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Using nanoscale atomistic simulations it has been possible to address the problem of cross slip of a disso-
ciated screw dislocation in an fcc metal~Cu! by a method not suffering from the limitations imposed by
elasticity theory. The focus has been on different dislocation configurations relevant for cross slip via the
Friedel-Escaig~FE! cross-slip mechanism. The stress free cross-slip activation energy and activation length for
this mechanism are determined. We show that the two constrictions necessary for cross slip in the FE cross-slip
mechanism are not equivalent and that a dislocation configuration with just one of these constrictions is
energetically favored over two parallel Shockley partials. The effect of having the dislocation perpendicular to
a free surface is investigated. The results are in qualitative agreement with transmission electron microscopy
experiments and predictions from linear elasticity theory showing recombination or repulsion of the partials
near the free surface. Such recombination at the free surface might be important in the context of cross slip
because it allows the creation of the above-mentioned energetically favorable constriction alone. In addition we
observe a strong preference for the partials to be in a glide plane parallel to the surface step. We have
performed simulations of two screw dislocations of opposite signs, one simulation showing surface nucleated
cross slip leading to subsequent annihilation of the two dislocations. It was possible to monitor the annihilation
process, thereby determining the detailed dislocation reactions during annihilation.@S0163-1829~97!06630-7#

I. INTRODUCTION

The prominent role of dislocations and other lattice de-
fects in controlling the mechanical properties of ductile ma-
terials is well established. Dislocation theory1 provides an
understanding of the basic properties of single dislocations
and, to some extent, the interaction between dislocations.
However, the interactions between many dislocations can re-
sult in entangled or more ordered structures, which compli-
cates the use of dislocation theory. In the other extreme,
elasticity theory, which is the basis for dislocation theory,
breaks down close to the dislocation, meaning that the inter-
actions between two dislocations at very close range cannot
be accurately described either.

One of the most famous examples of this deficiency of
dislocation theory is cross slip of a screw dislocation. Cross
slip is an important mechanism in plastic deformation of
ductile materials. The onset of stage III in the stress-strain
curves of single crystals,2 the minimum stable dipole height
of screw dislocations of opposite signs,3 and the saturation of
the stress in cyclic constant strain amplitude experiments4

are examples where cross slip is believed to play a crucial
role. Cross slip is a difficult problem to tackle, because it
contains both long-ranged elastic interactions between dislo-
cationsand atomistic effects due to recombination of dislo-
cations. Until now cross slip has only been theoretically in-
vestigated using methods derived from elasticity theory, thus
neglecting atomistic effects.

Our approach to the problem of cross slip is nanoscale
atomistic simulations involving up to 156 060 atoms, thereby
including both purely atomistic effects and to some extent
long-range elastic interactions. Due to the length scale of the
problem, cross slip has, to our knowledge, not been ad-
dressed by atomistic simulations before. Based on results
from earlier nonatomistic simulations,5,6 the details of the
cross-slip event are expected to be at the nanometer scale,
which implies simulations involving;100 000 atoms. The
use of atomistic simulations will of course dispose of the
shortcomings of elasticity theory. Other problems such as
finite-size effects and time-scale problems must be expected
and dealt with. Furthermore, the choice of the interatomic
potential is very important. Simple pair potentials all obey
the Cauchy relationC125C44 ~Ref. 7! and thus cannot be
expected to give a reliable description of elastic properties of
specific materials. The use of a more sophisticated potential
is therefore necessary. Such a potential can be derived from
the effective-medium theory,8 which provides a computa-
tionally efficient interatomic potential that also includes
many-atom effects.

In this paper we will be concerned with cross slip of a
dissociated screw dislocation from one close-packed plane to
another in an fcc metal~Cu!. We investigate bulk properties
as well as the effects of having the dislocation perpendicular
to a free surface. More specifically we shall focus on differ-
ent possible dislocation configurations in connection with
cross slip, and we determine the stress free activation energy
and activation length. We show that the two constrictions
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necessary to produce cross slip in the Friedel-Escaig
model9,10 are not equivalent, and that a dislocation configu-
ration with just one of these constrictions is energetically
favored over that of two parallel Shockley partials. We also
show that a free surface can act as a nucleation center for
cross slip, thereby facilitating the annihilation of two screw
dislocations of opposite signs. To check this we have per-
formed simulations of two screw dislocations of opposite
signs and observed their mutual annihilation. The results
might serve as an atomic scale check of the approximations
made in the analytical theory10 and simulations of single dis-
locations made within the framework of elasticity theory,5,6

but also as input to the more mesoscopic nonatomistic
simulations11,12containing many~thousands of! dislocations,
and to the modeling of experimentally characterized disloca-
tion microstructures evolving during plastic deformation and
fatigue.13,14

The paper is organized as follows. In Sec. II we briefly
present and discuss earlier work on cross slip. The methods
used in this work are introduced in Sec. III. The results are
presented and discussed in Sec. IV and finally we conclude
in Sec. V.

II. EARLIER WORK ON CROSS SLIP

Several possible cross-slip mechanisms have been
proposed,15–17 but recently the model by Friedel9 and
Escaig10 ~FE! has attracted most attention. In this model the
dissociated screw dislocation must be recombined~con-
stricted! over a short length, comparable to a few times the
dissociation width, in the primary glide plane before the sub-
sequent redissociation in the cross-slip plane; see Fig. 1. The
FE model is derived on the basis of the line tension approxi-
mation following the method for calculating the constriction
energy and shape by Stroh.18 The configuration of the par-
tials far from the constriction, as determined in the line ten-
sion approximation, converges towards the equilibrium par-

allel separation as an exponentially decaying function.
Hence, there exist a characteristic length beyond which the
two constrictionsA and B ~see Fig. 1! can be considered
independent and a corresponding activation energy. Escaig10

has shown that the redissociation of the screw dislocation
and the motion~bow-out! in the cross-slip plane can be con-
sidered independent. It is the external stress components act-
ing on the opposite edge characters of the Shockley partials
that control the cross slip by modifying the relative splitting
widths in the two glide planes. The driving force for this
cross-slip mechanism is thus the widening of the stacking-
fault ribbon in the cross-slip plane, and no net stress on the
dislocation is necessary. The process is thermally activated
and the redissociation in the cross-slip plane can, in prin-
ciple, take place spontaneously without any applied stress.

Experiments have been designed and carried out on
copper19,20which, at least in a semiquantitative way, seem to
confirm the FE model. However, other experiments on Ge
and Si,21 Cu,22 and CuAl alloys23 suggest that cross slip also,
maybe preferentially, nucleates at free surfaces.

One of the experimental problems is that it is impossible
to actually monitor the single cross-slip event and gain de-
tailed information about the intrinsic characteristics of the
dislocation reactions. To obtain a more detailed knowledge
of the structure and energetics of the cross-slipping screw
dislocation, computer simulations within the framework of
elasticity theory have been performed by Duesberyet al.5

and Pu¨schl and Schoeck.6 The method of Duesberyet al. is
based on numerical integration of the stresses and energies
along the dislocation lines, using a relaxation method to find
the equilibrium configuration of the dislocation. The method
is detailed in Refs. 5 and 24. Pu¨schl and Schoeck use the
Peierls model~see, e.g., Ref. 1! to account for the atomistic
structure of the dislocation core. They approximate the dis-
location shape by piecewise straight dislocation segments,
and by varying the geometry of the polygon-shaped disloca-
tion they can find a minimum energy configuration.

Although their methods are different, these authors arrive
at rather similar results. Both Duesberyet al. and Pu¨schl and
Schoeck find that cross slip is stress aided in the sense pro-
posed by the FE model. However, the stress dependence
seems to be overestimated in the original Escaig theory com-
pared to these works. Using the values for the relevant pa-
rameters for Cu obtained in the present work~see Table I!,
the stress free cross-slip activation energy is found to be 2.5

TABLE I. Comparison between reference values of elastic con-
stants and intrinsic stacking-fault energy and values calculated with
EMT. The values for the elastic constants are in GPa. The unit for
the stacking-fault energyg is mJ/m2. The shear modulusm, calcu-
lated with EMT, is that corresponding to the^110&$111% slip sys-
tem.

Element C11 C44 B m g

Cu ~Ref. ! 176.2a 81.8a 137a 46, b 59 c 70 d

Cu ~org. EMT! 177 82.6 137 50 17
Cu ~mod. EMT! 177 88.1 132 56 59

aRef. 38.
bRef. 1, p. 462.
cRef. 1, p. 430.
dRef. 30.

FIG. 1. The Friedel-Escaig mechanism for cross slip.~a! Cre-
ation of a Stroh-type constriction in the primary plane.~b! Disso-
ciation in the cross-slip plane~shaded! creating two twisted con-
strictions A and B. ~c! Two noninteracting constrictions. The
Burgers vectors are indicated with arrows. Due to the different
characters of the Shockley partials, the two constrictions are not
equivalent. We denote the constrictionsA and B ‘‘edgelike’’ and
‘‘screwlike,’’ respectively.
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eV ~Ref. 5! and 2.1 eV~Ref. 6!. In both cases as well as in
Escaig theory the separation necessary for two constrictions
to be considered independent is of the order~50–60!b, where
b is the length of the perfect Burgers vector.

The estimated activation energies are, however, subject to
a considerable uncertainty for several reasons. The elastic
description of a dislocation breaks down close to the dislo-
cation line ~the core!. This problem is usually avoided by
introducing cutoff radii in the calculations. These cutoffs are
likely to be of crucial importance to the problem of cross slip
which, in some way, involves recombination of the two
Shockley partials. Special attention must thus be paid to the
cutoff radii. In considering the influence of the cutoff radii
and by using a refined version of the Stroh treatment of a
constriction, Saada25 is led to conclude that the cross-slip
activation energy can only be estimated to an order of mag-
nitude within elasticity theory. Duesberyet al. also consider
this problem in their work. They too find a significant depen-
dence on the cutoff radii, both quantitatively and qualita-
tively.

Another uncertainty in the estimation of the activation
energy from elasticity theory arises from the use of the rela-
tion for the splitting of a perfect screw dislocation into two
parallel Shockley partials bounding a perfect intrinsic stack-
ing fault,

d05
mb2~223n!

24pg~12n!
, ~1!

whered0 is the equilibrium splitting width,m is the shear
modulus,g is the intrinsic stacking-fault energy, andn is
Poisson’s ratio. This relation is derived on the basis of iso-
tropic elasticity theory and can of course be expected to
break down when applied in the context of an anisotropic
metal such as Cu, and it is in fact not fulfilled in our simu-
lations. Applying relation~1! with the values forg and m
obtained in this work~Table I! results in an equilibrium split-
ting width of d0.4.5b. This value should be compared to
the actual equilibrium splitting width obtained from the
simulations ofd0.6b or to the experimentally determined
value26 of d0.7b. Using the reference values forg and m
also given in Table I results ind0.4b.

The calculated activation energies are usually given as a
function of either the dimensionless variabled0 /b or the
other dimensionless variableg/mb. However, the breakdown
of the elasticity relation~1! means that for a particular sys-
tem different estimates of the activation energy can be ob-
tained depending on the set of variables used. To illustrate
this point we can consider the results by Pu¨schl and Schoeck.
They calculate the activation energy as a function ofd0 /b,
and if we use the value from our simulationsd0 /b56, the
above-mentioned 2.1 eV is obtained. If we instead take the
valueg/mb50.0042 obtained in our simulations and use re-
lation ~1!, we only get 1.4 eV. Similarly, the above-
mentioned activation energy of 2.5 eV by Duesberyet al.
transforms~in this case changing fromg/mb to d0 /b) to 3.4
eV. It is interesting to note that the analytical expression
given by Escaig theory,20 when transformed into a function
of eitherd0 /b or g/mb, results in activation energies of 1.9
eV or 1.3 eV, respectively. Hence, there is a systematic low-
ering of the activation energy when the dimensionless vari-

able is changed fromd0 /b to g/mb. Furthermore, there is
very good agreement between the results of Escaig and those
of Püschl and Schoeck, whereas the results of Duesbery
et al. are roughly a factor of 2 higher.

The appeal of an approach like Escaig’s lies in the fact
that it provides analytical expressions for interesting proper-
ties such as activation energy and length. Even though ap-
proximate, such analytical expressions can provide physical
insight that cannot be easily gained from numerical calcula-
tions. Based on the analytical theory it is possible to design
specific experiments to check the theory. This has been
done,19,20 and the experimental results are in fair agreement
with the theory.

On the other hand, more accurate numerical calculations
like the ones mentioned above may provide detailed infor-
mation about the interesting properties which cannot be ex-
pected to be accurately included in the approximate theory.
By suitable scaling it is even possible to achieve this infor-
mation for a wide variety of materials. The numerical simu-
lations can also serve as another check of the approximations
made in the analytical theory, thereby complementing this.

The qualitative agreement between the analytical theory
and the numerical simulations indicates that the essential
physics of cross slip is well described within linear elasticity
theory. Quantitatively the three approaches are also in fair
agreement, but, as we have seen, the cross-slip activation
energy is subject to rather substantial uncertainty. Even
though the nonlocal part of the interactions is well described
with elasticity theory, it must be emphasized that the overlap
of Shockley partials and eventual recombination into a per-
fect screw dislocation at the constrictions is a nonelastic phe-
nomenon, which cannot be expected to be accurately de-
scribed even with the use of the most sophisticated methods
derived from elasticity theory.

To avoid the uncertainties resulting from the application
of elasticity theory there is no alternative to atomistic simu-
lations. Such simulations may provide information about the
partitioning of energy between elastic interactions and purely
atomistic effects, and possibly reveal new phenomena which
cannot be dealt with in the elastic description. Atomistic
simulations can be seen as the last step in a succession of
increasingly accurate but less general methods.

III. METHODS

A. Effective-medium theory

The effective-medium theory8 ~EMT! is an approximate
total energy method which has been used in describing a
wide variety of phenomena at surfaces and for bulk metals
including dislocation generation at high strain rates,27 defor-
mation of nanophase metals,28 and tribology.29 In EMT the
energy of an atomi is calculated as the energy of the atom
embedded in a suitably chosen reference system with the
same electronic density as in the real system and a correction
taking account of the difference between the real and refer-
ence systems.

Ei5Ec~ni !1EAS~ i !. ~2!

Ec(ni) is the cohesive energy of an atom embedded in an
electronic densityni from its neighboring atoms.EAS is the
atomic-sphere correction which describes the change in en-
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ergy when the atom is moved from the real to the reference
system. The atomic-sphere energy is represented as the dif-
ference between a pair potential contribution in the real and
reference systems. In the present implementation of EMT the
reference system is chosen to be an fcc crystal. The param-
eters entering into the EMT potential can be found from
either first-principles calculations or from fitting to experi-
mental values of bulk elastic and cohesive properties.8 Gen-
erally EMT describes the elastic properties of metals quite
well, but for Cu the energy of an intrinsic stacking faultg is
much underestimated. In the context of dislocation reactions
this low value of the intrinsic stacking-fault energy might be
a serious drawback. The energy contributions from different
atomic layers to the total stacking-fault energy have been
calculated30 using density functional theory for a range of
transition and noble metals. An analysis31 of these calcula-
tions shows that the energetics can be understood in a simple
two-parameter model. The two parameters describe the rela-
tive contribution to the stacking-fault energy from thes and
d electrons and the results of the model are in excellent
agreement with first-principles calculations.30 The parameter
describing the contribution from thes electrons can be ap-
proximated by a pair potential. Furthermore, it is shown that
for the noble metals~Au, Ag, and Cu! this parameter is the
main contributor to the stacking-fault energy. With this
knowledge, it was decided to modify the original EMT
atomic-sphere potential by a small additional pair potential
fitted so as to reproduce a reasonable intrinsic stacking-fault
energy. The potential was chosen to be Gaussian shaped and
located around the fifth-nearest neighbor in a perfect hcp
stacking sequence. This corresponds to a distance of
A(11/3)dNN wheredNN is the nearest-neighbor distance in an
fcc crystal. As the modification is small in amplitude it was
decided to keep all the original EMT parameters unchanged.
In Table I we show values of relevant elastic constants for
Cu calculated with both the original and modified EMT po-
tentials. For comparison we also quote experimental values
and the value for the intrinsic stacking-fault energy obtained
by the above mentioned first-principles calculation. The cal-
culated m is the shear modulus corresponding to the
^110&$111% slip system. The overall quality of the EMT po-
tential is unaffected by the modification, and the calculated
values with the modified EMT potential are all within
;15% of the reference values.

B. Geometry of the system

In all simulations the overall geometry of the systems is
basically the same, and is shown in Fig. 2. Only the dimen-
sions of the systems and whether the initial screw dislocation
is perfect or dissociated in one or two of the two possible
glide planes vary. The systems contain a centered screw dis-

location withb5 1
2 @110#, and may thus be seen as a stacking

of ~110! planes. The screw dislocation is introduced in the
otherwise perfect fcc crystal by using the result for the dis-
placement of the atoms from linear elasticity theory,

ub5
bu

2p
, ~3!

whereu is the angle between a fixed direction and the vector
from the dislocation to the actual atom. Since the fcc stack-

ing sequence in the@110# direction is . . .ABAB. . . , this re-
sults in two intertwined helix-shaped@110# planes. The two
Shockley partials are introduced as screw dislocations with
Burgers vectors equal to half the Burgers vector of the per-
fect screw dislocation, and they can be in either glide plane
with variable initial separation. It is also possible to prepare
the system with partials of varying separation, e.g., like any
of the shapes shown in Fig. 1. In this latter case, the partials
are approximated with straight dislocation segments before
calculating the displacements. The splittings in the two glide
planes are as follows:

~111!plane:
1

2
@110#→

1

6
@121#1

1

6
@211#,

~111!plane:
1

2
@110#→

1

6
@211#1

1

6
@121#. ~4!

In Fig. 2 we show a system consisting of 73 960 atoms.
The system is made up by a stacking of 80~110! planes, but
might as well be regarded as a stacking of 43 (111) planes
or 43 (111) planes. The length of the dislocation~the height
of the system! is denotedl , and the width of the two$111%
planesw. The two different$111% planes are not perpendicu-
lar; rather, the angle between them is 70.53°. The$111% sur-

FIG. 2. A medium-size system consisting of 73 960 atoms. The
system contains one centered screw dislocation parallel to the@110#
direction perpendicular to the top surface. The surface step is par-
allel to the (111) plane. The width of the two$111% planes is
w59.5 nm, and the length of the dislocation~the height of the
crystal! is l 540b ~10.2 nm!. The inset shows the difference be-
tween fcc and hcp sites in the (111) plane.
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faces are always free. The steps on the two~110! surfaces are
parallel to a (111) plane, and the dislocation is located in the
middle of the system. In Sec. IV A we always apply periodic
boundary conditions along the@110# direction and the posi-
tion of the step is thus irrelevant. However, in Sec. IV B we
remove the periodic boundary conditions and the orientation
of the step becomes important. By bulk simulations~Sec.
IV A ! we mean simulations with periodic boundary condi-
tions along the@110# direction, even though the$111% sur-
faces are free. We will refer to simulations without any pe-
riodic boundary conditions as free surface simulations~Sec.
IV B !, meaning that one or two of the~110! surfaces are now
free.

The two $111% planes are not exactly equivalent with re-
spect to a given direction, e.g., the@110# direction, and this
results in two different configurations of the Shockley par-
tials in the two possible glide planes. This difference is a
result of the two kinds of hollow sites, i.e., the fcc site and
the hcp site, in a$111% plane. For the (111) plane and the
(111) plane the fcc sites are geometrically different with
respect to, e.g., the@110# direction. In Fig. 3 we show a
close-up of a (111) plane with two Shockley partials, and it

is possible to inspect the detailed stacking sequence. The
perfect fcc stacking is to the left and to the right of the
partials and the perfect Burgers vector1

2@110# points up-
wards in the figure. The atoms in fcc sites closest to the
viewer are located in hollow sites surrounded by three atoms
in the underlying plane comprising a triangle pointing to the
right in the figure, whereas for the hcp sites between the
partials the corresponding triangle points to the left. For the
(111) plane the fcc site is different and the underlying tri-
angle points to the left; see Fig. 2. When the perfect screw
dislocation dissociates, this results in two different configu-
rations of the Shockley partials. In the (111) plane the par-
tial Burgers vectors point away from each other, whereas in
the (111) plane the partial Burgers vectors point toward each
other. This can easily be understood in the following manner.
In the (111) plane the sequence of the partials is dictated by
the formation of the stacking fault in between them. The
symmetry operation that transforms the (111) plane into the
(111) plane is just a rotation around the@110# direction fol-
lowed by a 180° rotation around the plane normal. The latter
rotation reverses the dislocation orientation, which means
that the signs of the rotated Burgers vectors must be reversed
too. In Fig. 4 we show the splittings of the perfect screw
dislocation into Shockley partials in the two different glide
planes.

C. Identification of dislocations

In a study like this it is of course essential that we can
identify the dislocations. For this purpose we use a disloca-

FIG. 3. Zoom-in on a (111) plane with the two Shockley par-
tials colored black and grey. The system has been sliced through its
middle, and the radius of the atoms has been reduced to enable
inspection of the stacking sequence. Perfect fcc stacking is seen to
the left and to the right of the partials. The stacking changes gradu-
ally from fcc to bridge~at the partials! to hcp between the partials.
The inset shows the difference between fcc and hcp sites in the
(111) plane.

FIG. 4. Configuration of the Shockley partials in the two pos-

sible glide planes:~a! (111) plane,b5
1
2 @110#. ~b! (111) plane,

b5
1
2 @110#. ~c! (111) plane, b5

1
2@110#. ~d! (111) plane,

b5
1
2@110#.
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tion finding program developed by Schio”tz.32 The basic idea
is to treat the dislocation as a topological defect as in dislo-
cation theory. For each atom small ‘‘Burgers circuits’’ are
made in the vicinity of the atom, thereby identifying the
atoms close to the dislocation line. These atoms can then be
colored by a visualization tool. Atoms near the surface of the
system are also given a ‘‘Burgers-vector’’ by the program,
which causes some of these atoms to be colored together
with the actual dislocation atoms. For details about the
method we refer to Ref. 32. The program has been used in
simulations involving different defects, e.g., migrating grain
boundaries28 and high velocity dislocations.27

D. Simulation methods

The simulations are either molecular-dynamics~MD!
simulations at a finite temperature or energy-minimization
simulations at zero temperature. The simulations in Sec.
IV B 3 were performed using the Langevin algorithm, where
a small fluctuating force and a friction term stabilize the
temperature at 580 K. All other finite-temperature simula-
tions were performed at room temperature~RT! using the
Verlet algorithm after the temperature had been stabilized by
an initial application of Andersen thermalization. Finally we
also use direct minimization of the energy by a molecular-
dynamics~MD! minimization algorithm~MDmin!. The MD-

min algorithm performs a Verlet MD time step and zeros the
momentum whenever the dot product between the momen-
tum and the force is,0, thereby bringing the system to an
energy minimum. The length of an MD time step is
5.4310215 s. For details about the MD algorithms and the
employed MD simulation tool and visualization tool, we re-
fer to Ref. 33.

IV. RESULTS AND DISCUSSION

A. Bulk simulations

1. Splitting width

As a starting point the equilibrium splitting widthd0 of
the dissociated screw dislocation was determined. This will
serve as yet another check of the reliability of the interatomic
potential. d0 was found by varying the widthw and the
length l of the computational cell, using both direct mini-
mization of the energy and RT simulations. Periodic bound-
ary conditions were applied in the@110# direction~along the
dislocation line! and a perfect screw dislocation as well as
two Shockley partials of variable initial splitting width in
both $111% planes were used as initial configurations. In all
casesd05761 k, wherek is the length of a1

4^112& vector.
At room temperature this corresponds tod051.560.2 nm, in
very good agreement with the experimental result26 of
d051.860.6 nm. Using the elastic constants from Table I
and the isotropic elasticity relation~1! to determine the equi-
librium splitting width results ind051.160.1 nm.

A prominent feature of the splitting of the perfect screw
dislocation is the in-plane smearing of the Shockley partials
which strongly influences the stacking between them. This
smearing is also observed in computer simulations34–36 of
edge dislocations in Cu. In Fig. 3 the radius of the atoms has
been reduced to allow inspection of the stacking sequence,
and it is easily seen how the partials invade the ribbon be-

tween them. The stacking changes from fcc sites to the left
and to the right of the partials to bridge sites at the partials
and a few columns of hcp sites between the partials. In prin-
ciple it could be possible to fit the displacements to a Peierls
model of the dislocation core, and obtain a value for the
dislocation ‘‘width.’’ The width of a single Shockley partial
can also be roughly estimated from Fig. 3 to be;4 k.0.9
nm. The effect of the in-plane smearing is to prevent the
faulted ribbon between the partials from being a perfect in-
trinsic stacking fault, but also to increase the total width of
the fault compared to the separation of the partials. However,
the in-plane smearing is only;60% of the total splitting
width, indicating that the partials are well separated. If an-
isotropy can be neglected, the application of relation~1!
should be valid. The equivalent relation1 for the splitting of a
perfect edge dislocation into two Shockley partials predicts
that separation to be;2.5 nm, which should be compared to
the experimental result26 of 3.860.6 nm. Using anisotropic
elasticity theory37 with a stacking-fault energy of 70 mJ/m2

results in splitting widths for a screw and an edge dislocation
of 1.3 nm and 4.1 nm, respectively, in better agreement with
experiment and our result for the screw dislocation. Hence,
the incapability of relation~1! of reproducing the experimen-
tally found splitting widths must be attributed to the fact that
this relation is derived from isotropic elasticity theory.

2. Cross-slip activation energy

The models based on elasticity theory estimate the cross-
slip activation energy to approximately 2 eV. This energy is
much too high to produce a rate of cross slip which can be
simulated with ordinary MD simulations, where the typical
time scale of a simulation is 10–100 ps. However, it is pos-
sible to simulate different optimized static configurations of
the dislocation, and thereby obtain information about the
structures and energies. To determine the stress-free cross-
slip activation energy in the FE model we divide the problem
in two. The reason for this lies again in the length scale of
the problem. The separation between the two constrictions in
the transition state is expected to be 55b ~14.0 nm! which
implies the use of a computational cell at least twice this
length. We therefore decided to make simulations of isolated
constrictions in computational cells of varying sizes. As can
be seen in Fig. 1, the two constrictions necessary in the FE
model are not equivalent. At constrictionB the partials as-
sume screwlike character, whereas at constrictionA the par-
tials are more like edge dislocations. We shall distinguish
between these two constrictions and refer to them as ‘‘screw-
like’’ and ‘‘edgelike,’’ respectively.

We shall define the energy of a constriction as the differ-
ence in minimized energy of the constricted dislocation and
the minimized energy of two parallel Shockley partials of the
same length,l . The procedure of determining the constric-
tion energy then consists of two steps: First, we minimize the
energy of two reference systems, each containing a pair of
parallel Shockley partials in the (111) plane and the (111)
plane, respectively. Second, we extract the four top and four
bottom~110! planes of the relaxed configurations. Taking the
top planes and bottom planes from different relaxed refer-
ence systems and making a sandwich with a system contain-
ing an initially constricted~and twisted! dislocation gives us
one constriction. Taking the other top and bottom set with
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another initially constricted system gives us the second con-
striction. It is important to keep the four top planes and the
four bottom planes static; i.e., the atoms are not allowed to
move during the simulation. By using the top and bottom
from the already relaxed systems as static atoms, we are able
to mimic a semi-infinite bulklike dislocation on either side of
the constricted part. The choice of four static planes ensures
that the dynamic atoms do not feel the vacuum above and
below the static layers. We have performed simulations with
dislocation lengths in the range~30–60!b ~7.7–15.3 nm! and
with the width perpendicular to the dislocation in the range
7.7–14.8 nm. The smallest system consisted of 36 750 atoms
and the largest system consisted of 156 060 atoms. Calculat-
ing the two constriction energies for each system size then
requires energy minimization of 4 systems, including the re-
laxation of the two reference systems.

It is obvious that the constraint of equilibrium separation
distance between the partials imposed by the static layers
makes the energy of the constrictions depend on the length
of the computational cell,l . This dependence is, however,
expected to vanish asl is increased, thereby making the
constriction energies converge. To check this we performed
simulations with a fixed width ofw511.3 nm andl varying
from 30b to 60b. The results of these simulations are shown
in Fig. 5. The convergence of the energy is clearly seen, and
we can estimate a minimum length, i.e., a minimum distance
between noninteracting constrictions, of;50b. To check the
dependence of the energies on the width of the system, we
performed simulations with a fixed lengthl 530b and
widths in the range 7.7–14.8 nm. These simulations showed
no dependence of the energies on the widths for widths
larger than 10 nm. For systems with widths less than 10 nm,
we observed a small increase in the energies. Based on these
observations we can conclude that the minimum separation
between independent constrictions is;50b, and that the
cross-slip activation energy is 2.7 eV. This result for the

activation energy agrees well with the result of Duesbery
et al.5 mentioned in Sec. II, and it is somewhat higher than
the estimates of Escaig20 and Pu¨schl and Schoeck.6 Also, the
minimum separation between noninteracting constrictions is
in perfect agreement with all three estimates based on elas-
ticity theory. For clarity we only show the sum of the con-
striction energies in Fig. 5. Taken separately the constriction
energies converge similarly to the sum, but they show a very
interesting difference: The energy of the edgelike constric-
tion is 3.8 eV, whereas the energy of the screwlike constric-
tion is negative, 21.1 eV. None of the mentioned works
based on elasticity theory treat the constrictions separately,
making a detailed comparison impossible.

The most striking result is the negative energy of the
screwlike constriction. This indicates that the configuration
with the dislocation in the constricted and twisted screwlike
state is energetically more favorable than just two parallel
Shockley partials in one glide plane. Intuitively it is obvious
that the screwlike constriction must be energetically pre-
ferred over the edgelike constriction. In dislocation theory it
is well established that the self-energy of a screw dislocation
is lower than that of an edge dislocation. It is also known1

that the interaction energy between two perfect screw dislo-
cations inclined at an angle of 45° is zero. The angles be-
tween the partials involved here are not exactly 45°, but they
are not very far from that. Finally the constriction reduces
the area of the stacking fault, thereby lowering the energy for
both constrictions.

The atomistic approach enables an even more detailed
investigation of the energetics than that described above. It is
possible to plot the energy of the systems layer by layer,
thereby gaining insight into the ‘‘energy distribution’’ along
the dislocation line. The decomposition of the total energy
into contributions from individual atoms is of course, in prin-
ciple, not unique. However, within the EMT there is a natu-
ral way of doing this.8 The energy of anAB ~110! plane pair
is defined as the difference in energy between anAB pair in
the relaxed reference systems containing parallel partials and
the actualAB pair in the constriction system. TheAB pairs
in the reference systems all have the same energy, whereas
the energy of theAB pairs in the constricted systems are
expected to vary along the dislocation line. In Fig. 6 we
show the results of such a projection of the energy onto the
individual AB pairs for the systems consisting of 156 060
atoms havingw511.3 nm andl 560b ~15.3 nm!. We only
show the energy of the dynamic atoms. In this type of plot
the qualitative difference between the constrictions is very
apparent. Returning to the intuitive considerations about con-
striction energies given above, we can try to explain the be-
havior. For the screwlike constriction there is a drop in en-
ergy towards the center of the system. This might be
explained by the lowering of the self-energy of the partials as
they assume a more screwlike orientation, the reduction in
interaction energy also due to acquired screw orientation,
and, finally, the reduction in stacking-fault area. For the
edgelike constriction only the reduction in stacking-fault area
would tend to reduce the energy. The acquirement of a more
edgelike orientation would, according to dislocation theory,
cause the energy to increase. Common to the two constric-
tions is, however, a peak in energy located around the center
of the system. A probable explanation is that atomistic

FIG. 5. Total energy in eV of the two constrictions as a function
of dislocation lengthl . The width of the systems is kept fixed,
w511.3 nm. The energy converges forl ;50b.
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effects begin to play a role. Such effects could be caused by
the increasing overlap of the cores of the partials and the
eventual recombination into a perfect screw dislocation at
the center of the system. The extension along the dislocation
line of this ‘‘atomistic domain’’ can be estimated from the
figure to be approximately 6b. This rough estimate fits nicely
with the pictures~see Fig. 7! of the constrictions, where the
extension of the recombined domain is also about~5–6!b by
visual inspection.

In Fig. 7 we show relaxed configurations of both constric-
tion types. The systems are the same as those in Fig. 6. The
two constriction types cannot be distinguished visually.
From pictures similar to Fig. 7 it is possible to estimate the
length over which the partials constrict simply by counting
the number of planes where the partials are nonparallel. The
counting was done using pictures with reduced atomic radii
and no coloring of the atoms, i.e., not using Fig. 7. For both
constrictions the result is~25–30!b ~6.4–7.7 nm!. Decreas-
ing the lengthl of the dislocation to 40b does not change
the visual nonparallel lengths significantly. These nonparallel
lengths are representative for all the systems we have used.
A nonparallel length of;30b indicates that this is the mini-
mum reasonable length of the dislocations in simulations of
this kind.

The negative energy of the screwlike constriction raises
some interesting questions about the behavior of a screw
dislocation: For example, will screw segments in a disloca-
tion network dissociate into Shockley partials in two glide
planes connected by a screwlike constriction? And how is
the mobility of a screw dislocation affected by the presence
of a screwlike constriction? Another interesting aspect is the
apparent lack of experimental evidence of the existence of

screwlike constrictions. In Sec. IV B we show how cross slip
can be initiated by the creation of a screwlike constriction
near a free surface. A direct consequence of such surface
nucleated cross slip is the annihilation of two screw disloca-
tions of opposite signs.

FIG. 6. Energy contribution from individual~110! plane pairs to
the total energy of the two kinds of constrictions. Upper curve:
edgelike constriction. Lower curve: screwlike constriction. The
length of the dislocations isl 560b ~15.3 nm! and the width of the
systems isw511.3 nm. The systems consist of 156 060 atoms.
Only the contributions from the dynamical atoms are shown. Notice
the negativeenergy of the screwlike constriction.

FIG. 7. Relaxed configurations of both constriction types. The
systems are the same as those in Fig. 6. The systems have been cut
in halves and rotated to display the dislocation in both glide planes.
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B. Free surface simulations

1. One dislocation: One free surface

Experiments21–23have shown that cross slip of screw dis-
locations also, maybe preferentially, takes place at free sur-
faces. The effect of a free surface on the configuration of a
dissociated dislocation is very different from usual bulk be-
havior. To investigate the role of a free surface, Hazzledine
and co-workers23 performed transmission electron micros-
copy ~TEM! experiments on low-stacking-fault-energy CuAl
alloys and used elasticity theory to address the problem theo-
retically. According to the theory the free surface acts in
such a way as to modify the interactions between the partials
in two ways. In the vicinity of a free surface the partials
attract and they tend to rotate towards screw character. For a
dissociated screw dislocation running through a slab and
emerging at free surfaces on both sides of the slab, these two
effects will compete on one side of the slab and reinforce on
the other. The experimental results showed good agreement
with the predictions of the theory with a preference of the
partials to acquire screw character. In order to investigate the
role of a free surface qualitatively, we have made simulations
where the dislocation is perpendicular to one or two free
~110! surfaces.

The simulations with just one free surface were performed
in the same fashion as the simulations containing a constric-

tion. By removing the periodic boundary conditions from the
already relaxed configuration containing two parallel partials
and making, e.g., the four top~110! layers static, it is pos-
sible to mimic a semi-infinite rod with one dissociated screw
dislocation ending at a free~110! surface in the bottom of the
crystal. Having the dislocation initially in either of the two
possible glide planes gives four different systems with one
free ~110! surface. The two systems with two free~110! sur-
faces were generated simply by removing the periodic
boundary conditions from the already relaxed reference sys-
tems, thereby creating clusters with a single dislocation
emerging on both free~110! surfaces. All the systems had
w59.5 nm andl 540b ~10.2 nm! and consisted of 73 960
atoms. We performed direct energy minimization as well as
RT simulations followed by a quench byMDmin energy
minimization.

Figure 8 shows the four systems with one free~110! sur-
face after the direct energy minimization. For the two sys-
tems with the partials initially parallel in the (111) plane and
with static atoms in the bottom of the crystal@Fig. 8~a!# or in
the top of the crystal@Fig. 8~b!#, the predicted effects of the
free surface are clearly seen. In the (111) plane the partial
Burgers vectors point toward each other as seen in Fig. 4~b!.
For the system with static atoms in the top, one of the Shock-
ley partials bows out away from the other thereby acquiring

FIG. 8. Four different systems with one free~110! surface after direct energy minimization:~a! (111) plane, static atoms in the bottom
of the crystal.~b! (111) plane, static atoms in the top of the crystal.~c! (111) plane, static atoms in the bottom of the crystal.~d! (111)
plane, static atoms in the top of the crystal. The dislocation has cross slipped in the bottom of the crystal, thereby creating a screwlike
constriction. The differences between the two glide planes are due to the different orientation of the surface step relative to the glide planes.
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more screw character, whereas the other partial stays
straight. The tendency to acquire more screw character
seems to be stronger than the tendency for the partials to
attract, in agreement with the experimental findings.23 How-
ever, it is not easy to judge which of the effects is the stron-
ger because of the interaction with the image dislocations
parallel to the real dislocation, which would also tend to
attract the partials to the free (111) surfaces. With the static
atoms in the bottom of the crystal, the effect of the free
surface is to make the two partials recombine into a perfect
screw dislocation in the top of the crystal. There is no sign of
redissociation of the perfect screw dislocation in the (111)
plane. The recombination in the (111) plane is a result of
one or both of the effects of a free surface predicted by
elasticity theory, and together these two effects are stronger
than the interaction with the parallel image dislocations.
Again one of the partials bows out to acquire more screw
character, whereas the other partial stays straight.

The asymmetrical configurations of the partials near the
free surfaces in Figs. 8~a! and 8~b! must be attributed to the
asymmetrical positions of the partials with respect to the
surface step. Furthermore, the two$111% glide planes are not
equivalent with respect to the step on the free~110! surfaces.
The surface step is located in a (111) glide plane; see Fig. 2.
When the partials are in this plane the step is parallel to the
partials. However, when the partials are in a (111) glide
plane the surface step is located between the partials at an
angle of 70.53°.

For the two systems with the Shockley partials initially
parallel in the (111) plane, the effect of the free surface is
therefore somewhat different. In this plane the partial Bur-
gers vectors point away from each other; see Fig. 4~a!. The
system with static atoms in the top of the crystal@Fig. 8~d!#
corresponds to Fig. 8~a!. The two partials recombine as ex-
pected into a perfect screw dislocation in the bottom of the
crystal, but in this case we observe an additional splitting of
the perfect screw dislocation in the (111) plane. The redis-
sociation in the (111) plane, not visible in Fig. 8~d!, gener-
ates a screwlike constriction on the dislocation and allows
the partials to be in a glide plane parallel to the surface step.
Apparently there is no or a very-low-energy barrier for this
kind of surface nucleated cross slip. For the system with
static atoms in the bottom@Fig. 8~c!# no net effect of the free
surface is observed. The partials stay straight, even very
close to the free~110! surface. The tendency to rotate to-
wards screw character seen in Fig. 8~b! seems to be compen-
sated by an attraction to the surface step.

For all four systems we have also performed RT simula-
tions followed by a quench byMDmin minimization. These
simulations show no qualitative differences from the above
mentioned simulations. The only difference is for the system
with static atoms in the top of the crystal and the partials
initially in the (111) plane which shows surface nucleated
cross slip. The redissociation in the (111) plane in the bot-
tom of the crystal is much more pronounced, with the par-
tials in the lower part of the crystal in the (111) plane adopt-
ing a configuration almost identical to that of Fig. 8~a!.

2. One dislocation: Two free surfaces

In order to obtain more information about the influence of
free surfaces on the configuration of the partials, we also

performed RT simulations followed by a quench byMDmin
minimization on systems with two free~110! surfaces; i.e.,
the systems were clusters with the partials initially in either
the (111) plane or the (111) plane. From the simulations of
systems with one free~110! surface, we expect the first sys-
tem to recombine into a perfect screw dislocation in the top
of the crystal and to split even further than the bulk splitting
in the bottom of the crystal. For the latter system we expect
the system to perform cross slip in the bottom of the crystal,
but it is not clear whether the cross slip will be complete or
whether the system prefers a configuration with a screwlike
constriction. The system with the partials initially in the
(111) plane behaves as expected. The partials recombine in
the top of the crystal with no sign of redissociation in the
(111) plane and they repel in the bottom of the crystal. After
;11 ps~and before the quench! the dislocation is located off
center in the crystal, due to the attraction to the image dislo-
cation; see Fig. 9~a!. The system with partials initially in the
(111) plane performs a complete cross slip to the (111)
plane. The partials recombine and redissociate in the bottom
of the crystal, thereby creating a screwlike constriction. The
screwlike constriction ascends the crystal, making the par-
tials in the top gradually change their glide plane from the
(111) plane to the (111) plane. The cross slip is completed
in ;11 ps. Figure 9~b! shows an intermediate stage in the
cross slip and Fig. 9~c! shows the final relaxed configuration
of the cross-slipped dislocation after the quench. Figures 9~a!
and 9~c! are very similar to TEM pictures of dissociated
screw dislocations in thin foils in Ref. 23.

To check the significance of the orientation of the surface
step with respect to the partials we performed simulations
similar to the two simulations with two free surfaces, but this
time with the step parallel to a (111) plane; i.e., the surface
step has been rotated compared to the step seen in Fig. 2.
The results are equivalent to the simulations with the original
step orientation. Now the system with the partials initially in
the (111) plane cross slips to the (111) plane, while the
system with the partials initially in the (111) plane, which is
now parallel to the step, does not. The two final configura-
tions have the partials recombined in the bottom of the crys-
tal and split in the top of the crystal.

These simulations show that there is a strong preference
for the dissociated screw dislocation to be in the glide plane
parallel to the surface step, and that the dislocation will adopt
a configuration with perfect screw dislocation in one end and
two nonparallel Shockley partials in the other end. It is the
desire of the partials to be in a plane parallel to the surface
step and not the possibility of making a screwlike constric-
tion, which controls the surface-nucleated cross slip, and
there will be an energy barrier for surface nucleated cross
slip away from the glide plane parallel to the surface step.

Finally we performed simulations on systems with differ-
ent step orientations in either end of the crystal. With the
partials initially in the (111) plane or the (111) plane this
gives four possibilities. For the two systems with the step
parallel to the (111) plane in the top and the step parallel to
the (111) plane in the bottom we expect the dislocation to
adopt a configuration with a screwlike constriction. This con-
figuration will allow the partials to be parallel to the step in
both ends of the crystal. However, a similar configuration
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with the partials parallel to the step in both ends, when the
step orientations have been switched, would result in cre-
ation of an edgelike constriction. The simulations with the
step in the top parallel to the (111) plane and the step in the
bottom parallel to the (111) plane showed the expected be-
havior. Both systems create a configuration with a screwlike
constriction and the partials parallel to the step in either end.
The system with the partials initially parallel in the (111)
plane performs cross slip in the top of the crystal whereas the
system with partials initially parallel in the (111) plane per-
forms cross slip in the bottom of the crystal. For the two
systems with the switched step orientation the results are

different. The partials stay in their initial glide plane, adopt-
ing a configuration with a perfect screw dislocation in one
end of the crystal and two nonparallel Shockley partials in
the other end of the crystal. There are no signs of cross slip
leading to configurations with an edgelike constriction and
the partials parallel to the steps in either end.

These simulations demonstrate the influence of a free
~110! surface on the configuration of a dissociated screw
dislocation perpendicular to that surface. We have qualita-
tively confirmed the predictions by elasticity theory of the
effect of a free surface. In addition we have observed a
strong preference for the partials to be in the glide plane
parallel to the surface step.

FIG. 9. Room-temperature simulations with two free~110! surfaces.~a! Partials initially in the (111) plane. The partials recombine in the
top of the crystal and are attracted to the free (111) surface.~b! Partials initially in the (111) plane. The dislocation has cross slipped from
the (111) plane to the (111) plane in the bottom half of the crystal, thereby creating a screwlike constriction. The trace of the stacking fault
between the partials of the non-cross-slipped part of the dislocation is seen in the upper half of the crystal.~c! Partials initially on the
(111) plane. The cross slip is complete, and the dislocation is entirely in the (111) plane. The configuration has been quenched byMDmin
minimization.
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3. Annihilation of two screw dislocations

An interesting parameter which is believed to be closely
related to cross slip is the minimum stable dipole height of
screw dislocations of opposite signs. Experiments3 have
shown this length to be 50–500 nm in Cu. Screw disloca-
tions of opposite signs in different glide planes closer than
this minimum dipole height are believed to cross slip and
annihilate. Due to the length and time scale, this problem is
not suited for ordinary atomistic MD simulations. However,
it might be possible to obtain insight into the cross-slip
mechanism of a single screw dislocation, by performing MD
simulations of systems containing two screw dislocations of
opposite signs at very close range. In order to speed up the
simulations, it was decided to use a high temperature~580 K!
and rather small systems withw58.6 nm andh550b ~12.7
nm!. The systems consisted of 76 050 atoms. The two screw

dislocations with Burgers vectors6 1
2@110# were initially in-

troduced in the system as two perfect screw dislocations in

different glide planes separated by only;2.2 nm. We per-
formed a simulation with periodic boundary conditions,
along the@110# direction and a simulation without periodic
boundary conditions, i.e., with two free~110! surfaces.

The simulation with periodic boundary conditions showed
no sign of cross slip. The two dislocations dissociate in two
parallel (111) planes as in Figs. 4~a! and 4~c! separated by
seven$111% plane spacings, with splitting widths fluctuating
around an average value of;1 nm. The small value of the
splitting width must be attributed to the presence of the other
dislocation, because no significant temperature effect was
observed in the simulations of just one dislocation in Sec.
IV A 1. Occasionally the partials in the same glide plane
were so close that the dislocation might be thought of as
recombined. However, as mentioned for the partials in Sec.
IV A 1, there is an in-plane smearing of the dislocation
which confines it to a particular glide plane and inhibits cross
slip. The simulation used 4600 time steps corresponding to

FIG. 10. Snapshots from the simulation showing annihilation of two screw dislocations of opposite signs.~a!–~d! (111) planes.~a! The

dislocation withb5
1
2@110# has performed a cross slip in the top of the crystal, thereby creating a screwlike constriction. The presence of the

dislocation withb5
1
2@110# in a (111) plane and the non-cross-slipped part of theb5

1
2@110# dislocation also in a (111) plane is clearly

seen as two vertical lines of stacking fault marked SF separated by seven$111% plane spacings.~b! A new Shockley partial~vertical! has been
created to the right in the (111) plane. The Shockley partial to the left is the originally cross-slipped1

6@121# and the small inclined part
connecting these two is the remains of the1

6@211# Shockley partial.~c! The newly created Shockley partial1
6@121# to the right reacts with

the 1
6@121# Shockley partial and they annihilate.~d! Annihilation in the top of the crystal, leaving a small stacking-fault loop comprising the

1
6@211# and the1

6@121# Shockley partials. The stacking fault loop moves down through the crystal and disappears at the bottom, leaving the
crystal defect free.
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;25 ps. In the context of cross slip this is a very short
simulation, and it is in no way possible to rule out the pos-
sibility of some kind of bulk cross slip on the basis of this
simulation.

To investigate the role of free surfaces in this kind of
system, we removed the periodic boundary conditions along
the @110# direction from the above-mentioned system. This
produced cross slip of one of the dislocations and led to
annihilation of the two screw dislocations through successive
dislocation reactions. It was possible to monitor the detailed
dislocation reactions, thereby enabling exact specification of
the different stages leading to the annihilation. When the
periodic boundary conditions were removed, the two screw
dislocations were split into Shockley partials in two parallel
(111) planes separated by seven$111% plane spacings. The
annihilation of the two screw dislocations is initiated at the
top of the crystal, and proceeds downwards through the crys-
tal in the following manner. The dislocation with

b5 1
2@110# performs cross slip to the (111) plane in the top

of the crystal, thereby creating a screwlike constriction on
the dislocation; see Fig. 10~a!. The Shockley partial
1
6@211#, glissile in the (111) plane, is attracted to the Shock-
ley partial 1

6@121# glissile in the (111) plane, and the two
partials react to produce a sessile stair-rod dislocation:1

1

6
@211#~111!1

1

6
@121#~111!→

1

6
@110#. ~5!

The stair-rod dislocation, not shown in Fig. 10, is located at
the intersection of the (111) plane containing the

b5 1
2@110# dislocation and the (111) plane containing the

newly cross-slipped part of theb5 1
2@110# dislocation.

Hence, the stair-rod dislocation is in the same (111) plane as
the 1

6@211# Shockley partial@see, e.g., Fig. 4~a!# and attracts
this:

1

6
@110#1

1

6
@211#~111!→

1

6
@121#~111! . ~6!

The resultant Shockley partial1
6@121# is glissile in the same

(111) plane as the cross-slipped part of theb5 1
2@110# dis-

location; see Figs. 10~b! and 10~c!. The newly generated
Shockley partial reacts with the remaining1

6@121# Shockley
partial in the (111) plane, and the two partials annihilate:

1

6
@121#~111!1

1

6
@121#~111!→0 . ~7!

The reactions create a stacking fault loop in the (111) plane
which moves down through the crystal while the annihilation
takes place; see Fig. 10~d!. Eventually the loop reaches the
bottom of the crystal and disappears, leaving the crystal de-
fect free. Hence, once one of the dislocations has performed
cross slip creating a screwlike constriction, there is no or a
very low-energy barrier for the annihilation.

V. CONCLUSION

In this paper we have addressed the problem of cross slip
in Cu with a purely atomistic method. The result for the

minimum separation between noninteracting constrictions is
in perfect agreement with results obtained from elasticity
theory. Our result for the stress-free activation energy in the
Friedel-Escaig cross-slip mechanism is in very good agree-
ment with an earlier nonatomistic approach,5 but it is some-
what higher than other estimates10,6 derived from elasticity
theory.

Our atomistic simulations also show that the two constric-
tions necessary in the Friedel-Escaig cross-slip mechanism
are not equivalent, and that one of them, the screwlike con-
striction, is energetically favored compared to two parallel
Shockley partials. The nonequivalence of the two constric-
tions is a fact not usually appreciated in the literature. The
differences have been investigated, qualitatively and quanti-
tatively.

As we have pointed out, the activation energies obtained
from elasticity theory are subject to substantial uncertainty
due to the break down of the isotropic elasticity relation
describing the splitting of a perfect screw dislocation.
Whether the overall quantitative agreement between the ato-
mistic and the elastic approaches is an indication of a deeper
concordance or merely fortuitous can only be resolved by
detailed elastic work on isolated constrictions.

The effect of having the dislocation perpendicular to a
free surface has been investigated, and surface-nucleated
cross slip observed. The important feature in surface-
nucleated cross slip is the possibility of creating a screwlike
constriction without the accompanying edgelike constriction
needed for bulk cross slip. On the other hand, we have also
observed a strong preference for the partials to be in a glide
plane parallel to the surface step, meaning that there is an
energy barrier for cross slip into the glide plane not parallel
to the surface step. Hence, more quantitative work on the
energetics of different dislocation configurations close to a
free surface needs to be done before we draw conclusions
about the role of surface-nucleated cross slip.

In a simulation of two screw dislocations of opposite
signs, surface-nucleated cross slip initiated the annihilation
which proceeded via successive energetically favorable reac-
tions. The atomistic approach allowed monitoring of the de-
tailed dislocation reactions and thereby exact specification of
the intermediate stages leading to the annihilation.

The role of cross slip in different macroscopic phenomena
such as fatigue and plastic deformation is today well estab-
lished. However, the present understanding of the intrinsic
properties of cross slip is still rather nebulous. The results
obtained in the present work may help to establish a better
understanding. Altogether we may conclude that atomistic
simulations are well suited for problems involving disloca-
tion interactions at the nanoscale, where the use of methods
based on elasticity theory is questionable.
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