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Abstract In this report some bask: features of the performance of a two fre
quency reflectometer used as a diagnostic for random plasma fluctuations are stu
died. Using a realistic and tractable model for the plasma fluctuations we derived 
some analytical results for correlation and crosscorrelation functions for the tempo
rally varying phase of the reflected signals. Numerical simulations were performed 
to illustrate the practical applicability of the basic ideas of the reflectometer. The 
studies were carried out mainly for incoming electromagnetic waves »n ordinary 
polarization. 
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1 Introduction 
In tokamaks and other types of plasma experiments, a diagnostic to measure 
plasma density fluctuations is important in order to obtain an understanding of 
plasma turbulence and plasma transport. A measuring technique denoted refiVv 
tometry has been used for some years in tokaiuafc experiments in order to measure 
density profiles and their motion (see e. g.: Cavallo and Cano. I9S2. Simonet. 19S5. 
or Sips. 1991). In a way the method is based on the same ideas as an ionosonde. 
which is used for measuring the plasma density in th~ lower part of the ionosphere. 
When a microwave beam is launched against the plasma surface it is reflected at 
the position where the frequency is equal to the plasma cut-off frequency By mea
suring the phase change of the reflected wave it is passible to follow movements of 
the plasm? surface. With a fixed-frequency oscillator only a single density point 
can be monitored, while it is necessary to use a multi-frequency system in or
der to detect simultaneously the entire density profile. In order to interpret the 
results, the phase change of the wave is normally calculated according to the ap
proximation of geometrical optics, often called the WKB approximation. If the 
phase change is measured for all frequencies, the density profile can be calculated 
from an Abel conversion assuming the WKB approximation. In most cases the 
wavelength of the microwave is short compared to typical plasma density gradient 
length and the approximation b rather good. 

Recently the principles of a new technique for diagnosing microturbulence called 
correlation reflectometry was presented (Costley and Cripwell. 1989. and Cripwel; 
and Costley 1991). Two microwave beams with a small difference in frequency are 
launched against the density profile. The two phases can be measured versus time 
and since these phases are functions of plasma cut-off layer positions, it is possible 
by a crosscorrelation technique to detect the relative motion of plasma perturba
tions between two different positions. By using a variety of frequency differences 
between the two microwave beams it has been possible (Costley and Cripwel), 
1989) to obtain a full dispersion curve for the plasma waves giving essential infor
mation about the plasma turbulence. 

In a plasma where the turbulence has characteristic scale lengths smaller thac 
or of the same order as the microwave wavelength, it is questionable if an analysis 
of the measurements from correlation reflectometry based on the WKB approxi
mation will lead to the correct conclusions. To investigate this question we have 
solved the wave equation with a new numerical procedure, which can solve a sys
tem of differential equations as a boundary value problem. 

Statistical information on density fluctuation turbulence in tokamaks (and per
haps other plasmas) may in principle be obtained from a two-frequency reflec-
tometer. However, the interpretation of the signals is difficult. An analysis based 
on an analytic ti eat ment of the wave equation has recently been published by Zou 
et al., 1991. This analysis requires several assumptions to be satisfied. The main 
assumptions are that the characteristic length and time scale of the fluctuations 
must be less than that of the unperturbed plasma, since a local Fourier transform 
is applied, and that the turbulence level has to be low enough so the fluctuations 
can be treated as a perturbation in the wave equation. An analysis without such 
basic assumptions is only possible from a numerical calculation. 

We carry out a performance study of a model of a two-frequency reflectometer. 
A level of random plasma density fluctuations is modelled in plane geometry by 
superimposing moving density pulses on a given density profile. By the proper 
choice of the shapes of these pulses, we are in principle able to model any spectrum 
for disturbances propagating in the direction alone the density gradient. With the 
speed of propagation known in the numerical experiment, we are able to determine 
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the accuracy of the predkt*>n> of the c*. intcwristsc velocity deduced from the 
crossrorreUtion of the fluctuating phase signals of the reflectomeier. Studies are 
carried out for statistically distributed disturbance velocities and for varying levels 
of a superimposed small-scale random noise component. The analysis uses the the 
fullwave solution discussed above, but the accuracy of a somewhat simpler WKB 
solution is tested also. 

In Sec. 2 the WKB approximation and its limitations ar* discussed briefly. Sec
tion 3 gives the wave equation and derives the appropriate boundary conditions, 
and some numerical results are presented in Sec. 4. In Sec. 5. a discussion of the 
plasma model and the correlation analysis can be found. Section 6 introduces a 
new data analysis method called coincidence counting, which in some cases may 
extract more information out of the measurements than the usual correlation tech
nique. Finally, discussions and conclusions are given in Sec. 7 

2 The WKB approximation 

An electromagnetic wave injected into a plasma perpendicular to the magnetic 
field may be reflected at a cut-off layer. For an ordinary wave (E-fieM parallel 
to magnetic field) the cut-off frequency is: w = u^ = v/e2n0/<om- and for an 
extraordinary wave the cut-off frequency is: w = JuJ, + u£,. where w„ = cB^/m. 
An approximation for tt» phase of the reflected wave with respert to the phase of 
the incoming wave is given in the book by Ginzburg. 1964: 

9x(u,)=— f iV(r,w)dx-J (1) 
c Jo i 

where N is the refractive index, x the position co-ordinate. u> the cyclic wave 
frequency and R is the reflection point. The expression is exact if the plasma 
density has a linear density variation. In this case the solution to the wave equation 
can be expressed in terms of Airy functions. Since ,'ie integral term is the normal 
approximation of geometrical optics often called the WKB approximation, valid 
if the wavelength is small compared to the characteristic gradient length, we can 
interpret the - x / 2 term as the phase jump at the reflection layer. If the refractive 
index has a linear dependence in an interval around the reflection point of the 
order of some wavelengths we can therefore expect the expression (1) to be a 
good approximation for the total phase shift. The correct condition for the WKB 
approximation to be satisfied is according to Ginzburg. 1964: 

*o[*J <z i (2) 

where Ao is the vacuum wavelength and x is the space co-ordinate. The inequality 
shows that the WKB approximation breaks down if the diffractive index is too 
small or if the derivative of the diffractive index is large. This means that the 
approximation always breaks down close to the reflection point, i.e.: the phase 
calculated from (1) will always be uncertain due to this fact. On the other hand it is 
worth noting the 2ir factor which shows that the correct parameter to be compared 
to the gradient Jenf % is A/2*. This is rather significant since the errors which may 
occur by using the approximation can be shown to decrease exponentially with 
this factor (Ginzburg, 1964). 

To get a more precise idea of how close to the reflection point the approximation 
can be used let us consider a specific case. We shall consider a plasma with a linear 
increasing density according to the expression: n = rtoz/mAo, where no is the 
critical density and m the number of vacuum wavelength from the plasma edge to 
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the reflection point. The refractive index fur an ordinary wavr is .V = y/'l - n/n,,. 
The conditio« (2) will then be 

^iSF^ 0 ' *"" 1 - w 

where A T is the minimum distance from the reflection point where condition (2) 
is satisfied. From this we can see that for a steep density profilr [m ~ 1) the un
certainty using (1) may be of the order of A«, and for very gentle density gradients 
(ni ~ 100), it is of the order of a few -V For reflection of the extraordinary wave 
the profile of refractive index is typical more flat which means that the approxi
mation leads to a larger uncertainty in determination of the point of reflection. 

3 The full wave solution 

3.1 The wave equation 
WE consider electromagnetic waves propagating in the x-direction in a plasma 
with an inbomogeneous density n(x) in a constant magnetic field B„i. The wave 
equation can be written as: 

where f = xfc© with to the wavenumber in free space. We have for the O-mode 
that E = E. and e = ez: and for the X-mode that E = E9 and e = t„ + el9/£XT-
Here the components of the dielectric tensor are 

X(l+iZ) XY X 
C"~ (l + :Z)2-y2' e"~%(l + iZr-Y^ £z'~ 1+zZ W 

The normalized density X, the normalized magnetic field Y. and the normalized 
collision frequency Z are defined by 

jr.4, y = 2=, Z=V-, (6) 
or w u.' 

where Vpr(0 = (n(Oe2Ao«»)^ and ur<*({) = eB{$)/m are the electron plasma 
frequency and the gyro-frequency, respectively. 

3.2 The boundary conditions 
To solve the equation (4) wc have to specify the necessary boundary conditions. 
Assume the inhomogeneous part of the plasma is surrounded by a homogeneous 
plasma i.e.: n = no for £ < 0 and n = n* for { > a. In the homogeneous plasma 
ranges the wave solution is the solution to eq.(4) with constant e: 

£{*) = c, exp(iJV,0 + c2 exp(-iNxQ (7) 

where Nx is the x-component of the refractive index. The matching condition at 
the border between the homogeneous and the inhomogeneous plasma is determined 
by that the E-field and the derivative of the E-field (really the B-field) must be 
continuous across the boundary. At the left boundary we let the incoming wave 
have the amplitude cx = 1. If the E-field at the boundary is E0 the boundary 
condition can be written as: 

i*f,Eo + E'0 = 2iNx (8) 

where E'0 is the derivative of E(() at ( = 0 and the constant Ci is given by 
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ej * ( ^ - 1) (9) 

At the richt boundary. £ = • there will be no left-going *»«*. »-*- «3 = 0. which 
; the boundary condition: 

i.*x£. - £; = 0 (10) 

where £* is the derivative of £(() at ( = • and ct = £«exp(-iiVIa)- This means 
that the wave solution for ( < 0 B : 

Bm*9WtMQ + (E»-l)tKf(-iNat). (11) 

and for ( > « we get: 

E=£;exp|tAxU-«)] (12) 

• £« and £ . are toe E-fickts at the left and right boundary, respectively 

4 Numerical solutions 

The full wave equation (4) with the boundary cnoaitions (?) and (10) was solved 
by use of tbe numerical code COLSYS by Ascher, Christiansen and Russel, 1979. 
This code can solve boundary-value problems for mixed-order systems of ordinary 
differentia! equations. The solution method is based on spline collocation, and the 
code automatically finds an appropriate distribution of mesh points in order to 
beep tbe local error within certain limits specified by the user. 

A similar but more general system of equations taking into an ount oblique 
propagation with respect to the magnetic field solved by COLSYS »as treated by 
Hansen et aL, 1988a, in order to investigate wave conversion. 

In Fig. la tbe wave solution for an ordinary wave propagating against a steep 
density gradient is shown. The density is zero at the left boundary and it is equal 
to twice the critical density at the right boundary. In Fig. lb corresponding curves 
for a wave in a density distribution with a smooth gradient are sbowr. A WKB 

Fteure /. Wave solution for an mdtnarg wove reflected at the cut-off position and 
the density profile, a) a plasma with a steep density gradient, b) a plasma with a 
smooth density gradient. 

IS P ^ T T l l l l l l l l l l l l l l l l l l l l l l l l l l l 3.0 2.5 m i n i m i i n i m i n u m i S.0 

i i i n l i i i i n 

Position 
300 400 

Position 

8 RIMHR-592(EN) 



Position Position 

Fi§m t. Wmmt solution far m extrm-oHsnrnrg wave rcflecttd at tkt nt-off position, 
m) a pUumu with a steep density §raaYenf,. b) a swuina with a nmooth density 
mndtent. The variation of the magnetic field is shorn ay the dashed bus. 

solution will in this case give nearly the same solution. Corresponding results for 
extra-ordinary polarization are shown in Fig. 2a and 2b. This polarization was 
used by Cripwell and Costky 1991. 

In order to see bow a small narrow pube will influence on the reflected wave Fig. 
3 shows a mcdel with a pube moving along a smooth density gradient. The pube 
half-width is in this case equal to five wavelengths and has an amplitude equal 
to 0.2 times the critical density. In Fig. 4a the phase of the reflected wave at the 
left boundary is shown as a function of time, calculated by COLSYS (solid line) 
and by a WKB approximation according to formula (1) (dashed line). Similar 
curves are shown in Fig. 4b with a more narrow pube with a half-width equal 
to one wavelength and of the same amplitude as in Fig. 3. It is seen here that 
large differences in the wave-field will appear when a density pube with a width 
comparable to the wavelength moves in a standing wave. 

5 Reflectometry modelling 

5.1 The plasma model 
In our numerical model the exact phase information from the reflected waves can 
be obtained without some of the problems which occur in a real experiment e.g. 
wave scattering in various directions. These problems are treated in several of the 
experimental papers and are not considered here. 

The objective of this work is to investigate what is the maximum amount of 
information about the statistics of the plasma turbulence that we can obtain from 
a perfect correlation reflectometer. With our full-wave calculation we only have 
to introduce two assumptions concerning the plasma motion and density profile. 
The first is that we assume that plasma motion is slow compared to the speed of 
the electromagnetic modes, and therefore, we can calculate the wave pattern and 
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Figure 3. A fndse moving along a density grudtent. 
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Figure 4- Phase of reflected wave versa* time when a pulse is moving along the 
density gradient. Solid one is full wave solution, and dashed line is WKB solution, 
a) The half-width of the pulse is five wavelength, b) The half-width of the pulse is 
one wavelength. 

thereby the phase of the reflected wave for a stationary plasma profile neglecting 
plasma motion. The other assumption described in Sec. 3.2 is necessary in order 
to have well defined boundary conditions. This requires that the one-dimensional 
plasma is surrounded by regions of constant density. The plasma density profile is 
separated into three parts. The stationary background density is given by: 

n ( 0 = »ktf2(3-20 (13) 
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wests ES lot lowest ostler poJyponMa! witli w o sbp* al * — 0 and a! £ = !. and 
which is equal to 0 at ( = 0 and equal to ** al i = I. On lop of tbr statio
nary density profUr a noisy background is superimposed. The notsr is ejrnrraUvi 
by niperimpniing a huge number of bctl-shaped pubes with random positive or 
negative amplitudes witiun a certain range, with given width, and with a random 
velocity direction. 

As the timphtt model we describe the f urtuatioas m pbsma density as com
posed of a linear superposition of pubes having constant shapes and propagating 
with constant velocity. The pubes may have M different shapes labelled by the 

I. One such pube gives rise to a certain phase variation **(( - tt/ of the 
tic wave as detected at the receiving antenna outside the plasma. 

¥fe let tjj denote the time where the peak value of the density pube (with la
bel I) passes through the cut-off position in the unperturb-d plasma profile. The 
individual pubes are assumed to be integrablr and to vanish for |i| — oc but 
otherwise they can be chosen arbitrarily. In th? following we assume the density 
perturbations to be pube-likeT but any other form (such as a wave-packet) can 
be chosen depending on the actual model for the fluctuations- With the density 
pates injected randomly into the plasma ami uniformly distributed in time we 
may writ« the temporally varying response in the phase signal as 

*r A'f 

•MO = £ X > ( < - « , . * ) (14) 

where t»*e number of pube responses Sf originating firm shapes of type I is itself 
a quantity which varies over the ei^embie. With t}t being uniformly distributed in 
• time record much longer than tbr duration of an individual response, we readily 
obtain (Rice, 1944) the autocorrelation function for the fluctuating phase signal 

JH.T) s <«X<)*XI + T ) > = 

Jkf r j_? 

(15) 

where *y is the average number of structures of type I passing the cut-off layer 
per unit time. Note that there is in general no logical reason for the last term to 
be vanishing. A power spectrum S(w) for the phase fluctuations is defined as the 
Fourier transform of R(r). and it is important to note that an arbitrary prescribed 
spectrum can be realized by the model (14). actually in indefinitely many ways. 
by the appropriate choice of dr for t = 1.2 M. 

The result (15) refers to a one-frequency refiectometer, but it is easily general
ized to its two-frequency counterpart. When the density pube passes the cut-off 
layer cotiespunding to the frequency of the second reflectometer it gives rise to a 
phase variation 

Am* rV 

where *j # 0 is the velocity of the j-th pube and D b the distance between the 
two cut-off byers. The time t}j b still referring to the crossing of the first cut-off 
byer as in (14). Note that we use different notations for the two phase signab. 
i.e. +r and i>t will probably look rather similar, but because of the difference in 
fecal plasma density (and possibly density gradients) at the two positions they 
will not be identical The autocorrelation function for i>(t) is obtained in a form 
quite similar to (15) while the more interesting crosscorrebf ion takes the form 
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£ > / / " MtMt + r - D/u)P{u)é** 

£>J^Mtm IT.«£+<*>* . (in 

•• P{u) B the probability density of velocities u, which is here tafcm to be i 
i of pub* shape. Far cans of interest here both polarities of density pebes 

probable and the hat, court ant, term in (IS) and (17) is vanishing. 
As working hypothesis »* irst assume that dy(t) s * ( i ) , which can actually 

be a good apprariautioa when the two cnt-of layers are CIOR. With the pevvioas 
i of SM we obtain the Fawrier transfer* &(«) of (IT) as 

(18) 

For the case where aD density petes have the saw* velocity, Le. !*(«) = •<«-«.) 
we have tW particularly siaapk case 

SAf*)-SMT*D'-. (19) 

S.M = SMf t—WP(*)im. 

that aH frequency tompomntj undergo a phase chaag* proportional to 
mi with a toewkitnt D/w* which can be used to lietiimim «*. In this pxrtkulur 
case the crosscorreiation (17) is just a shifted copy of the aatoconcbtioa (15) 
and a characteristic velocity is obtained nnamhjgnuettlj. Hoe S(u) coincides with 
the civjespectnrck with the present assumptnus. However, in the case where the 
dmtieaie between dy(t) and «V(0 is nontrivial, it is no longer possible to write 
5c(w) as a real spectrum with the phase variation given in the form as m (19), 
and a velocity of propagation is no longer unJnwUj defined. 

In the case where the pube velocities are statistically distributed, we have to 
solve (IS) with the actual probability density P(u) even when the approximation 
•MO * *(«) remains applicable. 

Vfc considered two erampaw first a box-like distribution 

(20) /»<«) = { pL forO<a<a<e 
0 cbewbere 

The integral in (IS) can then be solved analytically with the result 

£ »--»/•on = _ -U-«—1V> - ée**E,(«n) + ^ + teME,(ft) (21) 

where a a a/b and ft = wD/a while Ex(x) s £ ° Je-*Va- Using (21) we can 
rewrite (18) in the form F{Q)*-ma) with «(ft) shown in Fig. 5 for two values of a. 
Evidently, for o » 1 we recover the representation (19), Le. #(ft) = ft. For o < 1 
we find that •(!*) is no longer a straight line, but has a curvature, which increases 
with demising a. Another observation is that the carve deviates from the slope 
cw responding to that given by the average of peine velocities, i.e. (a+6)/2 in the 
present model for P(%). This line is dotted on Fig. 5. 

in another model we assumed 

P ( , ) a s - i ^ e - K — • ! * . (22) 
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Figure 5. The function 0(Q) calculated for a box-like pulse velocity distribution for 
two values ofa = a/b, see (20) and (21). The dotted line shows the average pulse 
velocity. a)a = 0.67 and b)a = 0.33. 

13 • • I I I I I I I I I I I I I I I I I I I I I I I I I I I ! 

i i 1 1 1 i 

Omega 
e.o 

Omega 

Figure 6. The function $(il) calculated for a Gaussian pulse velocity distribution 
for two values of a. The dotted tine shows the average pulse velocity, a) a = 0.67 
andb)a = 0.33. 

The integral in (18) was evaluated numerically and the curve 8(Q) with ft = ui/o 
is shown in Fig. 6. Again, in the limit o —»0 we recover (19). For o > 0 we again 
find that <p{Sl) is no longer a straight line and that its average slope can deviat« 
from the one determined by u0 in (22), see dotted line or Fig. 6. The model (22) 
is used only in cases where it is safe to assume that P(u < 0) « 0. 

We may conclude that the slope of the phase function 6(H) gives * quite ac
ceptable approximation to the average pulse velocity for narrow pulse velocity 
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Figure 7. An example of the noise shown in a constant density plasma background. 
Note that we require the noise to vanish at the boundaries. 

1.2 11111111111111111111111111111111111111111111111111. 

Frequency 

Figure 8. The frequency spectrum of the phase variation of the reflected signal 
obtained from the notat shown in Fig. 7. 

distributions P(u) in (18). This approximation deteriorates for increasing scatter 
of pulse velocities, and eventually the results can depend critically on the actual 
choice of P(u). 

In Fig. 7 an example of a plarma of constant density superimposed with the 
noise is shown. The average amplitude of the noise varies with position with a 
maximum of x = 10n. In Fig. 8 a spectrum of the phase variation due to this 
noise is shown. 

Finally, we model plasma waves also by pulses of random positive or negative 
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Figure 9. Density profile versus time, a) Only noise pulses are included, b). Both 
wave and noise pulses are included. 

amplitudes, random widths, and moving with a given average velocity. The pulses 
each have a constant velocity which is a sum of the average velocity plus a certain 
random velocity specified to some limited interval. Initially the pulses are dis
tributed randomly in space. During a run pulses disappear when they move out of 
the plasma, but new pulses are injected at the other boundary at random times 
with a given average injection rate, specified by the average number of pulses. In 
Fig. 9a an example of a density profile with noise pulses included is shown, and 
in Fig 9b both noise pulses and wave pulses are included. 

The phase of the reflected wave is calculated for each time step. Phase curves 
for two different reflection points i.e. two frequencies are produced for correlation 
analysis. An example of the phase variation with time is shown in Fig. 10. The 
phase variation is restricted to the interval [-7r;7r]. In practice it need not be 
evident how this restriction is achieved and problems may occur, which are not 
accounted for in the constructions (14) or (16) 

In the present study we used density perturbations generated by a superposition 
of puls-like individual perturbations, Evidently any form can be used for $ and 
4 in (14) and (16), also long wavt .-ackets and similar. It is possible to perform a 
quite detailed simulation of any actually observeo. spectrum of perturbations. 

5.2 Correlation analysis 
From our model calculation we get the two phase curves as discussed above. In 
a real experiment the amplitude of the reflected wave v.ili be smaller than the 
injected wave due to geometrical expansion of the beam, the scattering due to 
plasma turbulence and to plasma damping. However, these proctjses should not 
have any effect of importance on the phase of the reflected wave. On the other 
hand it is probably very difficult to extract information about the plasma from 
amplitude (power) measurements. Since the phase shift depends on the varia
tion of the plasma density between the antenna and the reflection point it is not 
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Figure 10. An example of the phase as function of time for 8192 time steps. 

possible to know a priori which information can be extracted from the phase mea
surements. By considering a small perturbation moving along x we find a large 
contribution when the perturbation passes the cut-off point which decreases when 
the perturbation moves to lower densities. This decrease is monotonic when the 
perturbation length is larger than the wavelength, but oscillating when the per
turbation is short compared to the wavelength (See Fig. 4). The phase change in 
the reflected signal will depend on the size and shape of the perturbation, and the 
density function in front of the cut-off layer, especially the slope of the density 
near the cut off-layer. If the reflection point of the two ref.ectometers are close, 
the two phase change signals should be similar and since the large contribution 
comes at the time when the perturbation passes the cut-off layer it should be 
possible by correlation techniques to determine the time of flight of the passing 
perturbations. If the distance between the two reflection points is determined by 
single reflectometry the perturbation velocity may subsequently be calculated. To 
investigate how well this can be done if there is a spread in perturbation velocity 
and there is other kind of turbulence in the plasma is the objective for the follow
ing investigation. If the phase signal exactly gives the position of the cut-off layer 
the problem is easy. However since this is not the case the solution to the problem 
is not obvious. 

Let the two phase-signal be fa (t) and <h(t)- Then we can calculate the correla
tion function: 

R{r) = \J Mt)<h(t-r)dt (23) 

and the Fourier transform of the correlation function: 
1 /° 

R^e^dr (24) 

From a numerical point of view the Fourier transform of the correlation function 
can, however, be found in a more easily wave as: 

F(w) = G{fa^))H'(<h(u>)) (25) 
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where G is the Fourier transform of éi and H' is the complex conjugate of the 
Fourier transform of fa. In this way the calculation can utilize the fast Fourier 
transform. 

In the case where the functions 4>i(t) and ^2(1) are only known in a discrete 
number of points, the correlation function and the Fourier transform has the 
following forms: 

JV-l 

t = o 

A ' - l 

Hn = £ hke
2w,kn/N (27) 

*=o 
If the phase responses from a perturbation passing the cut-off layers corre

sponding to the two reflectometer frequencies are similar we should expect the 
correlation function R(T) to be peaked, and the time shift of the peak should 
be the time of flight of the perturbation. From the Fourier tr?nsform F(ui) we 
can obtain the distribution of perturbation amplitudes and the phase shift versus 
frequency, and thereby the perturbation velocity. 

In Fig. 11a the correlation function is shown in a case with wave pulses propa
gating in a plasma without any noise. AU the pulses move with the same velocity. 
The corresponding crossaroplitude spectrum is shown in Fig. l ib, and in Fig. l ie 
is shown the phase shift of the various Fourier components. The peak of the corre
lation function is, of course, shifted corresponding to the pulse velocity. However, 
the shift is of the order of 20 time steps and, therefore, not easily recognizable on 
Fig. 11a 

In Fig. 12a the correlation function is shown in a case with wave pulses propa
gating in a plasma without any noise. All the pulses move with a velocity chosen 
randomly in a range of ±0.2 times the average velocity. The corresponding cross-
correlation function is shown in Fig. 12b, and in Fig. 12c is shown the phase shift 
of the various Fourier components. 

In Fig. 13a the correlation function is shown in a case with wave pulses prop
agating in a plasma without any noise. All the pulses move with a velocity cho
sen randomly in a range of ±0.5 times the average velocity. The corresponding 
crossamplitude spectrum is shown in Fig. 13b, and in Fig. 13c is shown the phase 
shift of the various Fourier components. 

In Fig. 14a the correlation function is shown in a case with wave pulses propa
gating in a plasma with noise pulses included. The spread in wave pulse velocity 
is 0.2 times the average velocity. The corresponding crossamplitude spectrum is 
shown in Fig. 14b, and in Fig. 14c is shown the phase shift of the various Fourier 
components. 

All the shown correlation functions up to now have been calculated from phase 
curves consisting of 8192 points (time steps). Some improvements in the correlation 
function can be obtained by dividing the phase curve into two or more equal 
parts, calculating the correlation function for each and taking the average of the 
results. This will reduce the uncertainty of the individual Fourier components on 
the expense of a reduced resolution of the spectrum caused by the reduction in 
individual record lengths. In fact this was done for all the results presented in the 
figures from (11) to (13), where the phase curve was divided into two parts, for 
the last two figures: Fig. 14a and b, and Fig. 14 the phase function was divided 
into four parts. 

It is evident that the estimate on 9(ui) becomes increasingly uncertain when the 
velocity-spread of the structures or pulses is increased, compare for instance Figs, 
lie, 12c and 13c. The addition of small scale noise, as in Fig. 7, has a similar 
effect. The estimated value of G(ut) becomes particularly uncertain at frequencies 
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Figure 11. a) Crosscorrelation function for the two reflectometer phases in a case 
when many pu';es are moving through a noise-free plasma, b) crossamplitude 
spectrum for the same rase, c) velocity of the Fourier components. 

where the spectral amplitude is small, since the phase is here obtained as the ratio 
of two small quantities. Some small gaps in e.g. Fig. 13c are caused by this effect. 

6 Extremum coincidence count
ing 
The analysis of the foregoing section demonstrated that an average pulse velocity 
could be estimated from the Fourier transform of the crosscorrelation for the phase 
fluctuations of the phase fluctuations. The resulting crosspower spectrum can be 
written as 5(u>)e~"(w> in terms of two real quantities, a crosspower 5(w) and a 
phase 0(u), where the slope of the latter function gave a good approximation to the 

18 Risø-R-592(EN) 



time 

so 100 
Frequency 

ISO 
Frequency 

Figure It. a) Crosscomlation function for a case when many pulses an moving 
through a noise free plasma with a ±0.2 spread in velocity, b) crossamplitude 
spectrum for the same case, c) velocity of the Fourier components. 

average pulse velocity for most practical purposes. One cannot on the basis of the 
phase spectrum 0{ui) in practice distinguish the width of the velocity distribution 
of the propagating pulses. In this section we outline a simple alternative method, 
which at least for a range of parameters can distinguish between the two limits. 
The idea can most appropriately be termed extremum coincidence counting; every 
time the first record of the phase fluctuations exhibit a local maximum, the second 
record is searched for local maxima in a time window, which can in general extend 
before and aft̂ v that particular reference time. (This is of course quite simple 
when the entiie recorded is available. With analogue methods only later times are 
available unless a pretriggering arrangement can be devised). Local extrema are 
selected as reference events because they are likely to represent the time of a local 
extremum in deviation from the unperturbed plasma profile. This will be the case 
when the density of pulses is low, i.e. they are uonoverlapping. Generally there will 
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Figure 13. a) Crosscorrelation function for a case where many pulses are moving 
through a noise free plasma with a ±0.5 spread in velocity, b) crossamplitude 
spectrum for the same case, c) velocity of the Fourier components. 

be a number of local extrema in record two, scattered around the reference time, 
</t, where an extremum was found in record one, and most of these are entirely 
uncorrelated. However one particular extremum at time t = tn + D/u will be 
observed with large probability; this is caused by the same pulse when it passes 
the second cut-off layer and the two events are strongly correlated. 

As an illustration we considered a case where all pulses had the same velocity 
and only their time of introduction into the system was chosen randomly. In 
Fig. 15 we show the results from a coincidence counting where local maxima 
were considered. There was no additional noise introduced in this simulation. 
As expected, we observe a clear peak in the countings at a time corresponding to 
D/U0- Since all pulses propagate outward the peak is one-sided. The countings for 
negative times thus give the noise level, i.e. the contribution from local maxima 
in record two which have no relation to those in record one. Note that due to 
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Figure 14. a) Cwsscomlation function for a case where many pulses are moving 
through a plasma with a noisy background, b) crossamplitude spectrum for the 
same case, c) velocity of the Fouritr components. 

the possibility of overlapping pulses, a local maximum need not coincide with the 
actual peak originating from an individual pulse. For reflection from narrow pulses, 
giving steep local density gradients, we find that one pulse gives rise to a phase 
"ringing", see Fig. 4, characterized by a series of local extrema. One particular 
feature of Fig. 15 might be emphasized; there is an apparent drop in »be noise level 
before and after the peak at D/u0- We argue that the local extrema of small pulses 
are likely to be masked if they appear on the wings of larger ones, and hence their 
contribution to the extrema in the phase record will be missing in the vicinity of 
the time D/u0. The width of this noise-shadow region gives an estimate for the 
time it takes one pulse to pass through the cut-off layer. The pulse width can then 
be estimated since its velocity is also determined from the figure. As an additional 
test of this hypothesis we differentiates the phase record from the second cut off 
layer, and analyzed it for extremum coincidence. The results shown in Fig. 16 
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Figure 15. Coincidence wanting of local maximum points of the phase curves 
for a case without noise and with randomly injected pulses moving with constant 
velocity. 

clearly demonstrate an advance in time for its local maxima (i.e. points where the 
original record has its steepest positive gradients) and a delay for its local minima 
(steepest negative gradients in the original record). The time difference between 
the two coincidence peaks is an indicator for the pulse half-width and coincide 
quite well with the shadow region in Fig. 15 as expected. 

In a more realistic simulation we let the pube velocities be distributed uni
formly in the interval of ±25% around the average. The results from a mavinrnm 
coincidence counting is shown in Fig. 17. We note that the scatter in velocities is 
clearly represented in the figure, and that the standard deviation can be obu-uned 
reasonably accurately. However, the noise level is significantly enhanced, although 
tb» "shadow-effect" discussed before remains noticeable. 

In a third case we added a low level noise level to the simulations, as discussed 
in Sec. 5.2. 

The results are shown in Fig. 18 again for coincidence counting of local maxima 
in the two phase variations. In this case the results are entirely dominated by the 
reflection on the rapidly propagating noise pulses characterized by a pronounced 
"ringing" in the response as illustrated for one individual pulse in Fig. 4. To 
prove this point we repeated the calculations now using the WKB approximation, 
where these oscillations are absent. The results shown in Fig. 19 indeed contain 
only a uniform noise level with a slight peak around the origin consistent with 
the high velocity of the noise pulses. The individual counts come in units of 82 
because of the periodicity of the noise pulses, i.e. they all have the same velocity 
with both directions equally probable to begin with, and a pulse leaving through 
one boundary is reintroduced at the other. The pube transit time is 100 and for a 
total run of 8192 time steps each pulse will pass the reflection point approximately 
82 times. The local peak around the average velocity of the large scale pubes is 
completely masked by the noise and the method thus have its clear limitations. 
The basic ideas are however easily implemented and certainly worth trying out 
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Figure If. Coincidence coutUmg of local maximum points of the phase carve and 
maximum and minimum slope for a case without noise and with randomig injected 
pulses moving with a constant velocity- The characteristic half-width of the pulses 
maw be estimated as the distance between the top of the maximum slope histogram 
and the top of the maximum correlation histogram. 

for a two beam reflectometer. The presence of a clear peak can subsequently be 
taken as an indication of the absence of small scale noise in the plasma. 

It is plausible that a conditioned sampling of the record can give an unproved 
signal to noise ratio. One might for instance analyze only maxima which exceed a 
certain level. This refinement is worth considering, but it is outside the scope of 
the »resent study. 

The figures presented in this section all refer to the counting of local maxima. 
Evidently the same analysis can be repeated also for local minima, giving the same 
results since both pube polarities have the same probability in our simulations. 
Taking the average of the two investigations can give a slight improvement in the 
signal to noise ratio. 

Finally we remark that simple Monte Carlo simulations indicated that a con
siderable improvement of the estimation for the pube velocity distribution can be 
obtained if the record from three sampling positions are available. This scheme 
would however require the extension of the reflectometer to three frequencies, and 
may not be practically feasible. 

7 Discussion and Conclusions 
In this report we studied some basic features of the performance of a two-frequency 
reflectometer used as a diagnostic for random plasma fluctuations. Using a real
istic and tractable model for the plasma fluctuations we derived some analytical 
results for correlation and crosscorrelation functions for the temporally varying 
phase of the reflected signals. Numerical simulations were performed to illustrate 
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Figure 17. Coincidence counting of local maximum points of the phase curst for a 
case without noise but with randomhj injected pulses moving with a velocity which 
varies ±25% around an average. 
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Figure 18. Coincidence counting of local maximum points of the phase curve for 
a case with noise and with randomhj injected pulses moving with a velocity which 
varies ±12.5% around an average. The noise pulses introduce the periodic structure 
because their widths are comparable to the wavelength of the incomming wave, see 
Fig. 4b. 
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fstare 19. Coincidence eovUtng of local marimam points of the phase curve for 
a ease omhj with noise pulses bmt calculates' assmmmg the Wh'B approximation. 
Mote tkmt the periodic stnutmte seen in the fiamrt akvwe disappears. 

the practical applicability of tbe bask ideas of tbe reflectometer. We used a: 
ph> model far tbe density fluctuations by letting tbem be composed as a random 
superposition of pube-like structures. Evidently, our code allows investigation of 
more sophisticated models also. The studies were carried out for incoming elec
tromagnetic waves in ordmara polarnation, except for tbe results in Fig. 2 which 
were calculated for extraordinary polarnation. 

In a tokamak wave reflection can in principle occur at two different cut-off 
positions when tbe wave is launched from outside the torus. For an ordinary mode 
the cut-off position is where tbe wave frequency is equal to tbe plasma frequency, 
and far the extraordinary wave the cut-off frequency is approximately determined 

We assume a density profile: 

«(r) = no[l-(r/«) 2j«, 

(28) 

(29) 

where n« is tbe maximum density, a is tbe minor radius of tbe tokamak and r is 
the radial position. The variation of tbe B-field is: 

/Jo 
B = Bo- (30/ 

'/fc + r' 
where RQ is the major radius and BQ »the B-field on tbe axis. If the Aspect ratio: 
A s Ro/a and tbe frequency ratio F « w^co/ufoo, where tbe index 0 refers to 
values at r s 0 we can write the two cut-off frequencies normalised with respect 
to We* as: 

n<, = (1 - x2)o/7F (31, 

for the ordinary cut-off, and: 
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(32> 

fer the extraordinary tm-ol. In Fe». 20 the two cut-off* « r shown versus radial 
position far a typical case (JET), corresponding to a s 2. maximum density. 
«* ss 4 x 10'*m-J. aspect ratio. .4 » 2.5. and maximum B-ficld. S = 3.5T-

Evidentfy our numerical studies could have been carried out just as easily far the 
e3iUioidin«rypolargatk>o(seeFic.2ioca«a<esohitionforthgpoUraatioooftbf 
incoming wave). Thr analysis of Sec. 5.1 did not require any specific polarization. 

In applications of two-frequency reflectometers it is crucial that the frequeiKy 
dørrener between the two probiag waves is relatively constant. The absolute value 
of the frequency might on the other hand, at least far gentle plasma density gradi
ent, vary en a slow time scak compared to the transit time of the density pertur-

. There is in principle m way simple solution to this probtnn. Le. the seme 
' is used far both channeb of the reflectometer using one m ordinary, the 

other ia extraordinary polarnation. The two cut-off layers win far certain plasma 
pare—ter ranges be located at two nearby positions allowing investigations of the 
contJatioa of density luctuatioas in the two positions. Unfortunately this plasma 

range b uninteresting far JET and most of the large fusion experi-
r as Fig. 20 shows. It is seen here that no maun which extraordinary cut-off 

is selected, then a wave with the same frequency in ordner* polariza
tion will simply propagate through the plasma and be reflected at the inner valL 
Although the previously outlined scheme may be interesting fer smaller devices 
with relatively wjaher magnetic field, it is evidently unsuited frt relevant JET 
parawwttn. and here it seems necessary to operate with two different frequency 
generators, which ha«* to be stabilized or synchronized. 

The present study have assumed the density perturbations as a priori given, 
without discussing the actual nature of these fluctuations. In the report of Cost-
ley and Cripwell (1989) an interpretation in terms ot drift waves was advocated. 
However, this particular wavetype propagates predominantly in the direction per-

fffurc tO. Normmhxed cmt-off fnowencUs for ordinary end titimoriinar* mode 
m a rjpicei Utkmmtk case as a faction of rmdtmi posttum. a = 2. A = 2.5. mné 
F = 0.58. 
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pendicular to both the local magnetic field B, and the density gradient Vn0(r), 
with small modifications induced by magnetic shear. A significant radial prop
agation velocity is most likely to be found for acoustic type fluctuations where 
our model is directiy applicable or cyclotron waves, which however will ha\? a 
significant dispersion of individual pulses. 

Since Alfvén waves are incompressible, it might be expected that they should not 
be observable by reflectometer techniques. However, if these waves are propagating 
in a plasma density gradient, they may still give rise to local fluctuations in density, 
when the local plasma velocity associated with the wave moves plasma in and out 
along the gradient. 

Due to limitations in the COLSYS code, the present studies were carried out 
in one spatial dimension. In the limit where the WKB approximation is applica
ble it is actually possible to carry out the numerical simulations in a fully three 
dimensional toroidal model using codes applied for different problems by Hansen 
et al. (1988b, 1988c) or Bindslev and Hansen (1991). 

In summary we may state that our results indicate that a two-frequency re
flectometer can in a number of cases prove to be a most versatile method for 
diagnosing local density fluctuations in fusion related plasma experiments. When 
the density perturbation ha-e a velocity component in the direction defined by 
the probing electromagnetic wave beams, then this velocity component can be de
termined relatively accurately by a crosrcorrelation of the modulated pha«? of the 
reflected waves, where the modulation is caused mainly by density perturbations 
propagating through the reflection point (i.e. cut-off layer) for the two waves. The 
studies by Costiey and Cripwell (1989) were concerned primarily with density per
turbation propagating in the radial direction of the plasma i.e. they used normally 
incident probing waves, although also other angles of incidence could be used. 

The correlation technique gives results in terms of averaged velocities. We 
demonstrated that a relatively simple method, extremum coincidence counting, 
can in a number of nontrivial cases give valuable additional information. The 
actual interpretation of the results obtainea by the methods discussed here is a 
quite different question, and will require a detailed understanding of the physical 
mechanisms involved in the generation of the density fluctuations. 
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