple simulation of PRISMA2 with RITA-style analyser backend.

*

* Written by Kristian Nielsen and Mark Hagen August 1998.

*

* Demonstrates how the standard components from the component library

* may be easily modified for special purposes; in this case to have

* the individual analyser blades paint a "color" on the neutrons to

* differentiate them in the detector.

*

* Output is in the file "prisma2.tof". The format is ASCII; each

* line consists of the time-of-flight in microseconds followed by seven

* intensities of neutrons from each individual analyser blade.

*

* Examples:

*

* prisma2 --ncount=2e6 TT=-30 PHA=22 PHA1=-3 PHA2=-2 PHA3=-1 PHA4=0 PHA5=1 PHA6=2 PHA7=3 TTA=44

* prisma2 --ncount=2e6 TT=-30 PHA=22 PHA1=3 PHA2=2 PHA3=1 PHA4=0 PHA5=-1 PHA6=-2 PHA7=-3 TTA=44

***/

/* Modified from Monochromator.comp to paint a "color" on the neutron

if it is scattered. */

DEFINE COMPONENT Monochromator_color

DEFINITION PARAMETERS (zmin, zmax, ymin, ymax, mosaich, mosaicv, r0, Q, color)

SETTING PARAMETERS ()

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

#define DIV_CUTOFF 2 /* ~ 10^-5 cutoff. */

%}

TRACE

%{

double dphi,tmp1,tmp2,tmp3,vratio,phi,theta0,theta,v,cs,sn;

double old_x = x, old_y = y, old_z = z, old_t = t;

double dt;

if(vx != 0.0 && (dt = -x/vx) >= 0.0)

{

y += vy*dt; z += vz*dt; t += dt; x = 0.0;

if (z>zmin && z<zmax && y>ymin && y<ymax)

{

/* First: scattering in plane */

theta0 = atan2(vx,vz); /* neutron angle to slab */

v = sqrt(vx*vx+vy*vy+vz*vz);

theta = asin(Q2V*Q/(2.0*v)); /* Bragg’s law */

if(theta0 < 0)

theta = -theta;

tmp3 = (theta-theta0)/(MIN2RAD*mosaich);

if(tmp3 > DIV_CUTOFF)

{

x = old_x; y = old_y; z = old_z; t = old_t;

Risø–R–1175(EN) 161

}

else

{

p *= r0*exp(-tmp3*tmp3*4*log(2)); /* Use mosaics */

tmp1 = 2*theta;

cs = cos(tmp1);

sn = sin(tmp1);

tmp2 = cs*vx - sn*vz;

vy = vy;

vz = cs*vz + sn*vx;

vx = tmp2;

/* Second: scatering out of plane.

Approximation is that Debye-Scherrer cone is a plane */

phi = atan2(vy,vz); /* out-of plane angle */

dphi = (MIN2RAD*mosaicv)/(2*sqrt(2*log(2)))*randnorm(); /* MC choice: */

/* Vertical angle of the crystallite */

vy = vz*tan(phi+2*dphi*sin(theta));

vratio = v/sqrt(vx*vx+vy*vy+vz*vz);

vz = vz*vratio;

vy = vy*vratio; /* Renormalize v */

vx = vx*vratio;

neu_color = color;

}

}

else

{

x = old_x; y = old_y; z = old_z; t = old_t;

}

}

%}

MCDISPLAY

%{

magnify("zy");

multiline(5, 0.0, (double)ymin, (double)zmin,

0.0, (double)ymax, (double)zmin,

0.0, (double)ymax, (double)zmax,

0.0, (double)ymin, (double)zmax,

0.0, (double)ymin, (double)zmin);

%}

END

/* Modified from TOF_monitor.comp to bin neutrons according to their

"color". */

DEFINE COMPONENT TOF_monitor_color

DEFINITION PARAMETERS (xmin, xmax, ymin, ymax, nchan, dt, filename, maxcolor)

SETTING PARAMETERS ()

OUTPUT PARAMETERS (TOF_N, TOF_p, TOF_p2)

STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)

DECLARE

%{

int TOF_N[maxcolor+1][nchan];

double TOF_p[maxcolor+1][nchan];

double TOF_p2[maxcolor+1][nchan];

162 Risø–R–1175(EN)

%}

INITIALIZE

%{

int i,c;

for (i=0; i<nchan; i++)

for (c=0; c<=maxcolor; c++)

{

TOF_N[c][i] = 0;

TOF_p[c][i] = 0;

TOF_p2[c][i] = 0;

}

%}

TRACE

%{

int i;

PROP_Z0;

if (x>xmin && x<xmax && y>ymin && y<ymax)

{

i = floor(1E6*t/dt); /* Bin number */

if(i >= nchan) i = nchan;

if(i < 0)

{

printf("FATAL ERROR: negative time-of-flight.\n");

exit(1);

}

if(neu_color < 0 || neu_color > maxcolor)

{

printf("FATAL ERROR: wrong color neutron.\n");

exit(1);

}

TOF_N[neu_color][i]++;

TOF_p[neu_color][i] += p;

TOF_p2[neu_color][i] += p*p;

}

%}

FINALLY

%{

DETECTOR_OUT_2D(

"Time-of-flight monitor",

"Neutron \"color\"",

"Time-of-flight [us]",

0, maxcolor+1, 0, nchan*10,

maxcolor+1, nchan,

&TOF_N[0][0],&TOF_p[0][0],&TOF_p2[0][0],

filename);

%}

MCDISPLAY

%{

magnify("xy");

multiline(5, (double)xmin, (double)ymin, 0.0,

(double)xmax, (double)ymin, 0.0,

(double)xmax, (double)ymax, 0.0,

(double)xmin, (double)ymax, 0.0,

Risø–R–1175(EN) 163

(double)xmin, (double)ymin, 0.0);

%}

END

DEFINE INSTRUMENT

prisma2(TT,PHA,PHA1,PHA2,PHA3,PHA4,PHA5,PHA6,PHA7,TTA)

DECLARE

%{

int neu_color; /* "Color" of current neutron */

/* 30’ mosaicity used on analysator */

double prisma_ana_mosaic = 30;

/* Q vector for bragg scattering with monochromator and analysator */

double prisma_ana_q = 1.87325;

double prisma_ana_r0 = 0.6;

double focus_x,focus_z;

double apos1, apos2, apos3, apos4, apos5, apos6, apos7;

%}

INITIALIZE

%{

focus_x = 0.52 * sin(TT*DEG2RAD);

focus_z = 0.52 * cos(TT*DEG2RAD);

/* Rita-style analyser. */

{

double l = 0.0125;

apos1 = -3*l;

apos2 = -2*l;

apos3 = -1*l;

apos4 = 0*l;

apos5 = 1*l;

apos6 = 2*l;

apos7 = 3*l;

}

%}

TRACE

COMPONENT mod = Moderator(

radius = 0.0707,

dist = 9.035,

xw = 0.021,

yh = 0.021,

E0 = 10, E1 = 15,

Ec = 9.0, t0 = 37.15, gam = 39.1)

AT (0,0,0) ABSOLUTE

/* Use a slit to get the effect of a rectangular source. */

COMPONENT modslit = Slit(xmin = -0.05, xmax = 0.05,

ymin = -0.05, ymax = 0.05)

AT(0,0,0.000001) RELATIVE mod

COMPONENT tof_test = TOF_monitor(xmin = -0.05, xmax = 0.05,

164 Risø–R–1175(EN)

ymin = -0.05, ymax = 0.05,

nchan = 500, dt = 1,

filename = "prisma2.mon")

AT (0,0,0.005) RELATIVE mod

COMPONENT mon1 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,0.01) RELATIVE mod ROTATED (0,0,0) RELATIVE mod

COMPONENT slit1 = Slit(xmin = -0.05, xmax = 0.05,

ymin = -0.05, ymax = 0.05)

AT(0,0,1.7) RELATIVE mod

COMPONENT slit2 = Slit(xmin = -0.02, xmax = 0.02,

ymin = -0.03, ymax = 0.03)

AT(0,0,7) RELATIVE slit1

COMPONENT mon2 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,9) RELATIVE mod

COMPONENT sample = V_sample(

radius_i = 0.00001, radius_o = 0.01,

h = 0.02,

focus_r = 0.03,

pack = 1,

target_x = focus_x, target_y = 0, target_z = focus_z)

AT (0, 0, 9.035) RELATIVE mod

COMPONENT a2 = Arm() AT (0,0,0) RELATIVE sample ROTATED (0,TT,0) RELATIVE sample

COMPONENT mon3 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,0.39) RELATIVE a2

COMPONENT coll2 = Soller(xmin = -0.015, xmax = 0.015,

ymin = -0.025, ymax = 0.025,

len = 0.12, divergence = 120)

AT(0,0,0.40) RELATIVE a2

COMPONENT mon4 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,0.521) RELATIVE a2

COMPONENT rita_ana = Arm()

AT(0, 0, 0.58) relative a2 ROTATED (0, PHA, 0) RELATIVE a2

COMPONENT ana1 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 0)

AT (0, 0, apos1) RELATIVE rita_ana

ROTATED (0, PHA1, 0) RELATIVE rita_ana

COMPONENT ana2 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 1)

AT (0, 0, apos2) RELATIVE rita_ana

ROTATED (0, PHA2, 0) RELATIVE rita_ana

Risø–R–1175(EN) 165

COMPONENT ana3 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 2)

AT (0, 0, apos3) RELATIVE rita_ana

ROTATED (0, PHA3, 0) RELATIVE rita_ana

COMPONENT ana4 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 3)

AT (0, 0, apos4) RELATIVE rita_ana

ROTATED (0, PHA4, 0) RELATIVE rita_ana

COMPONENT ana5 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 4)

AT (0, 0, apos5) RELATIVE rita_ana

ROTATED (0, PHA5, 0) RELATIVE rita_ana

COMPONENT ana6 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 5)

AT (0, 0, apos6) RELATIVE rita_ana

ROTATED (0, PHA6, 0) RELATIVE rita_ana

COMPONENT ana7 = Monochromator_color(

ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,

mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,

r0=prisma_ana_r0, Q=prisma_ana_q, color = 6)

AT (0, 0, apos7) RELATIVE rita_ana

ROTATED (0, PHA7, 0) RELATIVE rita_ana

COMPONENT a3 = Arm()

AT (0,0,0) relative rita_ana ROTATED (0,TTA,0) RELATIVE a2

COMPONENT mon5 = Monitor(xmin = -0.05, xmax = 0.05, ymin = -0.05, ymax = 0.05)

AT(0,0,0.06) RELATIVE a3

COMPONENT mon6 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,0.161) RELATIVE a3

COMPONENT psd = PSD_monitor(xmin = -0.05, xmax = 0.05,

ymin = -0.05, ymax = 0.05,

nx = 100, ny = 100,

filename = "prisma2.psd")

AT(0,0,0.20) RELATIVE a3

COMPONENT detector = TOF_monitor_color(xmin = -0.05, xmax = 0.05,

ymin = -0.05, ymax = 0.05,

nchan = 10000, dt = 10, maxcolor = 6,

filename = "prisma2.tof")

166 Risø–R–1175(EN)

AT (0,0,0.20) RELATIVE a3

COMPONENT mon9 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)

AT(0,0,0.01) RELATIVE detector

END

Risø–R–1175(EN) 167

Appendix D

Test results

In this Appendix, we present a few illustrative results from the three instruments presented
in section 6. A more thorough presentation may be found on the McStas home page [1].

D.1 Scattering from the V-sample test instrument

In figure D.1, we present the radial distribution of the scatting from an evenly illuminated
V-sample, as seen by a spherical PSD. It is interesting to note that the variation in the
scattering intensity is as large as 10%. This is an effect of attenuation of the beam in the
cylindrical sample.

D.2 Simulated and measured resolution of TAS1

In order to test the McStas package on a qualitative level, we have performed a very
detailed simulation of the conventional triple axis spectrometer TAS1, Risø. The mea-
surement series constitutes a complete alignment of the spectrometer, using the direct
beam and scattering from V and Al2O3 samples at an incoming energy of 20.0 meV, using
the second order scattering from the monochromator. In the instrument definitions, we
have used all available information about the spectrometer. However, the mosaicities of
the monochromator and analyser are set to 45’ in stead of the quoted 30’, since we from
our analysis believe this to be much closer to the truth.
In these simulations, we have tried to reproduce every alignment scan with respect to

position and width of the peaks, whereas we have not tried to compare absolute intensities.
Below, we show a few comparisons of the simulations and the measurements.
Figure D.2 shows a scan of 2θs on the collimated direct beam in two-axis mode. A

1 mm slit is placed on the sample position. Both the measured width and non-Gaussian
peak shape are well reproduced by the McStas simulations.
In contrast, a simulated 2θa scan in triple-axis mode on a V-sample showed a surprising

offset from zero, see Figure D.3. However, a simulation with a PSD on the sample position
showed that the beam center was 1.5 mm off from the center of the sample, and this was
important since the beam was no wider than the sample itself. A subsequent centering
of the beam resulted in a nice agreement between simulation and measurements. For a

168 Risø–R–1175(EN)

0

50

100

0

20

40

60
1.4

1.45

1.5

1.55

1.6

Figure D.1: Scattering from a V-sample, measured by a spherical PSD. The sphere has
been transformed onto a plane and the intensity is plotted as the third dimension. A
colour version of this picture is found on the title page of this manual.

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12
x 10

4

2T [deg]

in
te

ns
ity

2T scan on 1 mm slit

Figure D.2: Scans of 2θs in the direct beam with 1 mm slit on the sample position. ”×”:
measurements, ”o”: simulations Collimations: open-30’-open-open.

Risø–R–1175(EN) 169

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−6

2TA [deg]

in
te

ns
ity

Figure D.3: First simulated 2θa scan on a vanadium sample. Collimations: open-30’-28’-
open.

comparison on a slightly different instrument (analyser-detector collimator inserted), see
Figure D.4.
The result of a 2θs scan on an Al2O3 powder sample in two-axis mode is shown in

Figure D.5. Both for the scan in focusing mode (+ − +) and for the one in defocusing
mode (+ + +) (not shown), the agreement between simulation and experiment is excellent.
As a final result, we present a scan of the energy transfer Ea = ~ω on a V-sample. The

data are shown in Figure D.6.

D.3 Simple spectra from the PRISMA instrument

A plot from the detector in the PRISMA simulation is shown in Figure D.7. These results
were obtained with each analyser blade rotated one degree relative to the previous one.
The separation of the spectra of the different analyser blades is caused by different energy
of scattered neutrons and different flight path length from source to detector. We have
not performed any quantitative analysis of the data at this time.

170 Risø–R–1175(EN)

−3 −2 −1 0 1 2 3
0

100

200

300

400

500

600

700

2TA [deg]

in
te

ns
ity

Figure D.4: Corrected 2θa scan on a V-sample. Collimations: open-30’-28’-67’. ”×”:
measurements, ”o”: simulations.

32 32.5 33 33.5 34 34.5 35 35.5
100

200

300

400

500

600

700

800

2T [deg]

in
te

ns
ity

Figure D.5: 2θs scans on Al2O3 in two-axis, focusing mode. Collimations: open-30’-28’-67’.
”×”: measurements, ”o”: simulations. A constant background is added to the simulated
data.

Risø–R–1175(EN) 171

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

EA [meV]

in
te

ns
ity

Figure D.6: Scans of the analyser energy on a V-sample. Collimations: open-30’-28’-67’.
”×”: measurements, ”o”: simulations.

5500 6000 6500 7000 7500
0

1

2

3

4

5

6

7
x 10

−9

time [usec]

In
te

ns
ity

PRISMA with RITA backend

Figure D.7: Test result from PRISMA instrument using “coloured neutrons”. Each graph
shows the neutrons scattered from one analyser blade.

172 Risø–R–1175(EN)

Appendix E

The McStas terminology

This is a short explanation of phrases and terms which have a specific meaning within
McStas. We have tried to keep the list as short as possible with the risk that the reader
may occasionally miss an explanation. In this case, you are more than welcome to contact
the authors.

• Arm A generic McStas component which defines a frame of reference for other
components.

• Component One unit (e.g. optical element) in a neutron spectrometer.

• Definition parameter An input parameter for a component. For example the
radius of a sample component or the divergence of a collimator.

• Input parameter For a component, either a definition parameter or a setting
parameter. These parameters are supplied by the user to define the characteristics of
the particular instance of the component definition. For an instrument, a parameter
that can be changed at simulation run-time.

• Instrument An assembly of McStas components defining a neutron spectrometer.

• McStas Monte Carlo Simulation of Triple Axis Spectrometers (the name of this
project).

• Output parameter An output parameter for a component. For example the counts
in a monitor. An output parameter may be accessed from the instrument in which
the component is used using MC_GETPAR.

• Run-time C code, contained in the files mcstas-r.c and mcstas-r.h included in
the McStas distribution, that declare functions and variables used by the generated
simulations.

• Setting parameter Similar to a definition parameter, but with the restriction that
the value of the parameter must be a number.

Risø–R–1175(EN) 173

Bibliography

[1] McStas WWW home page:
http://neutron.risoe.dk/mcstas/.

[2] K. Lefmann and K. Nielsen, McStas, a general software package for neutron ray-
tracing simulations, Newtron News 10/3 (1999), 20–24

[3] T.E. Mason et al., RITA: The reinvented triple axis spectrometer, Can. J. Phys. 73
(1995) 697–702

[4] K.N. Clausen et al., The Rita spectrometer at Risø — design considerations and recent
results , Physica B 241–243 (1998) 50–55.

[5] ESS WWW home page:
http://www.kfa-juelich.de/ess/ess.html

[6] Debian GNU/Linux WWW home page:
http://www.debian.org/.

[7] NeXus WWW home page:
http://www.neutron.anl.gov/nexus/.

[8] MFit WWW home page:
http://www.risoe.dk/fys/Manuals/Matlab/Mfit/index.html.

[9] G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Pub-
lications (1996)

[10] Crystallographica v1.50b, Oxford Cryosystems, 1998

[11] G. E. Bacon, Neutron Diffraction, Oxford University Press (1975)

[12] A. Abrahamsen, N. B. Christensen, and E. Lauridsen, McStas simulations of the
TAS1 spectrometer, Students Report, Niels Bohr Institute, University of Copenhagen
(1998)

[13] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Nu-
merical Recipes in C, Cambridge University Press (1996)

174 Risø–R–1175(EN)

Risø–R–1175(EN) 175

Bibliographic Data Sheet Risø–R–1175(EN)
Title and author(s)

User and Programmers Guide to the Neutron Ray-Tracing Package McStas, Version 1.2

Kristian Nielsen, Kim Lefmann

ISBN

87–550–2683–4; 87–550–2684–2 (Internet)

ISSN

0106–2840

Dept. or group

Condensed Matter Physics and Chemistry Department
Date

February 2000

Groups own reg. number(s)

—

Project/contract No.

—

Pages

176

Tables

1

Illustrations

19

References

13

Abstract (Max. 2000 char.)

The software package McStas is a tool for writing Monte Carlo ray-tracing simulations of
neutron scattering instruments with very high complexity and precision. The simulations
can compute all aspects of the performance of instruments and can thus be used to opti-
mize the use of existing equipment as well as the design of new instrumentation. McStas
is based on a unique design where an automatic compilation process translates high-level
textual instrument descriptions into efficient ANSI C code. This design makes it simple
to set up typical simulations and also give essentially unlimited freedom to handle more
unusual needs.
This report constitutes the reference manual for McStas, and contains full documentation
for all ascpects of the program. It covers the various ways to compile and run simulations;
a description of the metalanguage used to define simulations; a full description of all
algorithms used to calculate the effects of the various optical components in instruments;
and some example simulations performed with the program.

Descriptors

Neutron Instrumentation; Monte Carlo Simulation; Software

Available on request from:
Information Service Department, Risø National Laboratory
(Afdelingen for Informationsservice, Forskningscenter Risø)
P.O. Box 49, DK–4000 Roskilde, Denmark
Phone +45 4677 4004, Telefax +45 4677 4013

