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Effects of distributing wind ener gy gener ation over Europe

Gregor Giebel
Wind Energy and Atmospheric Physics Department,
Risg National Laboratory, DK-4000 Roskilde,
Phone: +45 4677 5095, Fax: +45 4677 5970,
Email: Gregor.Giebel @Risoe.dk

ABSTRACT:

Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM)
from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In
some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence
of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown
that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more
appealing to utilities, since the stability requirements of the network are easier to fulfil.

The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits,
the NGM is used to evaluate the match of electricity demand and generation as well as the possible savings of fossil fuel in
an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-
national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the

presence of different penetrations of wind energy.
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1 Introduction

Wind energy is currently the energy source with the
highest growth rate in Europe. But even considering the
millions of euros spent on wind turbines in the last few
years, and the tens of thousands of jobs created, wind
energy only accounts for a very low percentage of the total
electricity demand in the EU. The latest white paper of the
EU on renewable energy proposed an indicative objective
of 12% for the contribution by renewable sources of
energy to the European Union's gross inland energy
consumption by 2010 [1]. The growth of wind energy will
ultimately be limited by the intermittence of the resource -
the wind is just not blowing at all places al the time.
Good sites for wind turbines have about 3000+ hours at
full rated capacity or 'Full Load Hours' (FLH), and only a
few exceptional sites have 4000+ hours. Even though the
offshore resource is less variable, the load factor will most
likely remain below 40%. But if we consider more than
just one turbine, the effects of distributing them over a
large area also lessen the variability. Hence it is
informative to look in detail on the resource when spread
out al over Europe. This work uses wind time series from
al over Europe, and anayses them in terms of wind
energy generation.

2 The National Grid Model

The assessment of the economic value of forecasting is
routinely done at the Rutherford Appleton Laboratory
using the National Grid Model (NGM) [2,3], which
model s the scheduling and dispatch of power plant to meet
the demand on a large scale electricity grid. Inputs to the
model are the actual power plants available for dispatch,
and the prices for fossil fuel. Additionally, three time
series are needed in the resolution of the time step, which
typically is one hour: demand on the whole grid, wind
power measurements and wind power forecasts. This tool

has been used and improved continually over more than
ten years.

The model runs in hourly time steps. At every step, the
number of plants needed in the near future to cover the
predicted demand is scheduled ahead. The predicted wind
power is treated as negative load. To account for the
uncertainty of the demand, the actua demand is
multiplied by a Gaussian distributed random number with
adistribution mean of 1 and a standard deviation of 0.015.
This number is consistent with the published deviations
for load prediction algorithms [4]. An assumption is made
for each type of plant regarding its start-up time: a
maximum of eight hours is assigned to coal- and oil-fired
plant, while gas turbines are considered to start up
immediately within the time frame of the model. Other
plant types have start-up times in between. The eight-hour
maximum also limits the time frame for looking ahead -
there is no need to look beyond the maximum start-up
time. Any shortfalls in load not covered by the scheduled
power plant are met by either fast response plant (pumped
hydro or gas turbines) or through the spinning reserve.
Thisisthermal plant, which is not being run at full output,
but at, say, 95%. The remaining 5% can be activated very
fast if need be. Thermal power plants cannot be operated
at less than 50% load factor, hence this is set as the
minimum load factor. The spinning reserveis planned as a
fraction of the predicted load (SR1) as well as a fraction of
currently available wind power (SR2). Both these
fractions remain fixed for amodel run (typically one year),
but are optimised to yield a minimum fuel cost under the
condition that no loss-of-load-events (LOLE) occur. The
condition that no LOLE may occur can lead to a rather
high SR2 and hence a high overall spinning reserve
reguirement. Since power plants can only be dropped from
service from one time step to the next in the model, not all
of the wind power production can be accepted into the grid
when al running steam plants are already at the minimum
load. This means that high values of SR2 at high



penetrations of wind energy can also lead to significant
wind power production being discarded.

3 Input preparation

In order to simulate the European grid, the details of every
power station in Europe, the fuel prices, a full demand
time series of the selected countries and the corresponding
wind speed/power time series would be needed.
Unfortunately, not all of this was available. The installed
capacity in the selected countries (Austria, Belgium,
Denmark, France, Germany, Greece, Ireland, Italy, The
Netherlands, Portugal, Spain, Switzerland, and the United
Kingdom) was available [5], broken down by plant type.
Additionally, the full individual power unit details for
England/Wales, Ireland and Portugal were known, as were
the details of all European nuclear power stations [6]. In
order to estimate the distribution of the individual power
units for the remaining countries, the known power units
were divided into 8 categories. For each category, the
number of units was scaled up to the appropriate total
capacity for the European countries selected. The overall
capacity for all categoriesis 461.42 GW [5].

The wind data came from 60 meteorological stationsin the
selected countries and is detailed elsewhere [7,8]. The
simulation period was December 1990 to December 1991.
In order to calculate the total European wind power
generation from these sites, a European average wind
turbine distribution was used. The distribution can be
found in Table 1. Since the time series is only three-
hourly, the wind was linearly interpolated at every station
before applying the power curve. The wind was scaled to a
height of 50m above ground level. The total power curve
incorporating al the turbines in Table 1 corresponds to a
6.1 MW unit and is a superposition of the power curves of:

1 VestasV66 1650 kW
1 Avedgre test turbine 1000 kW
2 Micon 750 kKW
1 Wind World W-3700 500 kW
1 Windane 34 400 kW
2  VestasV27 225 kW
2 Danwin 27 225 kW
1 Nordtank 150 kW

Table 1: Overview of wind turbines used to
model the European wind turbine distribution.

The sum is 6100 kW, the average is 554.5 kW. This is
adequate since the average among newly installed turbines
in Germany up until October1998 was 764 kW, while the
installed base rated capacity was 444 kW/unit [9].
Extrapolating these trends, this turbine distribution should
be representative for late 1999. Using the superposed
power curve for each site, the power output time series
was aggregated over Europe. A data point was only used if
at least 25 sites had a non-missing wind speed value -
otherwise, linear interpolation of the resulting time series
was used. Thiswas necessary in 76 cases. This time series
is referred to as 'EU-Averaged. In order to measure the
effects of time series with higher load factors, but also
higher variability, two additional series were created: the
one called 'Selection’ is averaged over the 25 farms with

more than 2000 FLH, while the series called 'Malin Head'
is the single site time series with the most FLH, which
came from Malin Head in the Republic of Ireland, with
3865 FLH.

The demand time series were available from France, the
UK and Portugal. These were scaled in order to fit the
overall European load, which was 1603 TWh. Every time
series had a weight of 1/3, as determined by the
cumulative load in that period.

4 Results

4.1 Wind Time Series Properties

Here are some properties of the European average wind
profile: Maximum power generated was 4085.6 kW on
December 26 1990 at 1100 hours, minimum was 93.8 kW
on October 22, 0100 hours. (In fact, maximum generation
was 4414.7 KW at 1200 hours on December 19, 1991, but
since the NGM only takes one year as an input, the last
December was omitted.) It is also worth noting that
neither the full rated capacity nor zero rated output occur
during the year in question. The mean generation is
1346.9 kW, while the standard deviation is 772.7 kW.
This corresponds to 1934 FLH, which reflects the fact that
the data come from all over Europe, including a large
number of inland sites. The smoothness of the wind power
generation is important for large-scale integration.
Therefore, the distance dependency of the wind time
series was analysed in terms of cross- and autocorrel ations
of the combined time series.
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Figure 1: Number of full load hours in the
single station time series. Here many stations are
inland and in practice would only see devel opment
where local topographical effects enhance the
resource.

The first test was to investigate the cross correlation
between two stations. The correlation function of two time
series py and ¢ is as follows [10]:
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Hprq is the mean of the corresponding time series, Guyq is

their standard deviation. k refers to the time lag between

the two series.

A value of 1 means that the time series are completely

correlated, while a value of 0 means that the data is

comopl etely uncorrel ated.
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Figure 2: Correlation coefficient for every pair
of stations at lag=0 hours.

Figure 2 shows the correlations for all pairs of farms with
their respective distances. While short distances give the
highest correlations, a short distance does not necessarily
mean that the time series are correlated. Local effects can
actually lead to a significant decoupling of the time
serieg[11]. For longer distances the result is as expected:
the correlation is very small. Interestingly, in some cases
the time series are even somewhat anticorrelated, meaning
that a wind speed increase at one station often coincides
with awind speed decrease at the other station. (The two
pairs with the most negative correlation are Roches
Point/IE-Lisboa/PT  with -0.21 and ZaragozalES-
Naxos/GR with -0.18.) It is also easy to see that the
average correlation decreases with distance. Hence
spreading out the wind power generators should give a
less variable resource.

4.2 Averaged Time Series Properties

But thisis for two farms only. How does this behave if one
combines the time series of all farms within a certain
radius and calculates the standard deviation of this
resultant time series? The answer is to be found in figure
3.

At every station, an averaged time series was calculated,
which included the time series of every other station
within a circle with radius R. The radius R was then
varied in steps of 100 km around the station. Care was
taken to only include unique combinations of stations for
the final plot. For every unique combination, if there was
the possibility to reach the same combination from various
stations, the smallest radius R was chosen as the radius for
inclusion in the plot. Note that at the outside borders of
the domain, less farms are included in the same circle,
since the circles were centered around each station.
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Figure 3: Standard deviation of the time series
resulting from combining all available stations
within a circle of radius R around any one
station, and number of included farms for a
given radius.

This aso shows that the time series resulting from
combining many farms in a large area is considerably
smoother than a single time series. Another explanation
for this behaviour could be that the higher the radius
chosen, the more time series were averaged. Naturally, for
a larger radius more of the met stations are within the
circle, hence the averaging is done including more
stations, as can be seen in the inset in Figure 3. To cover
for this effect, in Figure 4 only averaged time series from a
combination of between 15 and 20 stations was taken into
account. Here, no real trends are noticeable, hence the
reduction of standard deviation in Figure 3 must be an
effect of the distance.
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Figure 4: Standard Deviation as in Figure 33,
but this time only for data sets containing between
15 and 20 stations. Different symbols refer to
different numbers of stations included for the
averaging.

5 Financial assessment

Below is a table with the main parameters for the three
wind power data sets used:

Units: [kW] Mean SDev
Average: 1347 773
Selection: 1850 1055

Malin Head: 2646 2202




Note here that Malin Head has by far the highest standard
deviation, but also the highest mean.
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Figure 5. Fossil fuel cost for different wind
energy production. The x-axis denotes wind
energy produced by the simulated turbines. For
comparison note that the European overall demand
was 1603 TWh that year.

In figure 5 we see that for small penetrations the possible
savings correlate with the amount of wind energy which is
fed into the network. The shape of the graphs in figure 5
are determined by the ability of the grid to accomodate all
of the produced wind energy without compromising the
stability of the supply. This can be seen from figure 6,
where the fraction of the produced wind energy that is
accepted into the grid is shown as a function of the
produced wind energy. Actualy, at high penetrations the
fuel savings correlate with low variability of the time
series and high forecast accuracy - the highest savings for
very high penetrations are attainable with a medium of
perfect forecasting and high wind energy generation. All
the data points of the different graphs are equidistant in
installed wind capacity. The saturation effects for high
variability of the input, coupled with bad forecasting, are
clearly visible, even though in no case it reaches full
saturation. Note that the spread between the forecasting
methods is bigger for more variable wind time series.
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Figure 6: Accepted wind energy production.
This figure shows, how much wind energy is
accepted into the grid, for how much energy
generated.

Figure 6 tells us that good forecasting combined with a
low variance wind production leads to a better integrable
resource, while high variabitity and bad forecasting leads

to much wasted wind energy, since the grid cannot accept
all the wind energy due to security of supply reasons.

6 Conclusions

Spreading out the wind energy production over all of
Europe leads to a significantly less variable resource. This
is both an effect of the inclusion of many turbines in the
generation and of the geographical spread of the
generation. This is also beneficial in a financial analysis,
where it could be shown that a low variability in the
generated wind production coupled with good forecasting
can lead to higher fossil fuel savings for the grid than
without, especially for high penetrations of wind energy.
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