View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

DTU DTU Library

i

LINPROG: A linear-programming code developed at Risg

Kirkegaard, Peter; Lang Rasmussen, Ole

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kirkegaard, P., & Lang Rasmussen, O. (1990). LINPROG: A linear-programming code developed at Risg.
Roskilde: Risg National Laboratory. Risg-M, No. 2797

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13760072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orbit.dtu.dk/en/publications/linprog-a-linearprogramming-code-developed-at-risoe(0f12b192-eb9b-4335-bb00-72744c237869).html

LINPROG: Risg-M-2797

A Linear-Programming Code
Developed at Risg

Peter Kirkegaard and Ole Lang Rasmussen

Risp National Laboratory, DK-4000 Roskilde, Denmark
March 1990

Abstract A computer code LINPROG written in Standard FORTRAN 77 has been developed
at Risp for solving medium- to large-scale linear programming problems. It runs primarily on a
VAX-8700 computer, but also on other systems where virtual memory is available. LINPROG
uses the revised simplex method with the Forrest-Tomlin updating scheme of the inverse hasis.
Sparse-matrix techniques are applied throughout. A comprehensive test and verification study
has been performed with data sets provided by local users and with data sets available in the
literature,

ISBN 87-550-1541-7
ISSN 04186435

Grafisk Service Risg 1990

Contents

1 Introduction

2 LINPROG User’s Guide

2.1 Preparation of input: Control File
2.2 Preparation of input: Matrix File oo o000
2.3 Interpretation of output
24 Programfiles e
2.5 Dump/restart facility Lo
2.6 Binary output and report writersl
2.7 LINPROG running on a VAX computer
2.8 [Imstallation of LINPROG,

3 The Simplex Method: An Overview

3.1 Standard formof the LPo Lo
3.2 The basis exchange mechanism
3.3 Thesimplex algorithm 0o o oo

4 Useful Matrix Relations

4.1 The Sherman-Morrison identity Lo L
4.2 FElementary matrices Lo
4.3 Column replacement updating L L.
4.4 Permutation matriceso e e e e e
4.5 LU-factorization e e

4.6 Decomposition of triangular matrices into elementary matrices
5 FElementary Product Forms

5.1 The standard product form

5.2 Product formof the LU typeo

6 Re-Inversions

6.1 Decomposition arithmetics and eta vectors
6.2 Pre-orderingofrows and columns Lo
6.3 Pivot selection strategy for sparsity preservation
6.4 Modifications to ensure numerical stability
6.0 Sparse-matrix implementationdetailso 0 o000
6.6 Algorithmic description of the inversion
6.7 Possible improvements L

7 The Forrest-Tomlin Procedure
7.1 General outline

7.2 Updating of product representation,
7.3 Interfacing Forrest-Tomlin with simplex, ..
7.4 Implementation

8 Miscellaneous Features
8.1 Boundsandranges e e
8.2 Simplex initialization: CRASH and zero-slack elimination
8.3 Finding a first feasible solution: Phase 1
8.4 Pricing strategies. Cycling. L o
8.5 Scaling, LP tolerances, and numerical stability.

Risg-M-2797

12
16
16
17
19
20

20
21
21
23

24
24
24
25
25
26
26

27
27
28

30
30
31
31
33
33
34
35

35
35
38
41
42

43
43

48
83
54

8.6 Sparse-matrix and other programming techniques 57

9 Test of LINPROG 58
9.1 Sourcesoftestproblems 58
9.2 Listoftestresults 59
9.3 Commentsonthetestproblems,, 63

10 Summary and Conclusions 64

Acknowledgements 65

References 66

APPENDIX - 68
Al: Report writers in FORTRAN and PASCAL 68
A2: Algorithmic description of LINPROG 71
A3: Subroutines in LINPROG, 73

Index 75

4 Risg-M-2797

1 Introduction

The computer code LINPROG is intended for solving medium- and large-scale problems of linear
programming (LP) in which we want to minimize (or maximize) a given linear function, called
the objective function, subject to a set of linear equations and inequalities, called constrainis
(the equivalent terms restraints and restrictions are also in common use.) Let us write our linear
program in the following form:

n, 3
Minimize z= 3} ¢z;
i=1
. e 3 (1)
subject to 2oa5z; R b (i=1,...,1) r
i=1
and r;20(G=1,...,n,). J
The symbol R; stands for a restriction {ype, which must be either <, 2, =, or dummy (mean-

ing there is no restriction). The problem (1) has n, nonnegative struciural variables and I
constraints.

Linear programming problems arise in many different fields of application, and typically
the LP models come into use where resources are limited in some way or another. At Risg
LINPROG and its predecessors have been used to sotve linear programs for finding optimal fuel
management schemes in a nuclear reactor, for predicting flow distributions of various types of
energy in complex nationwide energy systems, and for allocating scarce resources in economic
planning,

We give below an illustrative example of a small LP problem and choose for this purpose the
classical diet problem. Suppose for example that the budget manager of a nursing home wishes
to purchase, at minimum cost, suitable quantities of a number of available food types, so that
the daily diet provides the occupants with prescribed minimum values of nutrients {protein,
vitamin, etc.). In our example, which is taken from [1], there are n, = 3 food types: poultry,
spinach, and potatoes. The daily requirements of nutrients per person are at least 65 grams of
protein, 90 grams of carbohydrate (“energy”), 200 milligrams of calcium, 10 milligrams of iron,
and 5000 international units of vitamin A. Table 1 shows the costs and nutritive food values
per gram of each food type. If the quantities of poultry, spinach, and potatoes, are denoted
Iy, Ty, T3, respectively, we can formulate the diet problem as a linear program conforming with

Poultry Spinach Potatoes

Costs (cents) 0.40 0.15 0.10
Protein (g) 0.20 0.03 0.02
Carbohydrate (g) 0 0.03 0.18
Calcium (mg) 0.08 0.83 0.07
Iron (mg) 0.014 0.02 0.006
Vitamin A (I.U) 0.80 73 0

Table 1. Nutritive value of foods (from Nazareth)

Risp—M-2797 5

(1)
Minimize z= 0.40z; +0.15z2 + 0.10z3)

subject to 0.20z; 4+ 0.03z2 + 0.02z3 > 65
0.03z5 +0.18z3 > 90 2)
0.08z, + 0.83z2 4+ 0.07z3 > 200
0.014z, + 0.02z2 + 0.006z3 > 10
0.80x, + 73z > 5000
and 2, >0, 2, >0, 23 >0.

e

7/

We shall return to this example in connection with the User’s Guide for LINPROG, Section 2.

The formulation (1) may be considered as the default problem setup for LINPROG, for as
we shall see later, the code can deal with a number of modifications and extensions to (1). For
example, it can be used to maximize instead of minimize. Moreover the nonnegativity conditions
z; > 0 for structural variables can be replaced by two-sided bounds £; < z; < uj, or ; may be
either a fixed or a free variable. Other common LP extensions, such as parametric and integer
programming, are not included in LINPROG.

LINPROG solves the LP problem by the simplex method (see Section 3). It is a “stand-alone”
code written in standard-conforming ANSI FORTRAN 77, except for a few small subroutines
(see Appendix A3). However, its use is not restricted to a FORTRAN environment. All data
transfers between LINPROG and the user are made via files. The input matrix format complies
with the de-facto standard for commercial LP codes, in particular IBM’s system MPSX[2].

At Risg the LINPROG code is installed at a VAX-8700 computer, but it is able to run on
other systems as well with only minor modifications, provided virtual memory is available. In
fact we have successfully tesied LINPROG on an Apollo DN10000, a SUN 3/75, and a UNISYS
A6 computer. (We have also made a PC-version of the code with reduced array bounds, but
this is able to solve only small problems.)

LINPROG has undergone a great deal of development, enhancement and modification over
the years, in order to keep abreast with the demands from the users for solving larger and larger
problems in an efficient and reliable way. The current version is able to solve LP problems that
contain thousands of variables and constraints, hence with perhaps many millions of elements
a5 in the constraint matrix. In typical practical problems, only a small fraction of these elements
will differ from zero. LINPROG takes advantage of this by using “sparse-matrix” techniques.

In addition to LP test problems supplied by Risg researchers, we have collected a great deal
of sample cases from outside. The NETLIB collection of LP data sets, which is in the public
domain {3], is one of the most important and has proved very valuable in testing and debugging
LINPROG.

There are several reasons why we preferred to develop and maintain our own LP system at
Risg instead of buy or rent a commercial one. Apart from saving the cost of an external system,
we obtain the flexibility of being able to install the code on different computers, when this is
appropriate. With our own code it is also easier to provide users with programmatic interfaces
to their application software.

One of our main design criteria for LINPROG was to keep the program manageable in size.
We have therefore concentrated on implementing what we consider to be the most important
facilities, abandoning many of the more sophisticated capabilities found in larger commercial
systems.

The contents of this report is organized in such a way that Section 2, the LINPROG User’s
Guide, contains all the practical information a potential user will need in order to prepare an
LP input for LINPROG, solve the problem, and interpret the results. The rest of the report
contains a documentation of the mathematical methods, supplemented with some programmatic
details, and a short account of test results. This material is not needed for routine running of

LINPROG.

6 Risg-M-2797

2 LINPROG User’s Guide

At this place we shall present a User’s Guide for LINPROG, and in doing so we make repeated
use of the small sample problem in the Introduction.
We shall give instructions on how to prepare input data for the code, and we shall also explain

the various parts of the output produced.
In the following a number of technical LP phrases will be used. Although they will be ex-
plained in later sections, they might confuse the unprepared user, so we shall give a brief LP

“vocabulary” below:

Activity: Value of some LP variable,

Basic index set: The set of variable indices corresponding to the current basis.

Basis: The subset of the LP variables that determine the current solution are
said to be basic or to form the basis. The precise definition is given in
Section 3.

Constraint Matrix: Totality of the coefficients a;; in (1).

Feasibility: A set of variables is said to define a feasible point or a feasible solution if
all constraints are satisfied.

Infeasibility: We have infeasibility when not all constraints can be satisfied.

Inversion: The subset of basic variables defines the basis matriz. From this we may
obtain the solution by a matrix inversion. This is discussed in Section 6.

Rhs: Right-hand side of the constraint matrix.

2.1 Preparation of input: Control File

For a standard run of LINPROG you need two files for your input data. The first one is called
the Centrol File. It contains a verbal instruction set for solving the LP problem(s) in question,
with one instruction per line. Each instruction contains a keyword, or a keyword followed by a
value. An example:

SOLUTION

MAXITS 10000

EIEC

BINOUT

DUMP

EIEC
PEND

The position of a keyword within a line is immaterial, only the line is limited to 72 charac-
ters. To be recognized, keywords must be unabridged. All letters must be in uppercase, The
keywords EXEC and PEND are special in the sense that they control the job stream: EXEC
initiates another LP, and PEND tells that there are no more problems to solve. The other key-
words are called numerical if they are followed by a value, otherwise they are action keywords.
Commonly, the numerical keywords and the action keywords are called descriptive keywords.
Between the top of the Control File and the first EXEC, or between two EXECs, the descriptive
keywords may come in any order, and this order has no bearing on the order of performing the
corresponding LINPROG tasks. Together they specify modes for solving a single problem. All
descriptive keywords are optional.

We give below the complete list of action keywords available in the current release of LIN-

PROG:
ECHO Prints an echo of the Matrix File (Section 2.2)

ELTAB Prints column and row counts of nonzero LP matrix elements

Risg-M-2797 7

PICTURE Prints a picture of the distribution of nonzeros in the LP matrix
DUMP Dumps the basic index set on a file
RESTART Restarts LINPROG by reading the basic index set from a file

MAX Tells that this LP is a maximization problem (by default it would be minimiza-
tion)

SOLUTION The solution will be printed, both its row and its column part (if omitted, only
the optimal value will be printed)

BINOUT Stores the solution as unformatted (binary) records on an output communica-
tion file which can later be read by another program

We have designed the default settings in LINPROG in such a way, that you probably will need
the numerical keywords only on rare occasions. They fall in two groups. In the first group the
associated values are integers, in the other they are floating-point quantities. First we list the
5 keywords with integral values:

MAXITS Gives an upper limit of simplex iterations. By default, or by specifying 0, no
limit is assumed.

MAXCPM Gives an upper limit of the CPU time allocated to a single problem. By default,
or by specifying 0, no limit is assumed (the time will be checked after each re-
inversion, cf. Section 6.)

LOGFRQ Produces a log of the simplex iteration at every LOGFRQ iteration step. By
default, or by specifying 0, no iteration printout will be given. Negative values
of LOGFRQ are also allowed. In that case |LOGFRQ)] gives the frequency of
the iteration printout, and in addition a map of the variables in the initial basis
is printed (the numbering is the same as for the ROWS and COLUMNS section
output explained in Section 2.3).

MITRE Nnmber of simplex iterations between two consecutive re-inversions (Section
6). By default MITRE = 100. Maximum value is MITRE = 1000.

MSCALE Scaling option for constraint matrix.
MSCALE = 0: No scaling
MSCALE = 1: Row scaling
MSCALE = 2: Column scaling
MSCALE = 3: Row and column scaling
By default, MSCALE = 1. The scaling methods are discussed in Section 8.5.

The integer specifying the value may be placed anywhere after the keyword up to position 72.
For example:
WAICPK 120

NITRESO
LOGFRQ ~-10

Here we have set an upper bound of 120 minutes CPU time for the problem, we have changed the
re-inversion frequency from 100 to 50 iterations, and we ask for a printout of simplex iterations
at every 10 steps, including a map of the initial basis.

The numerical keywords with floating-point values are all used to redefine program tolerances.
These are explained in Section 8.5, and the default settings are given in Table 3 there. The
9 keywords BIG, EPSCHC, EPSCHR, EPSFEA, EPSINA, EPSLU, EPSPIV, EPSRIN, and
ZERPIV are the same as the FORTRAN names in Table 3. New values may be entered in
“scientific” notation using the FORTRAN input convention. As an example,

EPSFEA 1.0E-8

8 Risg-M-2707

raises the [easibility tolerance from its default value 16~10 to 1073,
An equal sign is allowed between a numerical keyword and its value, but is not required. For
example:

EPSCHC = 1.0E-9
HSCALE= 3

Finally we repeat the two mandatory keywords used for job control:
EXEC Tells LINPROG to proceed with one LP problem
PEND Tells LINPROG to stop the job stream

2.2 Preparation of input: Matrix File

The second input file is called the Matriz File. Its organisation must comply with the Standard
MPS format. This format, which is used by most commercial LP systems, was originally devei-
oped by IBM, and in the following specifications we shall adhere to the prescriptions given for
the MPSX system of [BM (cf. the MPSX manual {2}). As an illustration we show a printout of
the Matrix File corresponding to our sample problem:

FAME DIETNAZ&
ROWS
B COsT
G PROTEIR
G ENERGY
G CALCIUM
G IROE
G YITAMINA
COLUMNS
POULTRY COST 0.40 PROTEIN 0.20
POULTRY CALCIUM 0.08 IRDE 0.014
POULTRY VITAMINA 0.80
SPINACH COST 0.15 PROTEIN 0.03
SPINACH ENERGY 0.03 CALCIUM 0.83
SPIBACHE IRDN 0.02 VITAMINA 73
POTATOES COST 0.10 PROTEIX 0.02
POTATOES EKNERGY 0.18 CALCIUM 0.07
POTATOES IRON 0,006
RES
DEMANDS PROTEIN 65.0 ENERGY 90.0
DEMANDS CALCIUM 200.0 IRON 10.0
DEMANDS VITAMINA 5000.0
ENDATA

The first record is a NAME line which gives the data set a name. It will appear as an
identification of the LINPROG output. The name chosen here is DIETNAZA. The last record in
the file is an ENDATA line which signals the end of the data set. In between there are a number
of “sections”, each initiated by a headline. There are five possible sections, corresponding to the
headlines ROWS, COLUMNS, RHS, RANGES, and BOUNDS, in that order. The first three
are mandatory, the last two are optional (neither of them is present in this example}. Lines
other than headlines contain the problem data. They use six predefined position fields:

Field Position range Contents
1 2-3 Indicator field
(N,E, L, G, UP, LO, etc.)
2 b-12 Name field
3 15 - 22 Name field
4 25 - 36 Value field
5 40 - 47 Name field
6 50 - 61 Value field

Risg-M-2797 9

Names can contain any ASCII character and must not exceed 8 characters in length. Indi-
cators and names are left-justified in their fields. Values are numeric and must not exceed 12
characters in length; they may be integral or may contain a decimal point. Even an exponential
field is allowed; in fact the numeric input is compatible with formatted FORTRAN inputting.

The ROWS Section: This section is mandatory and defines the rows in the problem. These
are the objective function and the problem constraints. In the ROWS Section, a line is given
for each row. Such a line contains:

e The restriction type of the row (in position 2):
N = Non-constrained row, usually objective function
E = Equality constraint
L = Less-than-or-equal-to constraint
G = Greater-than-or-equal-to constraint

e The name of the row (in Field 2, position 5 — 12)

The lines in this section may appear in any order. In particular, the objective row need not be
the first one. LINPROG requires precisely one object function. The convention is adopted that
the firsi row of type N is selected as the object function.

The COLUMNS Section: This section is mandatory. It defines a name for each of the struc-
tural variables and lists the nonzero entries in the corresponding column position of the objective
function and the constraint matrix. All the elements for a column must be grouped together,
but they need not appear in the same order as in the ROWS Section. For each line in the
COLUMNS Section:

Field 2 contains the name of the variable.
Fileld 3 contains the name of a row in which the variable has a nonzero coeflicient.
Field 4 contains the value of this coefficient.

Fields 5 and 6 are optional. If used, they contain another row name and corresponding coefli-
cient.

The RHS Section: This section is mandatory and deals with the rhs (right-hand side) of the
problem, It gives the ths a name (DEMANDS in our example) and specifies all the nonzero
rhs values. Except for Field 2, which contains the name of the right-hand side, the fields in
the lines of the RHS Section contain the same type of information as the corresponding fields
of the COLUMNS Section. LINPROG allows the user formally to specify multiple right-hand
sides with different names, but the program can deal with only a single rhs aud will in that
case process the first one.

The RANGES Section: This section is optional. 1t contains the ranges for rhs values. To give
an example, suppose that we modify the diet problem (2) in the Introduction by adding the
coustraint that the daily consumption of carbohydrate (“energy”) should not exceed 120 g. With
the constraint already present this meaus that the carbohydrate consumption must lie in the
interva} [90,120]. Instead of adding a new constraint, which would involve more computations,
we give only the range for the rhs. This is done in the RANGES Section as follows:

NAME
ROWS

COLUNES
RES
RANGES
RANGEL ENERGY 30.0
ENDATA
In this example, there is one rauge set name, RANGE], which appears in Field 2. Field 3

contains the name of the row to which the range applies and Field 4 the value of the range.

10 Risg—M-2797

Note that it is possible to define several ranges for a given problem {LINPROG also allows the
user to specify formally more than one set of ranges with different names, but only the first set
will be processed by the code}.

In general, the RANGES Section is used to define constraints of the form

€<y ajz; <u, (3)

by specifying one of the bounds £ or u in the RHS Section (as § say), together with a range
value v in the RANGES Section. This range value may be negative, and LINPROG uses the
following (historical} rules for calculating £ and u, given & and r:

Type Signofr Lower limit, £ Upper limit, u

E + b b+ |r|
E - b—[r| b
G + or — b b+ r|
L + or - b—|r| b

The BOUNDS Section: This section is optional. It defines bounds for the values of the
variables. If no bounds are given for a variable, it is assumed to have a lower bound of zero
and no upper bound. To give an example, suppose that we modify the diet problem (2} in the
Introduction by adding the constraint that the daily poultry supply is limited to 200 g per
inhabitant. We may then add the constraint POULTRY < 200 via a BOUNDS Section input,
which is cheaper than expressing the bound as an additional constraint row. We then get the
following modification of the Matrix File:

NAME
ROWS

COLUMES
RHS
BOURDS
UP LINIT POULTRY 200
ENDATA

In general, each data line in the BOUNDS Section defines a bound for one variable; a number
of bound types other that UP may be imposed. For each line in the BOUNDS Section:

Field 1 specifies the type of bound:
UP for an upper bound, 0 < z < .
LO for a lower bound, > £.
FX for a fixed-variable bound, z = a.
FR for a free variable, —o0 < £ < -+00.
PL for a nonnegative variable, 0 < £ < o0 {default).
MI for a nonpositive variable, —00c < z < 0.

Field 2 defines the name of the bound set.
Field 3 defines the name of the variable to which the bound applies.
Field 4 specifies the value of the bound (omitted for FR, PL, and MI).

In our example there is only one bound set called LIMIT containing a single bound. It is
possible, however, to define several bounds for a given bound set (LINPROG also allows the
user to specify formally more than one set of bounds with different names, but only the first set
will be processed by the code.) By using both LO and UP you may specify two-sided bounds
like £ <z < u.

Risg-M-2797 11

Remember that if both a RANGES and a BOUNDS Section are present, RANGES must

come before BOUNDS.

The Matrix File may contain more than one data set. Each data set is initiated by a NAME
line and ended by an ENDATA line; the number of data sets should match the number of EXEC

lines in the Control File.

2.3 Interpretation of output

We shall now describe the Result File printed by LINPROG. Our first sample output 16 from

the diet problem without ranges and bounds. It looks as follows:

llilﬂtltlﬂt‘lﬂ!lllﬂilltﬂl%lﬂttttﬂtfﬂHiiilﬂltttﬂ‘i'ﬂiittﬂiiit
LIEPROG VERSION S003
LINEAR PROGRAMMING CODE WRITTEE BY
PETER KIRKEGAARD AND OLE LANG HASMUSSEN
RISOE NATIONAL LABORATORY, DE-4000 ROSKILDE, DENMARK
COPYRIGHT (C) 1990
if'ltHltttﬂittHti!lHlillﬂfiiult#lﬂittﬂi!!lﬂiittﬂt#iHtlltﬂttil

L O B B
L B

pDATE OF PROGRAM RUB: 90/03/12 (DAY XUMBER 90/0T1)
LIXPROG 9003 COMPILATION OF JOB FROX COMMARD FILE
SOLUTIDX
EAME OF DATA SET: DIETEAZR
PROBLEM STATISTICS
6 LP ROWS 9 VARIABLES 22 LP ELEMEETS DENSITY = 40.74
THESE STATISTICS COETAIK ONE SLACK VARIABLE FOR EACH ROW
TGTAL BORMAL .FREE. FIXED BOUNDED
ROWS {LOG .VAR.} 6 5 b] 0

COLUMES (STR.VAR.) 3 3 0 0 o

PRDGRAM TOLERANCES:

BIG = 1.0E+30 EPSCHC= 1.0E-10 EPSCBR= 1.0E-10
EPSFEA= 1,0E~10 EPSINA= 1.0E-08 EPSLU = 1.0E-13
EPSPIV= 1,0E-09 EPSRIN= 1.0E-02 ZERPIV= 1.0E+00

OTEER PARAMETERS:
LOGFRQ= 0 KAXCPH=] KAXITS= 0
MITRE = 100 HSCALE= i

0 ZERD SLACKS WERE ELIMINATED IN PHASE O
ITERATION EUMBER = 1
EED OF PHASE 1 (ESTABLISEMENT OF FEASIBILITY)
ITERATION NUMBER = 3

ESD OF PHASE 2

SOLUTIDE (OPTIMAL)

..NAME.ACTIVITY... DEFINED AS
FUNCTIONAL 174.70817 COST
RESTRAINTS DEKANDS

LIEPROG 9003 EXECUTION

SECTION 1 ~ ROWS

12

Risg-M-2797

NUMBER CROW.. AT ...ACTIVITY... SLACK ACTIVITY ..LOWER LIHMIT. ..UPPER LIHMIT. .DUAL ACTIVITY
1 COST BS 174.70817 174.70817- HOHE HODHE 1.00000
2 PROTEIF LL 65.00000 65, 00000 BOBE 1.67315-
3 ENERGY LL 90. 00000 . 90, 00000 HOBE 0.21401-
4 CALCIUH BS 205.45125 5.49125~ 200.00000 JORE .
5 IROE LL 10.00000 . 10.00000 HONE 4,66926~
6 VITAMINA BS 13621.59533 8621 .59533~ 5000. 00600 HOBE
LI¥PROG 9003 EXBCUTIOH
SECTION 2 - COLUMNS
HUMBER .COLUNES AT ... ACTIVITY..., ..INPUT COST.. ..LOWER LIMIT. ..UPPER LIHIT. .REDUCED COST.
7 POULTRY BS 250.48638 0.40000 HOKE
8 SPINACHE BS 183.85214 0.150600 HONE
3 POTATOES BS 469,35798 0.10000 HOEE
MAY VIOLATION OF RESTRAINTS WAS 1.T776E-15
IT OCCURHED IN TEE RESTRAINT PROTEIR G 6.500E+01
TIHE FOR THIS JOB: 0.05 SECOEDS.
DATE OF PROGRAM RUN: 50/03/12 (DAY FUMBER 50/071)
LIBPROG 9003 COMPILATIOR OF JOB FROM CDMMAND FILE
DUTPUT SUMMARY
CASE ROWS COLS ELEM PH.O PH.1 ITES VIOL OPTIMUH CPU-SEC
DIETHAZA 6 3 16 [1 3 1.8E~15 1.747081T7120623E+02 0.05
GRAND TOTAL TIME 0.12

Our second sample output is from the modified diet problem with RANGES and BOUNDS.
To save space we print only the solution part for this problem:

SOLUTION (OPTIMAL}
..NAHE. ACTIVITY..,. DEFINED AS
FUHCTIDYAL 205.00000 COST
RESTRAINTS DEMANDS
BOUNDS. ... LINIT
RANGES RANGE1
LINPROG 9003 EXECUTIOB
SECTION 1 =~ ROWS
NUMBER ..ROW.. ATACTIVITY... SLACK ACTIVITY ..LOWER LINMIT. ..UPPER LIHIT. .DUAL ACTIVITY
1 COST BS 205.00000 205 .00000~ HDHE FONE 1.00000
2 PROTEIR LL 65.00000 65, 00000 JOJE 5.00000~
A 3 EHERGY LL 90.00000 . 90.00000 120.00000
4 CALCIUK BS 511.31250 311.31250- 200.00000 JORE
5 IRODH BS 16.48750 6.48750- 10.00000 HORE
6 VITAMINA BS 41222.50000 36222 . 50000~ 5000 ,00000 HONE
LINPROG 95003 EXECUTIOR
SECTIOR 2 - COLUMES
Risp-M-2797 13

BUMBER .COLUMES AT ...ACTIVITY... ..INPUT COST.. ..LOWER LINIT. ..UPPER LIMIT. .REDUCED COST.

7 POULTRY UL 200, 00000 0.40000 . 200.00000 0.60000-
8 SPINACH BS 562.50000 0.15000 . [1]1)3 .
9 POTATOES BS 406. 25000 0.10000 . RONE

The output from LINPROG begins with a heading followed by a printout of the lines of the
Control File for the present LP problem, and the data set name defined in the Matrix File. Next
comes some problem statistics in the same format as for example MPSX {2] uses. In the present
case we have 5 normal rows and 1 free row. The phrases “normal” and “free” mean inequality-
constrained and unconstrained, respectively. Our example has the objective row as the only
unconstrained row. After a list of numerical parameter settings, the number of iterations in the
various phases of the simplex procedure is printed. This part of the output is usually unimpor-
tant in standard runs of LINPROG. In any case, its interpretation becomes clear if you consuit
the subsequent sections of this report. Notice, however, the message “ESTABLISHMENT OF
FEASIBILITY” (after END OF PHASE 1) telling that our LP is indeed feasible; if this were
not the case a message “THIS PROBLEM HAS NO FEASIBLE SOLUTION” would be issued.
After this comes the solution printout summary. First there is a heading part containing

¢ The name SOLUTION with a qualifying text (OPTIMAL or INFEASIBLE)
¢ The value and name of the objective function
e The name of the right-hand side. If bounds and ranges sets are present, the name of these.

After the heading we find the ROWS Section and COLUMNS Section output (but only if the
keyword SOLUTION occurs in the Control File). The two sections have similar structure and
are formatted in the same way as the MPSX code {2]. Each section is printed as a table of eight
columns, with one row of the table corresponding to one row (or column} of the problem. Each
row and column is formally associated with a variable. Below we give a short description of the
items contained in the eight columns:

1. NUMBER — The sequential number given by LINPROG to the row or column. If the
problem contains m rows and n columns, the rows are numbered from 1 through m and the
columns from m +1 through m+ n. In our two examples, the numbers of row VITAMINA
and SPINACH are 6 and 8, respectively.

2. NAME — This is the eight-character name given to the row or column.
3. AT — This is a two-character code denoting the status that the row or column variable
has in the solution. The codes and their meanings are:
BS — basic and feasible
EQ — nonbasic and fixed
UL — nonbasic at upper limit
LL - nonbasic at lower limut
** — infeasible

There are two different nonbasic status indicators UL and LL, because the LP variables
may be upper- and lower-bounded (see also Section B.1).

4, ACTIVITY — This is the value that the row or column variable takes in the solution:

e For columns, the activity is simply the value given to the column in the solution. For
example, the value of POULTRY is 250.48638 (in gram units).

e For rows, the activity is defined as the sum of the products of constraint coeffi-
cients and the column activities. For example, the row ENERGY, which defines the
constraint (cf. {2)) 0.03 x SPINACH + 0.18 x POTATOES > 90, has the activity
0.03 x 183.85214 + 0.18 x 469.35798 = 90.

14 Risg-M-2797

5. SLACK ACTIVITY (ROWS Section) and INPUT COST (COLUMNS Section} -— For a
given row, the “slack activity” is the difference between the right-hand side element for
the row and the activity of the row. For a column, the “input cost” is the corresponding
element in the objective function.

6. LOWER, LIMIT — The lower bound on the row or column activity.
7. UPPER LIMIT -~ The upper bound on the row or column activity.

8. DUAL ACTIVITY (ROWS Section) — The value given under “dual activity” is mean-
ingful only for rows at one of its bounds. If such a bound could be removed, we would
expect a decrease of the total cost, and the dual activity gives the cost reduction per unit
relaxation of the limit. In our example the diet must contain at least 65 g protein. In
fact, the optimal solution contains precisely 65 g. If the required minimnm of 65 g could
be lowered by 1 g, the dual activity indicates a saving of 1.67 cents. But notice that this
figure is actually a rate of change, valid close to the solution. Anyway, the dual activity
can help to suggest alterations of the specified model constraints.

9. REDUCED COST (COLUMNS Section) — For a given column, the “reduced cost” is
a quantity with a sitnilar meaning as the dual activity for a row. Consider for example
the output of the second problem, where POULTRY has an activity of 200 (gram) in the
optimal solution. Its reduced cost is —0.6, which indicates that if one gram of POULTRY
were withdrawn from the diet, a cost reduction of 0.6 cents would be gained (in general
the reduced cost is the decrease in objective function per unit incregse of the variable; in
our case POULTRY is at its upper bound and can only be decreased, which explains the
negative sign of the reduced cost).

Both dual activity and reduced cost can be thought of as “unit costs”, the former valid for
a row, the latter for a column. Dual activities are sometimes called “shadow prices” or “sim-
plex multipliers”. Notice that there is some ambiguity in the sign definition of dual activities
among commercial LP systems. We follow here MPSX [2], but MINOS [4] has the opposite sign
definition.

For historical reasons we also follow the MPSX convention of presenting negative quantitics
by using postfix sign notation.

Sometimes an “A” is printed in front of the line corresponding to a row or column variable
(we see an instance of this for the variable ENERGY in our second problem). The meaning of
this “A” is that there is a possibility of alfernative optimal solutions, in which the indicated
variable (and other variables) might take different values.

An infeasible solution will not prevent LINPROG from printing the ROWS and COLUMNS
output sections. As mentioned previously, the status of each infeasible row is then printed as #+.
In addition LINPROG prints a table of all the infeasible rows. But before drawing conclusions
about the origin of the infeasibility, the user should observe that the printout is only a snapshot
of the variables at the time LINPROG decided the infeasibility.

After the ROWS and COLUMNS Section output LINPROG concludes the problem by print-
ing the detected maximum violation of constraints and the CPU-time consumption.

As pointed out earlier there may be more than one problem in a LINPROG job stream
(these test examples have only one}. After the output for all the individual problems, LINPROG
concludes by printing an QUTPUT SUMMARY with a brief record of key data for each problem.
A summary line contains 10 items with the following contents:

CASE: Name of the data set.

ROWS: Number of rows in the LP, including the objective row.

COLS: Number of structural columns in the LP.

ELEM: Number of nonzero elements in the constraint matrix. The objective row is

included, but slack elements are excluded.

Risg-M-2797 15

PH.0: Number of eliminated zero slacks in Phase 0 (Section 8.2).

PH.1: Number of iterations in Phase 1 (Section 8.3).

ITNS: Total iteration count. This is the sum of PH.0, PH.1 and (if feasibility was
achieved) the number of iterations in Phase 2.

VIOL: Maximum detected constraint violation. For an infeasible problem asterisks are
printed.

OPTIMUM: The optimal value. For an infeasible problem asterisks are printed.
CPU-SEC: The CPU time for the problem in seconds.

If an error condition occurs during the LP computation, LINPROG will print a message. Numer-
ous error conditions are possible, but in any case the error message should be self-explanatory.

2.4 Program files

LINPROG communicates with the user via a number of files. As a FORTRAN-based system,
the code associates an internal unit number with each of these files. The connection between
units and files is given in Table 2. We have already discussed the Control File, Matrix File,

Unit No. File Usage Mode
2 Matrix File Input ASCII
6 Result File Qutput ASCII
15 Restart File Input Binary
16 Dump File Qutput Binary
19 Control File Input ASCII
20 Communication File Qutput Binary

Table 2. FORTRAN unil numbers for LINPROG files

and Result File. The three other files will be described presently. Except for the Result File,
which is often a printer file, all files are supposed to reside on the disk storage of the computer,
and even the Result File might be directed to disk.

The files 2, 6, and 19 are mandatory, while 15, 16, and 20 are optional.

2.5 Dump/restart facility

LINPROG has a dump/restart facility, which involves the optional files 15 and 16. If the keyword
DUMP is specified in the Control File, LINPROG will conclude the execution by a dump on unit
16. This dump does not contain the solution itself, but the so-called basic indez set, from which
the solution can be retrieved by a comparatively cheap tnversion process. Not only is a dump
made at the end of a normal successful execution, but dumps are also made at intermediate
points of the computations (at times of re-inversion, see Section 6), such that each dump
overwrites the previous one. This facility may prevent a long LINPROG run from being wasted
due to unforeseen failure such as the discontinuation of a job, if some resource limit is exceeded.
The idea is that in a subsequent run you can specify RESTART in the Control File and use
the previous dump file as a restart file. This facility can save much computer time. Moreover it
can be used to divide very time-consuming LP runs into manageable portions. It can also be
used in “perturbation analysis”, where you want to change some coefficients in the LP matrix

16 Risg-M--2797

or ths, provided you don’t change the number of restraints or variables. In dump /restart files
the information is stored in binary (unformatted) form.
it is natural to use DUMP, whenever the keywards MAXCPM or MAXITS (Section 2.1} are

in use,

2.6 Binary output and report writers

In large-scale applications of linear programming the input data to the LP solver is normally
produced by a special computer program, tailored to the application. Such a program is called
a mairiz generaior. Likewise, there will often be a report-writer program which reads the LP
output and presents the results in the form of edited and formatted tables suited to the particu-
lar problem. One way to design a report writer for LINPROG would be to let it read the ASCII
Resuit File, which of course should be directed to the disk for such a purpose. The advantage of
this method is that it is fairly general: An ASCII file can be read by a report writer coded in any
programming language that suits your purpose. It can be inspected directly and be transferred
between diflerent computer systems. '

Alternatively, you may let LINPROG produce a binary {i.e. unformatted) communication file
containing the solution. To do this you include the keyword BINQUT in the Control File (cf.
Section 2.1). The binary output file will be connected to unit 20 in LINPROG (cf. Table 2). The
merits of the comrmunication file is that it holds the solution in full machine precision; there is
no rounding error due to decimal formatting. It needs less disk space than the ASCII-formatted
Result File, and both writing and reading of unformatted records are faster than for formatted
records.

The LINPROG communication file consists of multiple solution sets, if more than one LP
was solved using the BINOQUT keyword. A sclution set contains an identification section, a row
section, and a column section. The precise contents of each are stated in the following record
tables.

The identification section has 3 records:

Record # 1
ftem # Type Contents
1 CHARACTER*6 Date of run in the form YYMMDD
2 CHARACTER*4 | LINPROG version in the form YYMM
3 CHARACTER*8 "'MINIMIZE’ or 'MAXIMIZE’

Record # 2
Item # Type Contents
i CHARACTER*8 Name of the data set

2 CHARACTER®*8 | Name of the objective row
3 CHARACTER*8 | Name of the right-hand side
4 CHARACTER*8 Name of RANGES
5 CHARACTER*8 Name of BOUNDS
Record # 3
Item # Type Contents
1 CHARACTER*1 'O’ for optimal, 'F for infeasible.
2 INTEGER Number of rows, L.
3 INTEGER Number of columms, NS.
4 INTEGER Iteration counter
5 DOUBLE PRECISION Function value

Risg-M-2797 17

The row section has L records, one for each row:

Record #1(I=1,..., L)
tem # Type Contents
1 CHARACTER*1 A’ if alternative solution, otherwise blank
2 CHARACTER*8 Name of the row
3 CHARACTER*2 Status of the row
4 DOUBLE PRECISION Activity of the row
5 DOUBLE PRECISION Slack activity of the row
6 DOUBLE PRECISION Dual activity

The column section has NS records, one for each column:

Record #J (J=1,..., NS}
Item # Type Contents
1 CHARACTER*] A’ if alternative solution, otherwise blank
2 CHARACTER*8 Name of the column
3 CHARACTER*2 Status of the column
4 DOUBLE PRECISION Activity of the column
5 DOUBLE PRECISION Input cost
6 DOUBLE PRECISION Reduced cost

The items in the row and column sections correspond to the items explained for the printed
output in Section 2.3. However, we do not give the number of the variable, nor its bounds,
in the binary output. Under the heading “Type” we specify the items using phrases from the
FORTRAN language. CHARACTER*n means a text of length n bytes. The numerical types
are INTEGER and DOUBLE PRECISION: for many computers these will use 4 and 8 bytes
of storage, respectively, by default.

Appendix Al gives a printout of a paragon form of a report-writer program. This program,
REPORT, reads the communication file and prints first a summary {or the LINPROG run and
then the two sections of the solution. It also stores some of the variables in arrays, anticipating
some subsequent post-processing, depending on the actual application.

In addition to the FORTRAN version of REPORT, Appendix Al contains a listing of an
equivalent PASCAL REPORT program running under VAX/VMS. (We have also written a
MODULA-2 REPORT program. This is not listed in the preseni document, but can be requested
from the authors).

As a test of the REPORT program, we repeated cur second LINPROG test run (the diet
problem with RANGES and BOUNDS), this time with a BINOUT keyword in the Control File.
Taking the binary LINPROG output as input, REPORT produced the following output (in all
three programming languages):

PROBLEM DATE 900312
LIEPRDG VERSION 9003
TARGET MINIMIZE
NAME OF DATA SET DIETKODI
HAKE OF OBJECTIVE ROW COST
NAME OF RIGHT-HAND SIDE DEMANDS
HAKE OF RAXGES RARGE1
NAME OF BOUNDS LIMIT
PROBLEK STATUS OPTIMAL
NUMBER OF ROWS 6
NUMBER OF COLUMNS 3
RUMBER OF ITERATIORS 2

OBJECTIVE VALUE 2 .0500000000000E+02

TABULATION OF THE FILED ROW SECTION

18 Risg-M-2797

NAME NUHBER STATUS ACTIVITY SLACK DUAL ACTIVITY HARK

COsT 1 BS 2.0B60000E+02 -2.050000E+02 1 .000000E+Q0
PROTEIN 2 LL 6.500000E+Q1 0.000CCOE+GO -5 . O00000E+00
EBERGY 3 LL 9.000000E+01 0.000000E+QQ 0 .0000CGOE+Q0 i
CALCIUNM 4 BS 5.113125E+02 ~3.113125E+02 0. 00000CE+0Q
IRO¥ 5 BS 1.648750E+01 -6.487500E+C0 O _0Q0000E+00
VITAMINA 6 B3 4.122250E+04 -3.622250E+04 0.0000GOE+00Q

TABULATTON DF TBE FILED COLUMN SECTION

NAME HUMBER STATUS ACTIVITY I¥PUT COST REDUCED COST MARK
POULTRY 7 UL 2_.000000E+02 4.000000E-01 ~6.00000QE-01
SPINACH 8 BS 5.625000E+02 1.500000E-01 0.Q00000E+00
POTATOES 9 BS 4.062500E+02 1.000000E~01 0 ._0000Q0QE+CO

2.7 LINPROG running on a VAX computer

At Rise a Digital VAX-8700 computer was used for most of the development work with LIN-
PROG; this computer is also used for the production runs. In the following we give some
examples of “job programs” for controlling the execution of LINPROG on VAX. They use the
so-called Digital Control Language (DCL) and are themselves files (normally with extension
COM)}. 1t is often practical to embed the LINPROG Control File (unit 19) in the job program.
The first example is very simple; it corresponds to our first sample case:
$DEFIBE/USER/NOLOG FOROL9 SYS$INPUT
$DEFINE/USER/N¥ULOG FOR0DO2 *P1’
$DEFINE/USER SYS$OUTPUT RESULT.LIS
$RUF RMS$DISK:[RCL.LPILINPROG

SOLUTIOE

EXEC

PEND
$EXIT

This DCL command file is supposed to have the name LINPROG.COM. To process it in
interactive mode you just type @LINPROG <filename>>, where <filename> is the name of the
Matrix File you intend to use. Alternatively, you may submit the job for batch processing by
the SUBMIT command. Risg users should notice the command line beginning with $RUN. It
contains the proper location of the executable LINPROG code file.

Next we give a somewhat more sophisticated example, where a restart file is read and a dump
file is produced and converted into a restart file for a later run. Also, a communication file is
produced, and afterwards this is read by the report-writer program REPORT discussed above:

$! EXECUTE LI¥PROG FROGRAN

$! - —— -

$!

$ {CHANNELS: * FORCO2 -~ MATRIX FILE (MPS FORMAT)
$t » FOROO6 - OUTPUT LISTING

$! * FORO15 - RESTART FILE

$! + FORO16 - DUMP FILE

$! *+ FORO19 - CONTROL FILE

$¢ » FORO20 - OUTPUT COMMUSICATION FILE
$!

$!PARAMETERS: P1 ~ P1.DAT MATRIX FILE (MPS FORMAT)
$!

$DEFINE/USER FORO19 SYS$INPUT
$DEFINE/USER FOROO2 'P1’
$DEFINE/USER FOROO6 RESULT.LIS
$DEFINE/USER FORO15 LILDAD.DAT
$DEFINE/USER FORO16 LIDUMP.DAT
$DEFINE/USER FORO20 LIBIND.DAT
$RUN RHS$DISK:[RCL.LPJLIEKPROG

RESTART

DUNP

BINGUT

EXEC

FEWD
$!

Risg-M-2797 19

$!PREPARE LINPRDG DUMP FILE TO A& FUTURE RESTART
$RENAME LIDUMP.DAT LILDAD.DAT

$?

$1 EXIECUTE REPORT WRITER PROGRAM

Y

3!

$!CEANNELS: FOROO1 - COMMUSICATION FILE PRODUCED BY LINPRDG
$! FOR0OO2 - REPDRT-WRITER OUTPUT FILE
$!

$DEFINE/USER FOROO1 LIBIHO.DAT

$t

$RUN REPORT

$EXIT

"There is an important restriction you will face as a VAX LINPROG user: the “pagefile quota”
for your username must be raised to 25000, and this must be done by your VAX system manager
whom you are advised to consult. :

Moreover, if you plan to use VAX LINPROG for solving large problems with thousands of
constraints, it may be a good idea to get your maximum working set “WSextent” raised {rom
its default value (normally 1024 pages) to a higher value, say 2000 pages, if this is possible.
This will give a considerable reduction in the number of “pagefaults” and thereby also of the
CPU-time. Again, you should consult your system manager.

VAX FORTRAN provides two kinds of Double Precision: D-floating and G-floating. G-
floating has slightly less precision but a much larger number range than D-floating (and complies
with the IEEE floating-point standard). It is important that a report writer be compiled with
the same Double Precision type as was used for LINPROG. D-floating is the default type, and
we have stuck to this choice when compiling LINPROG at Risg.

2.8 Installation of LINPROG

The installation of LINPROG depends on the type of the computer in question. For a VAX
machine it should suffice to install the executable code (“EXE”-file). There are a number of
array bounds in LINPROG, which are set by the FORTRAN 77 statement PARAMETER (for
example the maximum number of LP rows and columns). It might be necessary to increase
these limits if very large problems are going to be solved. On the other hand, it might also
sometimes be necessary to lower these limits due to computer system limitations. In both
cases, a modification of the source program, followed by a FORTRAN compilation and a LINK
operation, would be necessary.

For installing LINPROG on computers without virtual memory it is necessary to lower the
parametric bounds drastically to make the code fit into memory. On such computers LINPROG
would be able to solve only small problems.

3 The Simplex Method: An Overview

We shall now give a short review of the simplex method in the form we use it in LINPROG.
A more detailed discussion of the various components of the algorithm is postponed to later
sections. Let us also mention that there are many good textbooks dealing with simplex. First
there is Dantzig’s classical book [5], and among the newer books we could refer to Murtagh [6]
and Nazareth [1].

20 Risg-M-2797

3.1 Standard form of the LP

We begin with a reformulation of our LP using vector-matrix notation:

Minimize :z=¢’x 1)
subject to Ax=Db (5)
and x>0 (6)

It is clear that our original LP formulation (1) can always be brought to this standard form. We
could first convert all >-rows in (1) to <-rows by multiplication by —1. Next the <-rows could
be transformed to equalities by introducing nonnegative slack variables; obviously an inequality
of the form 3 ajz; < b, z; > 0 is equivalent to an equality s + 3 a;z; = b, s > 0,z; 2 0,
where s is a slack variable. The slack variables contribute to A in (5) with a subset of the
columns of the unit matrix I. Rows with dummy restrictions R; in (1) are simply deleted from
the LP. Assuming these operations to be already done, our LP has now n variables in total,
and m restrictions. Thus the constraint malriz A becomes an m x n matrix. This matrix 1is
supposed to have full rank, p(A) = m, that is, the restrictions are independent, so we have
n > m. Moreover, ¢ and x are n-vectors with an inner product equal to the objective function
z in {4), and b is an m-vector.

LINPROG is able to deal with more general problem formulations than envisaged in (1) or
(4) - (6), but we lose little in referring to the standard form to explain our use of simplex.
For example, maximizing ¢7x is equivalent to minimizing —eTx. LINPROG can also treat
inhomeogeneous objective functions co + ¢Tx. A less trivial extension is the capability of the
program to handle bounded variables and range constraints. We shall describe later (Section
8.1) how these facilities are implemented, using a modification of the simplex method. Another
point to mention is the ability of LINPROG to cope with a rank-deficient constraint matrix:
The program detects redundant or conflicting restrictions, and by dispensing of the superfluous
equations it produces a reduced matrix with full row rank.

3.2 The basis exchange mechanism

Let now a subset of m independent columns of A be given, Arranged in any order they form
a square nonsingular matrix B, which we call a basis matriz. The corresponding variables z;
are called the basic variables; the remaining variables are said to be nonbasic. The fundamental
idea in the simplex method is to operate with solutions x = {z;} in which the n — m nonbasic
components are 0, while the m basic variables may be nonzero (some basic variables may be
zero, too, and then we have a degenerate solution). If a basic solution x = {;} satisfies (5} and
(6}, we call it basic feasible. If {5) is satisfied but not (6) we have an infeasible “solution”. The
partition of the variables in basic and nonbasic described here is dynamic in the sense that the
simplex process in each tteration step exchanges the state of two variables (z;, zx) such that
z; “enters the basis” and z; “leaves the basis”, that is, it becomes zero. In each step we move
from one basic feasible solution to another with a better (at least not worse) objective function.
In practice we reach the optimum in a finite number of steps; see however the comments given
in Section 8.4 on the possibility of “cycling”. By the end of the exchange step, B is transformed
to an adjacent basis matrix B. In order that we can get the simplex method to work, we must
provide an initial basic feasible solution. This is achieved by a special technique to be discussed
in Section 8.3.

Let us take a closer look of what happens in an exchange step. If we renumber the columns
in A such that the current basic columns precede the nonbasic columns, we may write A as a

partitioned matrix
A=(B|N) ()

Risp-M-2797 21

with a corresponding partitioning and ordering of x and ¢,

= () = () ©

Bxp + Nxy =b. (9

while (5) becomes

" The components of the two parts of the solution vector x are
(xﬁ)izzi (iﬂl:“'sm)a (xN)j:xm+j (j:l,...,n-—m); (10)
Similarly for the cost vector c:

(epli=c (i=1,...,m), (en)i =emys; (G=1,...,n—m}; (11)

The ordering of columns within B (and within N) is immaterial here (a discussion of how to
number the rows and columns in B will be given later). Following common practice we introduce

the trensformed right-hand vector
8= B~ b (12)

and the pricing vector
xT = CEB_i, {(13)

whose components are called simpler multipliers. Then we obtain the following problem formu-
lation in terms of the nonbasic variables:

Minimize z = ¢§8 + (c¢&y — #T N)xn (14)
subject to xg =B — B INxx (15)
and xg,xy > 0. {16)

The current basic solution is obtained by letting x = 0, thus
xp = B. (17
But (14) and (15) tell more, since the {n — m)-vector d = {d;} defined by
d" =% —#TN (18)

governs the increase of the objective function when the nonbasic variables rise from their zero
bounds. The d; are called reduced costs. Incidentally, d is the gradient vector of the objective
function in the current space of nonbasic variables.

Assume now that d; < 0 for some 7, say j = g. We may then introduce the gth nonbasic
variable (x§); = Zm4 into the basis. This means that we increase this variable by a certain
amount #, while all the other components of x» are kepi at zero. This will cavse z to decrease
with the linear slope jd,|. But how large a step 0 can we take without destroying the feasibility?
This question is answered by considering (15), which for the present case specializes to

Xp = ‘6 — Im4qQy, (19)
where we use a; to denote the jth transformed nonbasic column vector of A,
aj = B_lam+j, (20)

still obeying the column numbering of A laid down by (7). If 8 = {8} and ag = {wi}, we find
f by the classical ratio test

6 =min{Fifei,:i=1,...,m and a;, > 0} (21)

22 Risg-M-2797

If no element ay, > 0 exists, we have detected an unbounded solution, § = co. Otherwise let
the minimum in (21) occur for ¢ = p. When the corresponding step z,,4, = 0 is taken, the pth
basic variable reaches zero first and is selected to leave the basis. The number p is called the
pivot inder, while a,, is called the pivot element. In the degenerate case the step ¢ will be 0,
and we get no improvement in the objective function.

It is instructive to look at the simplex method from a geometrical viewpoint. The set of al
feasible vectors x , i.e. those satisfying the constraints (5) and (6), forms a polytope (“simplex”)
in n-dimensional space R"™. This polytope may be null, but otherwise one of its vertices is a
minimizing point for the objective function z in (4). In the simplex method we carry out a
systematic search of the vertices. At each point the n — m nonbasic variables take the value
zero, while the m basic variables are determined by (17) and (12). The search proceeds from
vertex to adjacent vertex along an edge where a single nonbasic variable for the first vertex
increases from zero. The edges are chosen so that the objective function decreases. Since the
polytope has only a finite number of vertices, the simplex algorithm is finite unless cycling
{Section 8.4) oceurs.

3.3 The simplex algorithm

We are now ready to present the main steps of the simplex algorithm. The steps are as follows:
o INITIALIZATION Step — Begin with a basic feasible solution (Section 8.3).
s BTRAN Siep - Compute the simplex multipliers by (13)}.
o PRICE Step - Commpute the reduced costs {d;} for the nonbasic variables by (18).

¢ CHUZC Step — Choose the entering nonbasic variable (j = g) as one with a negative
reduced cost d;. (A common rule is to choose one with maximum |d;|; see also Section
8.4). If there is no negative reduced cost, the current solution is optimal.

o FTRAN Step — Update the entering column by (20).

s CHUZR Step — Use the ratio test {21) to find a step 8. This test results either in a
variable to leave tbe basis (pivot index ¢ = p), or in an unbounded solution with & = 0.

o PIVOT Step — In the basis matrix B, replace the column associated with the leaving
variable with that corresponding to the entering one, to obtain an adjacent basis matrix
B. Update the 3-vector defined in (12). Return to the BTRAN step.

The above acronyms are well-established abbreviations for key operations in linear program-
ming: BTRAN means “backward transformation” (postmultiplication by B~!), CHUZC means
“choose a column”, FTRAN means “forward transformation” (premultiplication by B~!), and
CHUZR means “choose a row”.

If we were to solve only small problems, it would be adequate to maintain the so-called
current tableau B~ A. That method could be called “direct simplex”. In revised simplex, which
is used here as well in the majority of simplex codes, we maintain only the basis-inverse B~}
itself. The advantages of this procedure are connected to the use of a product representation of
B!, which we discuss in Section 5. The product form is expanded each time a simplex step is
executed, and eventually we need to shorten the representation; this is done by the so-called
re-inverston process described in Section 6.

In our list of simplex operations the PIVOT Step deals with the updating mechanism when
passing from one basis matrix to an adjacent one. This step, which involves a good deal of
computation, exploits the Forrest-Tomlin method described at length in Section 7.

Risg-M-2797 23

4 Useful Matrix Relations

At this place we recapitulate some well-known results from linear algebra, since they will be
needed in the following sections. We shall concentrate on square matrices; all the considered
matrices are assumed Lo be of the order m and nonsingular, hence invertible.

4.1 The Sherman-Morrison identity

We begin with a useful formula for inverting “rank-one” updated matrices:

Proposition 1 (Sherman-Morrisou) Given vectors u and v in R™, and the nonsingular matriz
Ac ™™ IfvTA lu# —1, then

A lavTA!

Ty-1 _ a1 __
(A+uv’)™" =A 1+vTA-lu

(22)
This result, given for example in Golub and van Loan {7], and in Murtagh [6], is easily proved

by a direct check.

4.2 Elementary matrices

An elementary column matriz E is one which differs [rom the unit matrix I in just one column.
If we denote the pth unit vector by ep, such a matrix can be written

E={e;,...,ej-1,0,€41,...,8m), (23)
or
I
1 aj
E= o (24)
am, 1
If we want to emphasize that we have inserted a column vector a = (a1,...,)7 at the jth
column place, we may write
E = E; (). (25)

Elemnentary column matrices are sometimes called Frobenius matrices. We may write E in the

[orm of a rank-one update of I:
E:I+(a—~ej)e}‘ (26)

Using the Sherman-Morrison identity (22), or by direct means, we find that the inverse is
another elementary column matrix,

b

1 ~ayfa;
E™'= | 1/}1,~ : (27)
—am/(?rj 1
Hence
(E;j())™" = E;(n), (28)

24 Risg-M-2797

where
n=gjla) = {n;}, my=-—efagi#E§ m; =10 (29)
Also in this context we call the jj-entry a; of E in {24) the pivol elemeni, and column j is
called the pivot column.
In complete analogy with elementary column matrices we speak of elementary row mairices.
Such a matrix differs from I in just one row, In this work we shall use only elementary row
matrices with a unit pivot element:

1
F=F(v)=i|mn 1 |, (30)
1
where 4 = (71,..., %1, 1, Ti41,- -+, ¥m). The inverse of (30) is another elementary row matrix
1
Fil=:] —m 1 ... —vm | (31)
1

4.3 Column replacement updating

Suppose we want to replace the pth column of a nonsingular matrix B with an arbitrary column
vector (not necessarily a column in B}, say a;, = {a;;}. The updated matrix can then be writien

B= B(I—epe§)+ake;‘:, (32)
or
B=DB(I+(ay— ep)eg) = BE,(ay), {33)
where we have introduced the “updated” columm vector
ap = {ag) = B_iag. (34)

The inverse can now be obtained from (27) or (28) with j = p and @ = oy

P
1 —alk/ﬂpk

B = 1/ g B~ (35)
"“ﬂ'mk/apk 1

This result will be used to update the basis-inverse in the simplex procedure.

4.4 Permutation matrices

Sometimes we need a precise way to express what happens when rows and/or columus in a
matrix are rearranged. Let an arbitrary permutation

Pr P2 --- Pm

Risp-M-2797 25

be given. The result of applying 7 to the rows of a matrix B is another matrix

B; = PB, (37)
where the premultiplying factor is given by
P={(e,,....e.,) (38)
and is called a permutaiion matriz. If we instead apply # to the columns of B we would get
B. = BPT, (39)

still with P given by (38). We could also permute both the rows and the columns, using two
permutation matrices P and Q:

B.. = PBQ”. (40)
In particular, the rows and columns can be symmetrically permuted:
Byym = PBPT. (41)

Here the diagonal row of B is preserved in Byy; only the order of its elements is altered.
Any perimutation matrix is orthogonal,

rprY =prTP=1 (42)

4.5 LU-factorization

Any nonsingular matrix can be written as the product of a lower triangular factor I and an
upper triangular factor U, at least when we admit row (and/or column} interchanges. This fact
is contained in

Proposition 2 (LU-theorem) Given ¢ mairiz B € R™*™, in which all the leading principal

minors are nonsingular, then there ezists a unique lower triangular matriz L = {&;} with
lii = 1 and a wnique upper triangular matriz U = {u;;}, so0 that
B=LU, {43)
or, written oul in full,
by . b 1 Uy ... Uim
bt oot bmm LSS | Umm

A proof of this theorem is given e.g. in Forsythe and Moler [8]. The necessary rearrangement of
an arbitrary nonsingular matrix to qualify for the LU theorem can always be accomplished by
shuffling its rows (i.e. premultiplying it by a permutation matrix), or by shuffling its columns,
or both.

4.6 Decomposition of triangular matrices into elementary matri-
ces

For triangular matrices we have a particularly simple factorization into elemeutary column

matrices:
k

La
L}
—-

Lo N o | L 1

26 Risg—M-2797

and

k
Ugp ... Uk o -.. Upm 1 Uik
. : : 1 . :
U= Uk .- Ukm = H Ukk - (46)
. . k=m .
Umm 1

There is a similar pair of factorizations into elementary row matrices:

1 1
S m :
L= &: ... 1 = H P S | {47)
: : - k=1
T | i
and
Uy S Uk Uim 1
U= Upk .. Upm | = H E Ukk .- Ukm |. (48)
. . k=m .
Umm 1

The factor in (45) corresponding to & = m is the unit matrix, and so is the factor in (47) for
k = 1; these unit factors are displayed for reasons of symmetry.

For the LINPROG implementation of simpiex we need only the forms (46) and (47). Corre-
spouding expressions for the inverse matrices U™} and L~! are easily obtained by using (27)
and (31). In particular this shows that the inverse of a lower triangular matrix is again lower
triangular, and similarly for an upper triangular matrix.

5 FElementary Product Forms

It is an essential feature of large-scale linear programming that the basis matrix B, or rather
its inverse B~!, is expressed as a product of elementary matrices. Such a product form of B~}
is used and maintained in the simplex procedure; it is occasionally reconstructed in the process
of re-inversion {Section 6). The advantage of the product representation is that we need store
only those vectors that form the elementary matrices. These are typically sparse and may be
held as packed arrays.

5.1 The standard product form

Let an arbitrary nonsingular matrix B € R™*™ be given. It is instructive to describe the so-
called standard product form of B, in which each factor is an elementary column matrix, though
this form is not directly applied in LINPROG.

To obtain the representation we consider B = B, the result of a f-step column replacement
process beginning with the unit matrix By = I. At step number & we transform the matrix
B;_; to By by replacing column p; by some “entering” vector ai. This vector need not be one
of the columns of B itself, as a; may later on again be replaced by another column. In Section

Risg-M-2797 27

4.3 we saw that such a column replacement corresponds to post-multiplication of the matrix
B, by an elementary colurmn matrix:

Bk = Bk—iEPk(ak)s (49)

where
op = Bl a. (50)

Assuming that the process terminates after ¢ steps with all the columns of B formed in right
posilions, we can write down the standard product form from (49):

t
B = [Ep(ax)- (51)
k=1
More important for LP than B itself is B!, The inverse of (51) rcads
1
B = []B, (m), (52)
k=t
where
M =1 = Gp (k) (53)

has the components stated in (29). Below we give a constructive deseription of the replacement
process in algorithmic form using “pseudo-PASCAL”:

B, =1
FOR £ :=1TO ¢ DO
BEGIN
(# identily pivot index for this step *)
J = Pe;
(* replace current cohunn j with some vector ag*)
g = B;i}ak;

= B);
~1 -1
B, :=E;(n:)B,_,
END;
B! = B:l;

It is clear that many different replacement sequences may lead from I to the same matrix
B or B~!. Consequently the representations (51} and (52) are not unique. Nor is the number
t of exchange steps. I'or example, at the end of a re-inversion process we may let { = m,
Subsequently the simplex optimization process may add new factors to the product, and we
may get { > .

5.2 Product form of the LU type

The standard product form described here has been in widespread use in earlier LP codes. Its
merit is its simplicity. Modern implementations of LP, however, use a product form which is stil}
made up of elementary matrices, but is related to a triangular factorization of the basis matrix,
This complication in structure is more than offset by savings in storage and calculations.
Immediately after a re-inversion {and at the start of the simplex process} we have an LU-
factorization (43) - (44) of the basis matrix B. Among the different ways of decomposing U
and L into products of elementary matrices we select those given by (46) and (47), because this
choice gives us a product form compatible with the Forrest-Tomlin updating scheme given in

Section 7. Hence we write
L:LiLﬁ...Lk...Lm, (54)

28 Risg-M-2797

where

1
Ll: = k Ekl o1 y (55)
1
and

U=U,nUmot... Ue... Uy, (56)

where

k
1 g
Uy = Uk . (57)
1
The resulting basis-iuverse becomes

B! =U- 'L '= Ut U UL LT (58}

where

k
1 Uy [tk
Ul = 1fug (59)
!
and
1
L;l = k| —f ... 1 . (60)
1

These expressions illustrate the close relationship between LU decomposition and matrix inver-
sion in product form.

When the simplex procedure calls for a column exchange in the basis, we must update the
reptesentation (58) accordingly. As we shall see in Section 7 the Forrest-Tomlin procedure
maintains B~ in a more general form than (58): After each simplex step it leaves the basis-
inverse as a product

B l=vU-L =ut Ut L, (61)

where U = U,,...U; and L = Ly...L,. The factors U; {and U] '} are elementary column
matrices, while L, {and L;!) are elementary row matrices. But U; and L, need no longer be
triangular, nor need L and U in (61). Again, the factorization (61) is not unique, and ¢, the
number of factors L,, may be greater than m.

In LINPROG we store the factors U] ! in (61) as a sequence of column vectors in one packed
list. This “eta-U” list is an array in the computer {which we assume has virtual memory), but
for traditional reasons we also call it the “U file”. This file (together with a list of the pivot

Risg-M-2797 29

indices) determines the factor U~!. We shall also maintain an “eta-L” list or “L file” containing
a sequence of row vectors forming the elementary row matrices L7!. It determines the other
factor L~!. Taken together, the L and U files form the so-called “eta-file”; we say that this file
contains “column-eta” vectors and “row-eta” vectors.

6 Re-lnversions

We have seen that B~! the inverse of the basis matrix B, in LINPROG is represented by
two so-called “eta lists” associated with the two factors of the LU product form described in
the previous section. For cach simplex iteration the lists are augmented with new elementary
vectors (to be discussed in Section 7), and this growth causes the time per iteration as well as
the roundoff errors to grow. Eventually it becomes necessary to compress the structure, and
we then make a fresh inversion of B, using our knowledge of the present set of basic columns.
Different heuristic eriteria for evoking an inversion exist. One popular way is to let the CPU
clock of the computer trigger the inversion. Also the detection of unexpected infeasibilities, ox
numetical deterioration of the current solution, could release an inversion. In LINPROG the re-
inversions are performed at regular intervals of the simplex iteration counter, cf. the parameter
MITRE described in Section 2.1.

In the following we present the various ingredients of the inversion procedure. After this we
state the total inversion algorithm in compressed form, and finally we discuss some possible
ways of improving the implementation scheme in LINPROG.

6.1 Decomposition arithmetics and eta vectors

The output from the inversion process in LINPROG will be a product representation (58)
for B~} which in turn is based on the triangular LU factorization {43) - {44) of the basis
matrix B; for this reason the name “re-factorizalion” is sometimes used instead of re-inversion
[1]. We assume that the rows and columns of B arc already permuted in a way that makes
the representation {44) possible; the choice of such permutations is the topic of the following
subsections.

The matrix identity (44) for the LU decomposition determines the entries £;; and w;; of L
and U. In fact (44) can be written as the single scalar equation

min(s,j)
2 fwwy by i=lmj=1m, (62)
r=l
together with
£y =1, (63)

There are several possible orders in which the elements can be computed. We have chosen an
order that matches the construction of the row vector in Ly of (55) and the column vector in
U, of (57); the calculations are made clear from the following piece of pseudo-PASCAL code:

FOR & := 1 TO m DO
BEGIN
FOR j :=1TO &k ~ 1 DO

i—1

by = (b — D Baottuy)/ 45 (64)
v=1

FOR i:=1TO t DO

30 Risg-M-2797

i-1
wgg o= by — Zgiuuuk (65)

=1

END;

We see that the loop {64) containing #; produces the row vector in (55), and the loop
{65} containing u;; produces the column vector in {57). We also observe that the last element
computed at stage k is ug;, which we call the pivot element. Qur decomposition algorithm may
be characterized as a non-standard variant of Crout’s method.

The row eta vector actually stored by LINPROG at pivot stage k is the left-diagonal part
(~€x1,...,~€e r-1) of row k in L;’l, equation (60); as the column eta we store the super-
diagonat part (uyx,...,ux—14)7 of column k of Uy, equation (57), while the pivot element uy;
is stored in a separate list. In this way we avoid the explicit division by the pivot, and yet have
all the information needed for (59).

6.2 Pre-ordering of rows and columns

In the previous algebraic description of the inversion process we assumed that B was already
organized in a way that permits us to pivot down the diagonal, as implied by the decomposition
(44). In this connection it is important to realize that what is essential for a basis matrix B
18 its collection of independent columns, not the internal ordering of these columns within B.
Thus, when the inversion is due, we are given a set of basic columns of the constraint matrix A
in (5), and we are free to arrange them in any order. The rows of B correspond to rows in A and
can also be re-shuffled; this means that we mention the constraints in a different order. Hence
we may arrange both the columns and rows in any way that will suit us; only we must keep
track of the necessary permutations by index arrays pointing to the row and column positions,
respectively, of the matrix A. The final row and column numbering of B is simply defined by
the order of the pivot assignments of the same rows and columns. With this “chronological”
convention for the numbering, the output from the inversion will be an unpermuted triangular
factorization (44). Later, when the simplex procedure exchanges one column with another from
A, the new basic column simply inherits its number from the old one. We shall try to utilize
the freedom we have to pre-order the basis matrix in such a way that the sparsity is preserved
as well as possible without sacrificing the numerical stability. It is well-known that although we
start with a sparse basis B, the LU decomposition may cause “fill-in” of new nonzero elements
(the opposite process, viz. cancellation, is possible though less likely.) A measure of the total
fill-in is the excess of nonzeros in the combined matrix formed by L and U aver the nonzeros
in B itself. This fill-in depends in a critical way on the pivot selection order. If we can reduce
it, we get smaller eta lists after the inversion. This in turn means faster subsequent simplex
iterations.

6.3 Pivot selection strategy for sparsity preservation

If it were possible to arrange B in a strictly lower-triangular form, the LU factorization would be
trivial, and we would get no fill-in. This ideal goal is seldom attained in practice. Qur selection
method resernbles that described by Orchard-Hays [9], who builds a partly triangular basis
with a square block T in the middle (see Figure 1). The submatrix T is called the nucleus (or
“bump”). In particular T may be null, or it may be equal to B itself. The upper-left part of the
figure represents “row singletons”, while the lower-right part represents “column singletons”.
These rows and columns can easily be identified successively. Creation of new nonzeros depends
on the sparsity pattern of B and is governed by (64) and (65); we see from these equations that
the fill-in is limited to within and below the nucleus.

Risg-M-2797 31

Figure 1. Pre-ordering of B into a block triangular form with a nucleus

But we can do still better than this. If we pivot literately in the sequeuce implied by Figure 1,
we would have to set the column singletons aside, until the nucleus was processed. This would
require extra workspace. We avoid it by permuting the rows and columns in B such that the rows
below the nucleus are moved to the top (in reverse order) with analogous shifts of the columns
(cf., Benichou ef al., [10]). One can show that this gives the arrangement in Figure 2, and thus
leads to a sequence where we first process the column singletons, then the row singletons, and

Figure 2. Rearranged pre-ordering with the nucleus atl the end

finally the nucleus. An additional gain with Figure 2 is that there is no fill-in cutside the nucleus
itsell.

When we reach the nucleus we must use some pivot selection heuristics. Let us in the first
place concentrate on hmitation of fill-in, hence preservation of sparsity. A reasonable strategy
will be to select first the new pivot row as one with a minimum number of active nonzeros,
and then choose the corresponding pivot column as one with a nonzero in the pivot row and
with a minimnm count of nonzeros in the colurnn. “Active” means here: “not yet assigned for
pivoting”. We notice that with this rule for the nucleus there is no need for a separate treatment
of the row singletons; they will automatically be selected as the first rows.

When pivots are assigned, the corresponding row and column are de-activated, and appro-
priate updating of lists take place.

32 Risg—-M-2767

6.4 Modifications to ensure numerical stability

The pivot selection rule described above works exclusively on the sparsity pattern of the basis.
As it stands, it does not involve numerical considerations. But it is quite possible that the
computed value uy; of the proposed pivot element becomes exactly zero, or at least its absolute
value |ugzx| becomes very small, and in both cases the pivot must be rejected.

LINPROG uses the following amendment of the selection rule given in Section 6.3: The pivot
row which was selected from sparsity considerations is always accepted. When selecting a pivot
column, we find two candidates to choose between (they may coincide). The first one is selected
hy the minimum-count criterion given in Section 6.3; ties are resolved in favour of greater pivot
size. The second one has maximum pivot size among all the available columns. Denoting the
pivot values for the two candidates p, and ps, respectively, we use the former candidate if |py /p2|
exceeds some number £, otherwise the latter one. If we take £ = 1, we would always select pq,
and this corresponds to the classical (partial) pivoting rule for solving linear equations. On the
other hand, a small ¢ would favour the choice of py, i.e. the pivoting for sparsity and limitation
of the fill-in. LINPROG uses € = 0.01 as a standard value. It can be changed to another value
by the user with the keyword EPSRIN in the Control File, cf. Section 2.1 and Tabie 3 in Section
8.5.

The described acceptance test is based on the relative size of the pivot to the maximum size of
all available pivots in the row, Hence we must calculate all these pivots. Instead we could have
used a cheaper absolute test and accept the pivot that was proposed by the sparsity rule, unless
its size drops below an absolute threshold £;y,,; in that case one would invoke an “emergency
procedure” and select the largest possible pivot size. Qur numerical experiments indicate that
the relative test often gives better stability than does the absolute test, and that the overall
increase in computing time is small. Some inversion schemes use a combination of both tests.

Recall that the computation of a pivot element is done by (65) with ¢ = &, while (65) for
i < k and (64) give us the new column and row eta vectors, respectively.

6.5 Sparse-matrix implementation details

The “Boolean” part of the inversion requires that we maintain and update a map of the current
pattern of nonzeros during our LU decomposition. Zeros as a result of cancellation are ignored.
In our FORTRAN code we use traditional sparse-matrix techniques, based on a double set of
ordered lists: one list, IB, is column-ordered and contains the row numbers of the nonzeros,
while the other one, JB, is row-ordered and contains the column numbers of the same elements.
In both lists we reserve “elbow room” to accommodate for possible fill-in (initially we provide
the same elbow room for each row/column as its count of nonzeros.) Each of the two lists
are equipped with three set of pointer arrays. For the column-ordered list they are ICLPTI,
ICLPT2, and ICLAST. ICLPT1(J} holds the address in IB that corresponds to the first non-zero
in column J. ICLPT2(J) points in the same way to the last nonzero of the column. ICLAST(J)
holds the last free elbow-room address for column J. Analogous arrays IRWPT1, IRWPT2, and
IRLAST support the row-ordered list.

Should the elbow room for some column or row be used up during the inversion, a simple
memory-management procedure is activated: we make a fresh copy of the column or row at
the end of the list with a new elbow room equal to the new information length. The previous
starage for that column or row is wasted, and no garbage collection is made. This waste may
be tolerated, because after the inversion is finished, all the lists are abandoned.

Moreover we must keep track of the still active counts of nonzeros in the rows and in the
columns. These counts are used in our pre-ordering method for pivot selection.

Special care must be taken when computing the scalar products entering {64) and {65). The
problem arising is that the L and U elements, which are loaded from the two eta files, correspond
to unpermuted rows and columns of the constraint matrix. But we know that both should be
permuted to match our common pivot-index numbering, and this makes an internal sortiug

Risg-M-2797 33

procedure necessary.

6.

6 Algorithmic description of the inversion

Alter this discussion of the diflerent aspects of the inversion method, we shall now put the
bricks together and give a compressed algorithmic deseription (expressed in pseudo-PASCAT}.
We assume that all the necessary initializations are made. Then we proceed as follows:

34

clsing .= TRUE;
(* clsing becomes FALSE when columm singletons are exhausted x)
FOR £ :=1T0O m DO
(x k is the pivot step counter %)
BEGIN
200:
IF clsing THEN
BEGIN
Locate a singleton pivotcolumn;
clsing = (we found a column singleton);
IF —clsing THEN GO TO 200;
Locate corresponding pivot row;
END ELSE
BEGIN (x code for nucleus including row singletons x)
Locate pivotrow as one with minimum count;
END (* nucleus *};
(* selection of pivotrow finished *)
Build new row eta vector by {64};
De-activate pivotrow and give it the “chronological” number k;
IF —cising THEN
BEGIN (* code for nucleus including row singletons *)
Scan pivotrow to produce pivotcolnmn candidates 1 and 2;
(=
candidate 1 has minimum count (ties broken in favour of pivot size);
candidate 2 has largest pivot size among ail available columns;
the pivot values are p; and ps, respectively
*)
IF |p1| > ¢|pz| THEN pivotcolumn := candidate]
ELSE pivoicolumn := candidale?
END (* nucleus *);
Build new column eta vector by (65);
De-activate pivotcolumn and give it the “chronological” number &;
Update basic columnm indicator;
Reduce active row and column counts with the de-activated elements;
Update ordered lists to accommodate fill-in at current pivot step;
IF no more elbow-room for a column or row THEN
BEGIN
(* perform memory management)
Copy row or column to end of ordered list;
Provide fresh elhow room of size equal to copied part
END
END;

Risg—M-2797

6.7 Possible improvements

it is generally agreed that the LU decomposition described here is superior to the old “Product
Form of the Inverse” (PFI) method, in which B™% is factored in standard product form using
elementary column matrices only, as described in Section 5.1. The inversion time is less, and
the resulting eta lsts are shorter.

On the other hand, there is still room for improvements of the inversion, not yet exploited in
LINPROG. It should be possible to reduce the fill-in by more sophisticated methods of pivot
selection. First, one could carry out a complete block triangular rearrangement of B. There exist
efficient algorithms to do this (see Duff and Reid [11], and Duff [12]}. Another way to pursue,
proposed by Hellerman and Rarick [13], would be to look at B (or each of the triangularization
blocks in turn), and by suitable re-shuffling of the rows and columns transform it to a triangular
structure superimposed by “spikes”. The advantage is that all the fill-in is confined to the
spikes, and this tends to reduce the overall inversion work. Both block triangularization and
spike techniques are common ingredients of today’s commercial LP codes.

Finally, it might be questioned whether our somewhat wasteful and elaborate ordered-list
representation of the sparsity pattern, with its overhead of elbow room and memeory manage-
ment, could stand up against an mmplementation based on linked lists. Very likely the latter
concept might be the more economical of the two in modern computer environments.

7 The Forrest-Tomlin Procedure

In this section we turn to the question of updating the factorization of the basis matrix B,
or its inverse B!, when successive iteration cycles of the simplex process cause replacements
of the columns of B. We shall in the following describe the Forresi-Tomlin updating method
[14, 15, 6, 1], which is suitable for maintaining an LU-like product form (61) for B~1.

7.1 General outline

In Section 6 it was pointed out, that when we resume the simplex iterations after a re-inversion,
our current basis matrix B € R™*™ will be factored as

B=1U, (66)

where L is lower triangular and U upper triangular, provided we adopt the row and column
numbering induced by the pivoting sequence of the inversion. We shall do so, adhering to the
numbering convention given in Section 6.2.

When a subsequent iteration step of the simplex process transforms B to an adjacent basis
matrix B, the question arises whether it is still possible to write B as a product of factors L
and U,

B=1T, (67)

such that L can be easily computed by updating L, and analogously for U. Several schemes
exist that accomplish this task. The merit of the Forrest-Tomlin method is that it preserves the
triangular factorization during updating, when allowance for permutations is made. Moreover,
it creates no fill-in of new nonzeros in the eta lists.

In order to give a general description of the updating mechanism, let us temporarily leave
any specific assumptions about E and U in (66) out of account. For the time being they are just
invertible matrices whose product is B. Suppose now that we want to carry out an exchange
step of the simplex procedure with pivot index p. This means that we must replace column p
of B by some nonbasic column ag of the constraint matrix A. We use the ordering (7) for the
columns in A and assume that the gth nonbasic column was chosen such that a; = apm44. The

Risg-M-2797 35

resulting adjacent basis matrix B is given by (32) with k = m + g, and this we shall factorize
in the form (67}, or in the equivalent inverse form

B =0T (68)
We introduce the “partially updated” incoming vector

Y = L"lam+q; (69)

if we replace column p of U by v and again apply the column replacement formula (32) we

obtain the matrix
U = U(I —epel) + ve) (70)

and evidently we have
B=1LU". (71)

Next we define the vector r as the unique solution to the equation
UTr = ep, (72)

from which we derive
f = e;{U", (73)

which states that r7 equals the pth row of U~!. Now build the elementary row matrix

(1

R:Iwepe;{+aeprTxp (... ox¥T ...)|, (74)

\ Y

where the normalization constant ¢ is chosen such as to render the pivot element of R equal to
one, that is

g =1/r,. (75)
Then define

L=1LR"! (76)
and

U =RU". (77)

These are the updated factors in (67) we are looking for, and (71) shows that their product is
indeed B.

What can be said about the structure of the updated factors T and U and their inverse? If
we first consider L, we observe that immediately after an inversion L is lower triangular and
hence can be factored into a product of elementary row matrices, as {47) shows. As R™! is also
an elementary row matrix, the expression (76) shows that the updating process preserves Las
a product of elementary row matrices. Of course the same is true for the inverse

I =RL (78)
The structure of U can be deduced from (77), (70), (74), and (73). After reduction we find
U= (I-epe])U(I—epel)+ Vel (79)

where we have introduced the vector

v = Rv; {80)

36 Risg-M-2797

U v U
B 0 i 0
U v u

Figure 8. General structure of the matriz U

we see that v/ equals v in all places except the pth where its element is
U, = Upy =T L V. (81)

A sketch of U is given in Figure 3. It is seen that the effect of R is to annihilate all nonpivotal
elements of the pivot row of U’,

Let us now assume that U is upper triangular (as it is after an inversion). Then U takes the
form shown in Figure 4. The cyclic permutation {m,m —1,...,p+ 1, p} has the effect of taking

P
U v U
Ripp 0 p
0 U
v
I}

Figure . Almost-trianguler structure of the mairiz U

element number p to position wn and shifting the elements p + 1,..., m one place to the left.
If Q is the corresponding permutation matrix {Section 4.4), then the symmetrically permuted

matrix
U* = QUQ” (82)
will be upper triangular {and because of (73} R will be upper triangular, too).

More generally, suppose that U is a SPUT matrix (SPUT = Symmetrically Permuted Upper
Triangular). Then one infers that the updated matrix U of Figure 3 is also a SPUT matrix: we
need one symmetric permutation to transform Figure 3 to a matrix with the same structure as
that in Figure 4, and another one to render this upper triangular. As the composition of two
symmetric permutations is again symmetric, this argument shows that the updating process
preserves the SPUT property of U also after successive simplex exchange steps.

Risg-M-2797 37

7.2 Updating of product representation

Next we shall describe how the Forrest-Tomlin process maintains the representation of B~! =
U~L7! as a product of elementary row and column matrices. We will use an inductive argu-
ment to show that the current representation of the basis-inverse will be given by (61), where m
is the order of B and t is a pivot step counter, which starts from the value m after a re-inversion
and increases by 1 for each subsequent simplex iteration. When ¢ = m, the expression (61)
coincides with the inversion formula (58) as it should. The L-part of formula (61),

| ARl Pt ARl A (83)

clearly follows from the discnssion in Section 7.1; the new factor L ! to be added at the current
step t equals the elementary row matrix R in {74); hence it can be written in the form

Li'=s| 6 .. 1 .. fpm |, (84)

p being the new pivot index. We note that for the pivot element in (84) we have
bpp = 1. (85)
The U-part of formula (61) is
LU | L | Pl | (86)

Notice the asymmetry between (83) and (86) regarding their number of factors. As we shall
presently see, this peculiarity is related to the fact that the Forrest-Tomlin process leaves the
number m of elementary factors in the U-inverse fixed.

To examine the U-part of the updating process in more detail, suppose that the previous
re-inversion and subsequent simplex steps have resulted in a SPUT matrix U. Then there exists
a truly upper triangular matrix

L * Ld

¥y ¥z - Uim
- *
u u

22 - 2m

U= L (87)

*

umm

and a permutation (36) which transforms U” into U when applied to the rows as well as the
columns. We may express this fact in terms of the corresponding permutation matrix (38) by

the equivalent relations
U = PpUpT (88)

and

Ul =p(Us)"tpT, (89)

where we use the orthogonality property (42) of P. Referring again to the permutation (36),
the relation (88) shows that the element in the p;th place in the diagonal row of U is identical
with u};. For this reason p; is called the ith pivot index and wj; the ith pivot element.

By formula (46} U* can be written as a product of elementary column matrices

Ut =0, .. UL, (90)

38 Risg-M-2797

where

is upper triangular. By (88) we obtain a similar product representation for U:

U = PU;,. .U . UPT
= (PU,PT). . (PUPT). . (PUPT)
= U,...U;... Uy,

where we again have used {42). Each factor in (92), defined as
U; = PUIPT,
is an elementary column matrix of the form (cf. (25))

Pi

U; = uj; = Ep,(¥),

1

(91)

(92)

(93)

(94)

p; being the ith pivot index; the column vector y = {y,} has the same elements as column 7 in

{91), only permuted:
Up, = Upi, £=1,...,m,

where, of course, uy; = 0 for £ > . The inverse of (92) reads
LRI | | |

3 m

where, as a consequence of (27) - (29), U;"! is again an elementary column matrix,

Pi
1
U:T"l = I/u;i = EPi(z)!
1
with the column vector z defined by
zm——y'gi— E—f‘;, €=1,....m, £#i
¥p: H
and
1
th' == ;—;

To perform the updating we first compute r” from (73), which in product form reads

T _ Tiy1—1 -1
r mePUl LU

Risg-M-2797

(95)

(96)

(97)

(98)

(99)

(100)

39

This gives us the elementary row matrix R. defined by (74). The new pivot index p is equal to
the pivot index p; for one of the factors U; given by (94), say for i = k, so we have p = py;
we call Up the “pivotal” factor. We can show that we are entitled to discard the “pre-pivotal”
factors in (100} and write

LR VR |l (101)
To see this we insert (89) in (73),
T = el P(U")'PT, (102)
take the inverse of {90),
(Ut = (Ut (U (103)
and use
elP =e;. (104)
Then we get
T o T(U)L L (U) 7 L (U TP (105)

and when we follow el through the successive multiplications, the first £—1 of these are neutral
operations, hence

o = el (UL () PT (106)

Finally, when we apply (93), (104), and (42), we get (101).
I{f we omit the pivotal factor from (101), {106) shows that the only effect is to multiply el
by a scalar. It is easy to see that the pth element becomes 1, hence we have

ox’ = el Ui}, ... UY (107)
this formula is useful because it is or? rather than r¥ which enters in the updating process, as
(74} and (81) indicate.

Next we shall show that the transformed matrix U defined in (79) and depicted in Figure 3,

like U in (92), can be written as a product of m elementary column matrices,
U=cCU, .. U1 Uig... Uy, (108)

where the first Tactor {cf. (80) and (25)) is

c= Ty — E,(v)), (109)

Um 1

and where U; (i > k) is defined to be equal to U, except for the pth element of its pivot columm,
which 1s set to zero.

To show that (108) matches Figure 3, we first notice that the pth column of C in (109}
coincides with the pth column of U in Figure 3; as none of the other factors has a vector
different from e, in column p, (108) equals Figure 3 in the pth column. Similarly the pth row of
Cin (109) coincides with the pth row of U in Figure 3. None of the subsequent factors in (108)
will change the row, because we can show that none of the elementary columns in these matrices
has a nonzero element in the pth place. For the factors Uy, (i > k), this follows directly from the
definition, and in each of the factors U;, i < k, the pth component of its column vector equals
the kth component of the column vector of U}, which is zero. Therefore (108) also matches
Figure 3 in the pth row. Finally we must show that the general element %,;, where both i and
j differ from p, is the same in Figure 3 and (108). This amounts to show that for 2 # p the
two row vectors el U and ef U, where U is given by (108) and U by (92), coincide, save for

40 Risg-M-2797

the pth place. We verify this by following el through the respective postmultiplications in the
expressions (108) and (92). In all nonpivotal positions this row will undergo exactly the same
transformations, which again is a consequence of the zero element in the pth row of the factors
U;(i > k) and U;(i < k). This concludes the proof of (108) O.

The inverse form of (108) reads

—_—1 _ - ~ ~ -
U =Urt.. v Up L Ut (110)
where the last factor is
r
1 "'vl/ipp
c ! = 1/upp . (111)
—UM/EPP 1

In analogy with U; in (108), U7 ! in (110) can be obtained by zeroing the pth element of the
pivotal column of U;!. We see that the first k—1 factors of (110} are unaffected by the updating
procedure, a consequence of the SPUT form of U, ¢f. (90) and (92). The column vector in c-!
is added as a new vector to the U file. However, in practice we do not remove U;l physically
from the file, we only flag it as deleted, such that it virtually equals I {in the code the flagging
is conveniently made by negating the pivot index.)

7.3 Interfacing Forrest-Tomlin with simplex

The interfacing of the Forrest-Tomlin LU method to the simplex procedure outlined in Section
3.3 gives rise to some amendments to some of the steps, to be listed below.
First we notice that four types of operations are needed to perform the various tasks in the

simplex iterations. They are
1. Forward scan of U file, when U~! is premultiplied by a row vector,
2. Backward scan of U file, when U~™! is postmultiplied by a column vector,
3, Forward scan of L file, when L-! is postmultiplied by a column vector, and
4. Backward scan of L file, when L~ is premultiplied by a row vector.

These operations are made by a traditional sparse-matrix technique, holding the U and L
files in packed-array form.

Now assumie that the current basis-inverse is given by {61). We may then identify the following
simplex operations:

BTRAN operation: First, postmultiply the basic cost vector cg by U~%:

yT =ut =cfurt. vt (112)
(forward scan of U file). Next, produce a pricing vector T using 47,
#T = EB =T =471 L] (113)

{backward scan of L file).

PRICE and CHUZC operations: same as in Section 3.3.

FTRAN operation: If a4, is the column to enter the basis, form the partially updated
incoming vector by (69} which in product form gives

v=L71 L amyy (114)

Risg-M-2797 41

(forward scan of L file}. Complete updating of the incoming vector:
a; =B lan4, = Ulv = UTE.. ULy (115)

(backward scan of U file).

CHUZR operation: same as in Section 3.3.

Now that we know which variables will be exchanged we are ready to execute the Forrest-
Tomlin updating of the current basis, to transform B into the adjacent basis matrix B (PIVOT
Step in Section 3.3). As we saw in Section 7.2, this means that we add a new vector the the
L-list, cf. (83) — (84), and carry out the transformation leading from U~! to T in (110).

Included in the simplex step must also be an updating of the vector 8 = B~!b to its new
form 8 = B 'b. This is computed from the updated incoming vector a, = {aiz) in (115):

P
1 —ayg/ apg
B= 1/apq 8. (116)
—0mg/pq 1
Equation (116) follows from the relation
8=1"B3 (117)

and the equation (35) (or from (19) and (21)).

7.4 Implementation

A straightforward implementation of the Forrest-Tomlin procedure could be summarized in the
algorithm below:
Initialization part:

1. Start with some triangular factorization of the basis B, with corresponding U and L
files and pivot index list.

2. Reset iteration counter to £ = m, corresponding to the situation immediately after
an inversion.

3. Let 3 = B~ !b, where b is the right-hand side of the system.

Simplex iteration loop:
4. Compute 7 = cgUfI R §
5. Compute nT = 7TLt_1 .. .Ll_l.
6. Compute reduced costs dj = emayj~ T Bmy;.
7

. Choose entering column am4q with most negative d;. If no column can be found
STOP.

Compute v = L' .. LT "am 4.

@

9. Compute a, = UT'... U ly.
10. Choose pivot row p by the standard ratio test using oy and 3.
11. Update 3 by the column vector a.

12. In the U file, neutralize the elementary column matrix U, with pivot index = p
{negate the pivot index for that column.)

13. Compute ox” =l U}, ... UL

42 Risg—M-2797

14. In the U file, zero all elements in row p of the post-pivotal elementary matrix factors.
15. Compute v/ = Rv, where R =1 - ep(e;f ~1/r, 7).

16. Compute new pivot element u,, = v;,.

17. Add C™' = I— 1/u,,(v' — ¢y)el to the U file.
18. Update pivot index list with p;y; = p.

19. Add R to the L file.

20. Increase iteration counter { by one and return to 4 with the updated product forms.
21. End of algorithm.

The steps 4 + 5 form the BTRAN part, 6 is PRICE, 7 is CHUZC, 8 + 9 is FTRAN, 10 is
CHUZR, and the remaining steps form together the PIVOT operation.

As pointed out by Forrest and Tomlin [15), a certain amount of computer work may be saved
by rearranging the steps described. Their idea is to merge the previous PIVOT updating with
the BTRAN for the current simplex step by sandwiching it between operations 4 and 5, and do
as much as possible of the U file reading concnrrently. The extended BTRAN works as follows:

Make first part of operation 4 until the pivotal factor U;i , which is neutralized {operation
12).

e Continue the U scan till the last factor C~! with the concurrent execution of operations
13, 14, and operation 4 after U;l.

¢ Operations 15 and 16, and then operation 17 concurrently on completing operation 4
(multiplication by C~1).

s Remaining PIVOT operations 18, 19, and 20.

The growth of the L and U files in the Forrest-Tomlin method will follow a triangular pattern
and is generally slower than for the eta file in the product-inverse method.

No actual permutations are necessary: as shown the column permutations cancel, and the
row permutations are indirectly taken care of by pointer arrays.

8 Miscellaneous Features

Until now we have described the fundamental building blocks of LINPROG. In the following
we shall add a discussion of more specialized topics. The aim is to give the full background
material for understanding how the code works. We shall use the simplex overview in Section
3 as the starting point, and step by step introduce the necessary algorithmic modifications.
First we shall sce how bounds and ranges in the LP formulation are incorporated in a natural
way in the simplex framework. After this we describe the simplex initialization procedure in
LINPROG, and next how the code finds a first feasible solution. The use of program tolerances
as a means to ensure the numerical stability is outlined, and the available variants of matrix
scaling are given. Finally, we survey some programming techniques, particularly those related
to sparse-matrix representations.

8.1 Bounds and ranges

In the standard form of the LP given in Section 3.1, the only constraint on the solution vector
x = {z;} was the nonnegativity condition (6). But bounding constraints of the more general

type
6 <z <y (118)

Risg—M-2797 43

arise quite naturally in many LP applications, and as explained in Section 2, LINPROG is able
to deal with such constraints. The lower bound constraints £; < z; are simply disposed of by a
substitution

:c; =z;— &, (119)
where the bounds for .r;- are
t’_’?- =0 (120)
and
u}::u,-—t’_,—. (121)

Assuming that the translation (119) is already carried out, we may drop the primes in z}, £,

and u;. Henceforth we therefore assume ¢; = 0 and consider upper bound constraints only:

0<e; <w (G=1,...,m). (122)

Formally we could postulate a restriction (122) for all j, even when z; is unbounded above, in
which case we let u; = oo. With this convention we can state (122) in vector form:

0<x<u (123)

In analogy with {8) we order the elements of the bound vector u according to the current
partition in basic and nonbasic variables:

- (2)

such that
(upy=u; (i=1,...,m), (un); = tm4; (J=1,...,mn—m) {125)

Of course, constraints like (122) could be realized by adding extra rows to the constraint matrix
A in (5). But it is inefficient to do so, because one of the critical size parameters of an LP is
the number of rows m. Instead we extend the simplex idea by allowing a nonbasic variable z;
to be equal to esther of its bounds z; = 0 or (if u; < 00) z; = u;.

In the bounded simplex procedure the formulas (7) - (15) are still valid. The restriction (16)
should be modified to

0<xpg<upg, 0<xy<un. (126)
Also the expression (17) for the current basic solution must be altered. Let us divide the total
nonbasic index set {I,...,n —m} in the lower bound set
L = {j| zu4; nonbasic at zero} (127)
and the upper bound set
U = {j | m+; nonbasic at umy;}. (128)
Then (17) should be replaced by }
xp =B, (129)
where we have introduced the “effective” #-vector
B=1{5}=8-) tumy;aj, (130)
jeu

with @ defined in (12) and «; in (20). Using L and U, the objective function z in {14) can be
written

= cgﬁ + Zdjxm"'j + Zdj$m+j, (131)
jel jeU

44 Risg-M-~2797

where d = {d;} is the reduced-cost vector defined by (18). Suppose now that we have a basic
feasible solution for which the condition

VieL d;>0 and ViU d; <0 (132)

holds. Then (131) shows that = is at its minimum; it will not decrease, if we increase £,,4; from
zero (j € L), or if we decrease £, from umy; (7 € U). Thus (132) is a sufficient condition for
optimality. If (132) does not hold, then either

Gel di<o, (133)

or

el d;>o. (134)

In both cases we may improve on z by introducing a nonbasic variable £,y into the basis; in
the former case it should be increased from zero, and in the latter case decreased from upmy;.

Also the selection of the leaving variable becomes somewhat more complicated than in the
algorithm with no upper bounds. This is because a basic variable (xg); = z; may reach either
its lower bound 0 or its upper bound {ug); = u;. Moreover, we must consider the possibility of
the entering variable reaching its opposite bound and thus becoming nonbasic anew. Which of
these events will first take place depends on the respective step lengths 8, #3, and 83, of the
entering variable z,,4,. We see from (15) and (130) that the critical steps should be determined
from the expression

xp =3 — Tmyqag, (135)

if g € L, and from N
XB = B+ (Umiq — Tmigq)0g, (136)

if € /. We then compute #; as follows:

ge L : ﬂlzmin{ E;/a,:q:izl,...,manqu>O}, (137)
g€U: 6 =min{-fifai;:i=1,...,mand ay <0}; (138)
the step #; is similarly computed as:
geL: ﬂg:min{(,é,-—u,-)/a,-q:i:1,...,mand a,-q<0}, (139)
qgell: ngmin{(ui——,é;)/a;q:i:l,...,mand o:,-q>0}. (140)

In (137) — {140) we use the convention
min{@} = co. (141)

We see that (137) corresponds to {21) in the standard algorithm. Because we have a basic

feasible solution,
0<z <, {142)

the two steps #; and #; cannot be negative. Defining
03 = Umtq, (143)
it is clear that the z.,;,-step for the first event to happen will be given by
0 = min{#,, 85,63} (144)

As in the standard algorithm, # = co means an unhounded solution. In the two cases # = 8; and
= 8 we carry out a pivot step, which ¢comprises a basis exchange operation {Forrest-Tomlin).
In addition we must compute the new basic solution Xg. For the standard algorithm we have

Risg-M-2797 45

Xp = B, where B was given by (116). From {135) - (140) it can be shown that with the upper
bound algorithm we should use the following more general form for Xp:

P
1 —ayg/opg
iﬂ = Bo +]‘/GPQ ()é -)60)1 (145)
—amg/fapg 1
where
) 0 il zp hits zero
Bo= (146)
upe, if x, hits up
and
0 fge L
B, = (147)

Umyqeep HqgeEU

In the third case, f# = @3, the nonbasic variable z,4, goes to its opposite bound. This must

be recorded, as must also the induced change in the current basic solution; the new solution
becomes {cf. (135) - (136)):

Xp =B — timyqag forqel, (148)

Xpg = fi + tUmpqay, forgel. (149)

We can now summarize the upper bound simplex procedure in algorithmic form. Compared to
the standard algorithm in Section 3.3, the only steps to modify are CHUZC, CHUZR, and the
B-updating part of PIVOT:

e CHUZC Step — Choose the entering nonbasic variable (j = ¢) as one from L with negative
reduced cost d;, or one from U with positive reduced cost d;. (In LINPROG we choose
one with maximum |d;|.) If no candidate ¢ can be found, the current solution is optirnal.

e« CHUZR Step — Use one of the ratios (137) or (138) to compute a step #; for £y, taking
a basic variable #; to zero. Also we use one of the ratio rules {139) or (140) to compute
a step #; taking z; to its upper bound ;. Put 3 = um4,; the critical step # is then the
minimum of 8;, 82, and 03. Il § = 03, we record the bound shift of the nonbasic variable
and the shift of the basic solution as expressed by {148) or (149), and then we return to
the CHUZC Step. If # = oo, we have an unbounded solution. Otherwise we proceed to
the PIVOT Step.

s PIVOT Step — Make the basis matrix exchange. Update the current basic solution by
using (145). Return to the BTRAN Step.

Recall from Section 2, that LINPROG is able to handle a BOUNDS section with bound types
UP, LO, FX, FR, PL, and MI. We have so far concentrated on the UP-facility, and this is in
fact the only one which took some difficulty to implement. As already mentioned, LO is taken
care of by substitution. A variable of type FX is permanently locked out from the basis, and a
FR variable is locked into the basis. PL is obtained by default, and MI is realized by negating
the variable.

When implementing RANGES constraints of the type given in (3) in Section 2, LINPROG
takes advantage of the upper bound framework outlined previously. It transforms (3) to an
equality restriction

Y ez —y=0 (150)

46 Risg-M-2797

by introducing a new variable y, which might be thought of as a “slack” variable associated
with range constraints. The variable y is bounded below and above,

<y <y, (151)

and the way such a constraint is handled in LINPROG has already been discussed at length.

8.2 Simplex initialization: CRASH and zero-slack elimination

Before the standard simplex algorithm can work, we must have a basic feasible solution. LIN-
PROG achieves this goal in several stages. Here we shall describe the first two of these: the
“CRASH” procedure for setting up an initial basis, and the “Phase (" procedure for removal
of zero slacks from the basis. In Section 8.3 we will describe how the infeasibilities are driven
to zero by a special pass of simplex called “Phase 17.

In the description of the ROWS Section output in Section 2.3 we saw that not only will
each column in the constraint matrix be associated with a variable, but so also will each row.
LINPROG uses the same principle in its internal organization of the computations. To discern
the row variables from the physical variables (the latter being the “structural” variables), the
former are often called “logical variables” or more preferably “slack variables”.

In the LP formulation (1) we may assume that the restrictions R; are either < or =, because,
as mentioned in Section 3.1, the >-restrictions are converted to <-restrictions, and the free rows
are deleted from the constraint matrix. To each <-restriction there corresponds a nonnegative
slack variable, and to each equality restriction a “zero-slack” variable.

Adopting this convention, LINPROG augments the original constraint matrix with a unit
matrix I, which comes from the slack variables. It is this augmented matrix that corresponds
to the m x n constraint matrix A in the formulation {4) ~ (6). Rather than {6} we use the
constraint {123) for x. Notice that zero slacks may be considered as bounded variables with
zero as the common lower and upper bound. Basic zero slacks will normaltly be infeasible.

Our first task will be to select a subset of m independent columns from A to form the initial
basis matrix B = B¢, Assuming that all nonbasic variables start at zero, equations (17} and
(12) give us the first basic solution. It might be infeasible, but we are willing to accept this in
the initial stage.

Of course, an easy choice would be to select the all-slack initial basis matrix By = Y. The
inversion in (12) would be trivial, and we would get the initial solution xg = b. But this
solution might very well contain many infeasible elements, which afterwards would entail much
work in Phase 1. Fortunately we can do better than this. Following common practice in LP
computations we choose a starting basis matrix By that is as close to feasibility as possible and
is also (permuted) triangular. This is the CRASH procedure. A triangular basis matrix is still
easy to invert. After experimenting with some CRASH variants we found that for a broad class
of test problems a good strategy is to choose as many feasible slacks and structurals as possible.
We do this by a recursive scanning of A for triangularity, starting with the unit vectors from
the feasible slacks. When no more feasible slacks or structurals are available for a triangular
By, we are forced to fill the remaining places with infeasible slacks.

After setting up various indicators for bound status and for the nonbasic variables, LINPROG
performs the initial inversion. After this the code is ready to enter the next stage, which is the
elimination of zero slacks from the basis (Phase 0). One can hope that the CRASH procedure
already has removed a good deal of the zero slacks, but in general there will be some left.
Phase 0 resemnbles the other simplex phases in many respects. The basis exchange mechanism
is the Forrest-Tomlin update scheme described in Section 7. The difference lies in the selection
criteria for departing and entering variables. In Phase 0 we first choose the departing variable.
The criteria for selecting the entering variable are first that it must not be an already eliminated
zero slack (or any other fixed variable), and next that the prospective pivot element (4, in
(81)) be nonzero {otherwise the new column would be linearly dependent on those already in

Risg-M-2797 47

the basis). In practice we scan each available column until the condition
[tps| 2 €0 (152)

is fulfilled, in which case we accept the column; if {152} is not satisfied for any column, LINPROG
uses the colurnn with greatest [i,,| (¢ corresponds to the parameter ZERPIV mentioned in
Section 8.5).

Suppose now that a successful pivol has been found. We then mark the eliminated zero
slack as nnavailable for future re-entrance into the basis and proceed to the Forrest-Tomlin
exchange procedure. On the other hand, assume that no pivot element up, # 0 could be found.
Depending on the corresponding component of the transformed right-hand side 3, there are
two possibilities: If the component is # 0, we have detected an infeasibility. If it is zero, the
corresponding restriction is redundant. In that case it is impossible to remove the zero slack
from the basis, and il rmust stay locked into the basis throughout the simplex process.

Also in Phase 0 we invoke re-inversions at regular intervals of the iteration counter.

8.3 Finding a first feasible solution: Phase 1

Let us recapitulate the main passes of simplex used in LINPROG:
o CRASH: Provide an initial triangular basis.
e Phase 0: Try to remove zero slacks from the basis.
e Phase 1: Establish feasibility (or demonstrate infeasibility).
e Phase 2: Establish optimality.

After CRASH and Phase 0, LINPROG enters Phase 1, in which the infeasibilities are sought
removed. There are several variants of Phase 1 in use in different LP codes. For example, the zero
slack eliminations, which we segregated out as a special Phase 0, could instead be integrated
in Phase 1. We included Phase 0 to improve the efficiency on LP problems with many equality
restrictions; notice in this context that LINPROG can he used to solve n linear equations in n
unknowns.

A central feature in Phase 1 is the use of a special objective function, called the “sum of
infeasibilities”, or SINF, instead of the objective function ¢7x in (4}. We minimize SINF by
the simplex technique; if the minimum is zero, feasibility is achieved. Otherwise the LP is
infeasible. In this way Phase 1 is just a variant of the simplex procedure discussed in Sections 3
and 8.1. The main difference is that in Phase 1 we allow basic solutions to be infeasible. In other
implementations the basic feasibility is maintained formally by introducing so-called “artificial
variables”. Such variables are not used in LINPROG.

When explaining our Phase | technique, which is inspired by the code of Bartels et al. [16],
and which also resembles the method described by Nazareth {1], our starting point will be the
bounded simplex procedure given in Section 8.1. The first step is to give a precise definition
of SINF. 'This definition is dynamical in the sense that it reflects the infeasibility status of
the current basic solution xg = B given by (17) and (12). (Admittedly, the upper-bounding
algorithm may induce a correction to 8 (cf. (130)}, but for notational convenience we assume
that this correction is already included in B.) Let us partition the basic index set

B={1,...,m) (153)

in index sets for “feasibility”, “infeasibility below lower bonnd”, and “infeasibility above upper
bound”:

B=Ful-uIt (154)

To define the sets in {154) formally, assume that the ith basic variable z; = f; is bounded helow
by ¢ and above by u; (Though LINPROG works with the lower bound #; = 0 internally, we

48 Risg-M~-2797

Bi
X eIt
upper bound wu;
X i€ F
lower bound ¥¢;
X 1el”

Figure 5. Possible feasibility siates for basic variable z; = 5

keep £; here as a general parameter to make the exposition clearer.) We then have

F= {i = Blf,’ < i < u;}, (155)
I™ ={ie B|g& < &}, (156)

and
It={ie Bl > u}. (157)

We can depict the possible feasibility states in a diagram as shown in Figure 5. The three cross
marks represent the typical states for a basic variable. As a special case we may have u; = +oo.
With the notation introduced we define

SINF = > (fi—z)+ D (zi —u), (158)

tef— ieft

justifying the phrase “sum of infeasibilities” for SINF. We may also write SINF as a linear
function similar to (4). To do this, we introduce the “infeasibility cost vector” ¢f. This n-vector
is partitioned in a basic m-vector and a nonbasic {n — m)-vector as in (8):

cr = (zi;) (159)

As nonbasic vartables are always feasible we let
cyvr = 0. (160)

The ¢th component of ¢py is set to ¢, —1, or +1, according to the following rules:

ieF = (cpr)i= 0, (161)
iel” = (CB]);:—I, (162)
i€ It = (CB]),' = +1. (163)

Risg-M-2797 49

We see that apart from a constant, SINF is the inner product of ¢; with x:

SINF=clx + » &i— Y u (164)

i€l~ ielt+

In contrast to (4), the linear form (164) is not fixed, but changes {rom iteration to iteration.
Nevertheless, the main simplex principle of reducing the objeclive fonction from one iteration
to the next still holds, such that we expect Phase 1 to be finished in a finite nnmber of sieps,
ignoring the possibility of cycling.

We may also speak of the number of inleasibilities

NINF = |I- uTIt|. (165)

When feasibility is attained, then I~ and It are empty; hence NINF = 0, while (158) gives
SINF = (. Also B = F, and by (160} and (161} ¢; == 0. We therefore deduce that

cr=10 = NINF =0 = SINF == 0, (166)

such that the fuHillment of any ol these three conditions means feasibility, in which case Phase
1 terminates. Otherwise we proceed by computing the “infeastbility pricing vector”

w7 =k, B! (167)

by the same BTRAN operation as used for the normal pricing vector {13}); after this the vector
of “reduced infeasibility costs”

df =&y~ nN=—n]N (168)

is computed in analogy with {18}. We can now argue in precisely the same way as in Sections
3.2 and 8.1 to oblain conditions for SINF to be minimal, and, il it is not minimal, to find an
entering variable to reduce it. We find that if {ds); > 0 for all nonbasic variables at lower bound
and (dy); < 0 for all nonbasic variables at npper bonnd, then SINF is minimal. Formally this
condition can be stated as in (132):

VieL (d); 20 and VjeU (d); <0. (169)

We know that SINF > 0, and if (169} holds, our LP must be infeasible. If not we use exactly
the same CHUZC procedure as in Section 8.1 to select a variable z,4, to be introduced into
the basis.

The more difficult part of Phase 1 is to devise a strategy [or selecting a variable to leave
the basis (CHUZR}. Again a number of variants are in use in different LP codes. The method
in LINPROG forms a natnral generalization of the bounded simplex algorithm for feasible
solutions given in Section 8.1. It works well for the test problems we have studied.

We assnme that the CHUZC procedure by now has selected the variable 5,44 lo be intro-
duced into the basis. We must then choose an index i = p from the set 1 in {153) identilying
a variable to leave the basis. Consider the updated incoming vector (cf. {(115) and (34)):

X = {O’iq}izl,,,.,m = Bnlam+q. (170)

First we notice that a leaving candidate = p must have its pivot element apy # 0. We therefore
intrednce the index set B; of candidates available for pivoting:

By = {i € Blay, # 0}, (171)

and in the following discussions we rnle ont all candidates i ¢ B). We can partition B; in the
same way as we did for B in (154}

By = FUIf ulf, (172)

30 Risg-M-2797

where

F;:FnBlz{'iEBllf.'SﬂiSu;}, (173)
Ir=I"nB ={ieBf <&}, {174)

and
IF=I*NB; ={ic Bi|8: > w)}. (175)

Thus F; is the feasible part of By. The infeasible part is
L=Ifult. (176)

Making z,44 basic means that either it rises from its lower bound £, or it decreases from its
upper bound u. If # is the absolute value of the =z, 4,-step in both cases, we can calculate the
change in the ith basic solution component using (19}, which holds for small enough 4 > 0:

z; = B F oy, (177)

where the upper sign applies if 2.4, rises, and the lower if it decreases. As we have already
excluded the case a;y = 0, we know that the basic variable z; will move from one of the typical
cross positions for & in Figure 5, when @ increases from 0. Whether (177) represents an increase
or a decrease of z; from f; depends on the bound of z,,,1, and the sign of a;,. For each candidate
i € By let us define a direction indicator D; to be T (“up”) or | (“down™}, by the following rule:

Vil (e > 0A 254y =8 V {aig < 0A Tpyy = u)
Dy = (178)
T i (e <0AZmyy =€) V (ayg > 0AZney = u).

Using this direction indicator, we partition the infeasible set I in {176) in another way:

Iy = Ibett,er U Tworse (179)
where
Toecter = {ZEI{FID, :l}U{zEII__lDl :T}a (180)
and
Iworse = {i € IF1D; =tYU i € I7|D; =]} (181)

The set Thecter represents infeasible candidates moving towards feasibility, while Iy 5. Tepresents
infeasible candidates moving further away from feasibility. It is clear that we can never accept
a candidate from [yorse:

P& lworse- (182)

We therefore concentrate on the candidate set
C= Fl U Ibettera (183)

and for each ¢ € { we compute certain critical step lengths for z,4,, taking the corresponding
basic variable z; to either of its bounds ¢; or u;:

(ui = Bi)/|aigf for Dy =1
tEFy: 4; = (184)
(8i — &i)/logg| for Dy =1,

(ﬁ,’ - u,-)/sa,-q] [Ol' D,‘ :l
i € Ihetter Oin = (185)
(& = Bi)/laigl for Dy =1,
and
(B; ~ £)/lagy| for Dy =|
i€ Ibetter : Hij = (186)
(U.-——ﬁ,-)/|a,-q| for D,’ZT.

Risg-M-2797 51

Next we calculate

¢, = min{f; : i € F}, (187)
611’ = min{eif i€ Ibetter}y (188)
and from this
5 = min{é), 8} (189)
We also compute
2 = max{fin : i € Ihetter}. (190)

In these formulas, #; takes a feasible x; to its bound, 6, takes an infeasible x; to its nearest
bound, whereas 0;; takes an infeasible 2; to its farthest bound. It may happen that Fy = @.
Als0 Ipetter may be empty, but this happens only when the current solution is feasible. To cover
these cases formally, we use the conventions (141) and

max{@} = occ. {191)

Moreover we let
Oz = u—¢, (192)

i.e. the difference between the upper and lower bounds for the entering variable. Then finally,

we use the step
f = min{H;, 02,93}. (193)

I 04 becomes blocking, the leaving and entering variables coincide,

To state it in another way, we can characterize the properties of our strategy as follows: The
leaving variable goes to one of its bounds. No feasible vartable goes infeasible, hence the number
of infeasibilities NINF is monotonically decreasing. No infeasible variable can cross the feasible
range and again go infeasible. Within these constraints we eliminate as many infeasibilities as
we possibly can. This Phase 1 strategy does not guarantee that the sum of infeasibilities SINF
be monotonic decreasing, too. It would be so if we always were to stop at the nearest boundary;
this is a consequence of the way we select the entering variable from the “reduced infeasibility
costs” in CHUZC. But when we allow an infeasible variable x; to go to its farthest bound, there
exists a possibility that SINF might increase: the initial decrease in SINF could be outweighed
by a subsequent increase, because when x; moves into the feasible range between the bounds, we
suddenly lose its contribution to the decrease in SINF. Notice however, that when this happens,
NINF certainly decreases, which is important for the convergence of the procedure.

Let us summarize the Phase 1 CHUZR in compressed algorithmic form, as we did it for the
Phase 2 CHUZR in Section 8.1:

e CHUZR Step in Phase 1 -— Compute the least step ¢} taking a feasible basic variable to
its bound by (187). Compute the least step #] taking an infeasible variable to its farthest
bound by (188). Find the minimum &; of these two steps. Compute the largest step 0s
taking an infeasible basic variable to its nearest bound by (190}. Compute the difference
05 between the upper and lower bounds for the entering variable. Take the least of the
three steps 0;, 2, and 83, to be the resulting step 8 of the entering variable. If # = &3
make the entering variable nonbasic at its opposile end. Otherwise identify the leaving
variable and proceed to the PIVOT Step.

We have not paid attention to problems arising from degeneracies, which in connection with
rounding errors may introduce serious troubles in practical computations. A common means of
trying to improve the robustness of the CHUZR procedure is to use a two-pass version of the
procedure, where the bounds are slightly perturbed in the first pass, but treated exactly in the
second. This technique, which dates back to Harris [17], has also been tried in LINPROG, but
we did not find the results sufficiently rewarding to justify the coding complications. Instead,
we use feasibility tolerances in a much simpler way (Section 8.5).

52 Risg-M-2797

Degeneracies of the type u; = #; for basic variables will not occur in Phase 1. Like zero slacks
such variables are considered as fixed variables by LINPROG, and no fixed variable can be
basic and available for pivoting in Phase 1.

When Phase 1 terminates with a feasible solution, we drop the infeasibility cost function
and return to the genuine objective function of {4). This will be minimized in “Phase 2” of
simplex, where we use the mechanisms described in Section 3 together with the upper-bounding
amendments in Section 8.1. In fact the above description of the Phase 1 CHUZR algorithm also
holds for Phase 2, where now all the “infeasible” sets are empty.

8.4 Pricing strategies. Cycling.

As described in Sections 3.2 and 8.1, LINPROG uses a simple criterion for selecting the entering
variable: First the reduced costs d; are calculated by {18) {operation PRICE}, and next the
code seeks out a column with maximum |d;| among the candidates with the proper sign of d;
(operation CHUZC). Taken together, PRICE and CHUZC form our pricing strategy. Many re-
finements of this strategy are in use in commercial LP software. Some of them will be mentioned
here with comments on their potential usefulness for enhancing the performance of LINPROG.

The advanced pricing methods can be divided in two classes. In the first class of methods an
attempt is made to reduce the number of simplex iterations by modifying the CHUZC selection
criterion based on d;. This requires an increase of the work per iteration, however. The second
class of methods seeks to reduce the average work per iteration at the expense of some increase
of the iteration count.

To the first class belong the steepest-edge pricing methods, of which the DEVEX scheme
by Harris [17] and the method of Goldfarb and Reid [18] are the best known. The simple
LINPROG pricing based on the dj-criterion corresponds to finding an edge of the polytope
(Section 3.2) with maximum absolute value of the gradient of the objective function, measnred
in the reference space of the current nonbasic variables. This reference space changes at each
iteration. Steepest-edge pricing, on the other hand, uses gradients in a fized reference space.
Harris uses a reference space spanned by the structural variables of the LP. She computes
the gradients in this space by attaching proper weight parameters w; to the reduced costs
d;, such that d;/w; rather than d; are used for selecting the incoming variable. The weights
w;, being costly to compute afresh, are estimated from previous iterates using a heuristic
recursion formula. Goldfarb and Reid use a similar approach. Their method differs from that
of Harris by the use of a reference space spanned by all the LP variables, and the use of an
exact recursion formula for the weights. Both methods affect a dynamic scaling of the columns.
We have experimented with the Goldfarb and Reid method in LINPROG for selected sample
problems. As expected, the result was a significant reduction of the iteration count (typically
about 40 per cent), but this gain was offset by the extra work involved in the pricing operation,
so that no overall improvenient could be measured. Moreover, the recurrence formula seemed
to induce numerical instability. We have not tried Harris’s scheme, but this is generally rated
equal to that of Goldfarb and Reid in efficiency. Of course, such comparisons depend a lot on
the computer environment. Our conclusion was that it is not worthwhile to use steepest-edge
pricing in LINPROG.,

Another way to reduce the number of simplex iterations is by “muitiple-target” pricing,
where more than one objective function is used concurrently. For example, in Phase 1 we could
compute reduced costs for both the sum of infeasibilities and the “genuine” objective function
and find an incoming variable which decreases both of them. (The so-called “Big-M” method
(6, 1] forms a variant of this principle; its use, however, is discouraged for numerical reasons.)
It is also possible to select a secondary objective function in such a way that degeneracies are
impeded. This technique, which is described by Nazareth [1], has been tried in LINPROG, but
without sufficiently encouraging results. Otherwise, multiple-target pricing methods have not
heen tried by us.

Let us briefty consider the other class of pricing methods, in which one seeks to lessen the

Risg-M-2797 53

average work in the pricing process. The motivation for such methods is that the full product
a7 N in (18) represents n — m inner-product operations and may therefore be costly to compute
for big problems with many nonbasic variables.

With parital pricing only a portion of the nonbasic columns in N is scanned at each iteration
to find an incoming candidate. At the next iteration another portion is scanned, for example
by starting where the last scan ended. Experiments with partial pricing in LINPROG did not
show significant improvement of performance, but the reason could be that few of our large test
cases have n >» m.

With mulliple pricing one seeks out a number of promising candidates, say five, with “good”
reduced costs, and processes them together in extended FTRAN, CHUZR, and PIVOT oper-
ations. Only one candidate, of course, is selected to be introduced into the basis, but for the
next iteration only the remaining four columns are considered. The process continues as long as
the reduced costs admit it. In this way a subproblem is defined, within which minor sterations
take place. In the next mejor ileration we define a new subproblem with five new candidates,
and so on. This technique should reduce the total simplex work. It is also possible to make a
local CHUZR optimization within the subproblem by finding a step # which reduces the ob-
jective function as much as possible. Preliminary experiments with multiple pricing indicate
that this technique might indeed significantly improve the efficiency in LINPROG. Maybe the
best strategy would be to combine multiple pricing with partial pricing. The present version of
LINPROG contains no multiple pricing.

We shall also comment on cycling. [t was mentioned in the description of the standard
simplex method in Section 3.2 that basic solutions may become degenerate such that one or
more basic variables are zero {or more generally, equal to one of their bounds). Then there exists
a possibility, that the step size f in (21) equals zero, with the consequence that the objective
function is unaltered. After a series of snch exchanges between degenerate solntions we might
again return to the same set of basic variables, and we have an instance of cycling.

It is generally accepted that cycling is an unlikely phenomenon in the standard simplex
algorithm. However, the various simplex modifications we have described, viz. the nse of a
dynamical snm-of-infeasibility form SINF and of the upper-bonnding algorithm, increase the
risk of cycling. In ill-conditioned or badly scaled LP problems the step length # determined in
the CHUZR procedure is often so small that it may be difficult to discern it from zero, due to
the influence of the simplex tolerances {Section 8.5). In fact, there have been certain examples
of cycling in LINPROG and its predecessors. We were able to protect ourselves against some of
these instances, but not all, so the possibility still exists that cycling may strike unexpectedly
(this happened in the PILOT.JA test case, see Section 9.3).

In LINPROG the criterion for choosing a f3-step (193) seems to be a potential source for
starting a cycling. We have seen examples of indefinitely alternating selections between 83
and f;; here the cure was a systematic tiebreaking rule {see Section 8.5). In other cases f3 was
selected every time, such that the state of a nonbasic variable oscillated between its two bounds.
This situation could be avoided by forbidding an immediate re-selection of 83,

Apart from these precautions we have not bothered to build a “cycle-protection” device
into the code. Such protection methods are given in the literature. For example, Garfinkel and
Nembhauser [19] describe a technique based on a lexicographic ranking rule for vectors; Gill et al.
[20] discuss praciical experiences from using an “anti-cycling procedure” in LP computations.

8.5 Scaling, LP tolerances, and numerical stability.

When an LP is solved by a computer, the finite precision arithmetic will inevitably induce
rounding errors. Such errors are well-known from solution of equations, but their impact is mnch
more unpredictable when ineqnalities are considered. Following common practice, LINPROG
uses a set of tolerances to provide margins of error when comparisons are made between two
numbers or between a number and zero, as required in the simplex procedure.

To make the use of such tolerances meaningful, the LP problem should first be brought on a

54 Risg~-M--2797

suitable standard form. Therefore, before starting the simplex algorithm, LINPROG normally
makes a scafing of the left-hand side of the LP system (1). We have seen in Section 2.1, that
there are several possible scaling options, governed by the numerical keyword MSCALE. By
default (MSCALE = 1}, LINPROG makes only a row sealing, which has the effect that the

maximum norm of each scaled row becomes unity:
max{|a;|:i=1,...,n,) =1 (194)

The objective row is not scaled. Experiments show that this type of scaling is adequate for a
major class of LP problems. Sometimes, however, it might be better to use cofumn scaling. This
is achieved in LINPROG by specifying MSCALE = 2. Then the maximum norm of each scaled

column becomes unity:
max{le;|:éi=1,..., m}=1 (195)

As a third possibility (MSCALE = 3) LINPROG can scale rows and columns, such that the
scaled coefficients satisfy (194) as well as (195). A simple code for this purpose was found in
Bartels et al. [16]. We use their method and compute the row and column scales, r; and 85, by
the following algorithm (given in pseudo-PASCAL):

FOR{:=1TO m DO r; ;= 0;
FOR j :=1TO n, DO
BEGIN
h =0
FOR i :=1TO m DO A := max({h,a;|);
55 1= 1/h;
FOR i:= 1 TO m DO r; := max(r;, s;j|a;;|)
END;

The matrix elements can now be normalized by r; and s; as follows:

FOR j := 1 TO n, DO
FOR i :=1TO0 m DO a;; = 5;/r; x a;;

It is easy to see that after this operation both (194) and (195) are fulfilled.

Of course, row scaling affects the right-hand side as well. Likewise, column scaling induces a
scaling of the structural variables.

Other LP systems may offer more elaborate scaling procedures, though the benefit from
them is sometimes questioned. In some systems it is possible to specify column scale numbers
s; directly in the input. A survey of scaling methods for LP is given by Tomlin [21].

It should be noticed that the LINPROG user can suppress the scaling completely by letting
MSCALE = 0. This could be appropriate when the original formulation (1) is already well
scaled.

LINPROG uses nine fundamental tolerance parameters. The number of parameters as well
as their default values are subject to possible future changes. Using the FORTRAN names, we
list in Table 3 the present setting and use of the parameters. The default values were chosen
after much trial work with our test problems; they apply to computers with (at least) 8 bytes
working precision. The choice of tolerances should be suitable for a wide class of problem types.
As explained in Section 2.1, the default settings can be modified by use of numerical keywords
in the Control File.

The parameter BIG is a computer substitute for infinity. The other parameters are used to
“kill” small numbers, to perturb feasibility ranges, resolve “ties”, or prevent use of small pivots.
We give a short account of each of them in the following.

The parameter EPSCHC is used in the CHUZC procedure for deciding when a reduced cost
d; is insignificant. We use a relative test:

|d;| < EPSCHC ||=|;, = d; insignificant, {196)

Risg-M-2797 55

Parameter Value Usage

BIG 1.0 10+3° “Approximation” of +00

EPSCHC 1.0 107!° Reduced cost tolerance

EPSCHR 1.0 107!® CHUZR tolerance

EPSFEA 1.0 10719 Feasibility tolerance

EPSINA 1.0 1078 Tolerance for nonzero input coefficients -

EPSLU 1.0 10~ Tolerance for new elements in eta vectors
EPSPIV 1.0 10~%® Minimum pivet size in CHUZR
EPSRIN 1.0 10-92 Minimum relative pivot size in inversion

ZERPIV 1.0 10¥°® Minimum pivot size in Phase 0

Table 3. Fundamental tolerance parameters in LINPROG

where 7 is the pricing vector defined in (13) {or (167) for Phase 1); || - [}, stands for the“l-norm”,
which is the sum of the absolute values of the vector components. The test {196) is also used
to set insignificant dual activities to zero in the output {these are reduced costs for the slack
variables.)

The parameter EPSCHR is used in CHUZR. It works by making a perturbation of the feasible
range, thus permitting very small infeasibilities. Given a basic solution xg = 8 = {5} (i =
I,...,m), LINPROG first computes the perturbation

TOLCHR = N(8) EPSCHR, (197)

where N is a norm-like function defined by
1
N(B)= T max{|| 8|1, m}, (198)

and then replaces the feasibility test in {155) by
¢, — TOLCHR < 3 < u; + TOLCHR. (199)

The heuristic formula (198) was chosen after theoretical and practical considerations combined
with numerical experiments. Experience shows that the /™ divisor, which also occurs in tests
in other LP codes, e.g. [4], provides sensible feasibility tolerances TOLCHR over a wide span of
matrix sizes and sparsities. Notice that N is not a genuine norm function, as N{0) = /m > 0.
We made this amendment to prevent TOLCHR. to become exactly zero, should 8 be zero.
Consider now the important default case u; = +oo. As LINPROG internally sets £ =0,
(199} reduces to
0 < 3 + TOLCHR; (200)

in the ratio test (21) we therefore replace the numerator 3; by i+ TOLCHR. This “perturbed”
test has the advantage that should two ratios in (21) be equal, then priority is given to the
larger pivot size |a,l, thus enhancing the numerical stability.

Another use of EPSCHR in CHUZR is as a tool for tie breaking. Often in simplex a candidate
is selected from some minimum or maximum criterion, and when several candidates are equal,
we must break the tie. This can usually be done arbitrarily, by taking the first candidate in the
list. Sometimes we use a secondary criterion, say pivot size, as we did in the inversion procedure
(Section 6.4).

It was pointed out in Section 8.4, that the choosing process for #3 in (193) might have a critical
influence on cycling. When a tie occurs, cycling is counteracted by a systematic favouring of
one of the possibilities. We do this by replacing f3 in (193) with 83/(1 + EPSCHR).

The use of EPSFEA is similar to EPSCHR. It is used to derive a tolerance

TOLFEA = N(8) EPSFEA, (201)

56 Risg-M-2797

which in turn is applied in the evaluation of the infeastbility indicators NINF and SINF (Section
8.2). We could have used a common parameter for TOLCHR and TOLFEA, but two parameters
give more flexibility in monitoring the feasibility of the LP solutions.

The tolerance parameter EPSINA is used as a filter for small input elements in the constraint
matrix, in the following simple way:

laij| < EPSINA = g := 0. (202)

The parameter EPSLU is used in the same way as a filter for small elements in the newly
created eta vectors in the Forrest-Tomlin updating process. For the column vector (cf. (108))

we make the test
fvil < EPSLU @, = wvi:=0. (203)

For the row vector in (74) we make a similar test, only we do not multiply EPSLU by |i,,] in
that case.

The parameter EPSPIV is the minimum pivot size we are willing to accept in a simplex
iteration. It is used in CHUZR and in Phase 0.

The threshold parameter EPSRIN corresponds to ¢ in Section 6.4 and serves, as described
there, to ensure the numerical stability of our re-inversion when choosing pivots.

Finally ZERPIV is a threshold parameter for the pivot size in Phase 0. It corresponds to ¢
in Section 8.2, cf. the test (152). Numerical experiments indicate that the value of ZERPIV
should be rather high.

If we compare the Forrest-Tomlin scheme in LINPROG by the Bartels-Golub update proce-
dure as used e.g. in [16], we must admit that inherently the latter is the more stable of the
two. With the Forrest-Tomlin method we may sometimes get rather small pivots, and if this
happens too often, the representation of B~! becomes inaccurate. As a consequence of this, we
monitor the basic solution for feasibility also in Phase 2 using the TOLFEA tolerance of (201).
To save work, however, we check the solution only after a re-inversion and again by the end of
Phase 2. Should unexpected infeasibilities then be detected, the computations are thrown back
to Phase I, where feasibility normally is restored after a few iterations. This “repair” procedure
seemns to work well in practice. The idea behind the strategy may be characterized as “cure is
better than prevention”.

Rounding errors set ultimate bounds on how large LP problems we can solve. “Large” means
here both large dimensions of the constraint matrix and many nonzero elements. A positive
impact of the rounding errors is, however, that they help resolve degeneracies and thereby
avoid cycling in practical calculations.

8.6 Sparse-matrix and other programming techniques

As mentioned in the Introduction the application of sparse-matrix technique is essential for
handling large LP problems. There are several ways to represent sparse matrices and vectors
in a computer. The techniques in LINPROG are based on the sc-called “ordered lists”. Other
codes may use “linked lists”. A survey of sparse-matrix methods can be found in the book by
Duff ef al. {22]

The constraint matrix is conveniently stored by columns with row numbers associated with
each non-zero element. Only the non-zeroes are stored, and there are no gaps in the lists. Thus
the matrix is stored as a collection of packed sparse vectors. As the computer is supposed to
have virtual memory, it is practical to let the lists be two arrays in the program. In addition
we use a pointer array holding the addresses of the last non-zeroes in each column. With these
lists it is easy to perform the necessary operations involving the constraint matrix.

In the Forrest-Tomlin updating scheme we may also represent the column eta vectors by a
string of packed sparse vectors, and similarly for the row eta vectors.

Such a simple compact representation is not possible when fill-in occurs as a result of an
updating process. In LINPROG this happens during the re-inversion of the basis matrix. We

Risg-M-2797 57

described in Section 6.5 how we used double ordered lists with elbow room as temnporary storage
for the “Boolean” part of the inversion.

Before LINPROG can sel up its sparse representation of the constraint matrix, an internal
matrix generator must interpret the contents of the Matrix File discussed in Section 2.2. We
recall that each row was given an 8-character name in the ROWS Section. In the COLUMNS
Section the column names were supplied successively, finishing one column before going to the
next. Alongside, with each column name a set of pairs was given (row name, element value)
corresponding to the nonzero coefficients in the column. The row names could come in any
order within a column. When converting this structure to an LI matrix, it would be expensive
to identify the row names in the COLUMNS Section by scanning the total input list of row
names each time. Instead LINPROG starts to sort the row names in the ROWS Section input
in alphabetic order. To do this the names are mapped into pairs of integers corresponding to
character positions 1-4 and 5-8 via the ASCII standard collating sequence defining the bit
patterns of the characters. The same sorting procedure is executed for each column in the
COLUMNS Section input. This means that the row names in a column can be identified in a
single merge-scan with the total sorted list of row names. The sorting algorithms applied in
LINPROG are variants of the quicksort method of van Emden [23].

9 Test of LINPROG

LINPROG has undergone an extensive testing procedure involving 165 individual test problems.
These test problems span in size from LP matrices with only a couple of rows and columns for
the smallest, to many thousands of rows and columns for the largest.

9.1 Sources of test problems

The test problems are collected from many sources. We have taken small examples from a
textbook in numerical analysis by Froberg [24], from Cohn’s book on linear algebra [25], from
the books on linear programming by Murtagh [6] and by Nazareth [1], from Garfinkel and
Nembhauser’s book on integer programming [19], and from the user guides for two other LP
systems, MPSX [2] and MINOS [4].

We have also constructed sample problems ourselves in order to test certain special features.
For example, we have constructed an example of a solution of 200 equations in 200 unknowns
with a random sparsity pattern and random values of the nonzeroes.

Many of the medium and larger test cases originate from various LP applications at Risg.
Among these some of the earliest were contributed by Steen Weber (personal communication),
who used LP as a tool for predicting optimal fuel management schemes for nuclear reactors.
Weber’s test cases are not particularly large, but they are quite dense and may present some
numerical difficulties.

Later, J. Munksgaard Pedersen in a Ph.D. thesis work [26] used LP as a requisite for planning
economic resources under sirict limitations of supply. His cases are small to medium (from 27
to about 1400 rows in the LP matrix). They contain many redundancies and lead typically to
highly degenerate solutions. We have made variants of his cases in which the restrictions are
defined in BOUNDS Sections whenever possible.

The single project, that provided the largest test problems and presented the greatest chal-
lenges to the further development of LINPROG is, however, the so-called EFOM project. EFOM
is a computer modelling package [27] developed by the European Communities. It is intended
for nationwide optimization of energy systems; it generates an LP problem which is supposed
to be solved by extraneous software. Denmark has used the EFOM model since 1979, where
the LP was solved by an early version of LINPROG. J. Fenhann, Risg, had been operating

58 Risg-M-2797

the EFOM system during that time, and we have saved a number of his computations as test
problems. More recently, from about 1987, a new series of EFOM computations was initiated
at Risg by O. Gravgard Pedersen, and now carried on by P. E. Grohnheit. The EFOM software
has improved much since 1979, and so has LINPROG as a result of the demands to the LP
solver to cope with bigger and bigger models.

Recently we acquired a valuable collection of LP test cases from the NETLIB service [3]. Via
electronic mail we received 65 test problems, which are recognized worldwide as benchmark
examples for solving LP problems. The NETLIB cases proved to be of utmost importance for
the consolidation of LINPROG, and several bugs were located when we tried these examples.

9.2 List of test results

In the following we list the results of our tests. To save space, we show only the output summary
line produced by LINPROG for each problem. Comments on the tests are given in Section §.3.

CASE ROWS COLS ELEM PH.0 PH.1 ITNS VIOL OPTIMUN CPU~SEC
zommsaozmmozsz== FILE SMALLCAS {(VARIOUS SMALL CASES) RUN 900315 ===zr=ss=w=====
GARFIN37 3 3 8 0 i 3 0.0E+00 7.7500000000000E+00 0.02
GARFIN4T 4 2 8 0 0 2 0.0E+00 -7.6666666666667E+00 0.02
GARFINMI 3 3 8 0 1 3 0.0EH00 7.7500000000000E+00 0.03
MURTARED 3 3 6 1 0 1 0.0E+00 0.0000000000000E+00 0.01
FULLFQUR 5 4 16 4 0 4 2.2E-16 0.0000000000000E+00 .03
FULLFIVE 6 5 25 5 0 5 2.2E-16 0.00600000000000E+00 0.05
PENDLING 8 7 13 0 0 0 0.0E+00 0.0000000000000E+00 0.04
MINIDATA 8 7 16 0 0 1 0.0E+00 7.2000000000000E+02 0.01
DIETPROB 4 6 24 0 1 2 0.0E+00 9.2500000000000E+01 0.03
ZERTHREE 4 3 6 3 0 3 0.0E+00 0.0000000000000E+00 0.02
BLENDING 8 4 20 2 1 4 0.0E+00 5.1340000000000E+01 0.03
CRISIS1 4 3 12 3 0 3 2.2E-16 ~-1.4454545454545E+01 0.02
LIQUOR 7 5 15 0 2 4 0.0EH)0 -2.4500000000000E+02 0.04
=z============= FILE COHNDATA (EXAMPLES FROM COHN) RUN 900315 =
COHNEXP1 3 4 10 0 0 1 0.0E+00 -1.5000000000000E+01 0.04
COHNEXP2 4 4 16 3 0 3 2.2E-16 1.2000000000000E+01 0.02
COHNEXP3 4 3 12 0 0 2 0.0E+00 -3.9411764705882E+00 0.03
COHNEXC1 4 4 14 3 0 3 8.9E-16 6.0000000000000E+00 0.03
COHNEXCF 4 4 14 3 0 4 2.2E~15 7.1772575250836E+00 0.03
COHNEXC2 4 3 11 0 0 2 0.0EH0 -2.0625000000000E+01 0.03
COHNEXC3 4 3 11 0 1 2 0.0EH00 2.0625000000000E+01 0.02
====== FILE DIETNAZA (NAZARETH DIET PROBLEM, UNIT 100 G) RUN 900315 s=====u==
DIETNAZA 6 3 16 0 1 3 1.8E-15 1.7470817120623E+02 0.03
==== FILE DIETMODI (NAZARETH DIET PROBLEM, UNIT 100 G, BOUNDS) RUN 900315 ====
DIETMODI 6 3 16 0 1 2 1.8E-15 2.0500000000000E+02 0.02
======== FILE DIETNAZX (NAZARETH DIET PROBLEH, UNIT 1 G) RUN 900315 ====s=====
DIETNAZX 6 3 16 0 1 3 0.0E+00 1.7470817120623E+02 0.04
===== FILE DIETMODX (NAZARETH DIET PROBLEM, UNIT Tt G, BOUNDS) RUN 900315 =====
DIETMODX 6 3 16 0 2 2 0.0E+00 2.0500000000000E+02 0.05
====mz=s==== FILE FROEBERG (EXAMPLES FROM FROEBERG) RUN 900315 ==========s====
FROEP382 4 3 12 0 0 2 0.0E+00 -6.6000000000000E+01 0.06
FROEP384 4 3 12 2 0 2 2.2E-16 7.1666666666667E+00 0.02
FROEEXO1 3 4 10 0 0 3 0.0E+00 —4.4000000000000E+00 0.02
FROEEX02 4 3 12 0 1 3 4.4E-16 -2.0000000000000E+00 0.03
FROEEX04 3 3 7 t 0 1 0.0E+00 -1.0000000000000E+00 0.04
FROEEXOS 5 4 13 0 0 2 0.0EH00 0.0000000000000E+00 0.05
FROEEX06 3 3 8 0 0 0 0.0EH00 5.5833333233333E+00 0.02
FROEEX08 4 4 16 1 1 4 0.0EX00 3.0000000000000E+00 0.02
FROEEX09 4 4 15 0 0 2 0.0E+00 -5.3562500000000E+01 0.03
FROEEX10 4 3 11 0 0 2 0.0E+00 -2.8875000000000E+04 0.03
FROEEX11 4 2 8 0 1 3 0.0EH00 1,.8000000000000E+01 0.02
FROEBOUN 3 2 6 0 0 1 0.0EH)0 -2.0875000000000E+01 0.03

========= FILE LIQUORMX (SMALLCAS LIQUOR EXPL AS MAX) RUN 900315 =============

Risg-M-2797 hY

LIQUORMX 7 5 15 0 2 4 0.0E+00 2.4500000000000E+02 0.04
======= FILE BEALECYC (BEALE’S EXPL FOR PROVOKING CYCLING) RUN 900315 =m=======
BEALECYC 4 4 13 0 0 2 0.0E+00 -5,0000000000000E-02 0.04
FILE METALS (MPSX DEMOD CASE) RUN 900315
METALS 8 7 48 0 2 7 2.8E~14 2.9621660649819E+02 0.07
summem==== FILE EQSPARSE (RISOE SPARSE EQUATION SYSTEM) RUN 90031 ss=========
EQSPARSE 201 200 800 188 0 188 9.7E~13 0.0000000000000E+00 3.09
FILE WEBERDAT (WEBER’S EXAMPLES) RUN 900315
Swo28064 28 63 373 14 25 49 2.1E-14 1.7297725316942E+08 0.37
5wW031084 31 83 518 14 18 60 2.1E-14 1.4772670909184E+08 0.52
3W037099 37 98 652 17 23 70 2.8E-14 1.6805517101762E+08 0.68
5wW049129 49 128 918 23 62 147 3.6E-14 2.066309864764BE+08 1.58
SWO73189 73 188 1450 35 109 280 3,9E-13 2.7452894117283E+08 4.43
SW120129 120 128 1024 74 61 207 1.4E-14 1.83127384B0710E+08 2.59
SW125167 125 166 1376 84 109 293 6.4E-11 2.8052050544962E+08 4.48
SW129177 129 176 1468 88 132 382 3.8E-12 2.8162008879127TE+08 6.23
SWi48217 148 216 1738 90 145 468 5.7E-14 1.9016667470627TE+08 8.05
SW202225 202 224 2026 126 105 319 7.1E-14 5.199044865665TE+08 6.38
SW214231 214 230 2279 137 250 666 9.9E~14 6.955090679834TE+08 17.89
==s=wws===== FILE WEBERDAT (WEBFR’S EXAMPLES) RUN 900315 MSCALE=(0 ======m=====
SW028064 28 63 373 14 16 42 1,9E-13 1.7297725316942E+08 0.31
SW031084 31 83 519 14 15 49 2.1E-14 1.477267090918B4E+08 0.55
SW037099 37 98 652 17 20 58 3.9E-14 1.6805517101762E+08 0.65
SW049129 49 128 918 23 37 109 7.1E-14 2.0663098647648E+08 1.54
SW073189 73 188 1450 35 79 177 7T.O0E-11 2.7452894117283E+08 3.24
SW120129 120 128 1024 74 43 148 2.7E-12 1.8312738480710E+08 1.78
SW125167 125 166 1376 84 56 203 1.5E-13 2.8052050544962E+08 3.89
SW129177 129 176 1468 88 62 217 1.4E-14 2.8162008879127E+08 4,03
SW148217 148 216 1738 90 84 266 4.0E-11 1,5016667470626E+08 5.25
SW202225 202 224 2026 126 74 285 1.4E-12 5.1990448656657TE+08 5.86
5W214231 214 230 2279 137 93 318 4.6E-14 6.9550906798347E+08 8.83
swmem======= FILE MUNKFEAS (MUNKSGAARD’S EXAMPLES) RUN 900315 =
CRISECON 32 18 84 0 3 6 7.1E~15 -2.2875000000000E+02 0.17
MULINRAT 60 42 206 0 14 27 2.4E-11 -2.7423201977225E+06 0.34
M297ROWS 297 127 628 8 103 115 4.1E-12 -2.4259892314057E+06 2.70
S7TSOPTIM 575 267 1354 40 379 441 3.6E-12 -2.4269892314057TE+06 14.94
10200PTI 1020 475 2846 11 601 645 B8.4E-12 -2.4263973924262E+06 48.22
==smm==== FILE MUNKFEAB (MUNKSGAARO’S EXPLS, UPPER BOUNDS) RUN 900315 =====m===
CRISECOB 23 18 75 0 3 6 1.8E-15 -2,2875000000000E+02 0.13
MULINRAB 37 42 183 0 8 20 1.8E-12 -2.7423201977225E+06 0.24
M297ROWB 166 127 497 8 29 39 2.5E-10 ~2.4259892314067E+06 1.17
STS0PTIR 442 267 1221 38 295 353 6.8E-12 -2.4259892314057E+06 10.22
10200PTE 788 475 2614 22 501 533 9.5E~12 -2.4263973924262E+06 32.44
===—== FILE MUNKFEAL (MUNKSGAARD’S EXPLS, LOWER+UPPER BOUNDS) RUN 900315 =====
CRISECOL 17 18 69 0 5 6 1.1E-14 -2, 2875000000000E+02 0.14
MULINRAL 23 42 169 0 9 16 3.6E-12 -2.7423201977225E+06 0.21
M2STROWL 40 127 371 o 20 23 2.4E-10 -2.4259892314057E+06 0.64
57S50PTIL 315 267 1094 33 302 344 3.6E-12 -2.4259892314057TE+06 8.83
10200PTL 562 475 2388 2 516 535 2.1E-11 -2.4263973924262E+06 28.81
sz=—=======z=== FILE STANFORD (NETLIB COLLECTION 1-12) RUN 900315 s===sms====—=
AFIRO 28 32 88 0 4 11 5.8E-15 -4.6475314285714E+02 0.11
ADLITTLE 57 97 465 4 11 109 2.8E-14 2.2549496316238E+05 1.00
SHAREZB 97 79 730 0 82 130 3.2E-13 -4.1573224074142E+02 1.51
SHARE1B 118 225 1182 71 93 315 7.4E-11 ~-7.6589318579186E+04 4.68
BEACONFD 174 262 3476] 0 32 7.6E-12 3.3592485807200E+04 2.80
ISRAEL 175 142 2358 0 0 343 1.8E-11 -8.9664482186305E+05 9.96
BRANDY 221 249 2150 70 102 299 1.7E-12 1.5185098964881E+03 7.69
E226 224 282 2767 0 54 463 1,3E-13 -1.16389290663TQE+01 13.04
CAPRI 272 353 1786 82 290 459 3.3E-13 2.6900129137682E+03 10.97
BANDM 306 472 2659 0 142 344 1.4E-13 -1.5862801845012E+02 12.89
STAIR 357 467 3857 98 329 708 3.7E-13 -2.5126695119296E+02 48.41
ETAMACRD 401 688 2489 17 550 969 4,.8E-14 -7.5571523022120E+02 27.96
60 Risg-M-2797

======= FILE STANFORD (NETLIB COLLECTION 1-12) RUN 900321 APOLLO DN10Q0Q =====
AFIRO 28 32 88 4 11 1.8E~-14 -4.6475314285714E+02 0
ADLITTLE 57 97 465 11 112 2.3E-13 2.2549496316238E+05 0
SHAREZB 97 79 730 88 129 6.8E-~13 -4.1573224074142E+02 0
SHARE1B 118 225 1182 71 93 315 6€.2E-10 -7.6589318579186E+04 2
BEACONFD 174 262 3476 0] 0 32 4.2E-11 3.3592485807200E+04 1
ISRAEL 175 142 2358 0 0 361 6.9E-09 -8.9664482186305E+05 5
BRANDY 221 249 2150 70 155 372 2.8E-10 1.5185098964881E+03 5.42
7
6
7
6
4

(= =]

E226 224 282 2767 O 54 459 5.0E-12 -1.1638929066370E+01
CAPRI 272 353 1786 82 292 464 3.3E-12 2.6900129137682E+03
BANDM 306 472 2659 0 141 344 1.3E-12 -1.5862801845012E+02
STAIR 357 467 3857 98 325 700 B.5E-11 -2.5126695119296E+02
ETAMACRO 401 688 2489 17 395 841 1.7E-13 -7.5571522988346E+02
======== FILE STANFORD (NETLIB COLLECTION 1-12) RUN 900322 UNISYS A6 ===sm====
AFTRO 28 32 88 0 4 11 1.7E~21 -4.6475314285714E+02 1.79
ADLITTLE 57 97 465 4 11 109 3.4E-21 2.2549496316238E+05 27.20
SHARE2BE 97 79 730 0 B2 128 1.9E-19 -4.1573224074142E+02 39.20
SHARE1B 118 225 1182 71 93 315 2.6E-17 -7.6589318579186E+04 143.36
BEACONFD 174 262 3476 0 0 32 2.8E-18 3.3592485807200E+04 52,52
ISRAEL 175 142 2358 0 0 372 4.7E-17 -8.9664482186305E+05 285.81

0

0

= N

BRANDY 221 249 2150 7 103 301 9.5E~20 1.5185098964881E+03 230.12

E226 224 282 2767 54 470 B.5E-21 -1.1638929066371E+01 366.95
CAPRI 272 353 1786 82 315 494 4.0E-19 2.6900129137682E+03 328.35
BANDM 306 472 2659 0 142 344 7.2E-20 -1.5862801845012E+02 389.81
STAIR 357 467 3857 98 325 700 6.6E-18 -2.5126695119296E+02 1346€.76

ETAMACRO 401 688 2489 17 526 883 2.4E-20 -7.5571523022120E+02 753.21
========= FILE PILOT (NETLIB COLLECTION 13} RUN 900221 APOLLO DN1000Q ========
PILOTS A 1442 3652 43220 017003 33172 2.6E-10 -5.5748972928406E+0228786.08
sm========== FILE REID (NETLIB COLLECTION 14-17, REID) RUN 900320 =s====sz=s==
25FV47 822 15671 11127 5 1032 4080 3.2E-12 5.5018458882867E+03 450.82
CZPROB 930 3523 14173 0 865 1682 2.3E-13 2.1851966988566E+06 163.05
FFFFF800 525 854 6235 0 39 307 3.6E-12 5.5567956481750E+05 19.51
SHELL 537 1775 4900 533 103 857 0.0E+00 1.2088253460000E+09 24.90
========= FILE SCHRAGE (NETLIB COLLECTION 18,20, SCHRAGE) RUN 900320 ==s=======
GANGES 1310 1681 7021 12 0 436 7.5E~-12 -1.0958573612928E+05 46.81

SEBA 516 1028 4874 O 80 116 4.5E-13 1.5711600000000E+04 15.82
=========== FILE BORE3D (NETLIB COLLECTION, FOURER 1F) RUN 900320 ===========
BORE3D 234 315 1525 4 47 83 4.5E-10 1,3730803942085E+403 2.68

==== FILE 80BAU3B (NETLIB COLLECTION, FOURER 3F) RUN 900213 APOLLO DN10000 ===
B0BAU3B 2263 9799 29063 0 976 5729 2.6E-12 9.8722419240909E+05 963.62
==smmswmss FILE GFRD-PNC (NETLIB COLLECTION, FOURER 6F) RUN 900320 ===========
GFRD-PNC 617 1092 3467 0 134 515 4,.5E-13 6.9022359995488E+06 24.20
=== FILE GREENBEA (NETLIB COLLECTION, FOURER 7F) RUN 900222 APOLLO DN10Q00 ===
GREENBEA 2393 5405 31499 2 4928 14816 6.6E-08 ~7.2555238968172E+07 2905.31
=== FILE GREENBEB (NETLIB COLLECTION, FOURER 7BF) RUN 900223 APOLLO DN10000 ==
GREENBEB 2393 5405 31499 2 3501 8666 1.5E-10 -4.3022602607851E+06 1742.55
==u=m=s== FILE FOUSTAIR (NETLIB COLLECTION 8F-10F, FOURER) RUN 900320 ========
GROW? 141 301 2633 0 0 195 7.3E-08 -4.7787811814712E+07 7.54
GROW15 301 645 5665 0 0 561 7.5E-09 -1.0687094129358E+08 39.98
GROW22 441 946 8318 0 0 917 3.5E-10 -1.6083433648256E+08 94.05
=========== FILE PILOT4 (NETLIB COLLECTION, FOURER 11F) RUN 900209 =ss=sms==—==
PILOT4 411 1000 5145 0 726 4152 3.0E-06 -2.5811375541301E+03 297.98
=ww=x= FTLE PILOT4 (NETLIB COLLECTION, FOURER 11F) RUN 900308 MSCALE 2 ======
PILOT4 411 1000 5145 0 243 2472 4.0E~07 -2.5B811392612808E+03 180.41
====== FILE PILOT4 (NETLIB COLLECTION, FOURER 11F) RUN 900321 MSCALE 3 =m=smsa=
PILOT4 411 1000 5145 0 214 2006 4.0E-07 -2,5811392612808E+023 155.00
szwa== FILE PILOTJA (NETLIB COLLECTION, FOURER 12F) RUN 900319 MSCALE 3 ======
PILOT.JA 941 1988 14706 0 2034 19104 1.5E-05 -6.1131371681635E+03 3230.29
========== FILE PILOTWE (NETLIE COLLECTION, FOURER 13F) RUN 90032] ms=mssumms=
PILOT.WE 723 2789 9218 0 1179 11373 2.1E-08 -2.7201073715840E+06 1641.90

PILOT.WE 723 2789 9218 0 813 10490 2.0E-05 -2.7201075794844E+0€ 1451.00

Risg—M-2797

61

FILE PILOTWE (NETLIB COLIECTION, FOURER 13F) RUN 900321 HSCALE 3=======
PILOT.WE 723 2789 9218 0 812 12071 2.0E-05 -2.7201076865223E+06 1585.62

wmm=z=== FILE FOUR1421 {(NETLIB COLLECTION 14F-21F, FOURER) RUN 900320 s====z==
RECIPE 92 180 752 3 7 27 0.0EH00 -2.6661600000000E+02 0.69
5G205 206 203 552 0 0 153 1.7E-13 ~-5.2202061211707E+01 3.07
SCAGR25 472 500 2029 0 471 723 1.2E-12 -1.4753433060769E+07 26.64
SCAGR7 130 140 553 0 45 94 4.4E-12 -2.3313898243310E+06 1.34
SCFXM1 331 457 2612 11 142 298 1.1E~12 1.8416759028349E+04 9.19
SCFXM2 661 914 5229 22 409 749 1.3E-12 3.6660261564999E+04 41.53
SCFXM3 991 1371 7846 33 659 1204 5.7E-13 5.4901254549751E+04 98.65
SCORPION 389 358 1708 168 39 272 3.1E-16 1.8781248227381E+03 5.72
=====zz== FILE FOUR2225 (KETLIB COLLECTIOK 22F-25F, FOURER) RUN 900320 ========
SCRS8 491 1169 4029 0 46 572 2.7E-13 9.04296953800T9E+02 25.19
SCsD1 78 760 3148 0 62 282 7T.2E-16 8.6666666743334E+00 7.50
SCSDe 148 1350 5666 0 127 490 1.5E-16 5.0500000077144E+01 20.00
SCSD8 398 2750 11334 0 388 1235 4.4E-16 9.0499999992546E+02 95.45
====s=== FILE FOUR2628 (NETLIB COLLECTION 26F-28F, FOURER} RUN 900320 ========
SCTAP1 301 480 2052 0 169 222 2.2E-15 1.4122500000000E+03 6.92
SCTAP2 1091 1880 8124 0 222 570 8.9E-16 1.7248071428571E+03 53.50
SCTAP3 1481 2480 10734 0 286 704 2.2E-16 1.4240000000000E+03 91.04
======== FILE FOUR2930 (NETLIB COLLECTION 29F-30F, FOURER) RUN 900321 ========
SHIPO4L 403 2118 8450 0 427 523 1.9E-15 1.7933245379704E+06 30.15
SHIP04S 403 1458 5810 0 183 255 1.9E~15 1.7987147004454E+06 14.01
======== FILE FOUR3132 (NETLIB COLLECTION 31F-32F, FOURER) RUN 900321 ==ss====
SHIPOBL 779 4283 17085 0 439 849 5.1E-15 1,9090552113891E+06 100.34
SHIPO8S 779 2387 9501 0 172 440 5.6E-15 1,9200982105346E+06 40.09
======= FILE FOUR3334 (NETLIB COLLECTION 33F-34F, FOURER) RUN 90032] ========
SHIP12L 1152 5427 21597 0 1566 1863 3.2E-15 1.4701879193293E+06 256.97
SHIP125 1152 2763 10941 0 536 757 5.8E-15 1.4892361344061E+06 7B8.78
s==—==== FILE FOUR3538 (NETLIB COLLECTION 35F-38F, FOURER) RUN 900321 =======
SIERRA 1228 2036 9252 505 143 908 5.7E-14 1.5394362183632E+07 66.21
STARDATA 360 1075 3038 0 44 57 3.0E-14 1.2576995000000E+03 4.76
VTP.BASE 199 203 914 0 349 380 5.7E-12 1,2983146246136E+05 5.87
======== FILE FOUR4243 (NETLIB COLLECTION 42F-43F, FOURER) RUN 900321 =wwm====
NESM 663 2923 13988 0 1172 4998 3.9E-13 1.4076037620771E+07 487.72
FORPLAN1 162 421 4916 0 62 177 4.0E-13 -6.6421896127220E+02 7.53

PILOTS B 976 2172 13129 011329 11445 6.7E-10 -4.4972761882189E+03 2031.55
FILE PILOTNOV (METLIB COLLECTION, FOURER 44F) RUN 900223 APOLLO
PILOTS B 976 2172 13129 0 8808 12795 1.4E-05 -4.4972761882189E+03 1376.42
FILE PILOTNOV (NETLIB COLLECTION, FOURER 44F) RUN 900308 MSCALE 2
PILOTS B 976 2172 13129 0 6107 6577 1.5E-05 ~4.4972761882189E+03 999.47

smwm====— FILE STANDMPS (NETLIB COLLECTION, FOURER 46F) RUN 900321 mw=e===z===
STANDMPS 468 1075 3686 0 96 178 4.7E-14 1.4060175000000E+03 9.61
mm======= FILE LEACHMAN (NETLIB COLLECTION 60~62, LEACHMAN) RUN 900321 =======
AGG 489 163 2541 0o 39 86 6.5E~11 -3.59917672865TTE+0T 4.956
AGG2 517 302 4515 0 31 113 2.9E-11 ~2,0239252356977E+07 8.40
AGG3 517 302 4531 0o 23 118 2.9E-11 1.0312115935089E+07 8.49
swer==== FILE GASSMANN (KETLIB COLLECTION 63-64, GASSMANN) RUN 900321 ======
STOCFOR1 118 111 474 0 0 17 6.3E-13 -4.1131976219436E+04 0.53
STOCFOR2 2158 2031 9492 0 0 991 1.2E-12 -3.9024408537882E+04 162.32
====m=ss== FILE BELGEFOM (EFOM BELGIAN SYSTEM BY FENHANN) RUN 900213 =sw=msm===
BGTESTRD 68 97 336 0 57 84 1.1E~11 1.6762180373051E+10 0.72
BGTEST 121 149 463 o 37 83 1.8E-12 1.6762259183117E+10 0.90
ELECOORD 894 1290 65178 0 378 930 4.1E-12 2,5927333441134E+11 52.27
====szw== FILE FENHANRD (EFOM TEST BY FENHANN WITH REDUCE) RUN 900213 =m=w======
FENHRD78 164 278 965 0 58 143 1.8E-12 1.6681370450240E+10 2.09
FENHRD81 342 556 2043 0 121 326 1.1E-12 9.6056755229249E+10 8.16
FEKHRDBS 536 854 3268 0 160 506 9.1E-13 1.4350551377207E+11 19.04
FENHRD9O 732 1158 4592 0 186 742 1.1E-12 1.8317183787769E+11 36.66
FENHRD10 925 1463 5786 0 289 1066 1.6E-12 2.3168128725701E+11 65.08
======= FILE FEKHANNR (EFOM TEST BY FENHANN WITHOUT REDUCE) RUN 900213 ===m====

62

Risg—-M-2797

FENHNR78 628 722 1908 0 89 171 2.7E-12 1.6681241473300E+10 7.39
FENHNRS81 1256 1444 3903 0 180 407 1.4E-12 9.6056267897658E+10 32.77
FENHNRSS 1881 2166 5971 0 230 615 1.8E-12 1.4350388959082E+11 74.51
FENHNR90 2505 2888 8122 0 302 963 2.3E-12 1.8316997907451E+11 155.04
FENHNR10 3125 3610 10124 0 397 1111 3.7E-12 2.3167866675635E+11 241.05
s=e=mzmzeum=s FILE GRAV2877 (EFOM CASE BY GRAVGAARD) RUN 900209 =s=sw==sw=sszuas
GRAV2877 2877 3274 18680 84 368 898 1.4E-14 6.4694205935941E+11 192.99
======== FILE BIGMAT (EFOM CASE BY GRAVGAARD, DO NOTHING) RUN 900220 ===m=mw==
ONOOOD A 4211 4923 26778 87 528 2067 7.9E-13 6.4697464199287E+11 689.26
======= FILE TOTALMAT (EFOM CASE BY GRAVGAARD, DO NOTHING) RUN 900219 ========
ONOOOO B 5140 5985 31714 86 667 2448 3.4E-13 6.4801085423833E+11 1065.06
muzea== FILE GROHES9 (EFOM CASE BY GROHNHEIT, 90% 502 RED) RUN 900213 ========
EFFS00 A 5645 5962 36521 126 2142 5132 2.3E-13 8.0652524279469E+08 2623.37
======== FILE GROHMLEG (EFOM CASE BY GROHNHEIT, LEGAL CASE) RUN 900213 ========
LEGOOO B 4657 4619 26132 19 1805 4621 1.7E-13 8.3323179739657E+08 1785.77
========= FILE GROHCEC (EFOM CASE BY GROHNHEIT, CEC CASE) RUN 900209 =========
CECO00 5340 5690 34263 120 1646 4020 3.2E-13 7.9953386244257E+08 1852.12
=====w=w= FILE GROHDAT (EFOM CASE BY GROHNHEIT, DO NOTHIKG) RUN 900209 =ss=sm=x
ONDOOC C 5280 6024 32654 85 1171 5477 2.0E-11 2.1413651189930E+09 2530.64
==== FILE GROHEFF (EFOM CASE BY GROHNHEIT, EFFICIENCY, 35% 502) RUN 900209 ===
EFFO00 5645 5962 36521 126 2033 6417 9.7E-10 8.0697728098242E+08 3280.09
======= FILE GROHEN3 (EFOM CASE BY GROHNHEIT, 30% NOX RED) RUN 900209 =mmsszux
EFFNOO A 5645 5962 36521 126 2103 6269 5.8E~10 8.0397982342634E+08 3219.41

EFFS00 B 5645 5962 36521 126 1771 4307 3.1E~13 7.9787362407735E+08 2194.69
======= FILE GROHOLD (EFOM CASE BY GROHNHEIT, LEGAL CASE) RUN 90032] ========
LEGOOO A 5361 5836 33571 97 1265 3774 1.1E-12 6.4090368474316E+08 1799.71
===== FJLE GROHOLD (EFOM CASE BY GROHNHEIT, LEGAL CASE) RUN 900321 APOLLO ====
LEGOOO A 5361 5836 33571 97 1371 4111 3.5E-12 6.4090368474316E+08 1337.27
==mmoen= FILE GROHLEGA (EFOM CASE BY GROHNHEIT, LEGAL CASE) RUN 900212 ========
LEGOOQ C 5319 5650 33942 120 1711 4389 2.3E-13 8.0491919521062E+08 2002.22
==== FILE GROHDEXT (EFOM CASES BY GROHNHEIT, ELECTRICITY ONLY) RUN 900220 ====
DEXTO00 A 1266 1105 6175 0 73 218 B.9E-16 7.5377729837411E+06 23.40
DEXT00 B 2004 2271 14303 96 75 436 B.9E-16 7.5377729837411E+06 72.87
DEXT0O0 C 2004 2271 14555 96 75 730 1.BE-15 4.6240997061265E+07 106.82
DEXTOO D 2004 2271 14779 96 75 528 1.9E-15 5.5265338937865E+07 83.73

DLEGOO 5319 5610 33862 120 1730 4660 8.0E-13 8.0767014936027E+08 2159.74
======= FILE GROHST70 (EFOM CASE BY GROHNHEIT, 70% S02 RED) RUN 900214 ===wu=az
870000 5645 5962 36521 126 1826 4902 2.3E-13 8.0166821337604E+08 2502.40

EFFNOO B 5645 5362 36521 126 2148 5973 2.3E-13 8,0217524599260E+08 3186.16
======= FILE GROHN35 (EFOM CASE BY GROHNHEIT, 35% NOX RED) RUN 900214 ===s====
EFFNOO C 5645 5962 36521 126 2066 6620 1.8E-09 8.0665957598331E+08 3437.88

EFFNOO D 5645 5962 36521 126 2155 6211 5.7E-13 B8.0217888758760E+08 3318.74
== FILE GROHR25 (EFOM CASE BY GROHNHEIT, 25% SO2+NOX RED) RUN 900223 APOLLO ==
EFFNOO D 5645 5962 36521 126 2201 6355 2.1E-12 B.0217888758760E+08 2414.75
====== FILE GROHR35 (EFOM CASE BY GROHNHEIT, 35% SD2+NOX RED) RUN 900214 =====
R35000 5645 5962 36521 126 2062 5773 4.4E~-07 8.0741081695290E+08 2959.63
======== FILE GROHREF (EFOM CASE BY GROHNHEIT, DO HOTHING) RUN 900214 ========
REFOQ0 4355 4233 23090 24 1447 3626 3.5E~13 7.9745041720658E+08 1263.05

9.3 Comments on the test problems

If nothing else is stated in the interspersed “headlines” of the list, the problems were solved
on the VAX-8700 installation at Risg’s Computer Section, with default settings of LINPROG'’s
parameters and options.

Some of the computations were made on an Apollo DN10000 machine. The twelve Stanford
cases from NETLIB (# 1 - 12} were run on both VAX-8700 and DN10000, and it appears from

Risg-M-2797 63

our time measurements that DN10000 is almost twice as fast as VAX-8700. The Stanford cases
were also run on a UNISYS A6 machine, in which the inherent {double} precision corresponds
to about 22 decimal digits. {We have also made successful tests on a SUN 3/75 workstation,
but the results are not given in the list.}

To illustrate the influence of scaling, a few computations were made with values of MSCALE
other than the deflault value 1.

Most test cases were solved with the current version of LINPROG. Some, however, were
solved with slightly older versions. Dates for running are given in the headlines. {In some of the
older runs the iteration counts for Phase 1 might be misleadingly high, because they refer to
the latest “repair” of infeasibility (Section 8.5).)

By now, we have solved all the NETLIB cases. However, the two problems PILOT (NETLIB
13) and PILOTJA (NETLIB # 121} were guite troublesome and for a long time they resisted
our efforts to make LINPROG solve them, PILOT could be solved by standard settings on the
Apolle DN10000D, but required a lot of computer time.

When we tried to solve PILOTJA with the default option MSCALE = 1, LINPROG could
not locate the optimum: new infeasibilities showed up continually in Phase 2, and eventually
the code went into cycling. We have not yet been able to alleviate this problem, but we have
noticed that PILOTJA has caused similar troubles for others (Lustig, [28]). With MSCALE =
3 it was possible to get a solution on VAX-8700, but still not on DN10000, even afier use of
coarser tolerance settings (which resulted in a singular basis matrix.)

It is apparent, that a high working precision on the computer is necessary to overcome the
ill-conditioning of PILOJA. In fact we did never succeed in solving it on DN10000, which has
slightly less precision than VAX-8700 (with “D-foating”). On the other hand, when we tried
PILOTJA with a special program version LINPROG4 working in quadruple (16 bytes) precision
with sharpened tolerances, we could obtain perfect solutions for all the scaling modes MSCALE
= 0,1, 2, and 3, provided we restarted from an optimal dump produced by standard LINPROG
with MSCALE = 3. In all four cases we found the optimum

Zopt = —6.1131364655813 x 10°,

and we therefore consider this figure as the correct “mathematical” answer with the given digits.

Unlike the situation for the PILOT cases, use of MSCALE = 3 had an adverse effect on
LINPROG’s performance on Grohnheit’s cases.

All the test problems in this list have feasible solutions, because we decided not to report
LINPROG performance on infeasible cases. In this connection let us mention, that we have met
LP problems which come very close to the borderline between feasibility and infeasibility. Such
problems are troublesome to handle for any LP solver. A particularly difficult example of this
kind was an EFOM case (GRAV2676) with m = 2676, where LINPROG was virtually unable to
decide feasibility within the usual 8 bytes working precision. Only by using the 16-byte version
LINPROG4 mentioned above, could we, beyond any reasonable doubt, deem the problem to
be mathematically infeasible. Sometimes the user wants the LP solver 1o treat such borderline
cases as if they were feasible, so we may speak of “numerical feasibility”. The tool for obtaining
this in LINPROG would be to try to modify one or more of the tolerance parameters in the
Control File {Section 2.1).

10 Summary and Conclusions

Our goal was to write a FORTRAN-based LP code which was able to produce efficient and
reliable solutions to most of the LP problems encountered at Risg. Priority was given to a
simple structure and to robustness, rather than to sophisticated LP extensions. We considered
it to be important that the code be portable across several computer systems.

LINPROG uses the simplex method. It is well-known that simplex faces increasing competi-
tion from a class of projection methods, called interior-point methods. Karmarkar’s algorithm

64 Risg-~M-2797

[29], being of this type, has attracted much attention. It was claimed that its eficiency would
outperform simplex for big problems by quite large factors. However, in a comparative study,
Tomtin [30] has pointed out that there are still a lot of practical LP problems for which simplex
compares favorably with Karmarkar’s method.

Acknowledgements

As mentioned in Section 9.1, the LINPROG project has benefited from our co-operation with
several groups and individuals at Risg. In this connection we wish to thank Steen Weber, Jorgen
Fenhann, Jesper Munksgaard Pedersen, Ole Gravgird Pedersen, and Poul Erik Grohnheit, who
all contributed interesting test problems. Being the result of many types of computer modelling,
these test cases show a good deal of diversity. They have been very valuable for us as a debugging
tool for the code, and for improving its robustness and numerical stability. They have also guided
us in selecting new features and enhancements for implementation. We want in particular to
acknowledge P. E. Grohnheit, who not ouly provided the largest of all the test problems, but
also made a valuable contribution in promoting the use of LINPROG.

Moreover, we thank the System Manager for VAX-8700 at Rise¢, Anne Margrethe Larsen,
who helped us with setting up the proper VAX-environment for LINPROG. She also assisted
with the use of the TEX and WX typesetting software, by trouble shooting and by making
useful auxiliary software components available, related to TEX. Also in the Computer Section,
Bjarne Wallin has guided us in making LINPROG operable at the Apollo DN10000 computer.

Outside Risp we are indebted to Morten Norby Larsen from the Technical University in
Lyngby for his professional help during the installation and test of LINPROG at the SUN
workstation at his laboratory. We also thank Claude Thonet, who works for the European
Communities in Brussels, for his assistance in making comparative test runs with other LP

codes.

Risp-M-2797 65

References

{1]

[2]

[6]

(7

[10)

(1]

[12]

[13]

{14]

[15]

[16]

(17]

(18]

66

J. L. Nazareth, Computer Solution of Linear Programs. New York and Oxford: Oxford
University Press, 1987,

IBM Mathematical Programming System Ezlended/370 (MPSX/370), Primer., 1979.
GH19-1091-1, File No. §370-82.

J.J. Dongarra and E. Grosse, “Distribution of mathematical software via electronic mail,”
Comm. ACM, vol. 30, pp. 403-407, 1987.

B. A. Murtagh and M. A. Saunders, “MINOS 5.1 USER’S GUIDE,” Tech. Rep. SOL 83-
20R, Systems Optimization Laboratory, Stanford University, California 94305-4022, 1987.

G. B. Dantzig, Linear Programming and Eztensions. New Jersey: Princeton University
Press, 1963.

B. A. Murtagh, Advanced Linear Programming: Computation and Practice. New York:
McGraw-Hill, 1981.

G. H. Golub and C. F. van Loan, Mairizr Computaiions. Baltimore, Maryland: The John
Hopkins University Press, 1984.

G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems. Engle-
wood Clifls, N.J.: Prentice-Hall, 1967.

W. Orchard-Hays, Advanced Linear-Programming Computing Techniques. New York:
McGraw-Hill, 1968.

M. Benichou, J. M. Gauthier, G. Hentges, and G. Ribiere, “The efficient solution of large-
scale linear programming problems — some algorithmic techniques and computational
results,” Mathematical Programming, vol. 13, pp. 280-322, 1977.

I.S. Duff and J. K. Reid, “An implementation of Tarjan’s algorithm for the block triangu-
larization of a matrix,” ACM Transactions on Mathematical Software, vol. 4, pp. 137-147,
1978.

I. 8. Dufl, “On algorithms for obtaining a maximum transversal,” ACM Transactions on
Mathematical Software, vol. 7, pp. 315-330, 1981.

E. Hellerman and D. C. Rarick, “The partitioned preassigned pivot procedure (P1), in
Sparse matrices and their applications, Proceedings of Conference in Yorkiown Heights,
September 9-10, 1971 (D. J. Rose and R. A. Willoughby, eds.}, pp. 67-76, Plenum Press,
1972.

1. A. Tomlin, “Modifying triangular factors of the basis in the simplex method,” in Sparse
matrices and their applications, Proceedings of Conference in Yorktown Heights, September
9-10, 1971 {D. J. Rose and R. A. Willoughby, eds.}, pp. 77-85, Plenum Press, 1972.

J. 3. H. Forrest and J. A. Tomlin, “Updated triangular factors of the basis to maintain

sparsity in the product form simplex method,” Mathematical Programmaing, vol. 2, pp. 263~
278, 1972.

R. H. Bartels, J. Stoer, and C. Zenger, “A Realization of the Simplex Method based on
Triangular Decompositions,” in Handbook for Automalic Computation - Linear Algebra
(J. H. Wilkinson and C. Reinsch, eds.), pp. 152-190, Springer-Verlag, 1971

P. M. J. Harris, “Pivot selection methods of the Devex LP code,” Mathematical Program-
ming, vol. 5, pp. 1-28, 1973,

D. Goldfarb and J. K. Reid, “A practicable steepest-edge simplex algorithm,” Mathematical
Programming, vol. 12, pp. 361-371, 1977.

Risg-M-2797

[19] R. S. Garfinkel and G. L.. Nemhauser, Integer Programming. New York: John Wiley and
Sons, 1972.

(20] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “A practical anti-cycling proce-
dure for linear and nonlinear programming,” Tech. Rep. SOL 88-4, Systems Optimizaticn
Laboratory, Stanford University, California 943054022, 1988.

»

[21] J. A. Tomlin, “On scaling linear programming problems,” Mathematical Programming

Study, vol. 4, pp. 146166, 1975.

(22] 1. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices. Oxford:
Clarendon Press, 1986.

(23] M. H. van Emden, “Increasing the efficiency of quicksort,” Comm. ACM, vol. 13, pp. 563—
567, 1970.

[24] C.-E. Fréberg, Ldrobok i numerisk analys (In Sweedish). Copenhagen and Stockholm:
Scandinavian University Books, Svenska Bokforlaget/Bonniers, 1962.

(25} C. F. Cohn, Algebra, Vol 1. Bedford: Bedford College, 1981.

[26] J. M. Pedersen, “LINRAT - en energirationeringsmodel for Danmark,” Tech. Rep. Risg-
M-2611 (in Danish), Risg National Laboratory, DK-4000 Roskilde, Denmark, 1986.

[27] E. van der Voort, E. Donni, C. Thonet, E. B. d’Enghien, C. Dechamps, and J. F. Guilmot,
ENERGY SUPPLY Modelling Package EFOM-12 C Mark I - Mathematical description.
Louvain-la-Neuve, Belgium: CABAY (for the Commision of the European Communities),
1984,

(28] I. J. Lustig, “An analysis of an available set of linear programming test problems,” Tech.
Rep. SOL 87-11, Systems Optimization Laboratory, Stanford University, California 94305
4022, 1987.

(29] N. Karmatkar, “A new polynomial-time algorithm for linear programming,” Combinator-
ica, vol. 4, pp. 373-395, 1984.

[30] J. A. Tomlin, “A Note on Comparing Simplex and Interior Methods for Linear Program-
ming,” in Progress in Mathematical Programming. Interior-Poini and Related Methods
(N. Megiddo, ed.}, pp. 91-103, Springer-Verlag, 1987.

Risp-M-2797 67

APPENDIX

Al: Report writers in FORTRAN and PASCAL

Saoaoaaoaoaan

aonaoaoan

PROGRAK REPORT
IMFLICIT DOUBLE PRECISION (A-H, O0-Z)

THIS PROGRAM READS THE LP SOLUTION FROM THE BINARY COMMUNICATION
FILE PRODUCED BY LIEPROG, AND PRODUCES 4 CORRESPOHDIBG FORMATTED
SOLUTION FILE. THIS FILE WILL CONTAIE KEY DATA FOR THE PROBLEH
AND A TABULATIOE OF THE ROW AND COLUME SECTIONS OF THE SOLUTION.
MOREODVER, THE PROGRAM STORES ROW AED COLUME NAMES ARD ACTIVITIES,
pUAL ACTIVITIES AND REDUCED COSTS, IN ARRAYS FOR LATER REFERENCE,
IF YOU WAHET A PARAGON FOR & FULL-FLEDGED REFORT WRITER

PARAMETER (MR=8191, NC=9799)

DIMEESION ACTIVR{MR), DUALAC(MR), ACTIVC(MC), REDUCD{¥C)
THESE FOUR ARRAYS WILL HOLD THE FOLLOWIFG IHFORMATION:

ACTIVR(I) ACTIVITY OF RO¥ HO. I

DUALAC(I) DUAL ACTIVITY OF ROW ¥O. I

ACTIVC(T) ACTIVITY OF COLUMN NO. J

REDUCO(JT) REDUCED COST FOR COLUME FO. J

]

CHARACTER ROWEAM(MR)*S, COLEAM{MC)*8
ROWEAM(I} WILI, COSTAIN THE 8-CHARACTER~NAME OF ROW HO. I
COLEAM(J} WILL CONTAIN THE 8-CHARACTER-NAME OF COLUME EO. J
CHARACTER YYMMDD+6, VERS#4, TARGET#8, PBSTAT, MARK, STATUS*10
1, SETHAM®8, DBRJEAM«B, RHASHAM«3, RNGHAM#B, BDSHAM+8, STATUR*2
2, STATUC*2
OPEN FILES
DPEN (UNIT=1, STATUS=’0LD’, ACCESS='SEQUEETIAL’
1, FORM=*UNFORMATTED’)
REWIED 1
OPER (UNIT=2, STATUS='BEW’, ACCESS='SEQUESTIAL’, FORM=’FORMATTED®)
RENWINED 2
READ AED WRITE IDERTIFICATIDE SECTION
100 READ (1,END=900) YYMMDD, VERS, TARGET
WRITE (2,101) YYMMDD, VERS, TARGET
101 FORMAT (//’ PROBLEM DATE’, T32, A/’ LIKPROG VERSION’, T32, &/
1’ TARGET?, T32, A/)
READ (1) SETEAM, DSJEAM, RHSKAM, REGEAM, BDSHAM
WRITE (2,102) SETHAM, OBJNAM, RASNAM, RNGEAM, BDSNAM
102 FDRKAT (° XAME OF DATA SET?, T32, 4/° HAME OF DBJECTIVE ROW’, T232
i, A/’ EAME OF RIGHT-HAND SIDE®, T32, A/' NAME OF RARGES’, T32, A/
2, ’' NAME OF BOUEDS’, T3a2, A/}
READ ¢1) PBSTAT, L, ES, ICETR, FUNVAL
STATUS = *IEFEASIBLE’
IF (PBSTAT .EQ. ’0’) STATUS = ’0PTINMAL’
WRITE (2,103) STATUS, L, ES, ICETR, FUNVAL
103 FDRMAT ¢’ PROBLEM STATUS’, T32, A/’ YUMBER OF ROWS’, T32, I4/
1+ YUMBER OF COLUMNS®, T32, I4/? NUMBER OF ITERATIONS’, T32, I4/
27 QBJECTIVE VALUE’, T32, 1PE20.13)
READ ARD WRITE ROW SECTIDE OF SDLUTION
WRITE (2,104}
104 FORMAT (/' TABULATION OF THE FILED ROW SECTIDE’/T3, *EAME’, Ti1
1, ’NUMBER’, T18, 'STATUS®, T27, ’ACTIVITY’, T43, ’SLACK*®, T54
2, 'DUAL ACTIVITY’, T7C, ’MARR®)
po1, I =1, L
READ (1) MARE, ROWNAM(I), STATUR, ACTIVR(I), SLACAC, DUALAG(I)
1 WRITE (2,105) ROWEAM(I), T, STATUR, ACTIVR{I), SLACAC, DUALAC{I)
1, MARK
105 FORMAT (T2, A8, T12, I4, T20, A2, T25, 1PE13.6, T39, 1PE13.6, T54
1, 1PE13.6, T71, Al)
READ AED WRITE COLUMY SECTION OF THE SOLUTION
WRITE {(2,106)
106 FORMAT (/’ TABULATION OF THE FILED COLUME SECTICOKE’/T3, ’HAME’, Ti1
1, 'NUMBER’, T18, ?STATUS’, T27, ’ACTIVITY’, T41, ’INPUT COST’, TS5
2, ?REDUCED CDST’, T70, 'WARK’)
Do 2, J =1, BS

68

Risg-M-2797

READ (1) MARK, COLNAM(J}, STATUC, ACTIVC(]), COST, REDUCD(I)
2 ¥RITE (2,105) COLEAM(]), J+L, STATUC, ACTIVC{J), CDST, REDUCO(I}
1, MARK
§OV YOU MAY PROCEED WITH YOUR REPORT WRITER, USING THE SIL ARBAYS
ACTIVR(), DUALAC(}, ACTIVC(}, REDUCD(), ROVNAN{(), AND COLENAN():

GD BACK AYD READ MORE SOLUTION SETS, IF ANY
GO TO 100

C CLDSE COMMUNICATION FILE

900 CLOSE (1)

Q= % 2 QQ

END

PROGRAM REPORT(F1, F2, OUTPUT);
]
PASCAL program REPORT.

This program reads the LP solution from the binary commmnicaticn
file produced hy LINPROG, and produces a corresponding formatted
solution file. This file will contain key data for the prohlem
and a tabulation of the row and column sections of the solution.
Moreover, the program stores row and column names and activities,
dual activities and reduced costs, in arrays for later reference,
if you want a paragon for a full-fledged report writer.

*)

CONST
MR=8191;
MC=9799;

TYPE
INPSTR = PACKED ARRAY[1..47] OF CHAR;
C1 = PACKED ARRAY[1..1] OF CHAR;
c2 = PACKED ARRAY[1..2] OF CHAR;
C4 = PACKED ARRAY[1..4] OF CHAR;
Cé = PACKED ARRAY[1..6] OF CHAR;
cs = PACKED ARRAY[1..8] OF CHAR;

Cc10 = PACKED ARRAY[1..10] OF CHAR;
A1 =ARRAY[O..MR] OF DOUBLE;
A2 =ARRAY{0..NC] OF DOUHLE;
A3 =ARRAY[0..MR] OF C8;
A4 =ARRAY[O..NC] OF C8;
REC = RECORD
CASE I:INTEGER OF
1: (S:INPSTR);
2; (DUMMY2:C2;
YYMMDD : C6;
YERS :C4;
TARGET:C8);
3: {DUMMY3:C2;
SETYAM,0BJNAM ,RASNAN,REGNAN,BDSNAN:C8) ;
4: (DUMMY4:C2;
PBSTAT:C1;
L,NS,ICETR:INTEGER;
FUNVAL : DOUBLE) ;
§: (DUMMY5:C2;
MARK:C1;
TANE:C3;
STAT:C2;
ACTI,COST,REDU:DOUBLE);
EED{+DF RECORD=);
VAR
F1 :FILE OF INPSTR;
F2 :TEIT;
R :REC;
[£
Thesa four arrays will hold the following information:
ACTIVR[I] = activity of row mo. I

DUALAC[I] = dual activity of row no. I
ACTI¥C[J] = activity of column no. J
REDUCO[J] = reduoced cost for column mo. J

*)

Risg—M-2797

ACTIVR, DUALAC : AIL;
ACTIVC, REPUGD : A2;

I, J, L, §S, ICETR : INTEGER;
FUEVAL, SLACAC, COST: DOUBLE;

(%
ROWEAM[I] will contain the 8-character-name of row no. I

COLEAM[J] will contain the B-character-name of column no. I

*)

ROVEAN 1 A3;

COLEAN 1 A4;

PBSTAT, MARK :C1;

DUMMY, STATUR, STATUC 102;

VERS :C4;

YYMMDD 1C6;

TARGET, SETNAM, DBJNAM, RHSEAM, REGNAM, BDSNAM:CB;

STATUS :C10;
BEGIY

(* Open and reset files F1 and F2 »)

DPER(FILE_VARYABLE:=F1,FILE_XAME:=’LIBINO.DAT’,HISTORY:=READOELY,

ERROR: ~BESSAGE) ;
RESET(F1);
OPEN{FILE _VARIABLE:=F2,FILE_NAME:='REFORT.OUT’,HISTORY:=REW,
ERROR: =MESSAGE) ;
REVRITE(F2) ;
(* Read and write identification saction #)
WHILE KOT EOF(F1) DO
BEGIX
R.S5:2F1"; GET(F1); (» Read a packed array from file F1 *}
WRITELN(F2); WRITELN(F2);
WITH R DO
BEGIN
VRITELN{F2,’ PROBLEK DATE * YYMMDD:6) ;
WRITELE(F2,’' LINPRDG VERSIOR ' VERS:4);
WRITELE{F2,’ TARGET ' ,TARGET:8);
ERD;
VRITELN{F2};

R.S:=F17; GET(F1); (* Read a packed array from file F1 *)

WITH R DO

BEGIN
WRITELN(F2,> NAME DF DATA SET ' SETHAN:B);
WRITELK{F2,> NAME OF OBJECTIVE ROW » ,OBJNAM:B) ;
WRITELK{F2,’ WAME OF RIGHT-HAND SIDE » RASNAM:B) ;
WRITELN(F2,’ NAME OF RANGES ' RNGNAN:8) ;
WRITELN(F2,’ EAKE OF BOUNDS) BDSKAN:8) ;

END;

WRITELN{F2);

R.5:=F17; GET(F1); (*» Read a packed array from file F1 %}
IF R.PBSTAT = '0’ THEN STATUS:=!QPTIMNAL’

ELSE STATUS:=’INFEASIBLE’;
L:=R.L; N5:=R.NS;

WITH R DO

BEGIN
VRITELN(F2,’ PRGHLEM STATUS ? STATUS:10);
YRITELE(F2,* NUMBER OF ROWS ',L:4);
WRITELE{F2,* XUMBER OF COLUMES ', HS:4);
WRITELN(F2,’ NUMBER OF ITERATIORS r ICNTR:4);
WRITELN(F2,’ OBJECTIVE VALUE * FUNVAL:20);

END;

WRITELN{F2);

(* Read and write row saction of solution)
WRITELN{F2,’ TABULATION OF THE FILED ROW SECTION’};

WRITELN{F2,’ NAME NUMBER STATUS ACTIVITY 3,
*SLACK DUAL ACTIVITY MARK');

FOR I:=1 TO L DO

BEGIN

R.8:=F1*; GET(F1); (* Read a packed array from file F1 «)
ROVEAM[I]:=R.NAME; STATUR:=R.STAT; ACTIVR[I]:=R.ACTI;

70

Risg-M-2797

SLACAC:=R.COST; DUALAC[I]:=R_REDU;
WRITELN(F2,’ *,R.NAME:8,I:6, R.STAT:6,
;1 R.ACTI:13,° ?,R.COST:13,' ?,R.REDU:13,
4 7,R.MARK:1);
EXD(*for I loop*);

WRITELN(F2);

(% Read and write column section of the solution %}
WRITELN(F2,’ TABULATIOY OF THE FILED COLUMN SECTION’);
VRITELE(F2,’ NAME BUMBER STATUS ACTIVITY ’,

'TEPUT C€OST REDUCED COST MARK');
FOR J:=1 TO X5 DO
BEGIR
R.S5:=F1~; GET(F1); (* Read a packed array from file F1 »)
COLNAM[J] :=R.MAME; STATUC:=R.STAT; ACTIVC[J]]:=R.ACTI;
REDUCO[J] :=R.REDU;
VRITELE(F2,’ ’,R.FAME:8,(J+L):8, R.STAT:6,
> 7 R.ACTI:13,’ 7,R.COST:13,? ’,R.REDU:13,
2 ’ R.MARK:1);
END(=*for 1 loop¥};
(=
Jow you may proceed with your report writer, using the sirx arrays
ACTIVR[], DUALAC{], ACTIVC[], REDUCO[], ROVNAM[], A¥D COLEAM[]:

Go hack and read more solution sets, if any.
*)
EED{#while loop#);
CLOSE(F1); {* Close commnication file #*)
ERD.

A2: Algorithmic description of LINPROG

Below we summarize the total LINPROG algorithm in annotated form.
e Initiate another LP. Compile keywords from Control File,
s Read first part of Matrix File, including row section.

e Read column section from Matrix File and build lists for constraint matrix. Sort-merge
row names for each column.

e Read RHS section from Matrix File.

¢ Read RANGES section (if any} from Matrix File.

s Read BOUNDS section (if any) from Matrix File.

e Adjust constraint matrix and initialize eta lists.

¢ Print LP matrix statistics.

e If PICTURE was specified, then print matrix picture.

o Set indicators and upper bounds for slacks.

¢ Compute effective upper bounds (Section 8.1) and mark zero-range variables fixed.
e If RESTART was specified, then read restart file.

e Set up initial triangular basis (CRASH procedure, Section 8.2).

o Initialize arrays of nonbasic pointers and bound indicators for variables available for piv-
oting.

o Initialize arrays of nonbasic pointers and bound indicators for variables unavailable for
pivoting.

e Make an initial inversion (Section 6).

Risg-M-2797 71

Try to clear basis for zero slacks (Phase 0, Section 8.2).

If LOGFRQ < 0 was specified, then print a map of initial basic vectors.
Execuie Phase 1 of simplex.

Set up cost vector ¢ for Phase 2 and make a BTRAN.

Execute Phase 2 of simplex.

Print optimal value.

If DUMP was specified, then produce a dump file.

Construct column section output.

Construct row section output.

If SOLUTION was specified, then print row section output.

If SOLUTION was specified, then print column section output.
If BINOUT was specified, then produce a binary solution file.
Check solution for feasibility.

Produce a summary output line.

Return to top to see if more problems should be solved.

After this we give more details for the simplex part of the LINPROG algorithm. Unless explicitly
stated, they are valid for both Phase 1 and 2:

72

(Phase 1 only) Check if current solution is feasible. If not, set up the infeasibility cost
function (Section 8.3}.

If iteration count since last re-inversion equals MITRE, then make another inversion
(Section 6).

{Phase 2 only) After an inversion, check the feasibility. If infeasibilities are detected, then
transfer control back to Phase 1 (“Repair” procedure, Section 8.5).

Make an extended BTRAN step (Forrest-Tomlin procedure, Section 7.4).

Compute reduced costs.

Select entering variable.

(Phase 1 only) If no entering variable could be found, then the problem is infeasible.

{(Phase 2 only) If no entering variable could be found, then optimality is established.
Check feasibility.

If an entering variable was found, then proceed to compute the updated pivot column by
an FTRAN step.

Select leaving variable by the CHUZR procedure and see if entering candidate goes to its
opposite bound. (Sections 8.1 and 8.3).

Update the transformed rhs vector 3.
Update indicators.

Simplex iteration step finished. Increase iteration counter, and print iteration results if
requested by LOGFRQ. Return to top of simplex.

Risg—-M-2797

A3: Subroutines in LINPROG

In the following we list, in tabular form, the FORTRAN subprograms making up LINPROG
itself and the machine-dependent set of subroutines LPAUX, together with a short description
of their tasks. Apart from the main progratn, the lists are in alphabetic order.

Name
MAIN
BNDINP
BTRAN
CHECK
CHUZC
CHUZR
COLINP
COLLAT
COLOUT
COLPRT
COMPIL
CRASH
EFFLEN
ERRPRT
FILSOL
FIND
FMONIT
FTRAN
INVERT
LPMAST
LPSOLY
LUDOT
MANCOL
MANROW
MDATE
NUMEDI
NUMVAR
OBJECT
PIVCOL

PIVROW
PRICE

Risg-M-2797

Task

LINPROG driver program.

Reads BOUNDS Section input,.

Makes extended BTRAN with concurrent Forrest-Tomlin updating.
Checks the solution for feasibility. |
Selects entering variable in Phase 1 or 2.

Selects leaving variable in Phase I or 2.

Reads COLUMNS Section input and generates input matrix lists..
Computes integer equivalents of the two halves of an 8-byte character word.
Produces column section output.

Prints column section output.

Compiles keywords in Command File for one problem.

Selects an initial triangular basis.

Finds the effective length of a string ignoring trailing blanks.
Prints error messages.

Produces a binary solution file.

Searches for matching string of a text.

Monitots the infeasibilities.

Makes an FTRAN step.

Makes an LU re-inversion.

Produces LP matrix statistics.

Governs the solution of the LP.

Computes scalar product of sparse eta vectors for the LU inversion.
Performs memory management in column-ordered list during inversion.
Performs memory management in row-ordered list during inversion.
Computes the day number in the year from the date.

Formatting routine for numbers.

Returns external variable number, given its internal number.
Computes the objective function.

Scans pivot column candidate to produce a column eta vector and a pivot
element.

Scans pivot row to produce a row eta vector during inversion.

Computes reduced costs.

73

RECBET
RHSINP
RNGINP
ROWINP
ROWOUT
ROWPRT
SIGNUM
SISPAO
SISPAR
TABLIS
TRIN1
TRIN2
UPDATE

Reconstructs updated right-hand side 8.

Reads RHS Section input.

Reads RANGES Section input.

Reads Matrix File heading and ROWS Section input.
Produces row section output.

Prints row section output.

Makes a structural picture of the LP matrix.

Tries to eliminate zero slacks (Phase ().

Performs Phase 1 or 2 of sparse revised simplex.
Prepares column ordered list for constraint matrix.
Sorting routine for one integer vector.

Sorting routine for two integer vectors.

Makes a single step in the updating of ordered lists for inversion.

Finally, a BLOCK DATA subprogram provides default settings of the FORTRAN unit humbers
for the program files.

There are three auxiliary routines collected in the file LPAUX. The contents of the LPAUX
subroutines depend on the actual type of computer and the FORTRAN compiler.

Name
DATJOB
MCLOCK
OPENLP

74

Task
Returns current date.
Timing routine.

Performs proper opening of LINPROG files.

Risg—M-2797

Index
— A —

A, indicator for alternative solutions, 15
Activity, 7

Activity, Qutput, 14

Adjacent basis matrix, 21

Algorithmic description of LINPROG, 71
Alternative optimal solutions, 15
Anti-cycling procedure by Gill et al., 54
Apolle DN1000D, 6, 63

Artificial variables, 48

ASCII Resuit File, 17

ASCII standard collating sequence, 58
Assignment of pivots in re-inversion, 32
Augmented constraint matrix, 47

— B —

Bartels, R. H., 48, 55
Bartels-Golub update procedure, 57
Basic feasible solution, 21
Basic index set, 7, 16, 48
Basic variables, 7, 21
Basts, 7
Basis matrix, 7, 21
DBasis-inverse, 23
Benichou, M., 32
BIG keyword, 55
Big-M rnethod, 53
Binary output {BINOUT), 8, 17
BINOUT keyword, 8, 17
Block triangular rearrangement of basis
matrix, 35
Boolean inversion, 33
Borderiine problems between feasibility
and infeasibility, 64
Bounded simplex method, 44
Selection of leaving variable, 45
Updating basic solution, 46
Bounds, 6, 11, 43
Lower bounds, 11, 44
Multiple set of bounds, 11
Translation of bounds, 44
Upper bounds, 11
BOUNDS instruction, ¢, 58
BOUNDS Section, Input, 11
BTRAN operation, 23, 41, 50
Bump, 31

Risg-M-2797

—C —

Cancellation of matrix elements, 31
Chronological numbering of rows and
columns in basis matrix, 34
CHUZC operation, 23, 41, 46, 50, 53, 55
CHUZR operation, 23, 42, 46, 50, 54,
56-57
Cohn, C. F., 58
Collating sequence, 58
Column replacement updating, 25 .
Column singletons, 31-32
Column-eta vectors, 30
COLUMNS instruction, 9
COLUMNS Section, Input, 10, 58
COLUMNS Section, Output, 14ff
Communication file, 8, 16-17
Condition for mintmal SINF, 50
Condition for optimality, 45
Constraint matrix, 7, 21
Constraint type, see
¢ Restriction type
Constraints, b
Control File, 7ff, 16
CPU time consumption, 15~16
CRASH procedure, 47-48
Crout’s method, 31
Current tableau, 23
Cyclic permutation, in Forrest-Tomlin
updating, 37
Cycling, 21, 23, 54, 56-57, 64

— D —

Dantzig, G. B, 20

Decomposition of triangular matrices, 26

Degeneracies and degenerate solutions, 21,
52-54, 57-58

DEVEX scheme of Harris, 53

Diet problemn, 5

Direct simplex, 23

Direction indicator, 51

Double precision, 18, 20

Dual activities, 15

Duff, I. 8., 35, 57

Dummy restrictions, 21

Dump facility in LINPROG, 16

Dump File, 16

DUMP keyword, §, 17

75

—F —

ECHO keyword, 7

Effective B-vector, 44

EFOM project, 58, 64

Elbow room, for sparse-matrix inversion,
33, 35, 58

Electronic mail, 59

FElementary column matrix, 24, 38—40, 42

Elementary matrix, 24, 38

Elementary product forms, 27

Elementary row matrix, 25, 36, 38, 40

ELTAB keyword, 7

ENDATA instruction, 9

Entering the basis, 21

EPSCHC keyword, 55

EPSCHR keyword, 56

EPSFEA keyword, 56

EPSINA keyword, 57

EPSLU keyword, 57

EPSPIV keyword, 57

EPSRIN keyword, 33, 57

Error messages from LINPROG, 16

Eta lists and eta files, 29-30

Eta vectors, 29, 57

European Communities, 58

Exchange of variables, 21

EXEC keyword, 7, 9

—F —

Feasibility, 7, 14, 48

Feasibility test, 56

Feasible point, 7

Feasible solution, 7

Fenhann, J., 58

Files used in LINPROG, 16

Fill-in, 31-33, 35, 57

Filter for small elements, 57

Fixed variables, 6, 11

Forrest-Tomlin method, 23, 28-29, 35, 57
Concurrent scanning of lists, 43
Implementation in LINPROG, 42
Interface with simplex, 41ff
Scanning the L-file, 41
Scanning the U-file, 41
Zeroing of elements, 40-41

Forsythe, G. E., 26

FORTRAN unit no.s for files, 16

FR instruction, 11, 46

Free variables, 6, 11

Frobenius matrix, 24

Froberg, C.-E., 58

76

FTRAN operation, 23, 41, 54
FX instruction, 11, 46

— G —

Garbage collection, 33

Garfinkel, R. S., 54, 58

Geometrical interpretation of simplex, 23
Gill, P. E,, 54

Goldfarb, D., 53

Golub, G. H., 24, 57

Grohnheit, P. E., 59, 64

—H —

Harris, P. M. J., 52-53
Hellerman, E., 35

—I—

IEEE floating-point standard, 20
Infeasibility, 7
Infeasibility above upper bound, 48
Infeasibility below lower bound, 48
Infeasibility cost vector, 49
Infeasibility pricing vector, 50
Infeasible “solution”, 15, 21, 48
Inhomogeneous objective functions, 21
Initial basic feasible solution, 21, 47
Initial basis, 47
Initialization of simplex, 23, 47
Input cost, Output, 15
Input to LINPROG, 7ff
Installation of LINPROG, 20
Integer programming, 6, 58
Interior-point methods, 64
Inversion, 7, 30ff; see also
» Re-inversion

algorithmic description, 34
Iteration count, 16
Iteration printout, 8

—K—

Karmarkar’s method, 64
Karmarkar, N., 64
Keywords
Action keywords, 7
Descriptive keywords, 7
Numerical keywords, 7

Risg-M-2797

— L —

Leaving the basis, 21
Lexicographical vector ranking, 54
Linear equations, 48, 58
Linear program, 5

Linear programming, 5
Linked lists, 35, 57

LO instruction, 11, 46
LOGFRQ keyword, 8
Logical variables, 47

Lower Emit, Output, 15

LP extensions, 6

LU product form, 28
LU-factorization, 26, 28, 30
Lustig, I. J., 64

— M —

Major iterations, H4

Matrix File, 9ff, 16, 58

Matrix format, 6

Matrix generator, 17, 58

Matrix inversion in product form, 29

Matrix relations, 24fF

MAX keyword, 8

MAXCPM keyword, §, 17

Maximizing, 21

MAXITS keyword, 8, 17

Memory management for sparse-matrix
inversion, 33, 35

MI instruction, 11, 46

Minor iterations, 54

MINOS, 15, 58

MITRE keyword, 8, 30

Moler, C. B., 26

MPS format, 9

MPSX, 6, 9, 14-15, 58

MSCALE keyword, 8, 64

Multiple pricing, 54

Multiple right-hand sides, 10

Multiple-target pricing, 53

Murtagh, B. A., 20, 24, 58

— N —

NAME instruction, 9

Nazareth, J. L., 20, 48, 53, 58

Nemhauser, G. L., 54, 58

NETLIB collection of test problems, 6, 59,
64

NINF, 50, 57

Nonbasic variables, 21

Risg—M-2797

at a bound, 44

Shift between bounds, 46, 54
Norms , see

» Vector norms

Nucleus, 31-32
Number of infeasibilities (NINF), 50
Numerical feasibility, 64
Numerical stability of re-inversicn, 33

—_0 —

Object(ive) function, 5, 10, 21, 44
Objective row, 10
Optimization

Economics, 5, 58

Energy systems, 5, 58

Nuclear reactors, 5, 58
Orchard-Hays, W., 31
Ordered lists, 57

for sparse-matrix inversion, 33
Output from LINPROG, 12ff
QOutput summary, 15

—_—Pp

Packed arrays, 27
Packed sparse vectors, 57
PARAMETER in FORTRAN 77, 20
Parametric programming, 6
Partial pricing, 54
Partially updated incoming vector, 36
PC-version of LINPROG, 6
Pedersen, J. Munksgaard, 58
Pedersen, O. Gravgard, 59
PEND keyword, 7, 9
Permutation matrices, 25
Permutation of columns of a matrix, 26
Permutation of rows of a matrix, 26
Perturbation analysis, 16
Perturbation in feasibility test, 56
PFI method, 35
Phase 0, 47-48, 57
Phase 1, 47ff
Phase 2, 48
PICTURE keyword, 8
PILOT test case, 64
PILOTIJA test case, 54, 64
Pivot column, 25, 40
Pivot element, 23, 25, 31, 36
Pivot index, 23, 38
PIVOT operation, 23, 42, 46, 54
Pivot selection, 35

Strategy in re-inversion, 31

7

Pivotal factor, 40

PL instruction, 11, 46

Pointer arrays, 57

Polytope, 23, 53

Pre-ordering of rows and cclumns of basis
matrix, 31

Pre-pivotal factors, 40

PRICE operation, 23, 41, 53

Pricing strategies, 53

Pricing vector, 22

Printer file, 16

Product representation, 23

Protection against cycling, 54

.M....Q_

Quadruple-precision version of LINPROG,
64
Quicksort method, 58

— R —

Range for a right-hand side, 10-11, 47
Range value, 11
Ranges, 43
RANGES instruction, 9, 46
RANGES Section, Input, 10
Rank of matrix, 21
Rank-deficient constraint matrix, 21
Rank-one updated matrices, 24
Rarick, D. C., 35
Ratio test, 22
Re-factorization, 30
Re-inversion, 23, 27-28, 30ff, 57
algorithmic description, 34
Rearrangement of basis matrix before
inversion, 32
Reduced costs, 15, 22, 55
Reduced infeasibility costs, 50
Redundancies, 48, 58
Reference space, 53
Reid, J. K., 35, 53
Removal of zero slacks, 47
Repair procedure for feasibility
restoration, 57
Report writers, 17
REPORT program in FORTRAN, 18
REPORT program in MODULA-2, 18
REPORT program in PASCAL, 18
Source codes in FORTRAN and
PASCAL, 68
Restart facility in LINPROG, 16
Restart File, 16

78

RESTART keyword, 8, 16
Restraints, 5

Restriction type, 5, 10
Restrictions, 5

Result File, 12, 16

Revised simplex, 23

Rhs, 7

RHS instruction, 9

RHS Section, Input, 10
Rounding errors, 54, 57

Row singletons, 31-32
Row-eta vectors, 30

ROWS instruction, 9

ROWS Section, Input, 10, 58
ROWS Section, Qutput, 14ff

—8§—

Sample output, 12ff
Sample problem, 5-6, 9
Scalar products used in matrix inversion,
33
Scaling, 55
Column scaling, 35
Options, 8
Row scaling, 55
Selection of leaving variable in Phase 1, 50
Shadow prices, 15
Sherman-Morrison identity, 24
Simplex algorithm, 23
Simplex method, 6, 20fF
Simplex multipliers, 15, 22
SINF, 48fT, 57
Slack activity, Output, 15
Slack variables, 21, 47
SOLUTION keyword, 8
Sorting, 58
in matrix inversion, 34
Sparse-matrix techniques, 6, 57
in re-inversion, 33
Sparsity preservation, 31-32
Spikes, 35
SPUT matrix, 37-38, 41
Standard form of LP, 21
Standard product form, 27
Stanford test cases, 63
Steepest-edge pricing, 53
Step size In simplex, 22, 45
Phase 1, 52
Strategy for CHUZR. in Phase 1, 52
Structural variables, 5, 47
Subroutines in LINPROG, 73
Sum of infeasibilities (SINF), 48fF

Risg-M-2797

Summary line, Output, 15 — W —
SUN workstation, 6, 64

Symmetric permutations, 26, 37 Weber, §., 58

e T — e G
Test of LINPROG, 58ff Zero-slack variable, 47
Tie breaking, 54, 56 ZERPIV keyword, 48, 57

Tolerances, 8, 54, 64

default values, 55
Tomlin, J. A., 55, 65
Transformed right-hand vector, 22
Triangular factorization of basis matrix, 28
Two-pass CHUZR, 52

e U

Unbounded solution, 23, 45

Unformatted output file, 17

UNISYS A6 computer, 6, 64

UP instruction, 11, 46

Updated incoming vector, 41, 50

Updating of basis matrix factorization , sce
¢ Forrest-Tomlin method

Upper limit, Output, 15

User’s Guide for LINPROG, 7ff

— V=

van Emden, M. H., 58
van Loan, C. F., 24
VAX, 6, 19, 63
COM files for job programs, 19
D-floating, 20, 64
DCL, 19
Dump example, 19
EXE-file, 20
G-floating, 20
Job programs, 19
Pagefile quota, 20
Restart example, 19
SUBMIT command, 19
WSextent, 20
Vector norms
I-norm, 56
Maximum norm, 55
N(B), norm-like function, 56
Vector-matrix notation, 21
Violation of constraints, 16
Virtual memory, 20, 57

RiseivM~2797/

Bibliographic Data Sheet Risg-M-2797
Title and author(s}
LINPROG: A Linear-Programming Code Developed at Risg

Peter Kirkegaard and Ole Lang Rasmussen

ISBN ISSN
B7-550~-1541-7 0418-6435
Dept. or group Date
Computer Section March 1980
Groups own reg. number(s) Project fcontract no.
Pages Tables Hiustrations Relerences

79 3 5 30

Abstract {Max. 2000 char.)

A computer code LINPROG written in Standard FORTRAN 77 has been developed at Risg for
solving medium- to large-scale linear programming problems. It runs primarily on a VAX-8700
computer, but also on olher systems where virtual memory is available. LINPROG uses the
revised simplex method with the Forrest-Tomlin updating scheme of the inverse basis. Sparse-
matrix techniques are applied throughout. A comprehensive test and verification study has been
performed with data sets provided by local users and with data sets available in the literature.

Descriptors INIS/EDB

Available on request from:

Risg Library, Risg National Laboratory (Riseé Bibliotek, Forskningscenter Risg)
P.0. Box 49, DIK-4000 Roskilde, Denmark

Phone +45 42 37 12 12, ext. 2268/2269 - Telex 43 116 . Telefax +45 46 75 56 27

Addendum to the LINPROG documentation

Peter Kirkegaard and Poul Erik Grohnheit
Risoe National Laboratory
DK-4000 Roskilde
Denmark

Fax: +45 42 37 39 93

January 1992

Since the issue of the LINPROG repcert [1l], the code has been
extended and improved in variocus ways. The aim of this note is
to document these enhancements. The current LINPROG version
is given the release identification %201. Backward
compatibility is maintained, such that the main documentation
[1] is still perfectly valid as a user manual also for the
present release of LINPROG, apart from the new features.

Larger problem capacity

The problem capacity was increased in the new version of
LINPROG. The maximum number of rows and columns are now
MR=12209 and MC=11845, respectively.

The reduction module in LINPROG

The most important new fac1llty added to LINPROG is the
reduction module. This is able to decrease the effective size
of the LP problem by recursive application of an elimination
technique to the original constraint matrix. By this process
redundant variables and constraints can be removed. Moreover
nodal balance equations are identified and eliminated. Such
equations are equality constraints in which one variable is a
positive linear combination of other variables. With this form
the positivity is guaranteed automatically after the
elimination.

The reduction facility is activated by using the new keyword
REDUCE. For example, the following control file:

REDUCE
BINOUT
EXEC
PEND

solves an LP using the reduction module, and directs the
solution to a binary output file.

2

When REDUCE is on, LINPROG will print a short summary of the
reduction statistics. This might look as follows:

cowmmzomzm=oomosmm=zoz== REPORT ON MATRIX REDUCTION sms=mocosooomsszoozoosa
SIZE OF UNREDUCED LP MATRIX: 1953 X 1899
SIZE OF REDUCED LP MATRIX: 841 X 851

SCANS SINGLE~ IMPLIED IMPLIED IMPLIED SIGN ELIMINA- FINAL

IN ROW TON LOWER UPPER FIXED REDUN- TED TREE LENGTH
SEARCH ROWS BOUNDS BOUNDS BOUNDS DANCIES EQNS. OF LIST
4 2889 18 1 270 37 776 8685

DUMP/RESTART works properly together with REDUCE, provided the
user takes care of restarting only REDUCE problem from REDUCE
dumps {(otherwize a conflict in the matrix size may occur).

All vectors and matrices in LINPROG are physically reduced to
smaller sizes (in contrast to e. g. the reduction technigue
proposed by Tomlin and Welch {3]). After the reduced system is
optimized, a recreation procedure must be invoked. In LINPROG
this is implemented by taking advantage of the capability of ,
the code to restart from any basic index set.

Among several possible elimination strategies we have chosen
the so-called fixed Markowitz method, which is capable to keep
matrix fill-in and arithmetics at a low level during the
reduction process, using fairly simple coding. The
elimination process is facilitated by a double set of linked
lists with coefficient wvalues only in the row list.

Te illustrate the power of our reduction module, we have tried
it on a so-called EFOM problem. EFOM [2] 1is an energy flow
optimization model which is characterized by many topological
network constraints resulting in nodal balance equations,
though it is not a pure network model. Specifically, we have
solved a problem with 5645 rows and 5962 columns without
reduction in 2623 cpu seconds on our VAX-8700. With REDUCE
activated the time dropped to 1340 seconds, and this time
includes reduction as well as recreation.

Miscellaneous new features

Apart from the reduction module, certain minor improvements
are incorporated in the present version of LINPROG. They are
listed below:

1) We have taken measures to decrease the probability of
cycling and "stalling® (this means that virtually no
progress is made during many consecutive simplex
iterations).

2) In the solution output, violation of activity ranges are
flagged with ** in the same way as violation of
constraints.

3

3) Not only the date, but also the time of the day, is given
in the output.

4) In the matrix file, it is now permitted to let the
restriction key (N, L, E, or G) be in either column 2 or
3.

5) Header and trailer records are added to the dump/restart

files for problem identification. This permits a
compatibility check of the restart file.

Program structure
The extensions in LINPROG resulted in several new subroutines.
The table below is an addendum to the list in Appendix A3 in

[1]:

Name Task

DELETE Delete an entry from double linked list for reduction
ELIMIN Eliminates wvariable from constraint matrix during reduction
LOAD Loads information from restart file

NEW Adds a new element to double linked list fer reduction
REDLNK Makes double linked lists for reduction constraint matrix
REDMOD Modifies lists and arrays for reduced matrix

REDSAV Saves original lists for recreation after the reduction
REDSIG Searches for redundant inegqualities by sign test

REDSRW Eliminates singleton rows in reduction process

REDSTA Writes statistics for reduction process

REDTRE Eliminates ncdal balance equations

RESTOR Restores original lists to be used in recreation

RHSOFF Modifies rhs to accomodate for offset in a variable

We have decided to use INCLUDE files for COMMON declarations
in the new LINPROG version, although this adds to the very few
LINPROG violations of Standard FORTRAN 77. Also an included
file with problem size parameters (set by FCRTRAN PARAMETER
statements) is used. These included files limit the
repetitions in the source code and make the maintenance of
the code both safer and easier. 1In particular it is now very
easy to increase parameters related to problem size in
LINPROG. This INCLUDE design of the code organization was
patterned after the EFOM software [2].

The file table (cf. Table 2 p. 16 in [1]) should be extended
by one mere file, which is used when REDUCE is activated:

Unit No. File Usage Mode
12 Temporary for reduction Scratch Binary

LINPROG running on personal computers

The list of computers where LINPROG is running covers Pigital
VAX, UNISYS A6, Apollo DN 10000, and SUN workstations, see
p.6 in [1]. In 1991 we also succeeded with getting LINPROG to
run on personal computers of the 386 type under DOS.
Specifically, we compiled LINPROG with the FTN77 Fortran-77
compiler developed by Salford University, UK, with virtual

4

storage provided by the DBOS run-time system. The computer
used for our tests was an Olivetti PC/M380-XP1 with Cyrix
FasMath 83D87 Math Processor under DOS 5.0. It turned out that
any problem that could be solved on our VAX-8700, could also
be solved on this PC, only the execution time was about five

times longer. Thus the "small" computer environment is an
important target for LINPROG.

References

{1] Kirkegaard, P.; Lang Rasmussen, 0., LINPROG: A Linear-
Programming Code Developed at Risoe. (Risoe-M-2797, Risoe
National Laboratory, Roskilde, Denmark), 1990.

[2] Van der Voort, E.; Donni, E.; Thonet, C.; Bois d’Enghien,
E.; Dechamps, C.; Guilmot, J. F., Energy Supply Modelling
Package EFCM-12 C Mark I - Mathematical Description.
CARAY, Louvain-la-Neuve, for the Commission of the
European Communities, 1984).

[3] Tomlin, J. A.; Welch, J. S., Integration of a primal
simplex network algorithm with a large-scale mathematical.
programming system (ACM Trans. Math. Software, vol. 11,
pp. 1-11, 1985).

