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Abstract In this report some basic features of the perfoninance of a two fre-
quency reflectometer used as a diagnostic for random plasma fluctuations are stu-
died. Using a realistic and tractable model for the plasma fluctuations we derived
some analytical results for correlation and crosscorrelation functions for the tempo-
rally varying phase of the reflected signals. Numerical simulations were performed
to illustrate the practical applicability of the basic ideas of the reflectometer. The
studies were carried out mainly for incoming e ectromagnetic waves in ordinary
polarization.
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1 Introduction

In tokamaks and other types of plasina experiments. a diagnostic to measure
plaxma density fluctuations is important in order to oltain an understanding of
plasma turbulence and plasma transport. A measuring techzique denoted reflec-
tometry has been used for some years in tokamak experiments in vrder to measure
density profiles and their motion (see ¢. g.: Cavallo and Cano. 1932, Simonet. 1935.
or Sips. 1991). In a way the method is based on the same ideas as an ionosonde.
which is used for measuring the plasma density in th~ lower part of the ionosphere.
When a microwave beam is launched against the plasma surface it is reflected at
the position where the frequency is equal to the plasma cut-off frequency. By mea-
suring the phase change of the reflected wave it is passible to follow movements of
the plasm» surface. With a fixed-frequency oscillator only a single density point
can be monitored. while it is necessary to use a multi-frequency system in or-
der to detect simuitaneously the entire density profise. In order to interpret the
results, the pbase change of the wave is normally calculated according to the ap-
proximation of geometrical optics. often called the WKB approximation. If the
phase change is measured for all frequencies. the density profile can be calculated
from an Abel conversion assuming the WKB approximation. In most cases the
wavelength of the microwave is short compared to typical plasma density gradient
length and the approximation is rather good.

Recently the principles of a new technique for diagnosing microturbulence called
corrlation reflectometry was presented (Costley and Cripwell. 1989. and Cripwel:
and Costley 1991). Two microwave beams with a small difference in frequency are
launched against the density profile. The two phases can be measured versus time
and since these phases are functions of plasma cut-off layer positions, it is possible
by a crosscorrelation technique to detect the relative motion of plasma perturba-
tions between two different positions. By using a variety of frequency differences
between the two microwave beams it has been possible (Costley and Cripwell,
1989) to obtain a full dispersion curve for the plasma waves giving essential infor-
mation about the plasma turbulence.

In a plasma where the turbulence hLas characteristic scale lengths smaller thac
or of th= same order as the microwave wavelength. it is questionable if an analysis
of the measurements from correlation reflectometry based on the WKB approxi-
mation will ead to the correct conclusions. To investigate this question we have
solved the wave equation with a new numerical procedure, which can solve a sys-
tem of differential equations as a boundary value problem.

Statistical information on density fluctuation turbulence in tokamaks (and per-
haps other plasmas) may in principle be obtained from a two-frequency refiec-
tometer. However, the interpretatior. of the signals is difficult. An analysis based
on an analytic tieatment of the wave equation has recently been published by Zou
et al., 1991. This analysis requires several assumptions to be satisfied. The main
assumptions are that the characteristic Jength and time scale of the fluctuations
must be less than that of the unperturbed plasma, since a local Fourier transform
is applied, and that the turbulence level has to be low enough so the fluctuations
can be treated as a perturbation in the wave equation. An analysis without such
basic assumptions is only possible from a numerical calculation.

We carry out a performance study of a model of a two-frequency reflectom=ter.
A level of random plasma density fluctuations is modrlled in plane geometry by
superimposing moving density pulses on a given density profile. By the proper
choice of the shapes of these pulses, we are in principle able to model any spectram
for disturbances propagating in the direction along the density gradient. With the
speed of propagation known in the numerical experiment, we are able to determine
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the accuracy of the predictions of the ol wracteristic velocity deduced from the
crosscorrelation of the fluctuating phase si. nals of the reflectometer. Studies are
carried out for statistically distributed disturbance velocities and for varying levels
of a superimposed small-scale random noise component. The analysis uses the the
fullwave solution discussed above, but the accuracy of a somewhat simpler WKB
solution is tested also.

In Sec. 2 the WKB approximation and its limitations ar+ discussed briefly. Sec-
tion 3 gives the wave equation and derives the appropriaie boundary conditions.
and some numerical results are presented in Sec. 4. In Sec. 5. a discussion of the
plasma model and the correlation analysis can be found. Section 6 introduces a
pew data analysis method called coincidence counting, which in some cases may
extract more information out of the than the usual correlation tech-
nique. Finally. discussions and conclusions are given in Sec. 7

2 The WKB approximation

An electromagnetic wave injected into a plasma perpendicular to the magnetic
field may be reflected at a cut-off layer. For an ordinary wave (E-field parallel
to magnetic field) the cut-off frequen~y is: w = wype = /e2np/¢em. and for an
extraordinary wave the cut-off frequency is: w = ‘/ur;, +w?,. where w., = eBy/m.
An approximation for tL= phase of the reflected wave with respect to the phase of
the incoming wave is given in the book by Ginzburg. 1964:

.. pR
o) = 2 [ Nizwhas - m

where N is the refractive index, x the position co-ordinate. w the cyclic wave
frequency and R is the reflection point. The expression is exact if the plasma
density has a linear density variation. In this case the solution to the wave equation
can be expressed in terms of Airy functions. Since ."»e integral term is the normal
approximation of geometrical optics often calied the WKB approxiination, valid
if the wavelength is small compared to the characteristic gradient length, we can
interpret the —x /2 term as the phase jump at the reflection layer. If the refractive
index bas a linear dependence in an interval around the reflection point of the
order of some wavelengths we can therefore expect the expression (1) to be a
good approximation for the total phase shift. The correct condition for the WKB
approximation to be satisfied is according to Ginzburg. 1964:

o |41

e« ®
where )\ is the vacuum wavelength and x is the space co-ordinate. The inequality
shows that the WKB approximation breaks down if the diffractive index is too
small or if the derivative of the diffractive index is large. This means that the
approximation always breaks down close to the reflection point, i.e.: the phase
calculated from (1) will always be uncertain due to this fact. On the other hand it is
worth noting the 27 factor which shows that the correct parameter to be compared
to the gradient leng’* is A/2x. This is rather significant since the errors which may
occur by using the approximation can be shown to decrease exponentially with
this factor (Ginzburg, 1964).

To get a more precise idea of how close to the reflection point the approximation
can be used let us consider a specific case. We shall consider a plasma with a linear
increasing density according to the expression: n = ngz/mlg, where ng is the
critical density and m the number of vacuum wavelength from the plasma edge to
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the reflection point. The refractive index for an ordinary wave 5 N = /1 — nfn,.
The conditivn (2) will then be
Arx m!/3

Yo ()P

where Az is the minimum distance from the reflection point where condition (2)
s satisfied. From this we can see that for a steep density profile (m =~ 1) the un-
certainty using (1) may be of the order of Ag. and for very gentle density gradients
{m = 100}, it is of the order of a few Ag. For reflection of the extraordinary wave
the profile of refractive index is typical more flat which means that the approx;-
mation leads to a larger uncertainty in determination of the point of reflection.

~0.19m'/3, (3)

3 The full wave solution

3.1 The wave equation

We consider electromagnetic waves propagating in the r-direction in a plasma
with an inhomogeneous density n(z) in a constant magnetic field B,2. The wave
equation can be written as:

& E
rroi ~-e(§)E, (4)
where £ = xky with ko the wavenumber in free space. We have for the O-mode
that E = E: and € = ¢ and for the X-mode that £ = E, and € = £, + €7 /¢,
Here the components of the dielectric tensor are
. X(1+i2) _,_ Xy .
G+i2r-v2 =0z -y: 7 " 17z

The norma'ized density X, the normalized magnetic field Y. and the normalized
collision frequency Z are defined by

w?

x=k, Y=‘%. z=£. (6)

€xx=1 (5)

where () = (n(€)e?/egm}?} and w..(£) = eB(£)/m are the electron plasma
frequency and the gyro-frequency, respectively.

3.2 The boundary conditions

To solve the equation (4) we have to specify the necessary boundary conditions.
Assume the inhomogeneous part of the plasma is surrounded by a homogeneous
plasma i.e.: n = np for £ < 0 and n = n, for £ > a. In the homogeneous plasma
ranges the wave solution is the solution to eq.(4) with constant ¢:

E(£) = ¢y exp(iN,£) + c2 exp(—iNg§) (M

where N, is the x-component of the refractive index. The matching condition at
the border between the homogeneous and the inhomogeneous plasma is determined
by that the E-field and the derivative of the E-field (really the B-field) must be
continuous across the boundary. At the left boundary we let the incoming wave
have the amplitude ¢, = 1. If the E-field at the boundary is Ey the boundary
condition can be written as:

iN,Eo + E} = 2iN, (8)
where Ej is the -erivative of E(£) at £ = 0 and the constant ¢; is given by

Riso-R-592(EN) 7
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o= {E-1) (9
Al the right boundary. £ = & there will be no left-going wave. i.e.: ¢; = 0. which
gives the boundary condition:

iN,E.-E =0 (10)

where E] is the derivative of E(£) at £ = ¢ and ¢; = E_ exp(—1N,a). This means
that the wave solution for £ < 0 is:

E = exp(iN,£) + (Eo - 1) exp(—iN,£).
and for £ 2 & we get:

E = E,expiN;( - o)) (12)
where Eg and E, are the E-fields at the left and right boundary, respectively

(1)

4 Numerical solutions

The full wave equation (4) with the boundary cona’tions (2) and (Z0) was solved
by use of the numerical code COLSYS by Ascher, Christiansen and Russel, 1979.
This code can solve boundary-value problems for mixed-order systems of ordinary
differential equations. The solution method is based on spline collocation, and the
code automatically finds an appropriate distribution of mesh points in order to

A similar but more general system of equations taking into actount oblique
propegation with respect to the magnetic field solved by COLSYS v as treated by
Hansen et al, 1988a, in order to investigate wave conversion.

In Fig. 1a the wave solution for an ordinary wave propagating against a steep
density gradient is shown. The density is zero at the left boundary and it is equal
to twice the critical density at the right boundary. In Fig. 1b corresponding curves
for 2 wave in a density distribution with a smooth gradient are showr. A WKB

Figure 1. Wave solution for an nrdinary weve reflected at the cut-off position and
the density profile. a) a plasma with a steep density gradient, b) a plasma with a
smooth density gradient.
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Figure 2. Wawe solulion for en extra-ordinery wave reflected af the cul-off position.
a) a plasma with & steep density grudient, b) & plasma with & :mooth Aensity
gvadienl. The vanistion of the magnetic field is shown by the dashed lines.

solution will in this case give nearly the same solution. Corresponding results for
extra-ordinary polarization are shown in Fig. 2a and 2b. This polarization was
wsed by Cripwell and Costley 1991.

In order to see how 2 small narrow pulse will influence on the reflected wave Fig.
3 shows a mcdel with a pulse moving along a smooth density gradient. The pulse
half-width is in this case equal tn five wavelengths and has an amplitude equal
to 0.2 times the critical density. In Fig. 4a the phase of the reflected wave at the
Jeft boundary is shown as a function of time, calculated by COLSYS (solid line)
and by a WKB approximation according to formula (1) (dashed line). Similar
curves are shown in Fig. 4b with a more narrow pulse with a half-width equal
to one wavelength and of the same amplitude as in Fig. 3. It is seen here that
large differences in the wave-field will appear when a density pulse with a width
comparable to the wavelength moves in a standing wave.

5 Reflectometry modelling

5.1 The plasma model

In our numerical model the exact phase information from the reflected waves can
be obtained without some of the problems which occur in a real experiment eg.
wave scattering in various directions. These problems are treated in several of the

The objective of this work is to investigate what is the maximum amount of
information about the statistics of the plasma turbulence that we can obtain from
a perfect correlation reflectometer. With our full-wave calculation we only have
to introduce two assumptions concerning the plasma motion and density profile.
The first is that we assume that plasma motion is slow compared to the speed of
the electromagnetic modes, and therefore, we can calculate the wave pattern and

Rise-R-592(EN) 9
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Figure {. Phase of reflected wave versus time when a pulse is moving along the
density gradient. Solid kine is full wave solstion, and dashed line is WKB solution.
a) The half-width of the pulse is five wavelength, b) The holf-width of the pulse is

one wavelength.

thereby the phase of the reflected wave for a stationary plasma profile neglecting
plasma motion. The other assumption described in Sec. 3.2 is necessary in order
to have well defined boundary conditions. This requires that the one-dimensional
plasma is surrounded by regions of constant density. The plasma density profile is
separated into three parts. The stationary background density is given by:

n(€) = no§*(3 ~ 2¢)

10

(13)
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which is the lowest order polynomial with rero sipe a0 £ —~ Qand 2t € = | and
which s equal to 0 at § = 0 and equal to ng at £ = 1. On top of the stati>
mary demsity profile a noisy background is superimposed. The noise is generated
by superimposing a large sumber of bell-shaped pulbses with random positive or
negative amplitudes wituin a certain range, with given width, and with a random
velocity direction.

As the simplest model we describe the fluctuations in plasma density as com-
posed of a linear superposition of pulses having constant shapes and propagating
with constant velocity. The pulses may have M difierest shapes labelled by the
index {. One such pulse gives rize to a certain phase variation ¢¢(l — 1, " of the
clectromagnetic wave as detecied at the receiving antenna outside the plasma
We jet ¢, denote the time where the peak value of the density pulse (with la-
bel £) passes through the cut-off position in the unperturbed plasma profile. The
individual pulses are assumed to be integrable and to vanish for [t; — oc but
otherwise they can be chosen arbitrarily. In th following we assume the density
perturbations (o be pulse-like, but any other form (such as a wave-packet) can
be chosen depending oo the actual model for the fluctuations. With the density
pulses injected randosuly into the plasma and uniformly distributed in time we
may write the temoorally varying response in the phase signal as

. M N
W)=Y edt-1, (14)
t

where tae number of pulse responses N, originating frem shapes of type £ is itself
a quantity which varies over the es.semble. With ¢, ¢ being uniformly distributed in
a time record much longer than the duration of an individual response. we readily
obtain (Rice, 1944) the autocorrelation function for the fluctuating phase signal

R(r) = <ét)d(t+7)>=

M

v f Mtwtw)du[Zv. ma] (15)
t
where vy is the average number of structures of type £ passing the cut-off layer
per unit time. Note that there is in general no logical reason for the last term to
be vanishing. A power spectrum S(w) for the phase fluctuations is defined as the
Fourier trensform of R(r). and it is important to note that an arbitrary prescribed
spectrum can be realized by the modet (14). actually in indefinitely many ways.
by the appropriate choice of ¢¢ for £ =12, .M.

The result (15) refers to a one-frequency reflectometer, but it is easily general-
ized to its two-frequency counterpart. When the density pulse passes the cut-off
layer corresponding to the frequency of the second reflectometer it gives rise to a
phase variation

M Ny
0= Y wult-t;e- D/u,)) (16)
LA |

where u; # 0 is the velocity of the j-th pulse and D is the distance between the
two cut-off layers. The time ¢; ¢ is still referring to the crossing of the first cut-off
layer as in (14). Note that we use diflferent notations for the two phase signals,
i.e. ¢r and ¢ will probably look rather similar, but because of the difference in
Jocal plasma density (and possibly density gradients) at the two positions they
will not be identical The autocorrelation function for ¥(f) is nbtained in a form
quite similar to (15) while the more interesting crosscorrelation takes the form

Rise-R-592(EN) 11



R(r) 2 < O.(I);:-(t +1)>=

F 7
S(t¥r(t + 7 - Dfu)Plu)udt
2;.,//'_ r - D/u)P(n

M 1M

+ »y ot ”y tdt] . 17)

[ vt [ o]
where P(u) is the probability deacity of velocities u, which is here taken to be inde-
peadent of pulse shape. For cases of iaterest heve both polarities of demsity pulses
are equally probable and the last, comstast, term im (15) and (17) is vanishing.
As working hypothesis we first sssume that delz) = ya(t). which can actually
be 3 good approximation when the two cut-off layers are clor=. Wikh the previous
definition of S(w) we obtain the Fourier transform S (w) of (17) as

Selw) = S() [ ~D/"Pla)éa. (18)

For the case where all demsity pulses have the same welocity, ie. P(s) = §(n -x,)
we have the particularly simple case
Selw) = S(w)e™0/m (19)

showing that all frequency components undergo & phase chaag= proportiosal to
w with 3 coeficient D/, whick can be wsed to cetermine w, In this particular
case the crosscorrelation (17) is just a shited copy of the antocorrelation (15)
aad a characteristic velocity is obtained usambiguously. Heve S(w) comcides with
the crossspectrum with the present assumptions. However, is the case where the
difference between ¢¢(t) and ¥¢(t) is montrivial, it is no longer possible to write
Se(w) 33 a real spectrum with the phase varistion given in the form as in (19),
aad a velocity of propagation is 20 jonger wniquely defined.

In the case where the pulse velocities are statistically distrit =ted, we have to
solve (18) with the actual probability density P(x) even when the approximation
&¢(t) = 9e(t) remains applicable.

We coasidered two examples: first a box-kike distribution

i fr0<a<u<d
P(-)-{* bx0<e (20)

The integral in (18) can then be svived analytically with the result

/: DIty = eI e () + 5 + e VE() (21)
where a = a/b and Q = wD/a while E;(z) = [J° le~*dn. Using (21) we can
mmc(ls)mtlnlorni‘(n)e“‘mwuhl(ﬂ)downmF@Shmnlmsofa
Evidently, for a = 1 we recover the representasion (19), ie. {)) =Q. Fora< 1
we find that #(S2) is no longer a straight line, but has a curvature, which increases
with decressing a. Anotber observation is that the curve deviates from the slope
corresponding to that given by the average of pulse welocities, i.e. (a + b)/2 in the
present model for P(x). This line is dotted on Fig. 5.
In another model we assumed

P(s) = c—:’—;e"“"""”. (22)

12 Rise-R-592(EN)
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Figure 5. The function 8(S2) calculated for a boz-like pulse velocity distribution for
two values of a = a/b, see (20) and (21). The dotted line shows the average pulse

velocity. a) a = 0.67 and b) a = 0.33.
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Figure 6. The function 6() calculated jor a Gaussian pulse velocity distribution
Jor two values of a. The dotted line shows the average pulse velocity. a) a = 0.67
and b) a = 0.33.

The integral in (18) was evaluated numerically and the curve 8(2) with Q = w/o
is shown in Fig. 6. Again, in the limit o — 0 we recover (19). For o > 0 we again
find that ¢(f2) is no longer a straight line and that its average slope can deviai~
from the one determined by u, in (22), see dotted line or Fig. 6. The model (22)
is used only in cases where it is safe to assume that P(u <0) = 0.

We may conclude that the slope of the phase function 6(f1) gives a quite ac-
ceptable approximation to the average pulse veclncity for narrow pulse velocity

Riss-R-592(EN) 13



Figure 7. An ecample of the noise shown in a constant dcnsity plasma background.
Note that we reguire the noise to vanish at the boundaries.
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Figure & The frequency spectrum of the phase variation of the reflected signal
obtained from the noise shown in Fig. 7.

distributions P(u) in (18). This approximation deteriorates for increasing scatter
of pulse velocities, and eventually the results can depend critically on the actual
choice of P(u).

In Fig. 7 an example of a plasma of constant density superimposed with the
noise is shown. The average amplitude of the noise varies with position with a
maximum of z = 10z. In Fig. 8 a spectrum of the phase variation due to this
noise is shown.

Finally, we mode] plasma waves also by pulses of random positive or negative
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Figure 9. Density profile versus time. a) Only notse pulses are included, b). Both
wave and noise pulses are included.

amplitudes, random widths, and moving with a given average velocity. The pulses
each have a constant velocity which is a sum of the average velocity plus a certain
random velocity specified to some limited interval. Initially the pulses are dis-
tributed randomly in space. During a run pulses disappear when they move out of
the plasma, but new pulses are injected at the other boundary at random times
with a given average injection rate, specified by the average number of pulses. In
Fig. 9a an example of a densuy profile with noise pulses included is shown, and
in Fig. 9b both noise pulses and wave pulses are included.

The phase of the reflected wave is calculated for each time step. Phase curves
for two different reflection points i.e. two frequencies are produced for correlation
analysis. An example of the phase variation with time is shown in Fig. 10. The
phase variation is restricted to the interval {—m;7]. In practice it need not be
evident how this restriction is achieved and problems may occur, which are not
accounted for in the constructions (14) or (16)

In the present study we used density perturbations generated by a superposition
of puls-like individual perturbations, Evidently any form can be used for ¢ and
¥ in (14) and (16), also long wave ;'ackets and similar. It is possible to perform a
quite detailed simulation of any actually observea spectrum of perturbations.

5.2 Correlation analysis

From our model calculation we get the two phase curves as discussed above. In
a real experiment the amplitude of the reflected wave v:iii be smaller than the
injected wave due to geometrical expansion of the beam, the s-attering due t-
plasma turbulence and to plasma damping. However, these processes should not
have any effect of importance on the phase of the reflected wave. On the other
hand it is probably very difficult to extract information about the plasma from
amplitude (power) measurements. Since the phase shift depends on the varia-
tion of the plasma density between the antenna and the reflection point it is not

Riss-R-592(EN) 15
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Figure 10. An example of the phase as function of time for 8192 time steps.

possible to know a priori which information can be extracted from the phase mea-
surements. By considering a small perturbation moving along x we find a large
contribution when the perturbation passes the cut-off point which decreases when
the perturbation moves to lower densities. This decrease is monotonic when the
perturbation length is larger than the wavelength, but oscillating when the per-
turbation is short compared to the wavelength (See Fig. 4). The phase change in
the reflected signal will depend on the size and shape of the perturbation, and the
density function in front of the cut-off layer, especially the slope of the density
near the cut off-layer. If the reflection point of the two relectometers are close,
the two phase change signals should be similar and since the large contribution
comes at the time when the perturbation passes the cut-off layer it should be
possible by correlation techniques to determine the time of flight of the passing
perturbations. If the distance between the two reflection points is determined by
single reflectometry the perturbation velocity may subsequently be calculated. To
investigate how well this can be done if there is a spread in perturbation velocity
and there is other kind of turbulence in the plasma is the objective for the follow-
ing investigation. If the phase signal exactly gives the position of the cut-off layer
the problem is easy. However since this is not the case the solution to the problem
is not obvious.

Let the two phase-signal be ¢, () and ¢,(t). Then we can calculate the correla-
tion function:

l T
R =7 [ orae - myae (23)
and the Fourier transform of the correlation function:
00
Fw=~ [ R@)evrdar (24)
27 Jooo

From a numerical point of view the Fourier transform of the correlation function
can, however, be found in a more easily wave as:

F(w) = G(¢r(w))H" (¢2(w)) (25)

16 Rise-R-502(EN)



where G is the Fourier transform of ¢, and H* is the complex conjugate of the
Fourier transform of ¢,. In this way the calculation can utilize the fast Fourier
transform.

In the case where the functions ¢;(f) and ¢2(t) are only known in a discrete
number of points, the correlation function and the Fourier transform has the
following forms:

N-1

R_,' = Z g_,'.u-hk (2‘;,\
k=0
N-1

Hp= )" hye?mn/N (27
k=0

If the phase responses from a perturbation passing the cut-off layers corre-
sponding to the two reflectometer frequencies are similar we should expect the
correlation function R(7) to be peaked, and the time shift of the peak should
be the time of flight of the perturbation. From the Fourier trensform F(w) we
can obtain the distribution of perturbation amplitudes and the phase shift versus
frequency, and thereby the perturbation velocity.

In Fig. 11a the correlation function is shown in a case with wave pulses propa-
gating in a plasma without any noise. All the pulses move with the same velocity.
The corresponding crossamplitude spectrum is shown in Fig. 11b, and in Fig. 11¢
is shown the phase shift of the various Fourier components. The peak of the corre-
lation function is, of course, shifted corresponding to the pulse velocity. However,
the shift is of the order of 20 time steps and, therefore, not easily recognizable on
Fig. 11a

In Fig. 12a the correlation function is shown in a case with wave pulses propa-
gating in a plasma without any noise. All the pulses move with a velocity chosen
randomly in a range of +0.2 times the average velocity. The corresponding cross-
correlation function is shown in Fig. 12b, and in Fig. 12c is shown the phase shift
of the various Fourier components.

In Fig. 13a the correlation function is shown in a case with wave pulses prop-
agating in a plasma without any noise. All the pulses move with a velocity cho-
sen randomly in a range of +0.5 times the average velority. The corresponding
crossamplitude spectrum is shown in Fig. 13b, and in Fig. 13c is shown the phase
shift of the various Fourier components.

In Fig. 14a the correlation function is shown in a case with wave pulses propa-
gating in a plasma with noise pulses included. The spread in wave pulse velocity
is 0.2 times the average velocity. The corresponding crossamplitude spectrum is
shown in Fig. 14b, and in Fig. 14c is shown the phase shift of the various Fourier
components.

All the shown correlation functions up to now have been calculated from phase
curves consisting of 8192 points (time steps). Some improvements in the correlation
function can be obtained by dividing the phase curve into two or more equal
parts, calculating the correlation function for each and taking the average of the
results. This will reduce the uncertainty of the individual Fourier components on
the expense of a reduced resolution of the spectrum caused by the reduction in
individual record lengths. In fact this was done for all the results presented in the
figuses from (11) to (13), where the phase curve was divided into two parts. for
the last two figures: Fig. 14a and b, and Fig. 14 the phase function was divided
into four parts.

It is evident that the estimate on #(w) becomes increasingly uncertain when the
velocity-spread of the structures or pulses is increased, compare for instance Figs.
1ic, 12¢ and 13c. The addition of small scale noise, as in Fig. 7, has a similar
effect. The estimated value of #(ws) becomes particularly uncertain at frequencies
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Figure 11. a) Crosscorrelation function for the two reflectometer phases in a case
where many pu’ses are moving through a noise-free plasma, b) crossamplitude
spectrum for the same rase, c) velocity of the Fourier components.

where the spectral amplitude is small, since the phase is here obtained as the ratio
of two small quantities. Some small gaps in e.g. Fig. 13c are caused by this effect.

6 Extremum coincidence count-
ing

The analysis of the foregoing section demonstrated that an average pulse velocity
could be estimated from the Fourier transform of the crosscorrelation for the phase
fluctuations of the phase fluctuations. The resulting crosspower spectrum can be
written as S(w)e~**“) in terms of two real quantities, a crosspower S(w) and a
phase 8(w), where the slope of the latter function gave a good approximasion to the
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Figure 12. a) Crosscorvelation function for a case where many pulses are moving
through a noise free plasma with a £0.2 spread in velocity, b) crossamplitude
spectrum for the same case, c) velocity of the Fourier components.

average pulse velocity for most practical purposes. One cannot on the basis of the
phase spectrum &(w) in practice distinguish the width of the velocity distribution
of the propagating pulses. In this section we outline a simple alternative method,
which at least for a range of parameters can distinguish between the two limits.
The idea can most appropriately be termed extremum coincidence counting; every
time the first record of the phase fluctuations exhibit a local maximum, the second
record is searched for local maxima in a time window, which can in general extend
before and afte: that particular reference time. (This is of course quite simple
when the entize recorded is available. With analogue methods only later times are
available unless a pretriggering arrangement can be devised). Local extrema are
selected as reference events because they are likely to represent the time of 8 local
extremum in deviation from the unperturbed plasma profile. This will be the case
when the density of pulses is low, i.e. they are nonoverlapping. Generally there will

Rise-R-592(EN) 19
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Figure 18. a) Crosscorrelation function for a case where many pulses are moving
through a noise free plasma with a 0.5 spread in velocity, b) crossamplitude
spectrum for the same case, ¢} velocity of the Fourier components.

be a number of local extrema in record two, scattered around the reference time,
tr, where an extremum was found in record one, and most of these are entirely
uncorrelated. However one particular extremum at time t = tg + D/u will be
observed with large probability; this is caused by the same pulse when it passes
the second cut-off layer and the two events are strongly correlated.

As an illustration we considered a case where all pulses had the same velocity
and only their time of introduction into the system was chosen randomly. In
Fig. 15 we show the results from a coincidence counting where local mazima
were considered. There was no additional noise introduced in this simulation.
As expected, we observe a clear peak in the countings at a time corresponding to
D/U,. Since all pulses propagate outward the peak is one-sided. The countings for
negative times thus give the noise level, i.e. the contribution from local maxima
in record two which have no relation to those in record one. Note that due to
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Figure 14. a) Crusscorrelation function for a case where many pulses are moving
through a plasma with a noisy background, b) crossamplitude spectrum for the
same case, c) velocity of the Fourier components.

the possibility of overlapping pulses, a loca: maximum need not coincide with the
actual peak originating from an individual pulse. For reflection from narrow pulses,
giving steep local density gradients, we find that one pulse gives rise to a phase
“ringing”, see Fig. 4, characterized by a series of local extrema. One particular
feature of Fig. 15 might be emphasized; there is an apparent drop in the noise level
before and after the peak at D/u,. We argue that the local extrema of small pulses
are likely to be masked if they appear on the wings of larger ones, and hence their
contribution to the extrema in the phase record will be missing in the vicinity of
the time D/u,. The width of this noise-shadow region gives an estimate for the
time it takes one pulse to pass through the cut-off layer. The pulse width can then
be estimated since its velocity is also determined from the figure. As an additional
test of this hypothesis we differentiatec. the phase record from the second cut off
Iayer, and analyzed it for extremum coincidence. The results shown in Fig. 16
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Figure 15. Coincidence wunting of local mazimum points of the phase curves
Jor a case without noise and with randomly injected pulses moving with constant
velocity.

clearly demonstrate an advance in time for its local maxima (i.e. points where the
original record has its steepest positive gradients) and a delay for its local minima
(steepest negative gradients it the original record). The time difference between
the two coincidence peaks is an indicator for the pulse half-width and coincide
quite well with the shadow region in Fig. 15 as expected.

In a more realistic simulation we let the pulse velocities be distributed uni-
formly in the interval of £25% around the average. The results from a maximum
coincidence counting is shown in Fig. 17. We note that the scatter in velocities is
clearly represented in the figure, and that the standard deviation can be obtxined
reasonably accurately. However, the noise level is significantly enhanced, although
th» "shadow-effect” discussed before remains noticeable.

Ir a third case we added a low level noise level to the simulations, as discussed
in Sec. 5.2.

The results are shown in Fig. 18 again for coincidence counting of local maxima
in the two phase variations. In this case the results are entirely dominated by the
reflection on the rapidly propagating noise pulses characterized by a pronounced
“ringing” in the response as illustrated for one individual pulse in Fig. 4. To
prove this point we repeated the calculations now using the WKB approximation,
where these oscillations are absent. The results shown in Fig. 19 indeed contain
only & uniform noise level with a slight peak around the origin consistent with
the high velocity of the noise pulses. The individual counts come in units of 82
because of the periodicity of the noise pulses, i.e. they all have the same velocity
with both directions equally probable to begin with, and a pulse leaving through
one boundary is reintroduced at the other. The pulse transit time is 100 and for a
total run of 8192 time steps each pulse will pass the reflection point approximately
82 times. The local peak around the average velocity of the large scale pulses is
completely masked by the noise and the method thus have its clear limitations.
The basic ideas are however easily implemented and certainly worth trying out
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Figure 16. Coincidence courting of local mearimsm points of the phase curve and
marimam and minimum slope for a case without noise and with randomly injected
puises moving with a constant velocity. The characteristic half-width of the pulses
may be estimated as the distance between the top of the marimum slope histogram
and the top of the mazimum correlation histogrem.

for a two beam reflectometer. The presence of a clear peak can subsequently be
taken as an indication of the absence of small scale noise in the plasma.

It is plausible that a conditioned sampling of the record can give an improved
signal to noise ratio. One might for instance analyze only maxima which exceed a
certain Jevel. This refinement is worth considering, but it is outside the scope of
the present study.

The figures presented in this section all refer to the counting of local maxima.
Evidently the same analysis can be repeated also for local minima, giving the same
results since both pulse polarities have the same probability in our simulations.
Taking the average of the two investigations can give a slight improvement in the
signal to noise ratio.

Finally we remark that simple Monte Carlo simulations indicated that a con-
siderable improvement of the estimation for the pulse velocity distribution can be
obtained if the record from three sampling positions are available. This scheme
would however require the extension of the reflectometer to three frequencies, and
may not be practically feasible.

7 Discussion and Conclusions

In this report we studied some basic features of the performance of a two-frequency
reflectometer used as s diagnostic for random plasma fluctuations. Using a real-
istic and tractable model for the plasma fluctustions we derived some analytical
results for correlation and crosscorrelation functions for the temporally varying
phase of the reflected signals. Numerical simulations were performed to illustrate
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a case with noise and with randomly injected pulses moving with a velocity which
varies £12.5% around an average. The noise pulses introduce the periodic structure

because their widths are comparable to the wavelength of the incomming wave, see

Fig. 4b.

Figure 18. Coincidence counting of local marimum points of the phase curve for



ple model for the density fluctuations by letting them be composed as a random
superposition of pulse-like structures. Evidently, our code allows investigation of

tromagnetic waves in ordinary polarization, except for the results in Fig. 2 which

e case only with noise pulses but calculated assuming the WKB epprotimation.
the practical applicability of the basic ideas of the refiectometer. We used a sim-
more sophisticated models also. The studies were carried out for incoming elec-

Figure 19. Coincidence counting of local marimum points of the phase curve for
Note that the periodic structure seen in the figure abrve disappears.

In a tokamak wave reflection can in principle occur at two different cut-off

positions when the wave is launched from outside the torus. For an ordinary mode
the cut-off position is where the wave frequency is equal to the plasma frequency.

and for the extraordinary wave the cut-off frequency is approximately determined

by:

(28)

o — e =,

We assume a density profile:

(29)

n(r) = noll - (r/a)*}",

where ng is the maximum density, a is the minor radius of the tokamak and r is

the radial position. The variation of the B-Beld is:

(30;

Ro
R+’

B =By
where Ry is the major radius and By is the B-field on the axis. If the Aspect ratio:

A = Ro/a and the frequency ratio F = wpeo/wcso, Where the index O refers to

values at r = 0 we can write the two cut-off frequencies normalized with respect

(31,

o = (1-2*)°*F

for the ordinary cut-off, and:
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for the extraordinary cut-off. In Fiz. 20 the two cut-offs are shown versus radial
position for a typical case (JET). correspondiag to a = 2. maximun. density.
ng = 4 % 10'%m~3_ aspect ratio. 4 = 2.5. and maximum B-field. B = 3.57T.

Evidently our numerical studies could have been carried out just as casily for the
extraordinary polarization (see Fig. 2 for a wave solution for this polarization of the
imcoming wave). The analysis of Sec. 5.1 did not require any specific polarization.

In applications of two-frequency reflectometers it is czucial that the frequency
difference between the two probing waves is relatively constant. The absoluze value
of the frequency might on the other hand. at least for gentle plaszma density gradi-
e, vary cn a slow time scale compared to the transit time of the density pertur-
bations. There is m priaciple a very simple solution to this problem. ie. the same
gemerator is used for both channels of the reflectometer using one in ordinary. the
other ia extraordinary polarization. The two cut-off lavers will for certain plasma
parameter ranges be located at two nearby positions allowing mvestigations of the
correlation of density fluctuations in the two positions. Unfortunately this plasma
parameter range is uninteresting for JET and most of the large fusion experi-
ments, as Fig. 20 shows. It is seen here that no matter which extraordinary cut-off
frequency is selected. then a wave with the samre frequency in ordinary polariza-
tion will simply propagate through the plasma and be reflected at the inper wall.
Akbough the previously outlined scheme may be interesting for smaller devices
with relatively woaker magnetic Seld. it is evidently unsuited for rejevant JET
parameters, and here it seems pecessary to operate with two different frequency
generators. which have to be stabilized or synchronired.

The present study have assumed the density perturbations as a prior. given.
without discussing the actual nature of these fluctuations. In the report of Cost-
ey and Cripwell (1939) an interpretation in terms of drift waves was advocated.
However, this particular wavetype propagates predominantly in the direction per-

Figure 20. Normahzed cul-off frequencies for ordinery end extraordinary mode
™ s typical tokamak case a5 @ function of redial position. a = 2. A = 2.5. end
F =0.58.

quency
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pendicular to both the local magnetic field B, and the density gradient Vn,(r),
with small modifications induced by magnetic shear. A significant radial prop-
agation velocity is most likely to be found for acoustic type fluctuations where
our model is directiy applicable or cyclutron waves, which however will hav> a
significant dispersion of individual pulses.

Since Alfvén waves are incompressible, it might be expected that they should not
be observable by reflectometer techniques. However, if these waves are propagating
in a plasma density gradient, they may still give rise to local fluctuations in density,
when the local plasma velocity associated with the wave moves plasma in and out
along the gradient.

Due to Limitations in the COLSYS code, the present studies were carried out
in one spatial dimension. In the limit where the WKB approximation is applica-
ble it is actually possible to carry out the numerical simulations in a fully three
dimensional toroidal model using codes applied for different problems by Hansen
et al. (1988b, 1988c) or Bindslev and Hansen (1991).

In summary we may state that our results indicate that a two-frequency re-
flectometer can in a number of cases prove to be a most versatile method for
diagnosing local density fluctuations in fusion related plasma experiments. When
the density perturbation hae a velocily component in the direction defined by
the probing electromagnetic wave beams, then this velocity component can be de-
termined relatively accurately by a crosscorrelation of the modulated phas<~ of the
reflected waves, where the modulation is caused mainly by density perturbations
propagating through the reflection point (i.e. cut-off layer) for the two waves. The
studies by Costiey and Cripwell (1989) were concerned primarily with density per-
turbation propagating in the radial direction of the plasma i.e. they used normally
incident probirng waves, although also other angles of incidence could be used.

The correlation technique gives results in terms of averaged velocities. We
demnnstrated that a relatively simple method, extremum coincidence counting,
can in a number of nontrivial cases give valuable additional information. The
actual interpreiation of the results obtainea by the methods discussed here is a
quite different question, and will require a detailed understanding of the physical
mechanisms involved in the geccration of the density fluctuations.
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