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Abstract 
This paper presents a Frequency Matching Method (FMM) for generation of a priori sample 
models based on training images and illustrates its use by an example. In geostatistics, training 
images are used to represent a priori knowledge or expectations of models, and the FMM can be 
used to generate new images that share the same multi-point statistics as a given training image. 

The FMM proceeds by iteratively updating voxel values of an image until the frequency of pat-
terns in the image matches the frequency of patterns in the training image; making the resulting 
image statistically indistinguishable from the training image. 
 

1. Background 
Consider a training image with ! voxels (or pixels if the image is only 2D). Let !! denote the 
value of the !th voxel of the image, ! = 1,… ,!. Here, we shall assume that the training image 
is a realization of a random process satisfying: 

1) Voxel value !! depends only on the values of the voxels in a certain neighborhood N! 
around voxel k. Voxel ! itself is not contained in N!. Let z! be an ordered vector of the 
values of the voxels in N!; we then have: 

!! !! !! ,… , !!!!,!!!!,… , !! = !! !! z! . 

 
2) For an image of infinite size the geometrical shape of all neighborhoods N! are identi-

cal. This implies that if voxel ! has coordinates !!, !!, !! , and voxel ! has coordinates 
!!, !!, !! , then:  

!!,!!,!! ∈   N! ⇒ !! − !! + !!,!! − !! + !!,!! − !! + !! ∈   N!. 

 
3) We assume ergodicity, i.e.: 

z! = z! ⇒ !! !! z! = !! !! z! . 
 

The basis of sequential simulation (e.g. Strebelle, 2002) is to exploit the assumptions above to 
estimate !! !! z! , and to use these conditions to generate new realizations of the random pro-
cess from which the training image is a realization. The FMM does not operate by directly using 
conditional probabilities but it represents images by their frequency distribution, which is de-
rived using neighborhoods of voxels. The frequency distribution is closely related to conditional 
probabilities.  
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2. The Frequency Distribution 
Before presenting the FMM we need to define what we denote the frequency distribution. To do 
so we will reuse the concept of neighborhoods from section 1 as well as the notation. Given an 
image with the set of voxels   Z = 1,… ,!  and voxel values !!,… , !! we define the template 
function Ω as a function that takes as argument a voxel ! and returns the set of voxels belonging 
to the neighborhood of voxel !. The neighborhood is denoted N!, and we will use the notation 
N! = Ω ! .  

In the FMM the neighborhood of a voxel is indirectly given by the statistical properties of the 
image itself; however, the shape of a neighborhood satisfying the assumptions from section 1 is 
unknown. For each training image one must therefore define a template function that seeks to 
correctly describe the neighborhood. 

Let N!  denote the number of voxels in N!. We define the set of inner voxels, Z!", of the im-
age as: 

Z!" = ! N! = max
!∈Z

N! . 

Typically, voxels on the boundary or close to the boundary of an image will not be inner voxels. 
It is the choice of template function that determines whether or not a voxel is an inner voxel. 
The frequency distribution of an image is computed by scanning through all inner voxels of the 
image. For each of these we identify first the neighboring voxels and then the values of those. 
For voxel ! ∈ Z!", the values of the neighboring voxels are denoted by the vector z!. The length 
of this vector equals the number of voxels in the neighborhood N!, which will be constant for 
all inner voxels; this follows trivially from the definition of inner voxels. We denote this number 
!. As each voxel can take on ! different values, there exists up to !!  different types of neigh-
borhoods; i.e.  !!  different  combinations for the values in z!.   
Using the above definition of a neighborhood we now introduce the concept of patterns. The !th 
pattern P! of the image is defined as the union of an inner voxel ! and the set of its neighboring 
voxels. We will denote voxel ! the center voxel of the !th pattern regardless of the geometrical 
shape of P!. Trivially, it follows that there exist !!!! different types of patterns in the image. 
The type of a pattern is characterized by the (ordered) values of z! and the value of the !th voxel 
itself. It should be stressed that the subindex ! of P!, as well as of N!, represents the center 
voxel and thereby the location of the pattern, and it does not contrain any information on the type 
of the pattern.  

Let !!, for ! = 1,… ,!!!!, count the number of times a pattern of type ! appears in the image. 
These counts are used to represent the frequency distribution of an image. After having scanned 
through all inner voxels exactly once (the order is irrelevant) the frequency distribution is given 
by the vector p :  

p = !! … !!!!! = !! !!,… , !! . 
Here !! is the function that, given an image and a template function Ω, computes the frequency 
distribution of the image with respect to the template as just described. 
We notice that, for a given template, the frequency distribution of an image is uniquely deter-
mined. The opposite, however, does not hold. Different images can have the same frequency 
distribution. This is exactly what we seek to exploit by using the frequency distribution to gener-
ate multiple new images, at the same time similar to, and different from, our training image. 
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3 The Frequency Matching Method 
The Frequency Matching Method proceeds by iteratively updating voxel values of an image, 
until the frequency of patterns in the image matches the frequency patterns in the training image. 
One of the primary tasks when formulating the method is to define a similarity function for how 
close the frequency distributions of two images are. Below we shall define the similarity function 
used in the current implementation, and describe the optimization method we have applied to 
solve the combinatorial optimization problem arising from this. 
 

3.1 The Similarity Function 
 The similarity function plays the following two important roles: 

I. It allows us to determine if the frequency distribution of an image and the frequency 
distribution of a training image are identical within the accuracy required and we 
therefore consider the image a valid realization of the random process from which the 
training image is a realized.  

II. Given two different images, no matter how similar they might be, and a training im-
age, the similarity function should determine which of the two images is most similar 
to a valid realization of the same process as the training image, or if the two images 
are equally similar. At the same time it should reflect (in some sense) how close the 
images are to being a valid realization.  

Using an iterative solution method, point I is used to determine if the method has converged to 
an acceptable solution, whereas point II guides the method through the solution space, helping it 
to converge. 

As we do not know the random process of which the training image is a realization, we have 
chosen the chi-square measure of ‘goodness of fit’ between two sets of nominal data as a similar-
ity function for our FMM implementation. This measure determines the distance between to fre-
quency distributions by comparing the proportions of types of pattern in the two. 

 
3.2 Applying the !! Measure in the FMM 
The chi-square measure can be applied to our situation using the following interpretations (see 
Bere and Chimedza, 2007): 

samples Each frequency distribution is considered a sample, i.e., we have 
two independent samples; one for the image itself and one for 
the training image. 

categories The samples are categorized with respect to the !!!! exclusive 
and exhaustive types of patterns.   

observations Each appearance or count of a pattern is an observation. For each 
sample, the number of observations equals the number of inner 
voxels in the corresponding image.  

Given the frequency distributions of an image, p , and of a training image, π , we can compute 
what we denote to be the similarity function value of the image: 

! p = χ! p,π =   
!! − !! !

!!

!!!!

!!!

+
!! − !! !

!!

!!!!

!!!

, 
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where !! and !! denote the expected count of patterns of type ! of the image and the training im-
age, respectively. These are computed as: 

!! =
!! + !!
!! + !!

!!, 

!! =
!! + !!
!! + !!

!! , 

and !! and !! are the number of inner voxels in the image and the training image, respectively. 

Let χ!  denote the chi-square value of the image computed from the two frequency distributions p  
and π . ! is a function of the frequency distribution p  of the image, and the frequency distribu-
tion π  of the training image. The training image and therefore its frequency distribution will re-
main unchanged when computing a new image; π  has therefore been omitted as an argument of 
the similarity function. Furthermore, the frequency distribution p  of the image is derived given a 
template function, i.e., the argument p  of ! depends on a template as well as on !!,… , !!, which 
means ! is in fact a function of the image and a template function. However, to simplify the text, 
we have chosen to avoid these dependencies in the notation. 

 
3.3 The Optimization Problem 
The function ! defined in section 3.2 seems to fulfill the two requirements we had, making the 
FMM a combinatorial optimization problem. The variables are the voxel values of the image. 
They can take on ! different integer values namely 0,… ,! − 1 .  Binary images, for instance, 
have ! = 2. Given a template function Ω, the frequency distributions of the solution image, p , 
and of a training image, π , are computed by the frequency function !!.  Based on the two fre-
quency distributions the similarity function of the image is computed. By minimizing the simi-
larity function with respect to certain constraints, we can create images sharing the same multi-
point statistics as the training image. The resulting optimization problem can be expressed as 
follows: 

min
!!,..,!!

!(p) 
w.r.t. p = !! !!,… , !! ,

!! ∈ 0,… ,! − 1 , for  ! = 1,… ,!. 

If some of the voxel values are known beforehand, and the voxels are therefore not free varia-
bles, the last set of constraints can easily be altered, such that the set of values that the !th voxel 
can take is only a subset of !,… ,!− ! .   
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3. Example 
We have now introduced the Frequency Matching Meth-
od for generating a priori sample models from training 
images, and this has led us to a combinatorial optimiza-
tion problem. Our choice of solution method is, for now, 
the intuitively simple heuristic Simulated Annealing (SA) 
(e.g. Kirkpatrick et al., 1983). For future work we would 
also like to explore other solution methods in the hope of 
finding one better suited for optimization and sampling 
problems.  

The FMM has been implemented in MATLAB. To demon-
strate the FMM we will consider a two-dimensional, bi-
nary training image with channel structures, see Figure 1. 

We have defined the template such that the neighborhood of an arbi-
trary inner pixel ! contains exactly the eight nearest pixels, see Fig-
ure 2. This relatively small neighborhood size is unlikely to com-
pletely satisfy our assumption of a pixel only being conditioned upon 
the pixels in its neighborhood. However, it will be shown that the 
method is still able to compute an acceptable solution. Due to the 
complexity of the method the size of the neighborhood greatly influ-
ences the running times, and for using much bigger templates we 
recommend implementing the method in Fortran, for instance. 

We choose the exponential cooling rate for the SA, and the algorithm 
parameters are chosen manually. Discussing the strategies for choos-
ing these optimally is beyond the scope of this text. 

The starting image for SA is chosen to be all white. The SA algorithm searches the solution 
space consisting of images, and it moves from one image to another by randomly choosing a 
pixel and changing its value. Figure 3 and Figure 4 show the normalized frequency distributions 
of the training image and the image computed by the FMM, respectively. By ‘normalized’ we 
mean relative to the number of inner pixels in each of the images. Any normalized frequency 
distribution therefore sums to 1. Here we have truncated the ordinates of Figure 3 and Figure 4, 
as only one entry is significantly bigger than 0.08. The last entry is approximately 0.42 for both 
images. This entry is the one representing a white center pixel surrounded by all white neighbor-
ing pixels.  

 
Figure 3: Normalized frequency distribution of 
the training image. 

 
Figure 4: Normalized frequency distribution of 
the optimal solution image.  

Notice that in Figure 3 and Figure 4 indexes corresponding to types of patterns appearing in nei-
ther the training image nor the solution image have been omitted 

Figure 1: Training image. 

Figure 2: The template 
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We observe that the FMM in 
terms of the frequency distri-
butions has managed to match 
the training image quite well. 
Summing the bars of Figure 5 
reveals that the two images 
have approximately 96.7% of 
their patterns in common. This 
number is likely to be im-
proved by changing the pa-
rameters of the SA algorithm. 

 
Figure 5: The absolute difference (in percent) between the 
normalized frequency distributions in Figure 3 and Figure 4. 

Keep in mind that matching the frequency distributions only results in a useful image if our as-
sumptions are met; i.e., if we chose a suitable template. Choosing too big a template means very 
long running times without sufficient gain in accuracy, and choosing too small a template will 
result in the picture not being similar to the training image. Our choice seems sufficient although 
not perfect, see Figure 6. 
Figure 6 shows the image computed by the FMM. For 
this test case we have chosen to compute a 60×60 im-
age based on a 64×74 training image but the method 
can produce images of arbitrary size. We notice that 
despite the relatively small template size, we have suc-
cessfully recreated the channel structures. The channels 
even occasionally form loops, just like the channels of 
the training image. 

One significant difference between the computed image 
and the training image is that the channels in the com-
puted image are not all horizontally continuous across 
the image. We expect that this is merely a matter of 
choice of template and also the number of iterations the 
algorithm has been allowed to perform. 

Figure 6: The computed solution image. 

Another difference is the boundaries. It seems the method creates some artifacts along the 
boundaries. The density of channels is much higher on the left and right boundary then in the 
middle of the image. In the middle it resembles our training image and we therefore could have 
some issues in the way we treat non-inner pixels.  

Notice how matching the frequency distributions indirectly results in the proportion of channels 
versus background in the computed picture to be in correspondence with the proportion of chan-
nels versus background in the training image. As stated, this is merely an example of the perfor-
mance of the FMM. The method has also been applied to training images with different struc-
tures and shown similar results.  
 

4. Conclusions and Future Work 
In this paper we have derived the Frequency Matching Method for generation of a priori sample 
models from training images. We have implemented the method in MATLAB and shown the re-
sults of a simplified test case. The test example shows that the method is indeed able to produce 
an image that shares the same multi-point statistics as the training image.  



A Frequency Matching Method for Generation of a Priori Sample Models from Training Images 

 7 

This paper only scratches the surface of this newly developed method. In order to better under-
stand its potential we would like to:  

• Experiment thoroughly with training images with different structures. 
• Investigate the convergence rate and performance of the FMM combined with other op-

timization methods. 
• Explain and eventually avoid possible artifacts for non-inner voxels. 

  



Katrine LANGE, Knud Skou CORDUA, Jan FRYDENDALL, Thomas Mejer HANSEN & Klaus MOSEGAARD 
 

 8 

References 
BERE, A., CHIMEDZA, C. (2007): A Comparative Study of the Accuracy of the Chi-Squared 
Approximation for the Power-Divergence Statistic and Pearson’s Chi-Square Statistic in Sparse 
Contingency Tables. Journal of Statistical Research, Vol. 41, No. 2, pp. 73-81. 
KIRKPATRICK, S., GELATT, C. D., VECCHI, M. P. (1983): Optimization by Simulated An-
nealing. Science, New Series, Vol. 220, No. 4598, pp. 671-680, May.  
STREBELLE, S. (2002): Conditional Simulation of Complex Geological Structures Using Mul-
tiple-Point Statistics. Mathematical Geology, Vol. 34, No. 1, January. 
 


