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Abstract 

Partial molar thermodynamic quantities for oxygen in sub-stoichio-
metric cerium oxides (Ce00 ), plutonium oxides (PuO, ) and mixed ura-
nium -plutonium oxides ((U, PuJO, ) were determined by thermogravi-
metric analysis in atmospheres of controlled oxygen pressures (COn/CO 
mixtures) in the temperature range 900-1450 C. Detailed analysis of the 
data obtained showed that the non-stoichiometric phase ranges for the three 
oxide-systems, which were previously described as a single, grossly non-
stoichiometric phase, can be divided into several subregions each consist
ing of an apparent non-stoichiometric single phase. The finer details of 
the thermodynamic data, however, suggest that some of these subregions 
can be further split into ordered intermediate phases with compositions 
following the series ML02 2-

In order to verify some of the thermodynamic findings, supplementary 
high-temperature X-ray diffraction studies were made on C eO„ at tempera
tures up to 855 C. At the higher temperatures between 790 and 855 C, a 
new phase of low symmetry was obtained. Indexing the powder pattern for 
this phase showed it to be isostructural with Pr eO., and with a monoclinic 
unit cell with a = 6. 78! 10.006 A, b = 11. 893-0.009 A, c * 15.823 - 0.015 
A and p" - 125.04 - 0.04°. The CegO.. phase observed in the X-ray studies 
corresponds to one of the intermediate phases inferred from the thermo
dynamic data. 

Supplementary high resolution electron microscopy studies were also 
conducted on reduced single crystals of CeO«. On some particles reduced 
by beam heating in the microscope, a lamellae structure was observed and 
a model involving crystallographic shearing is proposed to explain this ob
servation. In other beam-heated particles diffraction patterns were ob
served corresponding to the monoclinic superstructure found in the high-

i 

temperature X-ray studies. Finally patterns on particles reduced by a 
heat treatment in vacuum under well defined conditions showed that twinning 
can also take place in this oxide system. 
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PREFACE 

Rare earth oxides as well as actinide oxides can exist as non-stoichio-

metric compounds with large deviations from stoichiometry. Today it is 

well established that the properties of these oxides depend on the nature 

and number of defects present at the non-stoichiometric composition, and 

in order to understand the behaviour of these oxides it i s necessary to have 

a detailed knowledge of their defect structure. 

In the present work, which was conducted on non-stoichiometric cerium 

dioxides (Ce02 ), plutonium dioxides (PuO, ) and on mixed uranium -

plutonium dioxides ((U. , Pu ) O« ), these oxides were studied by thermo-

gravimetric analysis in atmospheres of controlled oxygen pressures , by 

high temperature X-ray diffraction analysis, and by electron microscopy 

and the results obtained, which have been partly published in five papers, 

a re reviewed in some detail in this thesis. The five papers, also given in 

the reference list as 1-5, are the following: 

1. O. Toft Sørensen, Thermogravimetric Studies of the High Temperature 

Thermodynamic Properties of Nonstoichiometric Cerium Oxides. In: 

Proceedings of the 3rd International Conference on Thermal Analysis, 

held in Davos, 1 971. Edited by H. G. Wiedemann (BirkhSuser, Basel, 

1972) 31-42. 

2. O. Toft Sørensen, Thermodynamic Studies of the Phase Relationships 

of Non-Stoichiometric Cerium Oxides at Higher Temperatures. To be 

published in J. Solid State Chemistry. 

3. O. Toft Sørensen, High Temperature Studies of Thermodynamic 

Properties and Structures of Non-Stoichiometric Cerium Oxides, 

Paper presented at the "4th Nordic High Temperature Symposium" 

June 1 975 in Helsinki, Finland. To be published. 

4. O. Toft Sørensen, Studies of Non-Stoichiometric Oxides by Thermo-

analytical Methods, Paper presented at Thermoanalytical Symposium 

in Kassel in June 1 975. To be published in Thermochimica Acta. 

5. O. Toft Sørensen, Thermodynamic Studies at Higher Temperatures of 

the Phase Relationships of Substoichiometric Plutonium and Uranium/ 

Plutonium Oxides, Paper presented at the 5th International Conference 

on Plutonium and Other Actinides, September 1975 in Baden-Baden, 

Germany. To be published. 
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The studies a re reviewed in three par ts . In the first two parts a 
review is given of the thermogravimetric analysis and high temperature 
X-ray measurements on cerium dioxides and on plutonium oxides respect

ively; a literature survey of previous work on these oxide systems is also 
given as background information. The third part describes in greater 
detail the electron microscopy examination, which was carried out on 

CeO., singie crystals , since this part of the investigation has not yet been 
published. 

Within the framework of Swedish/Danish collaboration on plutonium 

I spent some 2» years at the Swedish Atomic Energy Research Centre, 

Studsvik. During this period, which I found very inspiring, I came into 

close contact with Swedish atomic energy research, and because a sub

stantial part of the experimental work described in this thesis was carried 

out at Studsvik, it is natural for me to present this thesis in Sweden. At 

Studsvik I collaborated and still enjoy collaboration with section MB (Fuel 

Material Section), and I should like to acknowledge the great help I have 

received from the staff of this section. In particular I wish to thank 

G. Berggren for his support and interest in my work. While in Sweden 

I also came into close contact with the oxide research headed by Dr. Sten 

Andersson at the University of Lund. This research is well known for its 

outstanding quality, and contact with this group proved a great inspiration 

for my own work, and I wish to thank Dr. Andersson for the stimulating 

discussions we have had both during the experimental work and during the 

preparation of this thesis. 

Extensive thermogravimetric experiments were also carried out in 

the Metallurgy Department at Risø and here the help of H. Jensen is grate

fully acknowledged. I also wish to thank J. Lindbo and J. B. Bilde-Søren-

sen for their valuable assistance during the electron microscopy examination. 

Furthermore, I am deeply indebted to Dr. N. Hansen, Head of the Metal

lurgy Department at Risø, first of all for his continued support and interest 

in these studies, and secondly for the excellent collaboration we have 

had on many projects. 

Many thanks a re also due to Mrs. J. Starcke for revising the English 

of many of my publications and of this thesis, and to Mrs. K. Hansen and 

Mrs . I Frydendahl for typing the manuscripts. Finally I am grateful to 

Mrs. T. Skov and Mr. V. Vegenfeldt of the Drawing Office, who drew 

many of the plots and diagrams shown in this thesis. 
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1. INTRODUCTION 

In classical chemistry and crystallography it was assumed that in

organic compounds had definite compositions determined by the valence 

of the atoms and that the atoms were arranged in an ideal structure with 

all sites occupied. From the early I 900's many inorganic compounds were, 

however, found to be of variable composition and today it is recognized 

that an exact stoichiometric composition can only be obtained at definite 

partial pressures of the components at a given temperature. Deviations 

from stoichiometric composition are also very common in the inorganic 

oxides; especially for the oxide systems where the cations can exist in 

several valence states, such as the oxides considered in this thesis, large 

deviations have been observed at higher temperatures. 

Previously, deviations from stoichiometric composition were explained 

in terms of defects that, according to the classical defect theories, were 

considered to be randomly distributed and non-interacting. Different types 

of defect can be envisaged formed in these non-stoichiometric oxides that, 

according to Kofstad (6), can generally be classified into: 

(1) Oxygen-deficient oxides, e.g. CeO„ P u ° 2 - x ' i n w h i c h o x v g e n 

vacancies (V') are predominantly formed. The excess of metal 

has also been considered to ar ise from the presence of intersti t ial 

metal ions (M:), but experimental evidence strongly in favour of the 

vacancy model has been obtained for many systems. 

(2) Metal-deficient oxides, e. g. Fe. O, Mn- O, in which metal 

vacancies (VI.) or interstitial oxygen ions (O1.'), as in U 0 2 + , 

a re predominantly formed. 

According to these theories the non-stoichiometric phase regions were 

described as grossly non-stoichiometric single phase regions, even when 

they extend over a considerable composition range. For the large con

centrations of defects to be expected at substantial deviations from stoi-

chiometry, however, it is inconceivable that these assumptions a re ful

filled. On the contrary .clustering, long-range ordering into superstructures 

or perhaps even elimination of the defects by a crystallographic shearing 

mechanism, as proposed by Bursill and Hyde for the T i 0 9 system (7), 

should be expected. In accordance with these ideas, recent thermogravi-

metric analyses of the non-stoichiometry in other oxide systems - PrOo-x 

(8) for instance - have shown that the non-stoichiometric phase regions for 

these oxides can be divided into several subregions, and the assumptions 
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made in classical defect theories a re obviously incorrect. For CeO^ , 
Pu0 0 and (LL Pu )0 0 the non-stoichiometric phases were also p re -2-x % 1 -y y ' 2-x r r 

viously considered as single, grossly non-stoichiometric phases and the 

main purpose of this work is to provide more data for these oxide systems 

in order to examine the nature of their non-stoichiometric phases at higher 

temperatures (900-1400°C). 

In research on fuel materials for nuclear power reactors - U0 9 , PuO? 

and (U, Pu)0 2 - Ce0 2 is often used as a model substance for Pu0 2 , which 

is an extremely poisonous material to work with. This is justified to a 

certain extent since these oxides have comparable thermodynamic proper

ties and the same structures, as pointed out by Blank (9). It i s , however, 

a question whether this comparison is still valid if the finer details of the 

two oxides a re considered, and the second purpose of the present investi

gation was thus to evaluate to what extent the non-stoichiometric phases of 

the two oxide systems do really have comparable properties. 

Finally, as PrO» , CeO0 is an interesting model substance for non-

stoichiometric oxides with structures derived from the fluorite structure. 

Many thermodynamic studies have already been performed both on the 

PrO 0 „ system (Hyde et al. (10)) and on Ce0 9 , but a thorough in-

vestigation of the structures of these non-stoichiometric oxides, for in

stance by electron microscopy, is still lacking. It must be realized that 

the thermogravimetric technique used in the study of the thermodynamic 

properties of these oxides is only an indirect technique, and the conclusions 

concerning phase relationships and structures drawn from these investi

gations need to be verified Ly more direct methods. A further purpose of 

the present work was therefore to provide some information on the s t ruc

tural relationships in these oxide systems in order to verify some of the 

conclusions drawn from the thermodynamic experiments. However, it 

must be admitted that these investigations can only be considered pre

liminary, and that they only show some aspects of the system. In particu

lar, thorough electron microscopy examinations of these fluorite-related 

oxides appear to be a very fertile field for future research. 
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2. THERMODYNAMIC STUDIES OF THE PHASE RELATIONSHIPS OF 

NON-STOICHIOMETRIC CERIUM OXIDES AT HIGHER TEMPERATURES 

Detailed thermogravimetric and structural studies of the Ce-O (11), 
Pr-O (10) and Tb-O (12) systems have shown that ordered "stoichiometric" 
phases of the series M 0„ ~ are formed at lower temperatures for these 
rare earth oxides. At higher temperatures these ordered phases are trans
formed into non-stoichiometric phases each having a wide composition range 
as shown in fig.1,which gives the accepted phase diagram of the Ce0 2 n n -
Ce^Oo-system proposed by Bevan and Kordis (11). 

o a' fee 
J^el | 6 rhombohtrfral 

C C bcc 

Fig. t . Phase diagram for the cerium-oxygen system. 

As described in (1 - 4), the thermodynamic data for the non-stoicliio-
metric a1-phase were in the present work determined by thermogravimetric 
analysis in atmospheres of controlled oxygen pressures (C02 /CO mixtures). 
The temperature range covered was 900-1400°C and compositions between 
Ce0 2 QO and CeO. „. could be reached with the gas mixtures used. Further
more, in order to obtain information about the structures of non-stoichio-
metiic phases of this system, a few high temperature X-ray diffraction 
measurements were carried out. Unfortunately it was not possible to work 
with gas mixtures of controlled oxygen pressures in the high temperature 
X-ray equipment available, and these measurements were therefore per-
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formed in vacuum. 

2.1. Previous Studies 

2 .1 .1 . Phase Relationships 

Various methods were previously used in thermodynamic studies of 
cerium oxides in order to determine the phase relationships of these oxides. 
Kuznetsov et al. (13), for instance, used the emf technique, whereas 
Brauer et al. (14) used a technique by which the composition was deter
mined by intermittent weighing at room temperature after the samples 
were equilibrated in various H„/H20 mixtures at temperatures between 
600-1000°C. A better method is the thermogravimetric analysis used by 
Bevan and Kordis (11) in their detailed study of the cerium oxides by equi
libration experiments both in CO/CO«- and in H2/H00-mixtures in the 
temperature range 636-11 69 C. Based on the thermodynamic data obtained 
and on previous data, Bevan and Kordis constructed the phase diagram 
shown in fig. 1, which has remained the accepted diagram for the Ce0 2 -
Ce2Os system. Using X-ray powder pattern techniques, Bevan (1 5) was 
the first to provide detailed evidence of a sequence of intermediate rhombo-
hedral phases in this system. In this study the samples were reduced in 
flowing hydrogen and then annealed in vacuum at 1050 C before they were 
quenched for X-ray diffraction analysis at room temperature. Finally, in 
a later study Brauer and Gingerich (1 6) showed by high temperature X-ray 
diffractometry that the miscibility gap below the a1-region shown in the 
diagram closes at 685 C at a composition of CeO. „„. 

Recently further thermodynamic studies on cerium oxides have been 
carried out in the temperature range 900-1 300°C by Iwasaki and Katsura 
(1 7) using the thermogravimetric equilibration technique and covering the 
composition range CeO« 0n_CeO. 70- Here the o'-phase was considered 
as a solid solution of CeCX, and Ce 2 0 3 . The activities of these two com
ponents in the solution were calculated from the thermogravimetric data 
as a function of composition at the different temperatures used. For small 
Ce2Og concentrations at temperatures above 1200 C, it was found that the 
activity of Ce02 followed Raoult's law, whereas the activity of Ce2Oa fol
lowed Henry's law in this range. This ideal behaviour was not observed at 
higher concentration of Ce2Og and at lower temperatures, however, and it 
is probably too simple to treat the a*-phase in this way. 

Usually the relative partial enthalpies of oxygen (ATIQ ) are calculated 
from the measured relative partial free energies of oxygen (AG*^), but in 
a recent study Campserveux and Gerdanian (1 8) were able to measure 
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A H Q 2 directly by microcalor imetry. In their study, which was carr ied out 

at 1 353 K (1080°C), the whole composition range CeCX to C e 2 0 , was 

covered. Results were obtained in good agreement with those reported by 

Bevan and Kordis (11). 

2.1.2.Defect Models 

The non-stoichiometric cerium oxides, CeO« , a r e oxygen-deficient 

oxides in which, in previous studies, the non-stoichiometry was considered 

to be due to either interst i t ial cerium ions or ionized oxygen vacancies. In 

these studies the compositions of the oxides a r e plotted as a function of 

their equilibrium oxygen p res su res , and an oxygen p res su re dependence of 
-1 /n 

x oc P Q ' is observed where the value of n depends on the type of p re 

dominant defect present in the oxide. In a study of the electr ical conduc

tivity of CeO? as a function of oxygen pressure in the temperature range 

650-H00°C, Greener et a l . (1 9) found a p ressure dependence of PQ' . 

To explain this the authors suggested that the predominating defects a re 

either qu.-druply ionized cerium interst i t ials o r completely ionized oxygen 

vacancy pai rs . Considering the data of Greener et a l . together with those 

reported by Bevan and Kordis (11), Kevane (20), however, concluded that 

the results a re best described by a model involving single-charged oxygen 

vacancies near the stoichiometric composition (high oxygen pressures) and 

neutral vacancies in more reduced oxides. In a s imilar but more extensive 

study of the electrical conductivity of C e 0 9 in the temperature range 800-

1 500°C, Blumenthal and Laubach (21) also found a pressure dependence 

consistent with a vacancy model involving multiple states of ionization. 
-21 However, in a later study extended to lower oxygen pressures (10 atm), 

Blumenthal et al . (22) interpreted their conductivity data in te rms of triply 

and quadruply ionized cerium interst i t ia ls . Other models have also been 

proposed to explain the non-stoichiometric behaviour of the cerium oxides. 

For instance, Kofstad and Hed (23) found that the data of Bevan and Kordis 

could be interpreted by a model involving singly and doubly ionized cerium 

Interstitials and electrons localized on cerium ions on normal lattice s i tes . 

By assuming that the electrons have only a small probability of occupying 

nearest neighbours to the interst i t ial cerium ions, Kofstad and Hed intro

duced a site blocking effect to explain the increase in n observed at larger 

deviations from stoichiometry. 

From none of these previous studies was it possible to conclude firmly 

whether the predominant defects a r e intersti t ial cerium ions or oxygen 
vacancies; although the resul ts obtained recently by Steele and Floyd (24) 
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in measurements of the oxygen self-diffusion in CeO« from 850-11 50°C 

finally seem to support an oxygen vacancy model for these oxides. Unfor

tunately the measurements of Steele and Floyd were not sensitive enough 

to detect the degree of ionization of the vacancies, but from a thermodyn

amic study of CeO, Panlener and Blumenthal (25) concluded that doubly 

ionized oxygen vacancies predominate near the stoichiometric composition. 

The major limitation of the studies described so far is that they as 

sume a random distribution of the defects and neglect the long-range defect-

defect interactions, which can be expected to become important at larger 

deviations from stoichiometry. In order to take these effects into account. 

Atlas (26) proposed a statistical model in which partial ordering of singly 

ionized oxygen vacancies and localized electrons is considered. The ACTQ 

values calculated from this model were compared to the data reported by 

Bevan and Kordis and, although they were shown to reflect the major ex

perimental trends, quite large differences in the calculated and observed 

thermodynamic quantities were observed indicating that even this model is 

too crude to describe the complex behaviour of these oxides. 

2.2. Thermogravimetric Analysis: Experimental 

2. 2 . 1 . Starting Material 

The cerium oxide used as starting material was Fluka Ce0 2 , reagent 

grade. As described in (1), spectroscopic X-ray fluorescence analysis 

showed this material to be very pure. By X-ray diffraction analysis a 
+ ° 

lattice parameter of a = 5.411 5 - 0. 0003 A was determined for this ma

terial, corresponding to the value reported by Bevan and Kordis (11) for 

stoichiometric, purified CeO,. 
2. 2, 2. Experimental Conditions 

The experimental set-up used in the thermogravimetric analysis, which 

has been described in (1), is shown in fig. 2. 

The equipment consists of: 

(a) A Netzsch thermobalance with an accuracy of - 0. 2 mg and with a 

temperature range of 20-1 550°C. An AUO, crucible was used as 

sample holder, 

(b) A gas system for purification and mixing of CCL and CO in the ratio 

corresponding to the desired oxygen pressure. C0 2 /CO ratios be

tween 1/1000 and 1000/1 could be obtained in this equipment. The 

C0 2 /CO ratio was checked occasionally by gas chromatographic 

measurements. 
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Fig. 2. Experimental set-up for thermogravimetric roalysis of CeO 
in controUed atmospheres. 2*X 

(c) A ZrO„(CaO) solid electrolyte cell for a continuous control of the 
oxygen pressure of the atmospheres used. This cell was placed in 
a separate furnace operated at 1 000°C. The principle and calibration 
of the cell are described in the appendix. 

Before each run with cerium oxide, the corrections due to changes in 
the buoyancy with temperature were determined with an empty crucible for 
each atmosphere used. After correction, the experimental error in the 
oxide composition - x in CeO„ - can be judged to be - 0.003. For the 
oxygen pressures determined by the ZrOz(CaO) cell, the accuracy is 
judged to be A (log PQ_) = -0 .035, corresponding to an error in &^>Q~ of 
- 200 cal/mole at 1000°C. 

Several types of experiment were performed: 

(a) Isothermal experiments in which the samples were treated in different 
atmospheres at fixed temperatures until equilibrium was obtained. The 
atmospheres used in these experiments were CCL/CO: 1000/1 -1/1000. 

(b) Continuous heating and cooling of the sample in atmospheres of fixed 
composition - C02/CO: 6/1, 4/1 , 2 .5/1 , )/}, 1/2.8, 1/4.5, 1/6, 1/10. 

(c) Continuous heating and cooling of the sample in atmospheres of fixed 
oxygen pressure. This was obtained by changing the CCL/CO ratio at 
short intervals in a precalculated manner in order to keep the oxygen 
pressure constant as the temperature changed. This type of exper-
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iment is particularly useful to establish the existence of two-phase 

regions and of discrete ordered phases as pointed out by Hyde (10). 

Atmospheres used: C09/CCh 30 /1 -1 /110 . 

In the experiments a slow heating rate of 1 / m i n was used in order to 

maintain equilibrium between the sample and the atmosphere during the 

run. It i s of course questionable whether the chosen heating rate i s low 

enough to assure this equilibrium, but according to previous experience 

(11) it is generally accepted that the cerium oxides respond rapidly to 

changes in oxygen pressures even at relatively low temperatures. In order 

to check this point several runs were carried out with the same atmosphere 

but with heating rates between T and IC /min . These experiments showed 

that there was no change in the compositions reached at given temperatures 

at and below a heating rate of 2 C/min, and the chosen heating rate of 

1°C/ min i s believed to be sufficiently low to maintain equilibrium. 

2 . 2 . 3 . Calculations of Sample Compositions 

After the sample weights plotted during the thermogravimetric exper

iments were corrected for buoyancy effects, the compositions of the 

samples were calculated from: 

W • M 
WS iV1CeO„ M r 

O/M = 2-x - W m]% - ^ - W s • k, - k 2 ( 1 ) 
Ce09 

where W„ represents the weight of the sample, Wp ~ the weight of the 

sample in the stoichiometric reference state, Mp ~ and M« the mol

ecular weights of CeC»2 and Ce, respectively, and k. and k„ constants 

that can be calculated after determining W„ ~ . 
L e u 2 

2. 2 .4 . Calculation of Thermodynamic Data 

Using the oxygen pressures determined for the atmospheres in equi

librium with the samp.' es , the important thermodynamic quantity, ACTQ 

(relative partial free energy of oxygen), was calculated by the relation: 

^ o 2
 = R T l n P o 2 ' <2> 

whereas the relative partial entropies, A 5 ^ , and the relative partial 
2 

enthalpies, &T3L. , were calculated from the standard thermodynamic 
u 2 

equations: 
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a«kS0 ) 
A * o 2

 = " - S T 1 - <3> 

A H ° 2 = *S + Tt\ ' {4) 

According to the defect theories (6), the formation of oxygen vacancies 

can be expressed by the reaction 

° 0 + 2 M M = V 0 + 2 M M + ' / 2 °2 <5> 

where, according to KrOger's notation (27), O Q and M „ represent oxygen 

and metal atoms on their respective sites in the crystal lattice, V̂ T rep

resents a double positively charged oxygen vacancy and Ml. a negatively 
3+ 

charged metal ion (e. g. Ce which is negative relative to the normal 
4+ lattice with Ce ) in the normal cation lattice, which has taken up one of 

the electrons liberated during ionization of the oxygen vacancies. By a s 

suming that the law of mass action is valid for this equilibrium, by intro

ducing the neutrality condition 

lM'M ] = 2 [ V - ] (6) 

and finally by expressing [ V Q ] as the fraction of unoccupied sites in the 

oxygen lattice, i. e. [VU*] = 7 , it can be shown that the composition of the 
-1 /6 

oxides should depend on the oxygen pressure according to x oc p i . ' . If 
<-»2 

the oxygen vacancies a re only singly charged the exponent of this propor
tionality will be -1/4 , whereas neutral vacancies will give -1 /2 . Other 
exponents can be derived for other types of defects or defect clusters, but 
generally x oc pL ' n , which substituted into eq. (2) gives: 

u 2 

ACL æ -n RT In x . (7) 
u 2 

If this treatment is valid a linear relationship should be found when 

AG is plotted against In x at constant temperature if n i s constant, i. e. 

if one type of defect prevails in a subregion within the non-stoichiometric 

phase range. From the experimental e r ro rs on x and AG*Q, given in sec

tion 2 .2 .2 , the e r ror in n calculated from this equation can be Judged to 

be t o . 25. 
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2. 2. 5. Free Energy of Formation of CeOg 

In a study of the phase relationships of a system it i s often helpful to 

consider the free energies of formation of the phases, as the most stable 

phases will be those with the lowest free energy. Data for the free energy 

of formation of C e 0 2 and C e 2 0 3 have been summarized by Holley et al. 

(28) for the temperature range 100-1400 K, but data for CeO„ as a function 

of composition and temperature are st i l l lacking. 

According to Balesdent (29), the standard free energy for the reaction 

C e°2-x+ ?°2 = C e ° 2 <8> 

can be calculated from 

n R T 2 - 0 0 

AG° = A f / l n p u d(2-x) . (9) 
1 2-x U 2 

It can also be expressed by the standard free energy of "ormation of 

CeO„ and CeO„ respectively by 
L i Z - X 

AG° = Ab°(Ce0 2) - AG°(Ce02_x) , (1 0) 

which can be rearranged to give 

A G ° ( C e Q 2 x ) = A G °(Ce0 2 ) - AG° , (11) 

or if AG~„ =, RT In p„ i s substituted into eq. (11) 
u 2 u 2 

. 2 . 0 0 
AG^(Ce6 2_ x ) = A G °(Ce0 2 ) - \ I AG"0 d(2-x) . (12) 

ti ™ X u 

The free energy of formation of the non-stoichiometric oxides can thus 

be evaluated by a graphical integration of the AG\-. versus (2-x) curve and 
2 n 

from published data for CeOz QQ. In the present work AGf (CeC>2 ) was 

only calculated at 1 000°C, at which temperature AG|(Ce02) = 1 95,1 00 

cal /mole according to Holley et al. (28). 
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2.3. Thermogravimetric Analysis: Results and Discussion 

2. 3 .1 . Relative Partial Free Energies, qg Q 

The A^Q^ values calculated from the measured equilibrium oxygen 
pressures are plotted in fig. 3 as a function of the corresponding compo
sition of the Ce0 9 samples (log x) determined in the temperature range 
900-1400°C, both during heating (reduction) and cooling (oxidation) of the 
samples. As clearly demonstrated by Bursill and Hyde (30) in their studies 
of the TiO system, many data points are necessary in order to observe 
the finer details of a non-stoichiometric system. The CeO, data obtained 
in this work are therefore plotted in fig. 3 together with data previously 
reported by Be van and Kordis (11), Panlener and Blumenthal (25), and 
Iwasaki and Katsura (17) in order to take into account the existing thermo
gravimetric data for this system. 

Comparing the results obtained in previous investigations with those 
obtained in this work, it will be noted that good agreement exists except 
for the data reported by Iwasaki and Katsura at 900 and 1000 C, of which 
only a few are shown in fig. 3. Recent emf measurements on cerium 
oxides by Hampson (31) also disagree with Iwasaki and Katsura's results 
at lower temperatures, and thus these results were omitted in this treat
ment. 

Considering all the data points in fig. 3 some interesting details are 
revealed. First of all the straight-line relationship predicted from eq. (7) 
is clearly observed, but apparently the slope of the lines changes with in
creasing deviation from the stoichiometric composition. From the slopes 
of the lines, which depend on the temperature, the corresponding value of 

n in x cc p i ' n was calculated; it is also given in fig. 3 for each of the u 2 
straight lines. Considering these values, the a'-phase can apparently be 
divided into subregions, which can each be described by a characteristic 
value of n, indicating that a characteristic defect is apparently formed 
within each subregion. This subdivision into subregions is setter demon
strated in fig. 4 where the composition at the breaks in the lines where the 
slope changes - which can be taken as an indication of the subregion bound
aries - is plotted as a function of temperature in a normal phase diagram. 
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Fig. 4. Diagram of subregions with possible ordered intermediate phases 
in the o' phase for the Ce-O system. 

Recently an improved statistical model for non-stoichiometric fluorite-
related oxides was proposed by Manes (32) for Pu02 and (U, Pu)0„ . 
It is interesting to note that the statistical calculations carried out on this 
model also show that the non-stoichiometric range can be divided into sub-
regions each with a characteristic type of defect. This model assumes 
that defect complexes consisting of one oxygen vacancy and two metal atoms 
are formed in the first subregion below the stoichiometric composition. 
From geometrical considerations of the lattice structure Manes calculated 
the number of forbidden oxygen positions in which oxygen vacancies cannot 
be formed surrounding the defect complex, and a limiting concentration of 
defects can be calculated: O/M = 1. 91 was found for the first subregion. 
By introducing two, three, etc., vacancies in the defect complexes, limiting 
defect concentrations at O/M » 1. 83, 1.74 and 1.65 were obtained. Com
pared to the compositions of the subregion boundaries found in this work 
(fig. 4), it will be noted that for both oxide systems a boundary at O/M ~ 
1. 83 and 1. 74 is observed, whereas some disagreement exists regarding 
the boundary of the first subregion. 

In principle it should be possible to interpret the values of n found for 
the different subregions in terms of types of defect, but this can only be 
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rather speculative. The region with n = 5, for instance, could be taken as 

an indication of interstitial metal ions, but today it is generally believed 

that the cation lattice for these oxides is very stable (33), and this inter

pretation cannot be correct. By taking enthalpy variations into account -

the classical defect theories outlined above assume that the enthalpy of 

defect formation is constant and independent of composition - it has also 

been shown (25) that n = 5 could be obtained even with double-charged 

oxygen vacancies (V ,̂*) in contrast to the n = 6 value found in the classical 

defect theories for this defect. However, this again is rather speculative 

since the defects are considered to be randomly distributed in this approach. 

Contrary to the single defects, n = 5 has also been interpreted in terms of 

oxygen vacancy pairs (V!-.*, VL*) from the measurements of electrical con

ductivity as a function of oxygen pressure for Ce02_„ by Greener et al. (1 9). 

Although this model is probably also incorrect, it is important because it 

emphasizes that the interaction between the defects should be taken into 

account and that defect complexes rather than single defects must be ex

pected in these oxides. The importance of interactions between the defects 

has also been pointed out in other models. Hyde et al. (34), for instance, 

proposed for the PrO„ system that infinite MOg strings along the ( i l l ) 

directions are an important structural entity, whereas Thornber et al. (35) 

proposed that the oxygen vacancies cluster pairwise into units consisting 

of a central 6-coordinate cation surrounded by six 7-coordinate cations. 
3+ The central cation in the complex has been reduced to a lower charge (M ) 

by the electrons liberated from the oxygen vacancies, and the metal ions 

thus also seem to play a decisive role, which is important for mixed oxide 

systems as will be shown for the (U, Pu)02 system in the next section. 

Hysteresis, which plays an important role in other ra re earth oxide 

systems (10), is only observed at 900 and 1 000°C for the cerium oxides in 

the composition range 1. 9950-1. 8750 (2-x). This suggests that the o' + a " 

miscibility gap extends to about 1 000°C in contrast to 650°C as proposed 

by Bevan and Kordis (see phase diagram fig. 1). Even at 1 000°C this effect 

is not very pronounced and at higher temperatures a high degree of reversi

bility was observed in accordance with the observations made by Bevan and 

Kordis that showed that the cerium oxides are very reactive at higher tem

peratures. 

Considering the phase rule criteria for a binary oxide system in 

equilibrium with a gas phase, the AG~Oo v e r 8 u s l°g x P l o t c a n a ^ 8 ° g i v e 

information about the phase relationship of the system (36). For a two-

phase range, for instance, the system will only have one degree of freedom 
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and a horizontal line should be observed at constant temperature. Near 

vertical lines can in the same way be assumed to prove the existence of 

discrete compounds of a narrow composition range, whereas lines with an 

intermediate slope indicate the existence of a single non-stoichiometric 

phase, or a continuous sequence of ordered or partly ordered phases as 

found for the Ti-O system by Merritt and Hyde (37). 

If the &£>o values shown in fig. 3 are considered according to these 

criteria, the following information can be obtained about the phase relation

ships in this oxide system: 

(1) In some cases a horizontal curve is observed between two subregions 

instead of a single change in slope indicating that a two-phase region 

exists between the two regions. Because of the scatter in the data the 

existence of these two-phase regions is rather uncertain, however, 

and instead of a horizontal line a gradual change in slope should per

haps be drawn indicating that there is a gradual change in predominant 

defects at the subregion boundaries, 

(2) The subregions can be considered as consisting of apparent non-stoi-

chiometric single phases, whose macroscopic thermodynamic proper

ties can be described by a characteristic value of n. Values of n * 6 

can probably be explained by the formation of common defect types ac

cording to the defect theories, but this is not the case for the n ) 6 

values observed below O/M = 1.8750. Analysing the finer details of 

the data points - the data obtained at 11 00 C a re shown on a larger 

scale in fig. 5 - gives a strong indication of the existence of a whole 

series of discrete phases separated by two-phase regions for these 

regions. However, even for the n = 4 and 3 regionc such discrete 

compounds appear to be possible at lower temperatures. An inter

esting feature is that most of the compositions of these discrete phases, 

as well as the main boundaries for the subregions, seem to follow the 

series M 0„ ~, which also describes the intermediate phases at n 2n-2' r 

lower temperatures {11). 

2. 3. 2. Phase Relationships 

The phase relationships of the system can also be studied from a &Q0 

versus temperature plot at constant composition. In this plot straight lines 

should be obtained within each subregion whereas a change in the slopes 

indicates a region boundary. The resulting plot, which is shown in fig. 6, 

clearly demonstrates this, and from this diagram the boundaries between 
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the different subregions can easily be determined. Previously.straight 
&ZJft versus T lines were always obtained throughout the whole non-
stoichiometric a'-phase at higher temperature (11, 25). However, in a 
recent study by the emf technique, Hampson (31) found that AGQ_ does not 
vary linearly with temperature in accordance with the results obtained in 
this investigation. 

The subregion boundaries shown in fig. 6 closely agree with the bound
aries shown in the T, x diagram (fig. 4), and the figure again clearly de
monstrates that the non-stoichiometric a'-phase should no longer be con
sidered as a grossly non-stoichiometric phase over an extended composition 
range, but that it can be divided into subregions. The position of the sub-
region boundaries can also be confirmed by the shape of the diagonal curve 
obtained in the isostatic experiments. An example of the compositions ob
tained in these experiments is shown in the ^CL. versus T plot in fig. 6. 
From this it is evident that an exponential variation of x with temperature 
must be expected for the subregions as the slopes of the AGV> -T lines vary 

^2 
within each region. This exponential behaviour of the isobaric data is also 
clearly seen in the T, x diagram in fig. 4, where a characteristic behaviour 
is obtained for each of the single subregions and, more important, where 
the exponential function describing the points seems to change where the 
subregion boundaries have been observed. 

2. 3. 3. Relative Partial Enthalpies, ATT^ 

The ATTQ values calculated according to eq. (4) are shown in fig. 7 
as a function of log x. Only for the n = 5 and n = 14. 90 regions is AHQ« 

close to being independent of composition as expected for randomly distrib
uted and independent defects, whereas, for the other phases, AH*Q shows 
linear variations with log x with substantial slopes. Apparently there is a 
considerable interaction and ordering of the defects in these phases and 
this must also be taken into account. The calculation was carried out at 
1 353 K (1 080°C) in order to compare the results with the A H Q values re-
ported by Campserveux and Gardenian (18), which were determined by 
microcalorimetric measurements at this temperature. It it interesting to 

note that the AILV values calculated in the present study correspond closely u 2 
to the experimental values except perhaps for the n - 4 region where the 
calculated values lie slightly above the experimental ones, but still on a 
line parallel to the band of experimental data points. The difference, how
ever, is small compared to the experimental errors usually obtained in 
thermodynamic measurements, and the close correspondence between the 
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two data sets gives further support to the previous indications of the exist

ence of several subregions in the a1-phase at higher temperatures. 

2. 3.4. Free Energy of Formation of CeCX, 

The free energy values calculated from eq. (1 2) are shown in fig. 8 as 

a function of the mole fraction of oxygen in the oxides calculated from x* = 
(2_v\ ° 

J j W_L\ • This plot is particularly useful since the relative partial free 

energy of oxygen, M5Q , for a given composition can be found by extra

polation of the tangent to the curve tox^=1, as described by Darken and 

Gurry (38). For each of the subregions observed at 1 000°C (fig. 3), the 

straight bands were extrapolated outside their composition ranges in order 

to examine the difference in AG?(Ce02 ) where the phases overlap. Al

though this difference is small, so that essentially a smooth curve is ob

tained throughout the whole composition range covered as ohown in fig. 8, 

it is evident that the free energies of formation observed for each sub-

region are lower than those of the neighbouring regions. This indicates 

that these subregions have greatest stability within their respective range 

of existence. For the subregion characterized by n - 3, the AG"n versus 
U2 
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log x plot clearly indicates the possibility of ordered discrete phases, and 

the free energies of formation for these compounds are also indicated in 

fig. 8. The two-phase regions between the discrete phases must in this 

case be drawn as a common tangent between the free energy curves. But, 

as shown in the figure, these tangents practically coincide with the smooth 

curve found when the subregion was considered as non-stoichiometric, and 

the free energy changes accompanied by ordering must be small for the 

cerium oxides. The AG?(CeO„ ) for the possible discrete compounds in 

the n = 14. 90 subregion i s also indicated in the figure. In this case , how

ever, the curve obtained when the region i s considered non-stoichiometric 

l ies well below the common tangents between the free energy curves for 

the discrete phases, and these phases are apparently m etas table at 1000 C. 

2 .4 . High Temperature X-Ray Diffraction; Experimental 

2 . 4 . 1 . Equipment and Technique 

The high temperature X-ray diffraction measurements were carried 

out in a Philips high temperature diffractometry attachment, shown in fig. 9. 

In this equipment, the powdered sample i s placed in a small tantalum boat 

supported on a tungsten rod located in the centre of a small furnace made 

from molybdenum foils. Finally this furnace i s placed in a vacuum chamber 

equipped with beryllium windows. The sample temperatures can be m e a s 

ured with a tungsten/tungsten, rhenium thermocouple placed in a hole in the 

supporting rod below the sample holder. In this arrangement, where the 

X-rays are passed to the sample through a sl it in the heating element and 

in the surrounding heat shield, these temperatures cannot be considered as 

representative sample temperatures because of the severe radiant heat loss 

especially from the sample surface where the actual X-ray measurements 

are made. In order to determine the actual sample temperatures, ThO-

was used as an internal calibrant, s ince i ts lattice parameter is known as 

a function of temperature and its diffraction peaks are well separated from 

the cubic C e 0 2 peaks. For reliable measurements it i s , of course, nece s s 

ary that the ThO, does not react with the cerium oxides, but even at the 

highest temperatures used in this investigation (actual: 855 C), sharp ThO-

peaks were obtained indicating that this reaction i s not important in these 

measurements. 
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Fig. 9. Principle of Philip« high temperature X-ray diffractometer. 

2.4. 2. Calculations 

The lattice parameters for Th02 and CeO, and their respective standard 
deviations were obtained in a least square refinement by a computer pro
gram developed by Brown (39). The actual temperatures were determined 
from the lattice parameters of ThO«, which had previously been determined 
as a function of temperature by Brown and Chitty (40) and Hock and Momin 
(41). 
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2. 5. High Temperature X-Ray Diffraction: Results and Discussion 

2. 5.1. Lattice Expansion with Temperature 

Previously Brauer and Gingerich (1 6) have shown that the lattice 
parameter of Ce0 2 varies linearly with temperature up to 900 C. This 
was also confirmed in the present investigation as shown in fig. 10, where 
the results from both investigations are shown as a function of temperature. 

5.50 

5.35 

O Results from this investigation 
V Brauer and Gingerich 

1 i 

500 1000 
Temperature |°C] 

15X 

Fig. 10. Lattice parameter of CeOj as a function of temperature. 

From the figure it will be noted that the agreement between the two 
sets of data is excellent. Unfortunately, the composition of the samples 
in the present investigation is not known precisely. However, as the 
oxygen pressure of the vacuum employed is not sufficiently low for a sub
stantial reduction to take place at low temperatures, it is assumed that 
the compositions up to an actual temperature of 750 C are very close to 
he stoichiometric composition. This is also confirmed by the shape of 

the X-ray peaks, which were sharp and well defined and showed no sig
nificant rhombohedral splitting of the fluorite peaks such as the presence 
of the rhombohedral p-phase, for instance, should give. 

2. 5.2. Formation of Superstructures 

At 790°C the fluorite Ce0 2 peaks are still present although weak, but 
in the 855°C experiment these peaks were entirely absent. With the dis-
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appearance of the fluorite structure another phase with many peaks was 
observed indicating the formation of a new structure of low symmetry. It 
was impossible to index the reflections for this phase under the assumption 
that the structure was of rhombohedral symmetry, which is closely related 
to the fluorite structure and which has been observed for many of the inter
mediate phases in the Ce-O system at lower temperatures. The great 
number of peaks indicates low symmetry, and indexing was tried under the 
assumption that the new structure was of triclinic symmetry, as reported 
by Sawyer et al. (42) for the ordered phases in the Pr-O system, but this 
also proved to be difficult. However, assuming that the structure is mono-
clinic with a unit cell similar to the monoclinic cell (space group P2. /n, 

5 * 
C2h, found for PrO. 8 3 3 (PrgO..) by Lo wens tein et al. (43) by single crystal 
methods, it was possible to account for all the reflections. The observed 

2 
and calculated sin 6, as well as the indices for the different reflections 
are given in table 1. 

Tabic 1 

Powder pattern for monoclinic superstructure (spec* group: P2, /n, C,h) 

recorded by high temperature X-ray dtffractcsieter at 855°C 

Intensities11) d . (A) hkl »in2«.*. **2* 

S 3 .1659 

2 3 .3813 

2 3 .3223 

2 3 .2328 

2 3 .222« 
3 3 .2017 

1 3 .0300 
1 3 .0111 

2 2.96iH 

1 2.79S8 

2 2 .7728 
3 2 .1169 
3 2 .1362 

1 2 .3913 

1 2 .2156 

1 2 .2736 
1 1 .9732 

2 1 .968* 
3 1.9S97 

2 1 .7371 

2 1.7301« 
1 1.708« 

2 1.671*6 

1 1 .5875 

1 1.5197 

1 1.S115 

121 

T31 

702 

001 
T30 

Toi 
Tl5 

Til 

010 
T31 

200 

013 
201 

211 

133 

230 
Ti l 

T31 

061 

212 
Tl2 

T63 
037 

756 
CO 2 

312 

0.0192 

0.0516 
0.0535 

0.0565 
0 .0569 

0.0576 
0.0611 
0.0651 

0.0673 

0.0756 

0.0769 

- 0.0986 
0.0997 

0.1031 

0.1373 

0.1111 
0.1520 
0.1527 

0.1511 

0.1962 
0.1977 

0.2029 
0.2112 

0.2350 

0.2166 

.jum 

0 .0190 
0 .0511 

0 .0532 

0 .0566 
0.0567 

0 .0578 
0.061S 

0 .0658 

0 .0671 
0 .0757 

0 .0770 

0 .0989 
0.0995 
0.1037 

0.1172 
9.1117 

0.1525 
0 .1539 

0 .1515 

0 .1961 
0.1976 

0 .2030 

0 .2110 

0 .2319 

0 .2163 

0 .2181 

'VisuaUy estimated on a scale from t to 5. 
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A least square calculation gives the following lattice parameters and 
their standard deviations for this unit cell at 855°C: 

aQ = 6.781 t 0.006 Å 

b = 11.893 - 0.009 Å 

c = 15.823 t 0.015 Å o 

p- = 1 2 5 . 0 4 * 0 . 0 4 ° . 

These parameters correspond closely to the lattice parameters re
ported for the monoclinic PrOj 833^Pr6°11 ^ c e l1* w n i c n Lowenstein et aL 
have shown can be derived from twelve fluorite cells. Although very little 
reduction of the samples apparently took place at lower temperatures, 
some reduction must be expected with increasing temperature where the 
sample holder (Ta) and furnace heating element (Mo) can act as oxygen 
getters. The thermogravimetric measurements also indicated the possi
bility of an intermediate phase with the composition Ce-O. . , and obviously 
this phase was obtained in the high temperature X-ray measurements. 

Several models have been proposed in order to describe the structures 
of the ordered intermediate phases. Hyde et aL (34), for instance, pro
posed that the structural entity, which generates the series M O2n_2* i s a 

linear infinite MOfi string along the (111) directions surrounded by a con
tiguous sheath of MO-. In Ce?0. 2 . C e g ° i 6 a n d Ce11 °20 ^e strings are 
parallel and regularly spaced (42) whereas the strings run along all four 
(111) directions in the C-type oxide of C e 2 0 , giving an ordered omission 
of 25% of the oxygen ions. Thornber et al. (35) subsequently suggested that 
the string model is incorrect and that the defects are clustered into units 
consisting of six seven-coordinate cations about one six-coordinate cation. 
Recently Martin (44) introduced the concept of octahedrally coordinated 
anion vacancies that gather on regularly spaced {213} planes. Whether the 
superstructures of the ordered intermediate phases can be described by 
these models, or whether they can be obtained by a crystallographic shearing 
mechanism,, as proposed by Eyring and Holmberg (45), for instance, cannot 
be decided from the present results. Nevertheless the electron microscopy 
studies on reduced Ce0 2 single crystals described in section 4 seem to 
indicate that the shearing mechanism plays an important role during the 
formation of these superstructures. 
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3. THERMODYNAMIC STUDIES OF THE PHASE RELATIONSHIPS IN 
NON-STOICHIOMETRIC PLUTONIUM AND URANIUM/PLUTONIUM OXIDES 

In previous thermodynamic studies (46-50) of the Pu-O and U-Pu-O 
systems, the MO* phase has always at higher temperatures been con
sidered as a single grossly non-stoichiometric phase extending over a 
considerable composition range as shown in figs. 11 and 1 2, which give 
the accepted phase diagrams for the two systems. 

As described in (5), thermodynamic data for these non-stoichiometric 
oxides were also determined by thermogravimetric analysis in the tem
perature range 900-1450 C in atmospheres of controlled oxygen pressures 
(C02/CO mixtures) using the same technique as for the Ce0 2 studies. 
A few high temperature X-ray diffraction measurements were also carried 
out in this part of the investigation mainly in order to study whether the 
superstructure ordering observed for the CeO, oxides also takes place 
in a mixed oxyde system. Unfortunately it was, however, impossible to 
work with Pu-oxides in the equipment available for these studies and the 
X-ray measurements were therefore performed on mixed U/Ce-oxides. 

3 .1 . Previous Studies 

Previously the PuO, system has been studied by Atlas and Schlehman 
(47, 48) by measurements of the electrical conductivity as a function of 
oxygen pressure and temperature in the temperature range 1045-1505 C. 
Using regression equations, straight lines for each temperature were 
drawn through all the data obtained in the whole composition range, and 
from the slopes of these lines it was concluded that the defects in PuOo-x 
are predominantly interstitial Pu-ions. Similar to the CeO„ oxides, 
however, it is today generally believed that the cation lattice is very stable 
for the Pu-oxides too. This is also supported by the analysis of covalent 
and ionic radius of oxygen for these oxides by Blank (33), which shows it is 
difficult to remove the metal ions from their lattice sites to form inter
stitial ions in these oxides. Extensive thermodynamic data for the P u 0 2 _ x 

system have also been determined by the emf technique by Markin et al. 
(46) in the temperature range 700-1140°C. The great change observed in 
enthalpy and entropy observed in this work when Pu0 2 is reduced to 
PuO. «- was explained by the formation of coupled oxygen vacancies 
(grossly substoichiometric PuO-) when the oxides were reduced substan
tially. 
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Thermodynamic data on the mixed U/Pu-oxides have previously been 
determined by Woodley (50) by thermogravimetric analysis on (UA ... 

w* o P u 0 25^ ° 2 x *** H 2 / H 2 ° "fixtures in the temperature range 950-1400 C. 
The data obtained in this study compare well with Markin and Mclver's data 
(49), which were determined by the emf technique in the temperature range 
700-1140°C on oxides containing 10 and 30% Pu. These data show that the 
thermodynamic data for oxides in this composition range only depend on 
the valency of the Pu-ions and not on the Pu-content. The data published 
by Woodley and by Markin and Mclver, however, show some disagreement 
with the data published by Javed (51) on (U* QQ, PUQ 2 ^ 2 - X * ^ n e r e a s o n 

for this discrepancy can probably be explained by the more indirect method 
used by Javed in which the composition obtained during equilibration in 
H„/H20 mixtures at higher temperatures was determined after quenching 
the samples to room temperature. Much smaller changes in AHQ_ with 
composition are observed for the mixed oxides than for PuOo-x* n i s 

indicates that the Pu-ions must play a significant role, as suggested by 
Markin and Roberts (see (52)), who proposed that local ordering of the 
oxygen vacancies can only take place if a large fraction of reducible cations 
is present. This is also suggested in the statistical model recently pro
posed by Manes (32) for Pu00 „ and (U, Pu)00 „, which was already men-

1 i — x A—x 

tioned in section 2 .3 .1 , where defect complexes consisting of at least one 
oxygen vacancy and two Pu-ions were considered. 

The relative partial enthalpies, ATIQ , have also been determined by 
microcalorimétric measurements for the Pu09 and (U, Pu)00+_ oxides by 
Chereau et al. (53) at 1100 C. Near the stoichiometric composition the 
ATTQ values obtained with this method compare well with the values pub-
lished by Markin and Mclver, but at a greater deviation from stoichiometry 

1 

substantial disagreement between the two investigations was observed. The 
directly measured values are, however, more accurate than those calculated 

1 

from A JSQ and the data obtained by Chereau et al. are probably the most 
correct. 
3 .2 . Thermogravimetric Analysis; Experimental 

1 

3. 2.1. Starting Material 

The PuOg used in the thermogravimetric measurements was of nuclear 
grade of high purity, while the mixed U/Pu oxides were prepared by co-
precipitation of ammonium diuranate and plutonium hydroxide from nitrate 
solutions. After filtration, the precipitates were calcined at 500°C in air 
and then reduced to stoichiometric composition in hydrogen at 1000°C. 
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3.2 .2 . Thermogravimetric Measurements 

The thermogravimetric equilibrium measurements were carried out on 

Pu0 2 . (U0 9 0PuQ ] 0)O2 and (UQ 8QP*Q 2Q)02 in atmospheres of controlled 

oxygen pressures (CCL/CO mixtures) by continuous heating in the tempera

ture rar 

table II. 

ture range 900-1450°C. The experimental conditions used are given in 

T a b U l l 

Tcmparatnr« rang«: 

Heating ra t« 

Coolinf rat«; 

Atmosphere« (OOj/CO): 

Sampl« weight: 

Crucible: 

900-14S0°C 

20-9OO°C: 10°C/min 
900-1450°C: 2°C/min 

I450-20°C: )0°C/min 
1/1000 tot/1 

500-800 mg 

*h°3 

The principle of the gas system for mixing CO and C0 2 for the Pu ex

periments was the same as that used in the Ce0 0 v studies described in 
«£~X 

section 2. 2. 2. Also in these experiments the oxygen pressures of the 

atmospheres used were controlled by continuous measurements with a 

Zr02(CaO) cell. In the present case though the measurements were per

formed on the exit gas from the balance while the composition of the inlet 

gasses was controlled by frequent gas-chromatographic analysis. Pu-

oxides are extremely poisonous materials to work with and the balance was 

therefore enclosed in a glove box during these studies. The glove box 

developed for this work is shown in fig. 1 3. 

3. 3. Thermogravimetric Analysis; Results and Discussion 

3 . 3 . 1 . Thermodynamic Data for PuQ2 

The ACTQ values and the composition of the P u 0 2 samples, which 

were both calculated as described for the Ce0 9 studies, are shown in 

fig. 14 together with the data previously published by Atlas and Schlehman 

(47, 48) and Markin et al. (46). 



Fig. 13. Glove box arrangemertt for the thermogravimetr ic studies 
of PuO„ „ and (U, PuJO., . 



- 39 . 

T 

130 

120 

~ 11° *7 
o 
E 
o 100 

O 

IO 

f 90 

60 

70 

60 

50 

0 4 » 7 » D » This investigation 

• Atlas and Schlthman 
• Marttin et al 

19t(t-

19920-

-19563 

-19t» 

3.0 2.5 2.0 1.5 1.0 
- log x (in PuO,_ „) 

0.5 
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function of composition (log x). 
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Comparing the three data sets it will be noted in general that they show 
the same trend in the curves although some discrepancy exists between the 
AGQ values. Generally the data reported by Atlas and Schlehman are 
slightly higher than both the » C Q values obtained in the present investi
gation and those found by Markin et al. by the emf technique. One reason 
for this discrepancy could be the more accurate control of the oxygen ac
tivity that can be obtained by the emf technique, and which in the present 
investigation was obtained by frequent gas-chromatographic checks and by 
continuous control with the Zr02(CaO) oxygen cell. 

Considering all the data points in fig. 14 it is clear that the linear 
relationship between AC^ and log x depicted in eq. (7) is also obtained 
within certain regions for the PuO, oxides. Near the stoichiometric 
composition the slope of the lines corresponds to a value of n * 5, whereas 
at greater deviation from stoichiometry n = 4 at 1050 C and n = 3 at higher 
temperatures. Finally at substantial reductions n * 9.22 at least up to a 
temperature of ~ 1250°C. As observed for the CeO« system the non-
stoichiometric PuO, phase can also be divided into subregions, which 
can each be described thermodynamically by a characteristic value of n, 
indicating that a characteristic defect i s formed within each subregion. In 
principle the types of defect present in the different subregions can be 
evaluated from the values obtained for n, but as described for the CeO« 
system this can only be rather speculative since the defect theories on 
which such an evaluation should be founded are based on assumptions that 
are probably not fulfilled - randomly distributed non-interacting defects. 
Atlas and Schlehman also observed slopes corresponding to n = 5 at lower 
temperatures which they interpreted in terms of interstitial Pu-ions. In 
their treatment, however, straight isotherms were drawn through all the 
data points obtained in the whole composition range by using regression 
equations, and information about the detailed nature of the PuO, phase 
is obviously lost by this procedure. As shown in fig 14, the scatter of 
their experimental points i s in fact substantially reduced if straight lines 
of varying slopes are drawn instead of a single line. Furthermore it is no 
longer believed that it is possible to form interstitial cations in these oxide 
systems, as explained previously (section 3.1), and the interpretation of
fered by Atlas and Schlehman is probably incorrect. 

Considering the curves in fig, 14 in terms of the phase rule criteria 
for a binary oxide system in equilibrium with a gas phase, the following 
information about the phase relationship of the PuC» ^ system can be ob
tained: 
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(1) The subregions can be considered as consisting of apparently non-

stoichiometric single phases whose macroscopic thermodynamic 

properties can be described by a chai'acteristic value of n. 

(2) Values of n * 6 can probably be taken as an indication of the presence 

of single defects or defect clusters, but this is not the case for n s 

9. 22 which is observed below O/M = 1. 875. For the C e 0 2 x system 

a clear indication of a series of discrete phases separated by two-

phase regions was observed for the n ) 6 subregions. The n = 9.22 

subregion observed for the PuO0 system can probably be inter-

preted in a similar way (see Markin's data in fig-. 1 3). 

(3) Near the stoichiometric composition the data strongly indicate the 

existence of discrete phases and two two-phase regions. These 

phases have not been observed in previous studies of this system. 

If the compositions for the discrete phase, the two-phase regions and 

the subregion boundaries are plotted as a function of temperature, the T, x 

diagram shown in fig. 1 5 is obtained. 

U00 

1300 

o 

e 
% 1200 

• a 
E 

£ 
1100 

1000 
20 195 1.90 1.85 1.80 

0/Pu 

SUBREGIONS IN Pu02_, 

n - 9.22 

Fig. 1 5. Diagram of subregions for PuO, 
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The diagram again clearly demonstrates that the P u 0 9 phase field 

can be divided into subregions, some of which are non-stoichiometric 

(n * 5), or probably consist of a series of discrete phases (n = 9. 22), and 

some of which are two-phase regions. Compared to the T, x diagram for 

the CeCX, system shown in fig. 4, it will be noted that the pattern of sub-
£ ~ X 

regions for the PuO? system apparently is somewhat different from that 

of the CeO,, system. Before the subregion pattern for the Pu0 9 system 

can be finally established, however, much more data should be available, 

and thus the T, x diagram shown in fig. 1 5 can only be considered as pre

liminary. It is also interesting to compare the composition observed for 

the subregion boundaries in this work with the limits found in Manes's 

statistical calculations - O/M = 1. 91; 1. 83; 1. 74, and 1. 65 (see section 

2. 3.1). As in the case of the Ce0 9 system, no boundary at O/M = 1. 91 

was observed for the PuO, system, whereas the boundary between the 
w **X 

n = 3 and n - 9. 22 subregions only passes through O/M = 1. 83 at higher 

temperatures. The agreement between the present results and those pre

dicted by Manes' statistical model is thus not very convincing. Perhaps 

this discrepancy can be explained by the formation near the stoichiometric 

composition of the discrete-ordered phase, which cannot be predicted by 

the statistical model. 

As explained for CeO0 . A^Tr) should vary linearly with temperature 

for constant composition within the non-stoichiometric subregions if this 

treatment is valid. From the A£TQ versus temperature curves obtained 

for the compositions (2-x) = 1. 9960 and (2-x) = 1. 9498 in fig. 1 6, it will 

be noted that this linear relationship is also obtained for the n = 5 and 3 

regions in the PuO„ system. 

Using eqs. (3) and (4) (section 2. 2.4), A 3 Q and AHQ were calculated 

from these lines, and the results obtained are shown in table III together 

with data calculated from Atlas and Schlehman's results . The data previous

ly published by Markin et a l . , and those obtained by Chereau et al. by 

microcalorimetric measurements at 1100 C, are also given in this table. 
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TablaUI 

Composition 

(2-x) 

1.9960 

1.9960 

- 1. »960 

- 1 . 9 9 6 0 

1.9498 

1.949« 

~ 1.950 

~ 1.950 

n 

5 

S 

3 

3 

121 

69 

~ 125 

87.5 

72.5 

90 

-AH 

(kcal/mole) 

258" 

185.95* 

259 

256 

240.15K 

218.65" 

239 

241 

Comments 

Thia work 

AUaaaad 
SchUhman 
(47. 48) 

Martin et aL 
(46) 

Charaauatal. 
(53) 

Thia work 

AUaaand 
Schlahman 

Martin et aL 

CheraauetaL. 

'calculated at 110<TC 

From the table it is clear that the AHQ and AS>Q values obtained in 

the present investigation closely agree both with the data of Markin et al. 

and with those of Chereau et a l . , whereas the values calculated from Atlas 

and Schlehman's experimental points are apparently too high. This is also 

the case with the values they obtained in their original treatment, where all 

points obtained at one temperature were considered to belong to the same 

regression line, and where they obtained £RQ = - 1 92 and - 225 kcal/mole 

for PuO. 9 9 and PuO. 9 5 respectively. 
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3.3. 2. Thermodynamic Data for (U, Pu)Q2 

The data obtained in the thermogravimetric equilibration measure
ments, which were carried out on (UQ 9 Pu n # 1 )02x and (UQ 8 Pu 0 2 )°2-x' 
were treated in the same way as the PuO„ data. The results are shown 
in fig. 1 7, where the ACQ values at each temperature are plotted as a 
function of log x together with thermogravimetric data recently published 
by Woodley (50) for (UQ 75PU()< 2 J . )02_X . 

Because of the great stability of the mixed oxides, only a rather limited 
composition range could be covered with the gas mixtures used in the present 
investigation. Nevertheless, it is clear from the figure that the present 
results closely agree with Woodley's results, which again show good agree
ment (see Woodley's paper) with the data obtained by Markin and Mclver 
(49) by the emf technique in the temperature range 700°C to 1140°C. 
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Considering all the data points in fig. 1 7, it will be noted that the 

linear relationship predicted by the defect theories is also obtained with 

mixed oxides. For the two oxides investigated it is clear that the sub-

stoichiometric range can also in this case be divided into several subregions 

corresponding to the different slopes of the straight lines. Near the stoi

chiometric composition at lower temperature, for instance, a subregion 

corresponding to n s 8.69 is obtained, whereas regions with n = 5; 4. 36 

(at lower temperature) and 9. 22 are obtained at greater deviations from 

stoichiometry. As explained for the Ce0 0 and Pu0 0 systems, the 

n * 5 values can be explained by the presence of single defects or defect 

clusters, whereas higher values of n probably indicate the existence of a 

continuous sequence of discrete phases separated by two-phase regions. 

The n = 9. 22 region was also observed for the PuO0 system, but the n = 
« —x 

8.69 region at small x is apparently only present in the mixed oxides. 

Whether this region really consists of discrete phases is, of course, for 

the present a matter for consideration, but a close examination of the 

single experimental points published by Markin and Mclver certainly indi

cates the possibility of a two-phase region near the stoichiometric com

position (see fig. 14 in (52); L&Q versus O/M for(UQ 8 gPu 0 1 ^ > 2 ^ ' 

The T, x diagram obtained for the mixed oxides is shown in fig. 1 8. 

Compared to the PuO„ system (fig. 1 5), the two-phase ranges be

tween the n = 5 and n = 3 subregions are apparently not formed in the 

mixed oxides indicating that ordering reactions of the defects are much 

more difficult in these oxide systems. The n = 5 region, in which single 

defects or simple defect clusters are probably formed, also extends to 

much lower O/M values for the mixed oxides than for P u 0 2 which is also 

an indication of the greater stability of the defect structure in mixed oxides. 

Another difference between the two oxide systems is that where the nature 

of the defects in the PuO~ oxides can apparently change in several steps 
** ~x 

before reaching the n = 9. 22 subregion with a continuous sequence of dis

crete phases - only one type of defect is observed for the mixed oxides. In 

addition it seems that the PuO„ oxides a re more reactive than the mixed 
2-x 

oxides, probably because of the greater amount of Pu-ions. Markin and 

Roberts proposed that these play an important role during defect ordering 

reactions. 

Straight AGQ versus temperature lines were also observed for the 

mixed oxides at constant composition for each of the subregions as shown 

in fig. 1 9 and in table IV, the AHQ values calculated from these lines 

compare well with Cher eau* s microcalorimetric data (53). 
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Table IV 

Composition 

(2-x) 

1.9968 

1.9950 

1.995« 

1.9900 

1.9900 

1.9900 

n 

8.69 

5 

- 4 5 o 2 
(eu) Z 

90 

- 5 2 

88.9 

- 5 0 

- A * o 2 
(kcal/mole) 

226.18* 

- 2 2 5 

-190 

241.91" 

-235 

-192 

Comments 

This work 

Chereau et al. 

Markin ami 
Mclver 

This work 

Chereau et al. 

Markin and 
Mclver 

"calculated at 1100°C 
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The table also shows the tS(\ values calculated from the &Gr> versus 
temperature lines in the present work, as well as the data previously pub
lished by Markin and Mclver. Apparently there is some disagreement be
tween the two data sets, but as the present Æ « values correspond closely 
to the microcalorimetric values. Markin and Mclver's data are probably 
too high. 
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Fig. 19. Relative partial free energy of oxygen. t!Gn , for (U. PuK>„ 
as a function of temperature for constant composition. 
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3 . 4 . High Temperature X-Ray Diffraction: Experimental 

3 . 4 . 1 . Starting Materials 

The X-ray measurements were carried out on the mixed oxides 

(UQ gCe« T ) 0 2 and (UQ oCeQ 2 ) ° 2 ' w n i c n were prepared by coprecipitation 

of ammonium diuranate and cerium hydroxide from nitrate solutions. Simi

lar to the mixed (U, Pu)0 2 , the precipitates were also calcined at 500 C in 

air and then reduced in hydrogen at 1000°C in order to obtain the stoichio

metric composition. 

3 . 4 . 2. Equipment and Procedures 

The equipment and the procedures described for the X-ray measure

ments on CeOa were also used for the mixed oxides. The temperature 

range covered in these measurements was 25-875 C. 

3. 5. High Temperature X-Ray Diffraction: Results and Discussions 

The cubic lattice parameter calculated by a least square refinement 

for the two oxides showed good agreement with the results previously pub

lished by Markin and Street (54) for the U-Ce-O system, and the actual 

results obtained will not be repeated here. Contrary to the splitting of the 

peaks due to superstructure formation observed for CeO„_ , all peaks for 

the mixed oxides were sharp and well defined, and there was no sign of 

extra peaks at higher temperatures indicating a change in structure. The 

mixed oxides thus seem to be more stable than the pure oxides, as also 

indicated by the thermodynamic investigations. 
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4. ELECTRON MICROSCOPY STUDIES ON 

REDUCED Ce0 2 SINGLE CRYSTALS 

The thermogravimetric technique used in the thermodynamic studies 

described in the previous sections is only an indirect method, and in order 

to verify the existence of some of the intermediate phases observed in 

these studies some preliminary electron microscopy examinations of r e 

duced CeOo single crystals were also carried out. In recent studies, es

pecially on transition metal oxides, high resolution electron microscopy 

has proved to be a very useful technique. In fact, these studies have shown 

that the non-stoichiometric oxides can no longer be considered as grossly 

non-stoichiometric phases with a large concentration of defects or defect 

clusters as assumed in the classical defect theories, but that an exten

sive crystallographis shearing takes place eleminating the defects. The 

majority of the previous electron microscopic studies were performed on 

oxides of the cubic Re03-type structure - see, for instance, the review by 

Eyring and Tai (55) and by Tilley (56) - and on oxides based on the rutile 

structure, e.g. Bursill and Hyde (7); but only little electron microscopy 

has been done hitherto on oxides with the fluorite or fluorite-related s truc

tures as found in the oxide systems examined in the present work. 

For the TiO system, Merritt et al. (37) showed that the thermodynamic 

findings can be correlated quite closely with the structural behaviour ob

served by electron microscopy. This is a very important achievement, 

which is also the final goal for the oxide systems considered in the present 

work. However, this requires a far more detailed electron microscopy 

study than was performed during the present woi-k, which can only by con

sidered as preliminary and which can only indicate some of the possibilities 

for structural arrangements in these oxide systems. Nevertheless, the r e 

sults described in this thesis.together with those recently obtained by Kunz-

mann and Eyring (57) in their electron microscopy studies on the P r -O and 

Tb-0 systems, show that electron microscopy is certainly of great value, 

also in studies of fluorite-related oxides. Further examinations using this 

technique thus appear to be particularly fertile for future resaarch. 

4 . 1 . Experimental 

4 . 1 . 1 . CeQ2 Single Crystals 

The Ce0 2 single crystals were obtained from Imperial College, London, 

where they were grown in a PbF 2 melt from reagent grade ceria. After 
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receipt, the lattice parameter of the crystals was checked by X-ray dif-

fraction analysis and found to be a = 5.4117 - 0.0005 A, corresponding 

to the lattice parameter for stoichiometric CeOa (11). 

4 .1 .2 . Reduction of the Crystals 

Two methods were used to reduce the single crystals: 

(1) Heating with the electron beam in the microscope by removing the 

condenser aperture and concentrating the beam. The temperatures 

and thus the composition obtained in the particles is , of course, un

known when using this method, but it has the advantage of avoiding 

reoxidation of the reduced samples. 
-6 

(2) Heat treatment in a vacuum furnace at a pressure of 3 x 1 0" mm Hg 

at 1440 C for 1 25 h. After this heat treatment the sample was quenched 

to room temperature (cooling time ~ 1 h). In order to avoid reoxida

tion, the crystals were kept in CC14 after the heat treatment. The 

conditions for this treatment give A£Tn = -77 .33 Kcal/mole, co r re -
2 

3ponding to a composition of ~CeO« 8 f l (n = 17. 90 region). 

4 .1 .3 . Electron Microscopy Examination 

The samples for the electron microscope were prepared by grinding 

the crystals in an agate mortar and then collecting the fine particles on a 

holey-carbon supporting film. The examination was carried out on a JEM-

1 00C microscope equipped with a double-tilting side-entry goniometer 
+ o ° 

(-45 both on x and y). A resolution of 3. 5 A can be obtained with this 

goniometer and the maximum magnification is 250,000 x. 

Extensive use was made of selected area diffraction combined with 

dark-field microscopy. Through a combination of the two techniques it i s 

possible to reveal which regions of the particles contribute to the different 

diffracted beams. Thus it is possible to determine, for instance, whether 

a spot observed on the diffraction pattern originates from a second particle 

(superposition of patterns) or from a special phase or region within the 

particle itself. In order to minimize the effect of spherical aberation on 

the resolution of the dark-field images, the illuminating system of the 

microscope was tilted in the dark-field mode so that the spot under exam

ination was moved to the centre of the screen. This corresponds to the 

diffracted beam passing along the objective axis of the microscope. The 

lattice image technique was also tried, but unfortunately the particles giving 

suitable patterns (superstructure patterns) were all too thick to give lattice 
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image pictures. Provided that suitable particles can be found, however, 
there is no doubt that this technique can also be successfully applied to this 
oxide system in our microscope, because beautiful lattice, image pictures (fig. 
20) were obtained during some preliminary examinations on. JNb«07 crystals 
(60). 

Fig. 20. Lattice image electron micrograph of a NbjOjF crystal showing 
lattice planes with regular Bpacings interrupted by defect structures with 
irregular s pacings. 

4. 2. Observations Made on Beam-Heated Particles 

4 . 2 . 1 . Crystallographic Shearing 

A typical diffraction pattern taken on a beam-heated particle is shown 

in fig. 21 together with a bright-field and a dark-field image and a stan

dard stereographic projection on (111). In order to make the trace analysis 

as accurate as possible, this pattern was taken with the electron beam ap

proximately perpendicular to the surface of the particle (x and y tilt equal 

to zero) (see Hirsch et al . (59)). The rotation of the images relative to the 

diffraction pattern, which was determined on a MoO, specimen to be 38 

with the camera length and the magnification used, is also taken into ac

count as shown in fig. 21. 

The pattern obtained is clearly a (111) pattern and the indices of the 

nearest spots are shown in the standard stereographic projection. 
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i « * i 

Fig. 21. Diffraction pattern, dark-field and bright-field images {mag. 
50,000 x) of beam-heated particle showing streaks in the [f 2l] direction. 
The indices of the spots on the diffraction pattern are shown on the stereo-
graphic projection. Note the fine structure perpendicular to the lamellae 
structure. 
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From the figure it is also clear that the pattern shows streaks in the 
(121) direction, which in some cases are split into separate spots. Com
paring the dark-field image with the diffraction pattern, it will be noted that 
the particle shows traces of a lamellae structure lying perpendicular to the 
streaks, and apparently thin slabs parallel to the (121) planes form during 
the heat treatment in the beam. The (121) planes are perpendicular to the 
(111) plane, which for this particle is parallel to the surface of the particle 
as shown above; but the traces observed in the dark-field images could 
also originate from an inclined plane. Diffraction patterns taken on the 
same particle after tilting, as well as on other beam-heated particles (fig. 
22), however, also show streaks which can be explained in all cases by the 
formation of a lamellae structure parallel to the {l 21 } family of planes. 

Tentatively it is proposed that the observed structure is formed by a 
crystallographic shearing mechanism. As can be seen in fig. 23a, which 
shows the oxygen and metal positions projected onto the (111) plane, a 
lamellae structure can be envisaged to form if the oxygen vacancies are 
ordered into a C-layer of oxygen atoms, and the structure then collapses 
if the oxygen atoms in adjacent layers jump into the vacant oxygen positions. 
In this way the metal atoms will move to an empty cube below the projection 
plane. Instead of cubes sharing edges in the normal fluorite structure, a 
structure with cubes sharing faces - which explains the decrease in the 
O/M-ratio - will be formed across the shear plane. The (111) projection 
is not suited for showing this mechanism, and in fig. 23b the projection is 
made on the (101) plane that is perpendicular to the (1 21) plane. This pro
jection, which is different from that used by Hyde (60) in his proposal of a 
crystallographic shearing mechanism in oxides of fluorite structure, clearly 
shows the formation of a thin slab by the mechanism described above. 

Different models have been proposed for the reduction of ReOg-type 
crystals by crystallographic shearing - Gado (61), Anderson and Hyde (62), 
Andersson and Wadsley (63), and Van Landuyt and Amelinckx (64). Whether 
the shear planes in the fluorite structures are formed by growing dislocation 
loops, as proposed by Anderson and Hyde, or by co-operative migration of 
cation planes, as proposed by Andersson and Wadsley, cannot of course be 
decided on the basis of the present results. However, the mechanism shown 
in figs, 23 a and b seems to involve the co-operative migration of the An-
dersson/Wadsley model. 

Recently the concept of swinging shear planes was introduced by Bur sill 
and Hyde (7) in their studies of the TiO system. For this system it was 
observed that the orientation of the shear planes changed in an intermediate 
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Fig. 22a-d. Diffraction patterns and the corresponding stereographic 
projections taken on beam-heated particles - a) and b) were taken on the 
same particle as shown in fig. 1 9 but in other directions; c) and d) were 
taken on other particles. 
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phase range in which very little hysteresis was found. The thermodynamic 
studies described in the previous sections showed amazingly little hyste
resis for the CeO«> system, and this concept should also be considered in 
further studies of crystallographic shearing in the fluorite-related oxides. 

Oxygen and metil positions projected on (111) Bounded projection of Oxygen and Metal 
Signatur* * oiyaan position« in A posit ions on ( 101 ) 

Fig. 23a and b. Oxygen and metal atoms projected on to (111) and (101) 
respectively, showing crystallographic shearing along (1 21). The formation 
of a thin slab parallel to (1 21) is shown in b. 

4 .2 .2 . Superstructure Patterns 

In some of the beam-heated particles the superstructure pattern shown 
in fig. 24 was observed. 

For the C e G 2 x system, the high-temperature X-ray diffraction analy
sis showed that monoclinic superstructures can be formed at higher tem
peratures. As shown in fig. 24, it was possible to index the observed 
pattern assuming that this structure was formed during the beam heating. 
Similar superstructure patterns have also been reported by Kunzmann and 
Eyring (57) for the Pr -0 and Tb-O systems, and ordering of the defects 
into superstructures is apparently a general mechanism for the fluorite-
related oxides. In the model for crystaUographic shearing in ReO»-type 
oxides by Gado (61), a superstructure can be assumed to precede the 



- 57 -

formation of shear structures. Whether this is the case for the fluorite-
related oxides cannot definitely be decided from the present work. How
ever, the appearance of single spots within the streaks observed in the 

Fig. 24. . Diffraction pattern of monoclinic superstructure (P2,/n, Clh) with 
a - 6.781, b « 11.893, c - 15. 823 and S - 1 25.04°. Indices shown on the 
stereographic projection. This structure was obtained by beam heating of 
the particle. 

diffraction pattern for the sheared structure shown in fig. 21, showing 
that a new regular structure is being formed, seems to indicate that 
crystallographic shearing is more likely to take place for the fluorite-
related oxides before a superstructure is formed. 

4. 3. Observations Made on Particles Heat-Treated in Vacuum 

After the heat treatment in vacuum most of the diffraction patterns 
showed that the particles had broken up into poly crystalline, often textured 
aggregates, and it was very difficult to find patterns worth considering in 
greater detail. In a few cases, however, the (110) pattern shown in fig. 25 
was obtained - similar patterns were also observed in the beam-heated 
particles. 

From the figure it is clear that the extra spots do not lie in one specific 
direction, so the pattern does not originate from a structure formed by a 
crystallographic shearing mechanism. Assuming that twinning across the 
{112} planes has taken place, the extra spots can be accounted for as 
shown in fig. 26, and it seems as if twinning is also possible in this oxide 
system. 
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Fig. 25. (1 i 0) diffraction pattern for particle heat-treated in vacuum at 
1440°C for 1 25 h. The pattern shows extensive twinning (compare to fig. 26). 

(110) DIFFRACTION PATTERN WITH TWINSPOTS 

Tri-" 

SIGNATURE • 
• TWIN SPOT (TWIN PLANE (T12)J 
* - - ( - » lfl2)l 

Fig, 26. Calculated (11 **} diffracUon pattern for twinning on (11 2) and (il 2) 
respectively according to Hirsen (59). Near the centre spot matrix and 
twin spots form a hexagon, which is also observed in fig. 2%. Double dit 
fraction has not been considered in these calculations. 
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CONCLUSIONS 

Summariz ing the r e su l t s obtained in the present work, the following 

conclusions can be drawn regarding the thermodynamic proper t ies , phase 

re la t ionships and s t r uc tu r e s of the CeO„ , P u 0 0 and (U, Pu)O0 s y s t e m s : 

1) A detailed analysis of the thermodynamic data obtained by the rn io-

grav imet r i c equilibration measuremen t s in a tmospheres of controlled 

oxygen p r e s s u r e s (COp/CO mixtures) showed that the subs to ichiometr ic 

phase ranges for these oxides, which were previously descr ibed as 

g ross ly non-s to ichiometr ic single phases , can be divided into s e v e r a l 

subregions . Thermodynamical ly, each of the subregions can be de 

scr ibed by a cha rac te r i s t i c value of the figure n, which according to 

defect theories desc r ibes the type of defect predominantly formed in 

the non-s toichiometr ic oxides . The defect theor ies a r e , however, 

based on assumptions which seem not to be fulfilled in p rac t i ce -

randomly distr ibuted and non-interact ing defects - and no firm con

clusions regarding the actual defects present in the different sub-

regions could be drawn from the present resuUs. 

2) Using the phase rule c r i t e r i a for a binary oxide system in equil ibrium 

with a gas phase, the nature of the subregions was inferred. F o r the 

th ree oxide sys t ems investigated, tnis analysis showed that the sub-

regions with n * 6 found in the range O/M: 200-1 . 875 consis t of 

apparent non-s toichiometr ic single phases, whereas the n ) 6 regions 

found at g r ea t e r deviations from stoichiometry can be considered to 

consis t of a sequence of d i sc re t e o rdered phases separated by two 

phase regions. Besides these subregions, this analysis showed that 

d i sc re t e phases and two-phase regions not observed in previous s tudies 

a r e apparently formed for the PuO 0 sys tem in the composition range 
£å " X 

O/M"* 1. 995-1 . 950. A subregion consisting of two or m o r e d i sc re t e 

phases was also observed for the (U, P u ) 0 2 sys tem near the s to i 

chiometr ic composit ion. Neither have these phases been repor ted 

previously, although thei r existence can be inferred if the single data 

points of some of the previously published AG*Q versus composition 

curves a r e cons idered . 

3) Supporting evidence for the existence of the observed subregions i s 

a lso obtained from AJQ ve r sus T plots, which for constant com

position give a s t ra igh t line for each subregion. F u r t h e r m o r e , the 

re la t ive par t ia l enthalpies , AHn , calculated from the s lopes of these 
2 
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vacuum at 1440°C for 1 25 h. The electron diffraction patterns ob
tained, as well as dark and bright field images.showed that a lamellae 
structure was obtained in some of the beam heated particles. A model 
involving cry stallographic shearing along the {121 } planes is proposed 
to explain this observation. In other particles the formation was ob
served of a monoclinic superstructure that closely corresponds to the 
superstructure found by the high temperature X-ray analysis. Electron 
microscopy examination of particles heat treated in vacuum showed 
that twinning across the {l 12} planes can apparently also take place 
in these oxides. 
The results obtained in the present work show that high resolution 
electron microscopy studies are essential for a complete understanding 
of this complex oxide system, and further studies with this technique 
appear to be especially fertile for future research. 
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APPENDIX 

Construction and Testing of a Solid Electrolyte ZrQg(CaO) 

Cell for Measurements of Partial Pressure 

of Oxygen in Furnace Atmospheres 

In thermodynamic studies of oxides it i s very important that the oxygen 

pressures of the atmospheres used can be determined accurately and for 

the studies described in this thesis a solid electrolyte Zr02(CaO) ce l l was 

constructed. The theory and principle of this cel l , as well as its calibration, 

are described in this appendix. 

1. THEORY 

The most commonly used electrolyte for oxygen concentration ce l l s i s 

zirconia stabilized with calcia. Pure Z r 0 2 crystal l izes in a monoclinic 

(T < 1 200°C), tetragonal (1 200 < T < 2200°C) and cubic structure (T > 2200^) 

(1), but by addition of CELO from 1 2. 5 to 22. 5 mole % the cubic form can be 

stabilized to low temperatures (2). The non-stabilized structures show both 

ionic (3) and electronic conductivity (4, 5), whereas the stabilized cubic 

Zr0 2 -CaO solid solutions show predominantly ionic conductivity within 

certain oxygen pressure ranges (6, 7), which makes these oxides especially 

suitable for oxygen concentration ce l l s . By X-ray intensity measurements 

it has been shown (8) that, when added to ZK>2, the divalent Ca-ions re

place the tetravalent Zr- ions preferably on the (000) + fee s i tes . Further

more a corresponding number of oxygen vacancies in the anion lattice i s 

formed to compensate for the charge difference between the Ca- and the 

Zr-ions; it i s believed that these oxygen vacancies are responsible for the 

extensive ionic conductivity in these oxides. 

The emf for a reversible cel l of the type 

Pt/P»Q | Z r 0 2 ( C a O ) | P £ / P t 

is given by (9): 

°2 
E * TP J 'ion d>02 

u • 
°2 

0) 

(2) 



where F is the Faraday equivalent, H'Q^ and HQ the chemical potentials 

of oxvgen on the two sides of the solid electrolyte, and t- the ionic trans 
J * ion 

port number. According to the definition of chemical potentials 

>o, = >o2
 + R T to p o 2 <3> 

and for t. = 1 the following expression can be obtained for E from 

equation 2: 

P" O 
KT ' 

E = -re- In pr-= . (4) 
* 0 9 

At constant temperature a linear relationship thus exists between E 

and log P Q / P Q , and if, for instance, P Q i s kept constant by a con

tinuous supply of air to this side of the electrode, the partial pressure of 

oxygen on the other side can be found by measuring the emf of the ce l l . 

Within a certain range of partial pressure of oxygen (100 * P 0 ^ 
- >2 5 2 

10 " " atm) the electrical conductivity of Zr02(CaO) i s entirely ionic 

(6, 7, T0)andeq. (4) applies directly. Outside these l imits , however, the 

electronic conductivity of the electrolyte becomes important. As the m o 

bility of electrons i s much higher than that of ions (14), and thus their con

tribution to the total conductivity i s large, eq. (4) no longer applies, s ince 
6. 

Hon ' T. +T~1 ( 5 ) 

ion el 

i s no longer equal to one. For the oxygen pressures where conduction of 

electrons becomes important, the emf for the cell will be changed ac

cording to (1 2): 

> 2 
E = T T l n P 0 2 / P b 2 " J ^d"o2

 ( 6 ) 

where t . = electronic transport number. 

This equation, which can be derived from eq. (2) assuming that t. + 

1 = 1 , shows that the linear relationship between E and log P Q / P Q 

can no longer be expected when electronic conduction takes place, but that 

a decrease in E with increasing electronic conduction will be observed. 
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Besides electronic conduction, diffusion of oxygen molecules through 

the electrolyte will also limit the maximum tempera ture for these cel ls . 

This has not been examined for Z r 0 2 stabilized with CaO, but for ZrOg-MgO 

solid solutions, MSbius and Hartung (1 3) showed that diffusion of oxygen 

through this mater ial takes place from about 850 C and that it increases 

exponentially with tempera ture . How serious the oxygen diffusion will be 

in an actual experimental set-up depends upon the geometry and the gas 

velocities used. It is also questionable how representat ive the permeability 

determined by MSbius and Hartung will be both for other MgO-stabilized 

Z r 0 2 materials and for Z r 0 2 - C a O . Apparently oxygen diffusion in these 

materials takes place as grain boundary diffusion and not through porosi t ies, 

or as volume diffusion. The permeability thus depends upon the fabrication 

technique and the content of impurit ies, which factors both influence the 

grain size of the mater ia l . To avoid e r ro r s due to molecular diffusion of 

oxygen through the cel ls , the maximum temperature should be limited, 

however, to about 11 00 C until these problems have been examined more 

thoroughly. 

There also seems to exist a lower temperature below which cell m e a s 

urements become unreliable. This has been explained by the formation of 

Pt-oxides on the Pt-e lect rodes (14), which destroys the equilibrium between 

the electrodes and the electrolyte. If Pt-oxides a re formed, they dispro

portionate at about 500°C (1 9), and it seems advisable not to work at tem

peratures lower than 700-800 C to avoid this trouble. This is also in ac

cordance with Tretyakov (10), who claims that the lower temperature limit 

for Zr02(CaO) cells is about 700°C. 

2. DESCRIPTION AND CONSTRUCTION OF CELL 

2 . 1 . Materials and Method of Construction 

The cell was constructed from a Degussit ZR23 tube closed at one end. 

It had the following dimensions: 

Outside diameter: 12.5 mm 

Wall thickness: 2.0 mm 

Length; 300 mm 

The CaO content was analyzed to be 1 3. 8 mole%. X-ray analysis 

showed the tube material to be single-phase solid solution with a lattice 
o 

parameter of 5.11 344 A. 
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Porous platinum electrodes were applied inside and outside at the 

closed end of the tube and on an outside track along the tube by painting 

with platinum paste and firing in air at about 1000 C for about 5 hours using 

a heating and cooling rate of 100 C/h to avoid cracking the tube. After the 

first firing the electrode at the closed end of the tube appeared to be bright 

and to have good adherence, but a few bubbles had been formed in the track. 

To obtain low electrical resistance over the external electrode, the track 

was therefore repainted and refired twice, after which a resistance of 9 Q 

could be measured over this electrode. 

2. 2. Principle of the Cell 

The principle of the cell is shown schematically in fig. 1 A. 

ZrOg-CaO 
DegussitZr23 

A l2°3 
support tube 

AU0 3 4 bore TC 
protection tube 
Pt contact wire 

Pt-l0%RhPt 
thermocouple 

Ptdisc 
External electrode 
Internal electrode 

'Air 
(ref. gas) 

\\. - 300 

J2£u 

Fig. 1A. Principle of Zr<>2 (CaO) cell. 

Contact to the internal platinum electrode was obtained with a platinum 

wire welded to a thin platinum disk that was pressed against the electrode 

with an aluminium support tube. A four-bore thermocouple protection tube 

placed inside this tube contained the contact wire as well as a Pt /Pt , Rh(1 0%) 

thermocouple. With flanges fastened gas-tight to the Zr0 2 - tube and to the 

support tube, the system was arranged so that the reference gas could be 

supplied to the internal electrode through the support tube and then leave 
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the system through the space between the Zr0 2 - tube and the support tube. 

3. CALIBRATION OF THE CELL 

3 .1 . Experimental 

The cell was calibrated in C0 2 /CO mixtures in the experimental set up 

shown schematically in fig. 2A. 

•8P 
Flow metan G»* mixer Molecular »eve* 4A 

CO-, 

sctrr 

CuO Cu 

Furnace 500°C 

-—e 

Zr02(CeO) cell 

Furnace for cell 

H2SO4 Dosage pump H2SO4 Molecular sieves 4A 

Fig. 2A. Experimental set-up for testing of the Zr02 (CaO) cell. 

It consists of a gas sysiem for purification and mixing of CO2 and CO 

in the desired ratios and for the supply of Argon and air (reference gas) as 

well as a furnace in which the cell was placed in a Mullite tube. The cell 

was calibrated with C0 2 /CO mixtures with the ratios 4 /1 ; 2/3; 1/4; 1/10; 

1 /100 and 1 /1 000 at 800, 950 and 11 00°C. The purity of the gases was 

checked by gas chromatographic analysis, which showed the following im

purity contents; 

CO: 

CO. 

*0. 03% 0 2 ; *0.06%N2 ; C0 2 not detected 

*0. 5% air. 

A difficulty often observed in experiments with gas mixtures is the 

segregation of the components due to thermal diffusion (I 5). In a exper

imental arrangement similar to our set-up Darken and Gurry (1 6) showed 

that for a 74% CO-26% C0 2 mixture the reduction in the CO content due to 
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thermal segregation could amount to 2.4% with a flow rate of 0.05 cm/sec , 

whereas this segregation was reduced to 0. 2% at flow rates of 0. 6 cm/sec 

or higher. Obviously flow rates lower than 0. 6 cm/sec should be avoided 

and a gas flow of 20 1/h, corresponding to about 1 cm/sec in the cell fur

nace, was used in practically all the tes t s . In order to evaluate this effect 

a few tests were also carried out with a flow rate of 1 0 and 30 1/h. 

The emf of the cell was measured with a digital voltmeter (Micro-

voltmeter M 441, Wagner Digital Elektronik, Berlin). 

3. 2. Theoretical emf Values 

For the equilibrium between CO, and CO 

C 0 2 * CO + ^ 0 2 : 

co2 
l o g P Q 2 - 2 1 o g K + 2 1 o g L - n ^ - j i (7) 

where K = equilibrium constant and 

rco2 
AA' i .= initial mixing ratio. 

This equation applies as long as the CO„/CO ratio is less than 100 (or 

vol% CO > 1) (1 7), whereas for [ C 0 2 / C O ] i > 100, the concentrations of 0 2 

and CO become comparable and a more accurate expression must be used. 

In section 1 it was shown that 

E - W l n P o 2 / P b 2 - (8) 

when electronic conduction is neglected. Using air as a reference gas 

( P n = 0. 21 atm), and substituting log P n from eq. (7) into eq. (8), the 
2 2 

following expression is obtained for the emf values: 

rccv 
E = - 0.03369 x T - 0.0496 x T (2 log K+ 2 logi -^r- ) (9) 

3. 3. Results and Discussion 

The emf values measured at 800, 950 and 11 00°C are plotted in fig. 3A 

as a function of the oxygen pressures in the C0 2 /CO mixtures used together 

with the theoretical emf values calculated from eq. (9) using the equilibrium 

constants given by Zeise (1 8), 
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Fig. 3A. Measured emf values as a function of log PQ for C02/CO mixtures. 

As shown in the figure the measured emf values vary linearly with 

log p 0 above a certain oxygen pressure in accordance with the theoretical 

predictions. The values measured in this pressure range also closely 

correspond to the theoretical emf values, which were calculated under the 

assumption that t, = 1, and obviously the cell shows ionic conductivity in 

this range. At lower oxygen pressures, however, the measured emf values 

deviate significantly from the theoretical linear relationship indicating that 

electronic conduction becomes important. 

For the three temperatures used in this work this effect is observed 

below the following oxygen pressures: 

1U"21 atm at 800°C 

10~1 9 atm at 950°C 

10" 1 7 * 5 atm at 11 00°C 
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which give che lowest pressure limits at which it is recommended to use 

this cell. Compared to the critical pressures given in the li terature for 

Zr02(CaO), somewhat higher values are observed for this cell, probably 

because of a higher content of impurities in the commercial tube material 

used in this work. 

In order to standardize the measurements a fixed temperature of 

1000°C was chosen for the cell in the thermodynamic experiments. The 

calibration curve for this temperature, which was also determined with 

C0 2 /CO mixtures, is shown in fig. 4A. 

EMF mV 

1000 

500 

Theoretical 
curve 

/ 

/ 

/ 

F i | ) C»UhT»tioft e»r»« lot 
JrH <Ca0) c*tl ét 1000*C 

-i 1 i _ _ _ L 
6 8 10 12 14 16 18 20 

-•09 p(02) 

Fig. 4A. Calibration curve for the Z r 0 2 (CaO) cell at 100Q°C. 
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