

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic
Optimization

Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Skajaa, A., Jørgensen, J. B., & Hansen, P. C. (2011). On Implementing a Homogeneous Interior-Point Algorithm
for Nonsymmetric Conic Optimization. Kgs. Lyngby: Technical University of Denmark, DTU Informatics, Building
321. (IMM-Technical Report-2011-02).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13758669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/on-implementing-a-homogeneous-interiorpoint-algorithm-for-nonsymmetric-conic-optimization(f30a529b-4c6b-4642-a67b-cca4f74d0a3a).html

IMM-Technical Report 2011-02

On Implementing a Homogeneous Interior-Point

Algorithm for Nonsymmetric Conic Optimization

Anders Skajaa∗, John Bagterp Jørgensen∗ and Per Christian Hansen∗

January, 2011

Abstract

Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start
interior-point algorithm for solving nonsymmetric conic optimization problems is presented.
Starting each iteration from (the vicinity of) the central path, the method computes (nearly)
primal-dual symmetric approximate tangent directions followed by a purely primal centering
procedure to locate the next central primal-dual point. Features of the algorithm include
that it makes use only of the primal barrier function, that it is able to detect infeasibilities
in the problem and that no phase-I method is needed. The method further employs quasi-
Newton updating both to generate (pseudo) higher order directions and to reduce the number
of factorizations needed in the centering process while still retaining the ability to exploit
sparsity. Extensive and promising computational results are presented for the p-cone problem,
the facility location problem, entropy problems and geometric programs; all formulated as
nonsymmetric conic optimization problems.

Keywords: convex optimization, nonsymmetric, conic optimization, homogeneous model, infeasible-
start, interior-point algorithm.

1 Introduction

In this paper we are concerned with conic optimization problem pairs of the form

Primal

 minx cTx
s.t. Ax = b

x ∈ K
Dual

 maxy,s bT y
s.t. AT y + s = c

s ∈ K∗, y ∈ Rm
(1)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, K ⊆ Rn is a proper cone (i.e. it is convex, pointed, closed and has
nonempty interior) and K∗ = {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}, its dual cone, which is also proper. We are
further assuming that m ≤ n and that A has full row-rank.

These problems are well described and many interior point methods for different variants of these
problems exist, see for example [4, 5, 25, 21, 14].

When replacing K in (1) with Rn+, we obtain the simplest case: Linear Programming (lp). Solution
methods for lp have been studied for long in different settings and until the emergence of interior point
methods (ipms), the most prominent method was the simplex method, developed by Dantzig in the 1940s.
The introduction of ipms is usually ascribed to Karmarkar [12] in 1984 and since then, research in the
area has been extensive.

In [17] it was studied how to extend the ideas of ipms to the nonlinear case. The papers [18, 19]
showed that problems of the type (1) are efficiently solvable using symmetric primal-dual ipms when K
admits a self-scaled barrier function F : K◦ 7→ R. In [11], Güler demonstrated that such cones are limited
to those that are homogeneous and self-dual; a class that encompasses just five cones of which only

∗Department of Informatics and Mathematical Modelling, Technical University of Denmark

1

three are interesting for optimization. Specifically: the positive orthant (leading to lp), the Lorentz cone
(leading to second order cone programming) and the positive semidefinite cone (leading to semidefinite
programming).

These three self-scaled cones allow for modelling of a great variety of constraints and with the existence
of a unique scaling point [18, 19] for each primal-dual pair, symmetric primal-dual interior-point methods
(pdipm) can be constructed and very efficiently implemented [1, 2, 23].

However many constraints do not fall in this class. Examples include entropy type constraints:
x log x ≤ t, p-cone constraints: ‖x‖p ≤ t, and constraints arising in geometric programming [5]. Some
of these constraints can be modelled using self-scaled cones, but this usually requires the introduction of
many extra variables and constraints [4].

Theoretically, one can solve problems involving any convex constraint using a purely primal barrier
method and still obtain an algorithm with the best known complexity. However, such an algorithm
is known to be practically less efficient than a pdipm. Other approaches are also possible and special
algorithms for certain problems exist [25, 27]. An approach known to be effective for general convex
problems is to solve the monotone complementariy problem, see for example [3].

However, it may be beneficial to model non-symmetric constraints more directly using non-self-scaled
cones, such as the power cone or the exponential cone. This approach was employed by Nesterov in [16].
He proposed a method that mimics the ideas of a pdipm for symmetric cones by splitting each iteration
into two phases. First, a pure primal centering (or correction) phase is used to find a primal central point
x and a scaling point w. These points are used to compute a feasible dual point s such that an exact
scaling relation is satisfied: s = ∇2F (w)x. Second, a true symmetric primal-dual affine-scaling step (or
prediction step) is taken.

Extending the algorithm of [16], we propose in this paper a primal-dual interior point algorithm for
a homogeneous model of (1). This approach has been succesful for self-scaled cones [26, 2, 22] because
it implies the following desirable properties: Ability to detect infeasibility and ease of finding a suitable
starting point, removing the need for a phase I method. In addition to this, we suggest using bfgs-
updating of the Hessian of the barrier function to obtain a pseudo-second order approximate tangent
direction (atd) and to speed up the centering process.

For all problems that we consider, K will have the form K = K1 × · · · × KK where each Kj is either
a three-dimensional proper cone or R+. We assume that a logarithmically homogeneous self-concordant
barrier function (lhscb) F for K, its gradient ∇F and its Hessian ∇2F are available and computable in
polynomial time for all x ∈ K.

The paper is organized as follows: We first list a few well known properties about lhscbs and then
we introduce notation and present our algorithm. We give a proof of convergence and then suggest some
heuristic improvements to speed up convergence. Finally we present computational results for several
problems.

2 Properties of LHSCB

We assume that F : K◦ 7→ R is a lhscb for K with parameter ν. This means that for all x ∈ K◦ and
t > 0:

F (tx) = F (x)− ν log t.

It follows that the dual barrier of F , denoted F ∗ and defined for s ∈ K∗ by F ∗(s) = supx∈K{−sTx− F (x)},
is a lhscb for the dual cone K∗. Using the Hessians of F and F ∗, local norms on K and K∗ can be defined:

‖g‖x =
√
gT (∇2F (x))g, for g, x ∈ K (2)

‖h‖∗s =
√
hT (∇2F ∗(s))h, for h, s ∈ K∗. (3)

Properties of F and F ∗ include (see e.g. [18, 19]):

∇2F (x)x = −∇F (x) (4)

x ∈ K ⇒ −∇F (x) ∈ K∗ (5)

xT∇F (x) = −ν (6)

∇2F ∗(−∇F (x)) = ∇2F (x)−1 (7)

‖x‖x = ν. (8)

2

It is well known that the Dikin ellipsoid [4] is feasible. That is:

x ∈ K ⇒ W (x) = {u, ‖u− x‖x ≤ 1} ⊆ K (9)

and we have similarly for the dual cone that

s ∈ K∗ ⇒ W ∗(s) = {h, ‖h− s‖∗s ≤ 1} ⊆ K∗. (10)

If x ∈ K, we have by (5) and (10) that

W ∗(−∇F (x)) = {h, ‖h+∇F (x)‖∗−∇F (x) ≤ 1} ⊆ K∗. (11)

We are going to need the following identity:

‖∇2F (x)g‖∗−∇F (x)

(3)
=
√
gT∇2F (x)∇2F ∗(−∇F (x))∇2F (x)g

(7)
=
√
gT∇2F (x)∇2F (x)−1∇2F (x)g

(2)
= ‖g‖x. (12)

3 Notation

Generally z denotes an aggregated variable (x; τ ; y; s;κ) ∈ Rn+1+m+n+1 and w denotes an aggregated
variable of the type (x; τ ; y;κ). Semicolons indicate vertical stacking of column vectors.

Let

G =

 0 A −b
−AT 0 c
bT −cT 0

and notice that G is skew-symmetric: G = −GT . We will use the following abbreviations:

r(z) = (rP (z); rD(z); rG(z)) = G(y;x; τ)− (0; s;κ)

=

 Ax− bτ
−AT y − s+ cτ
−cTx+ bT y − κ

rA(z) =

∣∣cTx− bT y∣∣ / (τ +
∣∣bT y∣∣)

rC(w, µ) = −AT y + µ∇F (x) + cτ

ψ(z, µ) = s− µ∇2F (x)x

µ(z) =
(
xT s+ τκ

)
/ (ν + 1) .

When needed, we will use a superscript, e.g. z(k), to denote iteration counter and a subscript, e.g. zj , to
denote the jth element of the vector z.

4 Homogeneous algorithm

For a parameter µ > 0, the primal barrier problem corresponding to (1) is

min
x

cTx+ µF (x), s.t. Ax = b (13)

and the KKT conditions of this problem can be stated as follows: If x ∈ K is optimal for (13), then
∃s ∈ K∗, y ∈ Rm s.t. that

Ax− b = 0 (14)

−AT y − s+ c = 0 (15)

s+ µ∇F (x) = 0. (16)

3

The points that satisfy (14)-(16) are known as the primal-dual central path and it is easily seen that they
satisfy bT y − cTx = xT s = µν. The idea of the barrier method is to solve (13) for a decreasing sequence
of µ’s, thus obtaining a sequence of points with duality gap decreasing to zero and hence eventually being
approximately optimal for (1).

In practice it is more efficient to take steps that are combinations of the direction approximately
tangent to the central path (atd) and the direction pointing towards the central path (the centering
direction). After each step, µ is updated and the procedure repeated. Thus the iterates are guided by the
central path, but not necessarily on it and such a method falls in the category of path-following methods
or pdipms. We obtain different methods depending on the strategy for updating µ and how close the
iterates are kept to the central path.

When K is self-scaled, pdipms can compute symmetric search directions. Here symmetric refers to
the search directions (and thus the iterates) being the same regardless of whether the roles of the primal
and dual problems in (1) are interchanged [24]. Thus no particular emphasis is put on either the primal
or the dual problem, which is a desireable feature of an algorithm.

In the case when K is not self-scaled, this symmetry is lost. Instead, the idea of [16] is to split each
iteration into two phases: 1. Prediction phase: Starting from a central point, compute a symmetric atd
and step in this direction and 2. Correction phase: compute a new central point using a purely primal
iterative procedure.

In this paper, we propose solving the homogeneous model of problems (1) using the same two phases.
We thus introduce two extra non-negative scalar variables τ and κ and seek to find z = (x; τ ; y; s;κ) such
that

Ax− bτ = 0 (17)

−AT y − s+ cτ = 0 (18)

−cTx+ bT y − κ = 0 (19)

x ∈ K, s ∈ K∗, y ∈ Rm, τ ≥ 0, κ ≥ 0. (20)

Lemma 1. Assume z = (x; τ ; y; s;κ) satisfies (17)-(20). Then

(i) z is complementary. That is: (ν + 1)µ(z) = xT s+ τκ = 0.

(ii) If τ > 0 then (x, y, s)/τ is optimal for (1).

(iii) If κ > 0 then, one or both of bT y > 0 and cTx < 0 hold. If the first holds, then (1) is primal-
infeasible. If the second holds, then (1) is dual-infeasible.

Proof. (i) Observe that we can write (17)-(19) as G(y;x; τ)− (0; s;κ) = 0. Pre-multiplying this equation
by (y;x; τ)T gives xT s + τκ = 0. (ii) τ > 0 implies κ = 0 and hence by (19): bT (y/τ) − cT (x/τ) = 0.
Further dividing (17) and (18) by τ we obtain (14) and (15) respectively. Thus (x, y, s)/τ is optimal for
(1). (iii) If κ > 0 then τ = 0 so Ax = 0 and AT y + s = 0. Further cTx − bT y = −κ < 0 so not both
cTx and −bT y can be non-negative. Assume −bTx < 0. If (1) is primal-feasible then there exists x̄ ∈ K
such that Ax̄ = b. But then 0 > −bT y = −x̄TAT y = x̄T s ≥ 0, a contradiction. We can argue similarly if
cTx < 0.

Lemma 1 shows that any solution to (17)-(20) with τ + κ > 0 provides either an optimal solution to
our original problems (1) or a certificate of infeasibility of (one of) the original problems. See [13] for
further details.

Let z(0) satisfy (20) and let µ(0) = µ(z(0)). Parametrized by γ ∈ [0, 1], we will define the central path
of problem (17)-(20) by

r(z) = γr(z(0)) (21)

s = −γµ(0)∇F (x) (22)

τκ = γµ(0). (23)

The central path connects the initial point (γ = 1) with a solution of (17)-(20) (γ = 0). The atd z′ is
then determined by differentiating (21)-(23) w.r.t. γ and reusing (21)-(23):

r(z′) = −γ−1r(z) (24)

s′ + γµ(0)∇2F (x)x′ = −γ−1s (25)

τ ′κ+ κ′τ = −γ−1τκ. (26)

4

Our algorithm computes z′ by solving the linear system of equations (24)-(26). We then compute ẑ =
z + αz′ where α is determined via a line search method such that x̂ ∈ K, ŝ ∈ K∗ and τ̂ , κ̂ ≥ 0 and such
that ẑ is not too far away from the central path (see Section 5.1.1). We then let γ = µ(ẑ)/µ(z(0)) and
compute a new primal central point x+ by solving (21)-(23) approximately using Newton’s method, with
x̂ as the starting point. After that, we use x+ to determine a new primal-dual feasible point z+ and then
repeat. Algorithm 1 shows this entire procedure in detail.

Algorithm 1 Basic homogeneous algorithm

Input: Initial point z(0) = (x(0); τ (0); y(0); s(0);κ(0)) and barrier function F .
for k = 0, 1, 2, . . . do

Residuals: Compute r(z(k)) and r
(k)
A

Stopping: If stopping criteria satisfied: break

ATD: Solve the following system for d(k) = (d
(k)
x , d

(k)
τ , d

(k)
y , d

(k)
s , d

(k)
κ):

r(d(k)) = −r(z(k)) (27)

d(k)τ κ(k) + d(k)κ τ (k) = −τ (k)κ(k) (28)

µ∇2F (x(k))d(k)x + d(k)s = −s(k) (29)

Line search: Compute a step size α(k)

Update: ẑ(k) := z(k) + α(k)d(k) and µ := µ(ẑ(k)) and r̂
(k)
D = rD(ẑ(k))

Centering phase:

Set w
(0)
c = (x

(0)
c ; τ

(0)
c ; y

(0)
c ;κ

(0)
c) := (x̂(k); τ̂ (k); ŷ(k); κ̂(k)), β(0) =∞ and λ(0) =∞

for j = 0, 1, 2, . . . do

Residuals: Compute r
(j)
1 = τ

(j)
c κ

(j)
c − µ and r

(j)
2 = rC(w

(j)
c)− r̂(k)D

Compute B = (|r(j)1 | ≤ ρ1) ∧ (‖r(j)2 ‖ ≤ ρ2) ∧ (λ(j) ≤ ρ3) ∧ (β(j) = 1)
Stopping: if B = true, set N := j and break.

CDIR: Solve the following system for δ(j) = (δ
(j)
x ; δ

(j)
τ ; δ

(j)
y ; δ

(j)
κ):

(rP (δ(j)); rD(δ(j))) = (0; 0) (30)

δ(j)τ κ(j)c + δ(j)κ τ (j)c = −r(j)1 (31)

µ∇2F (x(j)c)δ(j)x −AT δ(j)y + cδ(j)τ = −r(j)2 (32)

Line search: Compute a step size β(j+1)

Update: w
(j+1)
c := w

(j)
c + β(j+1)δ(j) and λ(j+1) = ‖δ(j)x ‖x(j)

c

end for
Primal-dual lifting: Set s(k+1) = −AT y(N)

c + cτ
(N)
c − r̂(k)D

Update: z(k+1) := (x
(N)
c ; τ

(N)
c ; y

(N)
c ; s(k+1);κ

(N)
c)

end for

5 Analysis of Algorithm 1

5.1 Approximate Tangent Direction

Let us first list some properties of the approximate tangent direction defined in (27)-(29). For ease
of notation in this section, we are going write ψ for ψ(z(k), µ) = s(k) − µ∇2F (x(k))x(k) and drop the
superscript iteration counter.

Lemma 2. Assume z and d satisfy (27)-(29). Then

(i) dTx s+ xT ds + xT s = dTxψ (33)

(ii) (x+ dx)T (s+ ds) + (τ + dτ)(κ+ dκ) = 0 (34)

(iii) dTx ds + dτdκ = −dTxψ. (35)

5

Proof. (i): We get dTx s+xT ds +xT s
(29)
= dTx s+xT (−s−µ∇2F (x)dx) +xT s, which, after reduction, gives

dTx (s − µ∇2F (x)x) = dTxψ. (ii): Equation (27) is equivalent to r(z + d) = 0 or G(y + dy;x + dx; τ +
dτ)− (0; s+ ds;κ+ dκ) = 0. Pre-multiplying with (y+ dy;x+ dx; τ + dτ)T gives (34). (iii): Follows from
expanding (34) and using (33) and (28).

Lemma 3. Denote ẑ = z + αd. Then

r(ẑ) = (1− α)r(z) (36)

µ(ẑ) = (1− α)µ(z) + α(1− α)
dTxψ

ν + 1
. (37)

Proof. Equation (36) follows directly from elementary linear algebra. To show (37):

(ν + 1)µ(ẑ) = (x+ αdx)T (s+ αds) + (τ + αdτ)(κ+ αdκ)

= xT s+ τκ+ α(dTx s+ xT ds)

+α(τdκ + κdτ) + α2(dTx ds + dτdκ)

Lemma 2
= xT s+ τκ+ α(−xT s+ dTxψ)

+α(−τκ) + α2(−dTxψ)

= (1− α)(xT s+ τκ) + α(1− α)dTxψ

which after dividing by (ν + 1) gives (37).

5.1.1 Line Search

After computing the search direction, we determine a step size α using backtracking line search [6] to
ensure that x̂ ∈ K, ŝ ∈ K∗ and τ̂ , κ̂ > 0. To stay near the central path, we also require∥∥∥∥(‖∇F (x̂)‖−1∞ (ŝ+ µ̂∇F (x̂))

τ̂ κ̂− µ̂

)∥∥∥∥
∞
≤ σµ̂, with σ ∈ [0, 1]. (38)

This neighborhood is related to the proximity measure ‖µ−1s+∇F (x)‖∗−∇F (x). See e.g. [21], Thm. 3.7.1
for a discussion.

5.2 Centering Process

Let µ̂ = µ(ẑ(k)). After the atd-step, the goal of the centering process is to find a primal-dual feasible
point z that (approximately) satisfies the equations

r(z) = r(ẑ(k)) (39)

s = −µ̂∇F (x) (40)

τκ = µ̂ (41)

where µ̂ is fixed throughout the centering process.
We solve problem (39)-(41) by using Newton’s method. Because of the nonsymmetric nature of this

problem, we are not going to require that all iterates stay primal-dual feasible. Instead, we require that
all primal iterates be in K, but not that the dual iterates be in K∗. For this reason, we eliminate s from
the equations (39)-(41) and get the step equations

Aδ(j)x − bδ(j)τ = 0 (42)

−cT δ(j)x + bT δ(j)y − δ(j)κ = 0 (43)

τ (j)c δ(j)κ + κ(j)c δ(j)τ = µ̂− τ (j)c κ(j)c (44)

µ̂∇2F (x(j)c)δ(j)x −AT δ(j)y + cδ(j)τ = rD(ẑ(k))− rC(w(j)
c). (45)

We then let w
(j+1)
c = w

(j)
c + βδ(j), where β is a step length determined by a line search procedure using

the merit function

φ(z) = ‖rD(ẑ(k))− rC(wc)‖∞ + |τκ− µ|.

6

Let ρ1, ρ2 and ρ3 be tolerances. We terminate the process when

|r1| = |τcκc − µ̂| ≤ ρ1 (46)

‖rD(ẑ(k))− rC(wc)‖∞ ≤ ρ2 (47)

‖δx‖xc ≤ ρ3 (48)

β = 1. (49)

Lemma 4. The centering problem (39)-(41) can be solved to precision (46)-(49) in polynomial time using
Newton’s method with the worst case complexity O (φ(ẑ)).

Proof. See [9] and [17], Sec. 2.2, Thm 2.2.3 and comments on page 27.

Notice that φ(ẑ) is bounded by the neighborhood requirement (38), thus putting an upper bound on
the computational effort needed to solve the centering problem.

5.3 Primal-dual lifting

After having solved the centering problem to the desired accuracy, we compute a dual point s(k+1) and
we thus have a new primal-dual point z(k+1):

s(k+1) = −AT y(N)
c + cτ (N)

c − r̂(k)D (50)

z(k+1) = (x(N)
c ; τ (N)

c ; y(N)
c ; s(k+1);κ(N)

c).

Lemma 5. The new primal-dual point satisfies:

r(z(k+1)) = r(ẑ(k)).

Proof. Follows from using elementary linear algebra with (42), (43) and (50).

Lemma 6. If ρ3 ≤ ν + 1, the new primal-dual point satisfies∣∣∣µ(z(k+1))− µ(ẑ(k))
∣∣∣ ≤ ρ1

ν + 1
.

Proof. Because of (48) and (49), we have

w(N)
c = w(N−1)

c + δ(N−1)

‖δ(N−1)x ‖
x
(N−1)
c

≤ ρ3 ≤ ν + 1.

From (45), we also have:

µ̂∇2F (x(N−1)c)δ(N−1)x −AT δ(N−1)y + cδ(N−1)τ = −r(N−1)2 ⇒

µ̂∇2F (x(N−1)c)(x(N−1)c − δ(N−1)x) = sk+1. (51)

We then see that

(ν + 1)µ(z(k+1)) = µ̂
(
∇2F (x(N−1)c)(x(N−1)c − δ(N−1)x)

)T
x(N)
c + τ (N)

c κ(N)
c

= µ̂
(
∇2F (x(N−1)c)(x(N−1)c − δ(N−1)x)

)T
(x(N−1)c + δ(N−1)x) + τ (N)

c κ(N)
c

(8)
= µ̂

(
ν − ‖δ(N−1)x ‖

x
(N−1)
c

)
+ τ (N)

c κ(N)
c

= (ν + 1)µ̂− µ̂‖δ(N−1)x ‖
x
(N−1)
c

+ τ (N)
c κ(N)

c − µ̂

and hence

µ(z(k+1)) = µ(ẑ(k))

1−
‖δ(N−1)x ‖

x
(N−1)
c

ν + 1

+
r
(N)
1

ν + 1

≤ µ(ẑ(k)) +
r
(N)
1

ν + 1
⇒∣∣∣µ(z(k+1))− µ(ẑ(k))

∣∣∣ ≤ ρ1
ν + 1

.

7

Lemma 7. The next ψ satisfies

‖ψ(k+1)‖∞ ≤ ρ2.

Proof.

ψ(k+1) = s(k+1) − µ̂∇2F (x(k+1))x(k+1)

(4)
= s(k+1) + µ̂∇F (x(k+1))

= −AT y(N)
c + cτ (N)

c − r̂(k−1)D + µ̂∇F (x(N)
c)

= rC(w(N)
c)− r̂(k)D ⇒

‖ψ(k)‖∞ = ‖rC(w(N)
c)− r̂(k)D ‖∞ ≤ ρ2.

Lemma 8. If ρ3 ≤ 1 then the new dual point s(k+1) is dual feasible.

Proof. By (32) we have

µ−1s(k+1) +∇F (x(N−1)) = −∇2F (x(N−1))δ(N−1)x

and so

‖µ−1s(k+1) +∇F (x(N−1))‖∗
−∇F (x

(N−1)
c)

= ‖∇2F (x(N−1))δ(N−1)x ‖∗
−∇F (x

(N−1)
c)

(12)
= ‖δ(N−1)x ‖

x
(N−1)
c

= λ(N)
(48)

≤ ρ3 ≤ 1.

We know by (5) that −∇F (x
(N−1)
c) is a dual feasible point. So by (11), µ−1s(k+1) is dual feasible, which

implies that s(k+1) is dual feasible.

5.4 Convergence

The lemmas above imply the convergence of Algorithm 1. Assuming that F is sufficiently regular, there
exists ξ > 0 such that ξ is a lower bound on all step lengths [6], i.e.

∀k : α(k) ≥ ξ. (52)

Using lemma 3 and (52), we see that, in a worst case sense, getting

‖r(z(k+1))‖ ≤ ε‖r(z(0))‖

would take on the order of O
(
ξ−1 log (1/ε)

)
iterations for ε� 1.

Lemma 9. Let η ∈ (0, 1) and assume that we in all iterations can obtain

(d(k)x)Tψ(k) ≤ (ν + 1)µ(z(k)) (53)

then

µ(z(k+1)) ≤
(
1− ηξ2

)k
µ(z(0)).

Proof. If µ(zk+1) ≤ µ(ẑ(k)), then by lemma 3 and (53)

µ(z(k+1)) ≤ (1− α(k))(1 + α(k))µ(z(k)).

If, on the other hand, µ(zk+1) > µ(ẑ(k)), then by lemma 6, we get

(ν + 1)µ(z(k+1)) ≤ (ν + 1)µ(ẑ(k)) + ρ1

≤ (ν + 1)(1− α(k))(1 + α(k))µ(z(k)) + ρ1.

8

So by choosing ρ1 = (1− η)(ν + 1)µ(z(k))
(
α(k)

)2
, we get either way

(ν + 1)µ(z(k+1)) ≤ (ν + 1)(1− (α(k))2 + (1− η)(α(k))2)µ(z(k)) + ρ1

≤ (ν + 1)(1− ηξ2)µ(z(k))

≤ (ν + 1)(1− ηξ2)kµ(z(0))

and hence µ(z(k+1)) ≤
(
1− ηξ2

)k
µ(z(0)).

So to reach the user specified tolerance ε� 1, we require

k ≥ log ε

log (1− ηξ2)
= O

(
ξ−2 log(1/ε)

)
.

Remark 1. We ensure that the assumption (53) holds in the following way: After computing an atd
step, we check the inequality (53) and if it does not hold, we take more centering steps thus decreasing
‖ψ‖∞ (see lemma 7). Eventually (53) will hold. In fact, all of our computational experience with this
algorithm shows that (53) always holds as long as s(k) is dual feasible, which is ensured by lemma 8.
In practice, this safeguard was therefore never activated. It is possible that (53) can be shown to hold
generally under certain assumptions.

Remark 2. In [16], a slightly different new primal-dual point z(k+1) is used. The next primal point

is instead x(k+1) = x
(N−1)
c − δ

(N−1)
x while ∇2F is evaluated at x

(N−1)
c . This way, the exact scaling

relation (51) holds which would imply ψ(k+1) = 0. With this choice, we would obtain a much simpler
right hand side in (37) of lemma 3. However, because the homogenous self-dual model ties the primal
and dual problems together via the variables τ and κ, it would not be possible to choose a combination
of y(k+1),τ (k+1) and κ(k+1) in such a way that e.g. lemma 5 would still hold. Further, it certainly makes

intuitive sense that it is more beneficial to use the better primally centered x
(N)
c as the next primal point.

Our computational experience indicates that this is better in practice.
Remark 3. Although the two lemmas 3 and 9 indicate that µ and the residuals rP , rG and rD decrease

to zero at different rates, we observe in numerical experiments that dTxψ is of much smaller magnitude
than (ν + 1)µ. Thus we always see µ(k+1) ≈ (1− α)µ(k) in practice.

6 Heuristic improvements

In this section we introduce and motivate two heuristic methods to speed up convergence.

6.1 Higher order ATD using BFGS updating

Since each iteration of the centering process is as costly as computing a single atd, it may be worth invest-
ing more computational effort in obtaining a search direction that incorporates higher order information.
This could lead to a greater decrease in µ thus saving many future centering steps.

Let us denote the central path by z(µ). The atd defined in (27)-(29) can be considered an approxi-
mation to the tangent to the central path at µ, i.e. z′(µ). Let us write the system (27)-(29) as

K(z, µ)z′(µ) = φ(z, µ) or z′(µ) = K(z, µ)−1φ(z, µ) =: f(z, µ).

The central path is thus the solution of the ordinary differential equation defined by z′(µ) = f(z, µ). A
step in the approximate tangent direction is then the same as taking one Euler step for this ode. We can,
however, obtain a direction that contains, for example, second order information by computing a stage-2
Runge-Kutta direction d2, remembering that each evaluation of f requires solving a system of the type
(27)-(29). Such a direction is defined by

d2 = h

(
1− 1

2θ

)
f(z, µ) + h

1

2θ
f(ζ, µ(ζ)) (54)

where ζ = z(µ) + θhf(z, µ) (55)

and where h is the stepsize possible in the direction f(z, µ) and θ ∈ (0, 1] is a parameter. The choices
θ = 1/2 and θ = 1 correspond to the classical midpoint and trapezoidal rules respectively [7].

9

Our experience shows that this approach reduces the total number of iterations as well as the number
of factorizations needed for convergence, even though two factorizations are needed to compute d2.

We can, however, restrict ourselves to just one factorization by using in place of ∇2F (ζx) the bfgs
update [20] of ∇2F (x). This requires only the extra evaluation of ∇F (ζx) and extra back-substitutions.
In the next section, we show how this can be done without destroying sparsity in the KKT-system.

6.2 BFGS updating in the centering process

Solving either for a centering step or an atd step requires the factorization of the sparse n × n matrix
H := ∇2F (x) and of the possibly sparse m ×m matrix Q = AH−1AT . To reduce the total number of
factorizations needed in the centering process, we suggest taking J bfgs steps for each normal centering
step.

Let us show how this can be done computationally efficient. Let B and M denote the bfgs approxi-
mation of the inverses of H and Q respectively. Conceptually, we update B to B+ using bfgs updating,
a rank-2 updating scheme: B+ = B + k(v)vvT + k(w)wwT . In order to keep the ability to exploit sparsity
of A and Q, we do not actually store B or M but simply the Cholesky factors of the most recent H and
Q and the sequence of bfgs update vectors. More specifically, for q ≤ J , let B(q) be the q’th update of
H−1, i.e.

B(q) = C−1C−T + ΨΛΨT

where Ψ = [v(1), . . . , v(q), w(1), . . . , w(q)],Λ = diag(k
(v)
1 , . . . , k

(v)
q , k

(w)
1 , . . . , k

(w)
q). Then we compute prod-

ucts such as B(q)r by means of

B(q)r = C−1(C−T r) + Ψ
(
Λ(ΨT r)

)
.

For M , the situation is similar:

M (q) =
(
AB(q)AT

)−1
=
(
A(H−1 + ΨΛΨT)AT

)−1
=
(
Q+ ΦΛΦT

)−1
where Φ = AΨ. By the Sherman-Morrison-Woodbury formula, we get

M (q) = Q−1 −Q−1Φ
(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1.

We can thus compute products like M (q)r by

M (q)r = Q−1
(
I − Φ

(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1

)
r

= D−1D−T
(
r − Φ

(
Λ−1 + ΦTD−1D−TΦ

)−1
ΦTD−1D−T r

)
where we remark that 1) only two columns are added to Φ in each iteration so that only two new
backsubstitutions in the product D−1D−TΦ need to be made, 2) Λ is diagonal and thus cheap to invert
and 3) the matrix

(
Λ−1 + ΦTD−1D−TΦ

)
is only of size 2q × 2q and is therefore also cheap to invert.

Using this approach, we need to address how to terminate the centering process. An obvious way is to
allow termination only after a normal centering step (that is, not a bfgs step), when the criteria (46)-(49)
are satisfied. This, however, means that each centering process will involve at least one full centering step.

Alternatively we can, after each bfgs step, check if ‖rC − r̂D‖∗−∇F (x) ≤ µ̂ρ3. If so, we know that the

next dual point is dual feasible (see (50) and lemma 8). Notice that because of (7), the norm ‖v‖∗−∇F (x)

can be computed as (vTH−1v)1/2. Computing this number requires the evaluation and factorization of
H. However, since H is blockdiagonal, this operation is cheap. In fact, it is possible simply to analytically
compute H−1 at each x, since H is block diagonal with block sizes 3× 3.

We finally remark that whether or not it is beneficial to take bfgs steps, and if it is, how many
should be taken, depends on the cost of building and Cholesky factorizing AH−1AT relative to the cost of
subsequent backsubstitutions. This ratio depends on the dimension and sparsity pattern of A, so we can
not say anything about it before knowing A. Since the dimension and sparsity pattern of AH−1AT are
the same regardless of the stage of the algorithm, it is possible to determine the above mentioned ratio
at initialization time and that way determine how many bfgs steps should be taken in each iteration of
the centering process throughout the algorithm.

10

Algorithm 2 Homogeneous algorithm with heuristic improvements

Input: Initial point z(0) = (x(0); τ (0); y(0); s(0);κ(0)), µ, J , θ and F .
for k = 0, 1, 2, . . . do

Residuals: Compute r
(k)
P , r

(k)
D , r

(k)
G and r

(k)
A

Stopping: If stopping criteria satisfied: break

ATD1: Solve the system (27)-(29) for d(k) = (d
(k)
x ; d

(k)
τ ; d

(k)
y ; d

(k)
s ; d

(k)
κ).

Line search: Compute a step size h

ATD2: Compute the second order direction d
(k)
2 by (54)-(55) using h, bfgs updating and reusing

the factorization from ATD1.
Line search: Compute a step size α(k)

Update: ẑ(k) := z(k) + α(k)d
(k)
2 and µ := µ(ẑ(k)) and r̂

(k)
D = rD(ẑ(k))

Centering: Compute iterates as in Algorithm 1 but take J bfgs steps for each normal step, stopping
according to Section 6.2.

Primal-dual lifting: Set s(k+1) = −AT y(N)
c + cτ

(N)
c − r̂(k)D

Update: z(k+1) = (x
(N)
c ; τ

(N)
c ; y

(N)
c ; s(k+1);κ

(N)
c)

end for

6.3 Modified algorithm

Our improved algorithm, which is shown in algoritm 2, implements the pseudo higher order direction
described in Section 6.1 and in addition, it takes J bfgs steps as described in Section 6.2. We allow
stopping after a bfgs step if ‖rC − r̂D‖∗−∇F (x) ≤ µ̂ρ3 because this seems most effective on the problems
we consider. However, we remark that this may not be the case for all problems.

7 Computational results

In this section we present results from running Algorithms 1 and 2 on different test problems. We first
introduce the nonsymmetric cones needed for our test problems and then present the test problems.
Finally, we include tables with numerical results and discussion.

7.1 Two three-dimensional nonsymmetric cones

In the rest of this paper, we are going to be considering problems involving the following two nonsymmetric
convex cones.

The three-dimensional exponential cone is defined by

Kexp = closure {(x1;x2;x3) ∈ R× R+ × R++ : exp (x1/x3) ≤ x2/x3}

for which we are using the lhscb

Fexp(x) = − log (x3 log (x2/x3)− x1)− log x2 − log x3

with barrier parameter ν = 3.
The three-dimensional power cone is defined by

Kα =
{

(x1;x2;x3) ∈ R× R2
+ : |x1| ≤ xα2x1−α3

}
where α ∈ [0, 1] is a parameter. Notice that K1/2 is the rotated quadratic cone. For all other α ∈ (0, 1),
Kα is not symmetric. In [8], it was proved that the function

Fα(x) = − log (x2α2 x2−2α3 − x21)− (1− α) log x2 − α log x3

is a lhscb with parameter ν = 3 for Kα. It is this barrier function we are using in our experiments.
Nesterov proposed in [16] a barrier function for the three-dimensional power cone with parameter ν = 4.
Our computational experiences show that Fα is better in practice.

7.2 Test problems

In this section, e will denote the vector of all ones. The dimension of e will be clear from the context.

11

7.2.1 The p-cone problem

Given A ∈ RM×N and b ∈ RM , the p-cone problem is the problem

min
x

‖x‖p, s.t. Ax = b.

In [15], it is shown that this is equivalent to

min
x,y,t

t

s.t. Ax = b, eT y = t

(xj ; yj ; t) ∈ K(1/p), j = 1, . . . ,M.

7.2.2 The facility location problem

Given M points (locations) in RN : C(j), j = 1, . . . ,M , we want to find the point z with the minimal sum
of (weighted) distances to the locations C(j) measured in pj-norms, pj ≥ 1. That is

min
z

M∑
j=1

aj‖z − C(j)‖pj (56)

where aj ≥ 0 are the weights. Let us define the variable

x = (z+; z−; v(1); . . . ; v(M);w(1); . . . ;w(M);u(1); . . . ;u(M)) ∈ R2N+3MN .

We can then formulate (56) as

min
z+,z−,v,w,u

M∑
j=1

aju
(j)
1

s.t. v(j) = z+ − z− − C(j) j = 1, . . . ,M

eTw(j) = u
(j)
1 , u

(j)
1 = u

(j)
2 = · · · = u

(j)
N j = 1, . . . ,M

(v
(j)
i ;w

(j)
i ;u

(j)
i) ∈ K1/pj j = 1, . . . ,M, i = 1, . . . , N

z+ ≥ 0, z− ≥ 0

and it is this formulation we use in Section 7.3.

7.2.3 Entropy maximization

Given A ∈ RM×N , b ∈ RM and d ∈ RN , the entropy maximization problem is

min
x

N∑
j=1

djxj log xj

s.t. Ax = b

xj ≥ 0, j = 1, . . . , N

which can be formulated as

min
x,u

− dTu

s.t. Ax = b, v = e

(uj ; vj ;xj) ∈ Kexp, j = 1, . . . , N.

12

7.2.4 Geometric programming

This is a problem of the type

min
x

f (0)(x)

s.t. g(j)(x) = 1, j = 1, . . . ,M

f (j)(x) ≤ 1, j = 1, . . . , P

where g(j) are monomials and f (j) are posynomials:

g(x) = kjx
b(j)

, f (j)(x) =

Nj∑
i=1

dix
a

(j)
i

where we have used the notation

xv :=

n∏
i=1

xvii , xi > 0.

With the j’th posynomial f (j), we associate

• the matrix A(j) :=
(
a
(j)
1 ,a

(j)
2 , . . . ,a

(j)
Nj

)T
∈ RNj×N ,

• the vector d(j) = (d
(j)
1 , . . . , d

(j)
Nj

)T ∈ RNj×1 and

• the vector c(j) = log (d(j)) = (log (d1), . . . , log (dNj
))T ∈ RNj×1

Similarly, we associate with the j’th monomial g(j)

• the vector b(j)

• the scalar k(j)

• the scalar h(j) = log (k(j))

Using the change of variables

ui = log (xi) ⇔ xi = exp(ui)

for all i, we can write the problem in conic form:

min
u+,u−,w,v,y,t(0)

t(0)

s.t.: B(u+ − u−) + h = 0

w(j) = A(j)(u+ − u−) + c(j) j = 0, . . . , P

eTv(j) = t(j), y(j) = e j = 0, . . . , P

u+,u−, t
(0) ≥ 0(

w
(j)
i ; v

(j)
i ; y

(j)
i

)
∈ Kexp j = 0, . . . , P, i = 1, . . . , Nj

where h = (h(1), . . . , h(M))T ∈ RM×1 and B =
(
b(1), . . . , b(M)

)T ∈ RM×N .

Param. J θ σ ρP ρD ρA ρG ρI
Value 3 0.70 0.80 10−6 10−6 10−6 10−6 10−8

Table 1: Parameters used.

13

7.3 Results

Whenever we find a point z∗ = (x∗; τ∗; y∗; s∗;κ∗) such that

(‖rP (z∗)‖∞ ≤ ρP) ∧ (‖rD(z∗)‖∞ ≤ ρD)

we conclude that

• if ‖rA(z∗)‖∞ ≤ ρA then (x∗, y∗, s∗)/τ∗ is feasible and optimal for (1). Otherwise

• if ‖rG(z∗)‖∞ ≤ ρG and τ∗ ≤ ρI max (1, κ∗), (1) is deemed infeasible, specifically

– primal infeasible if bT y∗ > 0

– dual infeasible if cTx∗ < 0.

Throughout we used the parameters displayed in table 1 on the preceding page.
The remaining tables in this section show the number of iteration (it), the total number of factoriza-

tions made (chols) and the average number of full centering steps per iteration (ce). Finally, for all but
the facility location problems, we show the termination status (st). opt means that an optimal solution
was found, ipr/idu means a primal/dual infeasibility certificate was found and roa/roc means that the
algorithm was terminated because rounding errors prevented further progress.

Problem Alg. 1 Alg. 2 CVX/SeDuMi

name & size p it chols ce st it chols ce st it st

stocfor1 1.0 11 37 2.4 opt 9 13 0.4 opt 12 opt

M = 117 3.0 14 62 3.4 opt 12 15 0.2 opt 19 opt

N = 165 7.0 28 134 3.8 opt 21 22 0.0 opt 21 roa

nnz(A) = 501 12.0 29 137 3.7 opt 22 26 0.2 opt 22 roa

20.0 28 131 3.7 opt 20 24 0.2 opt 25 opt

blend 1.0 11 35 2.2 opt 9 13 0.4 opt 5 opt

M = 74 3.0 13 58 3.5 opt 11 21 0.9 opt 18 opt

N = 114 7.0 17 77 3.5 opt 13 24 0.8 opt 20 opt

nnz(A) = 522 12.0 19 90 3.7 opt 14 27 0.9 opt 21 opt

20.0 19 97 4.1 opt 14 25 0.8 opt 22 opt

share2b 1.0 11 40 2.6 opt 10 16 0.6 opt 13 opt

M = 96 3.0 12 56 3.7 opt 10 18 0.8 opt 19 opt

N = 162 7.0 13 62 3.8 opt 11 22 1.0 opt 17 roa

nnz(A) = 777 12.0 13 62 3.8 opt 11 20 0.8 opt 20 opt

20.0 13 62 3.8 opt 11 19 0.7 opt 20 opt

share1b 1.0 15 50 2.3 opt 14 19 0.4 opt 18 opt

M = 117 3.0 17 72 3.2 opt 13 22 0.7 opt 21 opt

N = 253 7.0 16 67 3.2 opt 12 22 0.8 opt 21 opt

nnz(A) = 1179 12.0 16 66 3.1 opt 12 20 0.7 opt 22 opt

20.0 15 64 3.3 opt 11 19 0.7 opt 23 opt

bore3d 1.0 11 25 1.3 opt 8 9 0.1 opt 3 opt

M = 231 3.0 11 25 1.3 opt 8 9 0.1 opt 6 opt

N = 334 7.0 11 25 1.3 opt 8 9 0.1 opt 6 opt

nnz(A) = 1444 12.0 12 27 1.2 opt 8 9 0.1 opt 6 opt

20.0 12 27 1.2 opt 8 9 0.1 opt 6 opt

scagr25 1.0 14 50 2.6 opt 12 23 0.9 opt 13 opt

M = 471 3.0 10 37 2.7 opt 9 14 0.6 opt 18 opt

N = 671 7.0 11 41 2.7 opt 8 14 0.8 opt 17 opt

nnz(A) = 1725 12.0 11 41 2.7 opt 8 12 0.5 opt 18 opt

20.0 11 41 2.7 opt 8 11 0.4 opt 19 opt

sctap1 1.0 13 43 2.3 opt 12 17 0.4 opt 12 opt

M = 300 3.0 12 48 3.0 opt 8 15 0.9 opt 17 opt

N = 660 7.0 14 59 3.2 opt 10 20 1.0 opt 18 opt

nnz(A) = 1872 12.0 18 80 3.4 opt 13 27 1.1 opt 21 opt

20.0 21 94 3.5 opt 14 28 1.0 opt 23 opt

bandm 1.0 12 42 2.5 opt 10 16 0.6 opt 14 opt

M = 305 3.0 25 117 3.7 opt 19 38 1.0 opt 21 opt

N = 472 7.0 31 147 3.7 opt 22 43 1.0 opt 25 opt

nnz(A) = 2494 12.0 31 152 3.9 opt 22 43 1.0 opt 25 opt

20.0 30 148 3.9 opt 21 40 0.9 opt 25 opt

Table 2: Results for p-cone problems.

14

Problem Alg. 1 Alg. 2
N M ν p̄ it chols ce it chols ce

4 3 44 5.0 13.8 33.6 1.4 13.4 16.5 0.2
8 3 88 7.2 16.7 42.3 1.5 16.2 19.3 0.2
4 10 128 6.0 14.8 41.2 1.8 13.5 18.5 0.4
12 3 132 5.3 20.5 53.2 1.6 19.0 23.4 0.2
20 3 220 6.4 22.2 60.7 1.7 21.0 24.9 0.2
4 19 236 5.7 14.6 42.5 1.9 13.4 18.8 0.4
8 10 256 6.6 17.9 50.4 1.8 16.3 22.0 0.4
12 10 384 6.0 21.2 66.1 2.1 19.0 25.9 0.4
4 32 392 5.9 14.2 44.8 2.2 12.2 18.2 0.5
8 19 472 5.7 17.7 56.3 2.2 16.1 22.7 0.4
20 10 640 5.6 25.5 78.4 2.1 22.8 30.0 0.3
12 19 708 5.4 20.5 65.5 2.2 18.9 26.4 0.4
8 32 784 6.1 18.4 61.4 2.4 16.1 23.2 0.5
12 32 1176 5.7 20.5 71.9 2.5 16.8 26.3 0.6
20 19 1180 5.5 23.6 79.2 2.4 20.5 28.8 0.4
20 32 1960 5.8 24.9 87.4 2.5 21.4 30.3 0.4

Table 3: Results for facility location problems. The algorithms always terminated after reaching
optimality as all problem instances were feasible by construction.

Table 2 shows results for the p-cone problem. We show the results for the two variants of our algorithm
and for the solver SeDuMi (see [22]) when called through CVX (see [10]). CVX approximates the solution by
solving an approximately equivalent self-scaled problem using SeDuMi.

The matrices used are from the netlib collection. We see that particularly Algorithm 2 performs
very well compared to SeDuMi. While the table shows the size of A, it does not show the problem size of
the final problem solved by either of the solvers. We remark that the number of variables and constraints
for Algorithms 1 and 2 stay the same regardless of p while the problem size for SeDuMi grows with p. Of
course, sufficient sparsity in the problem may mean that it is not necessarily slower. For Algorithm 2,
the number of iterations never exceeded 23 and the number of Cholesky factorizations of AH−1AT never
exceeded 43.

Table 3 shows the performances of the two variants of the algorithm when run on random instances
of the facility location problem. For each pair (N,M) we generated 10 instances each with C(j) chosen at
random from the standard normal distribution and pj and aj chosen randomly from a uniform distribution.

The column labelled p̄ shows the average M−1
∑M
j=1 pj . We see again that for Algorithm 2, the iteration

count is in the region between 10 and 22 while the number of Cholesky factorizations never exceeds 31.
These results can be loosely compared with the computational results in [8, Table 4.1, page 142]. There,
a dual variant of the algorithm of [16] is used. Overall, our Algorithm 2 performs better, both in terms
of iterations and factorizations.

Table 4 shows results from solving a set of real-world entropy problems kindly supplied to us by
Erling D. Andersen and Joachim Dahl of Mosek ApS, Denmark. Generally the problems have many
variables compared to the number of constraints resulting in a very “fat” constraint matrix A. For these
problems we compare our algorithms to the commercial solver from Mosek, which solves the monotone
complementarity problem corresponding to the entropy problem. We see that, except for a few of the
problems, Algorithm 1 is clearly inferior to Moseks solver. Our Algorithm 2 performs much better than
Algorithm 1, but still used cummulatively about 12% more iterations and about 55% more Cholesky
factorizations than Mosek.

Finally, table 5 shows results from applying our algorithms to a set of geometric programs supplied
to us by Mosek. The column labelled dod denotes the degree of difficulty of the problem. For these
problems we see that Algorithm 2 performs quite well producing results comparable to those of Mosek.
Algorithm 2 uses cummulatively about 29% less iterations and 14% less Cholesky factorizations than
Mosek. Notice that Algorithm 2 performs particularly well on the large problems cx02-100, cx02-200,
mra01 and mra02, all of which have dod > 800.

15

Problem Alg. 1 Alg. 2 mskenopt

name N M it chols ce st it chols ce st it st

prob 17 15 14 35 1.5 opt 9 15 0.7 opt 8 opt

prob2 18 14 11 34 2.1 opt 9 16 0.8 opt 8 opt

ento46 130 21 37 139 2.8 opt 27 43 0.6 opt 42 opt

ento47 255 21 42 139 2.3 opt 30 48 0.6 opt 54 opt

ento28 740 16 66 236 2.6 opt 52 77 0.5 opt 63 opt

ento30 740 21 75 246 2.3 opt 58 70 0.2 opt 55 opt

ento31 740 21 75 246 2.3 opt 58 70 0.2 opt 55 opt

ento22 794 28 41 163 3.0 ipr 31 50 0.6 ipr 14 ipr

ento21 931 28 123 276 1.2 ipr 73 83 0.1 ipr 18 ipr

a tb 1127 25 68 233 2.4 opt 64 82 0.3 opt 97 opt

ento23 1563 28 71 186 1.6 ipr 54 63 0.2 ipr 14 ipr

ento20 1886 28 70 243 2.5 ipr 68 93 0.4 ipr 21 ipr

a 12 2183 37 88 326 2.7 opt 77 110 0.4 opt 47 opt

ento12 2183 37 38 162 3.3 ipr 28 53 0.9 ipr 13 ipr

a 13 3120 37 88 770 7.8 ipr 82 101 0.2 ipr 20 ipr

a 23 3301 37 48 191 3.0 ipr 37 71 0.9 ipr 20 ipr

a 34 3905 37 52 224 3.3 opt 37 74 1.0 ipr 17 ipr

a 14 3986 37 85 285 2.4 ipr 77 102 0.3 ipr 20 ukn

a 35 4333 37 79 267 2.4 ipr 69 90 0.3 ipr 18 ipr

a bd 4695 26 73 312 3.3 opt 63 96 0.5 opt 78 opt

ento2 4695 26 73 312 3.3 opt 63 96 0.5 opt 78 opt

a 24 5162 37 61 248 3.1 ipr 49 84 0.7 ipr 23 ipr

ento3 5172 28 98 348 2.6 opt 80 114 0.4 opt 146 opt

ento50 5172 28 98 348 2.6 opt 80 114 0.4 opt 146 opt

a 15 5668 37 224 542 1.4 ipr 180 198 0.1 ipr 34 ipr

a 25 6196 37 107 403 2.8 opt 99 136 0.4 opt 122 opt

a 36 7497 37 63 267 3.2 ipr 46 87 0.9 ipr 18 ipr

a 45 7667 37 119 362 2.0 ipr 110 131 0.2 ipr 23 ipr

ento26 7915 28 79 277 2.5 opt 85 112 0.3 opt 131 opt

a 16 8528 37 200 656 2.3 opt 172 208 0.2 opt 135 opt

a 26 9035 37 66 274 3.2 opt 48 97 1.0 opt 113 opt

ento45 9108 37 92 332 2.6 opt 75 110 0.5 opt 149 opt

a 46 9455 37 68 265 2.9 ipr 49 91 0.9 ipr 20 ipr

a 56 9702 37 131 434 2.3 opt 120 154 0.3 opt 123 opt

ento25 10142 28 276 670 1.4 opt 228 247 0.1 opt 149 opt

entodif 12691 40 85 359 3.2 opt 60 117 0.9 opt 155 opt

ento48 15364 31 28 119 3.2 opt 21 51 1.4 opt 47 opt

Table 4: Results for entropy problems.

8 Conclusions and Future Work

We have presented a homogeneous primal-dual interior point algorithm for nonsymmetric conic optimiza-
tion based on an algorithm previously presented by Nesterov [16]. We have proven convergence of the
simplest variant of the algorithm and shown that the efficiency can be significantly improved by employing
quasi-Newton techniques to update the Hessian of the barrier function. We have shown how this can be
done without loosing the ability to exploit sparsity. Finally we have presented extensive computational
results that indicate the algorithm works well in practice.

By inspecting the tables in Section 7.3, we see that

• The performance of the algorithms depends a lot on the type of problem.

• Throughout, Algorithm 2 is superior to Algorithm 1.

• For the p-cone problems, Algorithm 2 is comparable in performance to SeDuMi when called via CVX.

• For the facility location problems, Algorithm 2 is superior to previously published results [8] of an
algorithm similar to the one presented in [16].

• For the entropy maximization problems, Algorithm 1 is clearly inferior to Mosek while Algorithm
2 is just slightly inferior.

• For the geometric programs, Algorithm 2 performed slightly better than Mosek when measuring
iterations or the total number of Cholesky factorizations.

16

Problem Alg. 1 Alg. 2 mskgpopt

name n dod it chols ce st it chols ce st it st

beck751 7 10 24 62 1.6 opt 15 18 0.2 opt 18 opt

beck752 7 10 23 59 1.6 opt 15 17 0.1 opt 28 opt

beck753 7 10 6 14 1.3 opt 7 7 0.0 opt 10 opt

bss2 2 1 9 21 1.3 opt 8 8 0.0 opt 5 opt

car 37 104 26 58 1.2 opt 19 20 0.1 opt 46 opt

cx02-100 100 5146 22 64 1.9 opt 30 36 0.2 opt 68 opt

cx02-200 200 20296 29 86 2.0 opt 25 32 0.3 opt 70 opt

demb761 11 19 20 48 1.4 ipr 14 14 0.0 ipr 10 opt

demb762 11 19 11 28 1.5 opt 10 14 0.4 opt 11 opt

demb763 11 19 11 28 1.5 opt 10 14 0.4 opt 11 opt

demb781 2 1 6 13 1.2 opt 7 7 0.0 opt 7 opt

fang88 11 16 11 28 1.5 opt 10 12 0.2 opt 11 opt

fiac81a 22 50 18 57 2.2 opt 14 20 0.4 opt 16 opt

fiac81b 10 9 18 45 1.5 ipr 13 13 0.0 ipr 10 opt

gptest 4 1 11 24 1.2 opt 10 10 0.0 opt 5 opt

jha88 30 274 33 116 2.5 opt 23 35 0.5 opt 13 opt

mra01 61 844 26 79 2.0 opt 22 30 0.4 opt 58 opt

mra02 126 3494 62 157 1.5 roc 47 53 0.1 opt 53 opt

rijc781 4 1 11 24 1.2 opt 10 10 0.0 opt 5 opt

rijc782 3 5 12 31 1.6 opt 10 14 0.4 opt 8 opt

rijc783 4 7 19 45 1.4 opt 13 15 0.2 opt 7 opt

rijc784 4 3 11 28 1.5 ipr 9 9 0.0 ipr 6 opt

rijc785 8 3 11 27 1.5 opt 9 13 0.4 opt 9 opt

rijc786 8 3 10 25 1.5 opt 9 13 0.4 opt 6 opt

rijc787 7 40 15 44 1.9 opt 13 17 0.3 opt 36 opt

Table 5: Results for geometric programs.

Comparing the kind of algorithm we have presented with a pdipm for self-scaled cones, we see that the
major difference is the need for a seperate centering process. Nesterov remarks in [16] that this process
can be seen as the process of finding a scaling point, which naturally is a more complex problem when
the cone is not symmetric. We can not compute it analytically, so an iterative procedure is necessary.

This difference is interesting theoretically as well as practically. For the problems we have considered,
the centering problem certainly is a relatively “easy” problem compared to the full problem, in the sense
that we do not need a very accurately centered point. We have seen in our experiments with Algorithm
1 that rarely more than 3 or 4 full centering steps are required.

If some of the work in the centering process can be saved – as we have tried to do in Algorithm 2
by employing bfgs updating – it may be possible to bring the total computational effort per iteration
close to that of a pdipm for self-scaled cones. Saving even more work in the centering process is a topic
of interest for future work.

Acknowledgments

The authors thank Erling D. Andersen and Joachim Dahl of Mosek ApS for lots of insights and for
supplying us with test problems for the geometric programs and the entropy problems.

References

[1] E. D. Andersen and K. D. Andersen. The MOSEK interior point optimization for linear programming:
an implementation of the homogeneous algorithm, pages 197–232. Kluwer Academic Publishers, 1999.

[2] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for
conic quadratic optimization. Mathematical Programming, 95(2):249–277, February 2003.

[3] E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity problem.
Mathematical Programming, 84(2):375–399, February 1999.

[4] A. Ben-Tal and A. S. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications (MPS-SIAM Series on Optimization). Society for Industrial Mathe-
matics, August 2001.

17

[5] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming.
Optimization and Engineering, 8:67–127, 2007.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004.

[7] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2 edition, June 2008.

[8] P. R. Chares. Cones and Interior-Point Algorithms for Structured Convex Optimization involving
Powers and Exponentials. PhD thesis, Uni. Catholique de Louvain, 2009.

[9] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations (Classics in Applied Mathematics). Society for Industrial Mathematics, January 1987.

[10] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 1.21.
http://cvxr.com/cvx, October 2010.

[11] O. Güler. Barrier Functions in Interior Point Methods. Mathematics of Operations Research, 21(4),
1996.

[12] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–
395, December 1984.

[13] Z. Q. Luo, J. F. Sturm, and S. Zhang. Conic convex programming and self-dual embedding. Opti-
mization Methods and Software, 14(3):169–218, 2000.

[14] A. S. Nemirovski and M. J. Todd. Interior-point methods for optimization. Acta Numerica, 17(-
1):191–234, 2008.

[15] Y. E. Nesterov. Constructing self-concordant barriers for convex cones. CORE Discussion Paper,
(2006/30), March 2006.

[16] Y. E. Nesterov. Towards Nonsymmetric Conic Optimization. CORE Discussion Paper, (2006/28),
March 2006.

[17] Y. E. Nesterov and A. S. Nemirovski. Interior-Point Polynomial Algorithms in Convex Programming
(Studies in Applied and Numerical Mathematics). Society for Industrial Mathematics, 1994.

[18] Y. E. Nesterov and M. J. Todd. Self-Scaled Barriers and Interior-Point Methods for Convex Pro-
gramming. Mathematics of Operations Research, 22(1), 1997.

[19] Y. E. Nesterov and M. J. Todd. Primal-Dual Interior-Point Methods for Self-Scaled Cones. SIAM
J. on Optimization, 8(2):324–364, 1998.

[20] J. Nocedal and S. J. Wright. Numerical Optimization (Springer Series in Operations Research and
Financial Engineering). Springer, 2nd edition, July 2006.

[21] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization (MPS-SIAM
Series on Optimization). Society for Industrial Mathematics, 1st edition, January 1987.

[22] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, (12):625–653, 1999.

[23] J. F. Sturm. Implementation of Interior Point Methods for Mixed Semidefinite and Second Order
Cone Optimization Problems. Optimization Methods and Software, 17(6):1105–1154, 2002.

[24] L. Tuncel. Primal-Dual Symmetry and Scale Invariance of Interior-Point Algorithms for Convex
Optimization. Mathematics of Operations Research, 23(3):708–718, August 1998.

[25] L. Tuncel. Generalization Of Primal-Dual Interior-Point Methods To Convex Optimization Problems
In Conic Form, 1999.

[26] X. Xu, P. F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm
and its implementation. Annals of Operations Research, 62(1):151–171, December 1996.

[27] G. Xue and Y. Ye. An Efficient Algorithm for Minimizing a Sum of p-Norms. SIAM J. on Optimiza-
tion, 10(2):551–579, 1999.

18

