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ABSTRACT  
Azimuthal mode (µµµµ mode) truncation of a high-order 
probe pattern in probe-corrected spherical near-field 
antenna measurements is studied in this paper. The 
results of this paper provide rules for appropriate and 
sufficient µµµµ-mode truncation for non-ideal first-order 
probes and odd-order probes with approximately 
10dBi directivity. The presented azimuthal mode 
truncation rules allow minimizing the measurement 
burden of the probe pattern calibration and reducing 
the computational burden of the probe pattern 
correction. 
  
Keywords: Near-field measurement, probe correction.  

1.0 Introduction 

Probe-corrected spherical near-field measurements are an 
accurate technique for antenna pattern characterization 
[1]. In such measurements, truncated form of the 
spherical wave expansion is typically used for pattern 
modeling of both the antenna under test and the probe. It 
is often assumed that the probe is a so-called first-order (µ 
= ±1) probe [2] and, in modeling of the probe pattern, 
only the first-order azimuthal pattern variations are 
present, while the other azimuthal modes are assumed 
zero.   

Recently, higher-order probe correction techniques have 
gained a lot of interest among the antenna measurement 
research community [3]-[7]. In the application of such 
techniques, in addition to the azimuthal modes with µ = 
±1, also the azimuthal modes with µ ≠ ±1 are included in 
the modeling of the probe pattern. This facilitates the use 
of very wideband antennas as probes [8]. 

The purpose of this paper is to study how the truncation 
of the azimuthal modes of the probe is to be performed in 
probe-corrected spherical near-field antenna 
measurements with high-order probes. The results of this 
paper provide rules for appropriate and sufficient µ -mode 
truncation for a probe with approximately 10dBi 
directivity. The study is based on computer simulations, 

and two classes of probe are taken for a detailed 
investigation. The first class of probes represents non-
ideal first-order probes whereas the other class of probes 
represents odd-order probes. The presented µ-mode 
truncation rules allow minimizing the measurement 
burden of the probe pattern calibration and reducing the 
computational burden of the probe pattern correction. 

This paper is organized as follows. Section 2.0 describes 
the background theory. Computer calculations are 
presented in Section 3.0. Section 4.0 is devoted to results 
and Section 5.0 presents the conclusions.  

2.0 Background theory 

The background theory for the study of this paper is based 
on the theory of the probe-corrected spherical near-field 
antenna measurements presented in [2]. According to this 
theory, the AUT and the probe patterns are described by 
means of spherical wave expansion (SWE). Through the 
use of the spherical wave rotations and translations, the 
so-called transmission formula is established that 
provides an analytical formula for the received signal of 
the probe as a function of the unknown spherical vector 
wave coefficients (Q coefficients) of the AUT pattern. 
The solving of the transmission formula for the Q 
coefficients and calculation of the far field from the SWE 
of the AUT pattern constitutes essentially the probe-
corrected near-field to far-field transformation.  

The SWE of the probe is expressed as  
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where (r’, θ’ ,φ’ ) are the standard spherical coordinates of 
the probe coordinate system, k is the wave number, η is 
the intrinsic admittance of the medium, vmax and µmax are 
the truncation numbers for the spherical wave expansion, 

σµνR  are the probe receiving coefficients, and 

 are the spherical vector wave functions [2].  ),,()3( φθrFsmn



3.0 Calculations 

Our interest is now to study by computer calculations the 
effects of the truncation of the µ-mode summation in Eq. 
(1) on the accuracy of the far-field determination in 
probe-corrected spherical near-field antenna 
measurements. The double φ-step θ-scanning technique 
and the associated high-order probe correction technique 
[3] and also the φ-scanning technique and the associated 
high-order probe correction technique [4] are included in 
the study. These calculations are described in this section. 

3.1 AUT models 

In total 4 different AUT models (AUT1 to AUT4) are 
applied in the calculations. Each AUT model consists of 4 
x-oriented Huygens sources located on the corners of a λ 
× λ square on z plane. Each Huygens source has the same 
phase and maximum radiation in the +z-axis direction. 
The 4 AUT models differ from each other only in the 
location of the centre of the Huygens source square. For 
the AUT1 to AUT4, the (x, y, z) coordinates of the centre 
of the Huygens source square are (0, 0, 0)λ, (1, 0, 0)λ, (2, 
0, 0)λ, and (3, 0, 0)λ, respectively. In other words, the 
AUT1 is centred in the AUT coordinate system, and in 
the case of the AUT2 to AUT4, the Huygens source 
square is located at an offset distance along +x axis from 
the centre of the AUT coordinate system. The patterns of 
AUT1 to AUT4 are the same expect for the phase. The 
co-polar directivity of the AUT1 is presented in Fig. 1.  

 

Figure 1 - The co-polar directivity of AUT1 for φ φ φ φ = 0° 
plane. The co-polar directivity is the same for the φ φ φ φ = 

90° plane.  

3.2 Probe models 

The starting point for creating high-order probes for this 
study was the creation of a first-order probe consisting of 
9 x-oriented electric Hertzian dipoles located with λ/4 
intervals on z axis from z = −λ to λ range. The excitations 
of the dipoles 1 to 9 are exp(−jpπ/2) where p = −4…4 for 
dipole 1…9, respectively. The main beam of the probe is 
pointed towards –z axis, that is, towards the centre of the 

AUT coordinate system in the computer calculations. The 
pattern of this probe with the main beam pointed towards 
+z-axis direction is shown in Fig. 2. The maximum co-
polar directivity of this first-order probe is 10 dBi.  

 
Figure 2 - The pattern of the first-order probe 

consisting of 9 x-oriented electric Hertzian dipoles 
located with λλλλ/4 intervals on z axis from z = −λ−λ−λ−λ to λλλλ 

range. 
 
Next, for the purposes of this study, two different classes 
of high-order probes are created by exploiting the first-
order probe consisting of 9 electric Hertzian dipoles.   

For the first class of high-order probes, first the receiving 
coefficients (R1−1ν, R11ν, R2−1ν, R21ν for ν = 1 … νmax) of 
this first-order probe are calculated. Then, for each fixed 
ν, the receiving coefficients with R10ν are R20ν are given 
random values αexp(jβ2π), where α is a real-valued 
amplitude, and β is a random number between 0 and 1, 
such that the power in mode with R10ν is the same as the 
power in mode with R20ν (that is, α is the same for these 
two, but the β is generally different) and the total power 
in modes with R10ν and R20ν is X dB below the power in 
modes with R1−1ν, R2−1ν, R11ν and R21ν . Further, for each 
fixed ν (for ν > 1) and for each fixed µ = 2…v the 
receiving coefficients with R1−µν , R2−µν, R1µν, and R2µν are 
similarly given random values αexp(jβ2π) such that the 
power in all modes R1−µν , R2−µν, R1µν, and R2µν is the 
same, and the total power in modes with R1−µν , R2−µν, 
R1µν, and R2µν is X dB below the power in modes with 
R1−1ν, R2−1ν, R11ν and R21ν. The X is chosen in this study to 
be −20 dB or −30 dB. In this paper, the 2 different cases 
are referred to as the probe with X = −20 dB and −30 dB. 
In this way, power spectra shown in Figs. 3(a)-(b) are 
obtained for the probes with X = −20 dB and −30 dB. 

The second class of probes comprises in total 27 electric 
Hertzian dipoles. Nine of these 27 dipoles are the same as 
those of the above-described first-probes with the 
amplitude of each of the excitation coefficients equalling 
to 1. The remaining 18 dipoles are located similarly (in 
sets of 9 dipoles) with λ/4 intervals in the z = −λ to λ 
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range. The first set of 9 dipoles is located on the y-z plane 
(x = 0) at the distance of 1 λ towards +y-axis direction 
parallel to the z axis, and the other set of 9 dipoles is 
located on the y-z plane (x = 0) at the distance of 1 λ 
towards −y-axis direction parallel to the z-axis. The 
excitations for the two sets of 9 dipoles, that are not 
located on z axis, are γ times the excitations of the 
corresponding dipoles located on z axis. The γ is given 
values of 1, 0.3 and 0.1 in order to create odd-order 
probes with varying spherical azimuthal mode power in 
modes with µ = 3, 5, 7 etc. Later in this paper, these 
different cases are referred to as probes with γ = 1, 0.3 
and 0.1. The normalised spherical µ-mode power spectra 
for these probes are shown in Figs. 4(a)-(c).  

 
(a) 

 

(b) 

Figure 3 - The normalised spherical µµµµ-mode power 
spectra for the probes with X = −−−−20 dB (a) and X = 

−−−−30 dB (b). 

3.3 Computer calculations 

First, for each probe model, the probe received signals are 
calculated from the transmission formula for the 
measurement distance r = 6λ for each AUT model. The 
truncation numbers for the AUT1 to AUT4 are N = M = 
12, 18, 24, and 30, respectively. Here N and M are the 

truncation numbers of the SWE of the AUT pattern and 
correspond to those of νmax and µmax of the SWE of the 
probe pattern [2]. Then, in the application of the probe 
correction technique based on the double φ-step θ-
scanning, the probe signals for two polarizations of the 
probe are calculated for those θ and φ angles that 
correspond to the sampling parameter values of Nθ’ = 2(N 
+ 1) and Nφ’ = M + 3 of the double φ-step θ-scanning 
technique [3]. In the case of the probe correction 
technique based on the φ-scanning the probe signals are 
calculated for those θ and φ angles that correspond to the 
values of Nθ = N + 2 and Nφ = 2M + 6. Next, the probe 
correction technique associated with the double φ-step θ-
scanning scheme and that associated with the φ-scanning 
scheme are applied on the received signals to calculate the 
estimated Q coefficients of each AUT models for varying 
µ-mode truncation numbers for µmax = 1 to 7. The radiated 
far field associated with each set of these Q coefficients is 
then calculated. In this way, in total 2×181×360 = 130320 
estimated far-field values are obtained for each examined 
case. Here, the number 2 refers to two polarizations of the 
far field, the number 181 refers to the number of θ angles 
and the number 360 refers to the number of φ angles.  
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(c) 

Figure 4 - The normalised spherical µµµµ-mode power 
spectra for the probe with γγγγ = 1 (a), γγγγ = 0.3 (d) and γγγγ = 

0.1 (e).   

4.0 Results 

Example results from the calculations are presented in 
Fig. 5 for AUT2 with the high-order probe with X = −30 
dB for µmax = 1, where the amplitude errors ε in terms of 
|20log10(Ep)−20log10(Ec)|, where Ep and Ec  are the 
estimated (with a certain µmax) and correct far-field 
values, respectively, are plotted as a function of q, where 
q is the level of the far-field value compared to the 
maximum far-field value. It can be stated from the results 
that for the first class of probes, generally, the double φ-
step θ-scanning scheme provides slightly more accurate 
estimate of the far field than the φ-scanning scheme for a 
fixed value of µmax. For the second class of probes both 
schemes provide the same results.  

 

Figure 5 - The amplitude [εεεε, dB] errors for double φφφφ-
step θθθθ-scanning scheme (solid line) and for φφφφ-scanning 

scheme (dashed line) for AUT2 with the high-order 
probe with X = −−−−30 dB for µµµµmax = 1 as a function of the 
level of the far-field value compared to the maximum 

far-field value 

 
In Tables 1-5, the required truncation numbers for 
reaching an amplitude uncertainty of emax (in terms of ε in 
dB) or lower and phase uncertainty of dmax or lower are 
presented for different ratios r/r0 for a given q range for 
all probe and AUT models for the case with double φ-step 
θ-scanning scheme. The dmax is determined in terms of 
|Ang(Ep)−Ang(Ec)| values, where “Ang” gives the phase 
angle of a far-field component. The r/r0 refers to the ratio 
between the measurement distance and the radius of the 
AUT minimum sphere. Hence, the cases with r/r0 ≈ 8.5, 
3.8, 2.4 and 1.7 refer to AUT1 to AUT4, respectively.  

The results for the first class of probes are presented in 
Tables 1 and 2. In summary, it can be stated from the 
results that for the case of the probe with the relative 
power of X = −30 dB of the higher-order modes, the 
correction for the µ-modes up to µmax = 1 was sufficient 
for reaching the maximum error of less than 0.1 dB in the 
co-polar directivity in the q range of 0 to −10 dB for r/r0 ≈ 
3.8 or higher. The values of µmax = 2 and 4 were required 
for r/r0 ≈ 2.4 and 1.7, respectively. The same values of 
µmax were actually required also for reaching the 
maximum phase error of 0.5° or less. The errors gradually 
increase with increasing level of power in modes with |µ| 
≠ 1 with respect to the power in modes with |µ| = 1.  

The results for the second class of high-order probes are 
presented in Tables 3 to 5. The results, for example, for 
the probe with the relative power in the third, fifth and 
seventh order µ modes of the order of −5 dB, −12 dB, and 
−22 dB (γ = 1.0 case) show that µmax = 2 is sufficient for 
reaching the maximum error of less than 0.1 dB in the co-
polar directivity in the q range of 0 to −10 dB for r/r0 ≈ 
3.8 or higher, and µmax = 7 is required for r/r0 ≈ 2.4 and 
r/r0 ≈ 1.7. The results for the phase follow the same trend. 
With decreasing power in the higher order modes, the 
required truncation numbers gradually decrease.  

5.0 Summary and conclusions 

The effects of the azimuthal spherical mode truncation of 
the probe pattern on the accuracy of the far-field 
determination with non-ideal first-order probes and odd-
order probes with a 10-dBi directivity have been studied. 
The results of this paper provide azimuthal mode 
truncation rules that allow minimizing the measurement 
burden of the probe pattern calibration and reducing the 
computational burden of the probe pattern correction. 
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Table 1: The required truncation number for a probe with X = −20 dB.  
 Amplitude Phase 
q range 
[dB] 

emax, 

[dB] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 dmax, 

[deg.] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 

0 … −10 0.1 1 1 2 4 0.5 1 1 3 4 
 0.2 1 1 2 4 1.0 1 1 3 4 
 0.5 1 1 1 4 3.0 1 1 1 4 
 1.0 1 1 1 3 5.0 1 1 1 4 
0 … −20 0.1 1 3 3 6 0.5 1 3 4 6 
 0.2 1 3 3 5 1.0 1 3 3 6 
 0.5 1 1 2 4 3.0 1 1 2 4 
 1.0 1 1 2 4 5.0 1 1 2 4 
0 … −30 0.1 2 3 5 7 0.5 2 3 5 7 
 0.2 1 3 4 6 1.0 1 3 5 7 
 0.5 1 3 3 6 3.0 1 3 3 5 
 1.0 1 1 2 4 5.0 1 1 3 4 
0 … −40 0.1 2 3 5 7 0.5 2 4 5 7 
 0.2 2 3 5 7 1.0 2 3 5 7 
 0.5 1 3 5 6 3.0 1 3 5 7 
 1.0 1 3 3 6 5.0 1 3 3 6 
 

Table 2: The required truncation number for a probe with X = −30 dB.  
 Amplitude Phase 
q range 
[dB] 

emax, 

[dB] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 dmax, 

[deg.] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 

0 … −10 0.1 1 1 2 4 0.5 1 1 2 4 
 0.2 1 1 1 4 1.0 1 1 1 4 
 0.5 1 1 1 2 3.0 1 1 1 2 
 1.0 1 1 1 1 5.0 1 1 1 1 
0 … −20 0.1 1 1 3 5 0.5 1 2 3 5 
 0.2 1 1 3 5 1.0 1 1 2 4 
 0.5 1 1 2 4 3.0 1 1 2 4 
 1.0 1 1 1 2 5.0 1 1 1 3 
0 … −30 0.1 1 3 4 6 0.5 1 3 4 7 
 0.2 1 2 3 5 1.0 1 3 3 6 
 0.5 1 1 3 5 3.0 1 1 2 4 
 1.0 1 1 2 4 5.0 1 1 2 4 
0 … −40 0.1 1 3 4 7 0.5 2 3 4 7 
 0.2 1 3 4 7 1.0 1 3 4 7 
 0.5 1 2 3 5 3.0 1 3 3 6 
 1.0 1 1 3 5 5.0 1 2 3 5 



Table 3: The required truncation numbers for a probe with γ = 1.0.  
 Amplitude Phase 
q range 
[dB] 

emax, 

[dB] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 dmax, 

[deg.] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 

0 … −10 0.1 2 2 7 7 0.5 1 3 7 9 
 0.2 1 2 5 7 1.0 1 2 5 7 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 5 5.0 1 2 5 5 
0 … −20 0.1 2 3 7 9 0.5 2 3 7 9 
 0.2 2 3 7 7 1.0 1 3 7 9 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
0 … −30 0.1 2 3 7 9 0.5 2 3 7 9 
 0.2 2 3 7 9 1.0 2 3 7 9 
 0.5 1 3 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
0 … −40 0.1 2 3 7 9 0.5 2 3 7 9 
 0.2 2 3 7 9 1.0 2 3 7 9 
 0.5 2 3 7 9 3.0 1 3 7 9 
 1.0 1 3 5 7 5.0 1 3 7 9 
 

Table 4: The required truncation numbers for a probe with γ = 0.3. 
 Amplitude Phase 
q range 
[dB] 

emax, 

[dB] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 dmax, 

[deg.] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 

0 … −10 0.1 1 2 5 7 0.5 1 2 5 7 
 0.2 1 2 5 7 1.0 1 2 5 7 
 0.5 1 2 5 5 3.0 1 2 5 5 
 1.0 1 2 3 5 5.0 1 2 3 5 
0 … −20 0.1 2 3 5 7 0.5 1 3 7 7 
 0.2 1 2 5 7 1.0 1 2 5 7 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
0 … −30 0.1 2 3 7 9 0.5 2 3 7 9 
 0.2 1 3 5 7 1.0 1 3 7 7 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
0 … −40 0.1 2 3 7 9 0.5 2 3 7 9 
 0.2 2 3 7 9 1.0 1 3 7 9 
 0.5 1 3 7 7 3.0 1 3 7 7 
 1.0 1 3 5 7 5.0 1 2 5 7 
 

Table 5: The required truncation numbers for a probe with γ = 0.1.  
 Amplitude Phase 
q range 
[dB] 

emax, 

[dB] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 dmax, 

[deg.] 
r/r0 ≈ 8.5 r/r0 ≈ 3.8 r/r0 ≈ 2.4 r/r0 ≈ 1.7 

0 … −10 0.1 1 2 5 7 0.5 1 2 5 7 
 0.2 1 2 5 5 1.0 1 2 5 5 
 0.5 1 1 3 5 3.0 1 1 3 5 
 1.0 1 1 3 5 5.0 1 1 3 5 
0 … −20 0.1 1 2 5 7 0.5 1 2 5 7 
 0.2 1 2 5 7 1.0 1 2 5 7 
 0.5 1 2 5 5 3.0 1 2 3 7 
 1.0 1 2 3 5 5.0 1 2 3 5 
0 … −30 0.1 1 3 5 7 0.5 1 2 5 7 
 0.2 1 2 5 7 1.0 1 2 5 7 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
0 … −40 0.1 2 3 7 9 0.5 1 3 7 9 
 0.2 1 3 5 7 1.0 1 3 7 9 
 0.5 1 2 5 7 3.0 1 2 5 7 
 1.0 1 2 5 7 5.0 1 2 5 7 
 


