
A Fully Portable High Performance Minimal Storage

Hybrid Format Cholesky Algorithm

Bjarne S. Andersen

UNI•C Danish IT Center for Education and Research

and

John A. Gunnels and Fred G. Gustavson

IBM T.J. Watson Research Center

and

John K. Reid

Atlas Centre, Rutherford Appleton Laboratory

and

Jerzy Waśniewski

Technical University of Denmark

We consider the efficient implementation of the Cholesky solution of symmetric positive-definite
dense linear systems of equations using packed storage. We take the same starting point as
that of LINPACK and LAPACK, with the upper (or lower) triangular part of the matrix being
stored by columns. Following LINPACK and LAPACK, we overwrite the given matrix by its
Cholesky factor. We consider the use of a hybrid format in which blocks of the matrices are
held contiguously and compare this to the present LAPACK code. Code based on this format
has the storage advantages of the present code, but substantially outperforms it. Furthermore, it
compares favourably to using conventional full format (LAPACK) and using the recursive format
of Andersen, Gustavson, and Waśniewski.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra –
Linear Systems (symmetric and Hermitian); G.4 [Mathematics of Computing]: Mathematical
Software

General Terms: Algorithms, BLAS, Performance.

Additional Key Words and Phrases: real symmetric matrices, complex Hermitian matrices, pos-
itive definite matrices, Cholesky factorization and solution, recursive algorithms, novel packed
matrix data structures, linear systems of equatons.

1. INTRODUCTION

It was apparent by the late 1980s, when the Level-3 BLAS [Dongarra et al. 1990]
were designed, that blocking would be needed to obtain high performance on com-

Authors’ addresses: B. A. Andersen, UNI•C, Building 304, DTU Lyngby, Denmark DK-2800;
J.A. Gunnels and F.G. Gustavson, IBM T.J. Watson Research Center, Yorktown Heights NY,
10598, USA; J. K. Reid, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11
OQX, UK; J. Waśniewski, Department of Informatics and Mathematical Modeling, Building 305,
DTU Lyngby, Denmark DK-2800.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13757909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

puters with multi-level memory systems (see, for example, Calahan [1986], IBM
[1986], and Gallivan, Jalby, Meier, and Sameh [1987]). This approach is now firmly
established. More recently, it has become recognized that the most significant
Level-3 BLAS is GEMM, which performs the computation

C = αop(A)op(B) + βC (1)

where A, B, and C are matrices held in conventional full storage, op(A) is A or
AT , op(B) is B or BT , and α and β are scalars. Agarwal, Gustavson, and Zubair
[1994] and, later, Whaley, Petitet, and Dongarra [2000], point out that this can
be performed particularly efficiently when op(A) = AT and op(B) = B on any
cache-based machine if A is small enough to remain in the level-1 cache while the
columns of B and C are read into the cache and the changed columns of C are
written out. The cache does not need to be big enough to hold all three arrays;
rather, it needs to be big enough to hold A and a few columns of B and C. This
mode of working is called ‘streaming’. Note that it requires B and C to be held
by columns. Multiplying by AT rather than A facilitates the calculation of inner
products.

If A is too big for the cache or B or C is not held by columns, the benefits
of streaming may be obtained by making copies in contiguous memory of blocks
of a suitable size. We will refer to this as ‘data copy’. For very large matrices,
this will be an insignificant overhead, but for medium-sized blocks arising within a
bigger calculation such as Cholesky factorization, the data-copy overhead may be
significant.

On a computer with a single level of cache, it is easy enough to choose a suit-
able block size. With more than one level of cache, nested blocking is desirable
and Gustavson [1997], Chatterjee, Jain, Lebeck, Mundhra, and Thottethodi [1999],
Valsalam and Skjellum [2002], and Frens and Wise [1997] achieve this by recursive
nesting, which has the added advantage that there is no need to choose a block size.
In [Waśniewski et al. 1998; Andersen et al. 2001; Andersen et al. 2002], the recursive
blocking is applied to triangular matrices in full and packed storage format.

In designing the Level-3 BLAS, Dongarra, Du Croz, Duff, and Hammarling [1990]
chose not to address packed storage schemes for symmetric, Hermitian or triangular
matrices because ‘such storage schemes do not seem to lend themselves to parti-
tioning into blocks ... Also packed storage is required much less with large memory
machines available today’. In this paper, our aim is to demonstrate that packing is
possible without any loss of performance. While memories continue to get larger,
problems that people solve get larger too and there will always be an advantage in
saving storage.

We achieve this by using a blocked hybrid format in which each block is held
contiguously in memory. It avoids the data copies that are inevitable when Level-3
BLAS are applied to matrices held conventionally in rectangular arrays. Note, too,
that many data copies may be needed for the same submatrix in the course of a
Cholesky factorization [Gustavson 1997].

The rest of the paper is organized as follows. Our proposed blocked hybrid format
for a lower-triangular matrix is explained in Section 2. How Cholesky factorization
and solution of equations can be implemented using this format is described in
Sections 3 and 4, respectively. In Section 5, we consider the lower-triangular case

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 3

1a. Lower Packed Format
0
1 10
2 11 19

3 12 20

4 13 21
5 14 22

∣

∣

∣

∣

∣

27

28 34
29 35 40

6 15 23
7 16 24
8 17 25

∣

∣

∣

∣

∣

30 36 41
31 37 42
32 38 43

∣

∣

∣

∣

∣

45
46 49
47 50 52

9 18 26
∣

∣ 33 39 44
∣

∣ 48 51 53
∣

∣ 54

1b. Lower Blocked Hybrid Format
0
1 2
3 4 5

6 7 8

9 10 11
12 13 14

∣

∣

∣

∣

∣

27

28 29
30 31 32

15 16 17
18 19 20
21 22 23

∣

∣

∣

∣

∣

33 34 35
36 37 38
39 40 41

∣

∣

∣

∣

∣

45
46 47
48 49 50

24 25 26
∣

∣ 42 43 44
∣

∣ 51 52 53
∣

∣ 54

Fig. 1. Lower Packed and Blocked Hybrid Formats.

similarly. A kernel code for triangular factorization of the blocks on the diagonal
of our blocked form is needed and we explain this in Section 6. The results of
performance testing, with comparisions against conventional full format (LAPACK)
and the recursive format of Andersen, Gustavson, and Waśniewski, are given in
Section 7. We also show the (much inferior) performance of the LAPACK code for
packed format that relies on Level-2 BLAS. Our conclusions are drawn in Section
8.

2. LOWER PACKED FORMATS

The form of packed storage used by LINPACK [Dongarra et al. 1979] is that the
upper-triangular part is held by columns. The Level-2 BLAS [Dongarra et al.
1988] and LAPACK [Anderson et al. 1999] permit the lower-triangular or upper-
triangular part to be held by columns. We refer to these as the lower and upper
packed formats, respectively. We show an example of the lower packed format in
Figure 1a, with blocks of size 3 superimposed. In this and all the other figures that
illustrate formats, we show where each matrix element is stored within the array
that holds it.

It is apparent that the blocks are not suitable for passing to the BLAS since the
stride between elements of a row is not uniform. We therefore propose to rearrange
each trapezoidal block column so that it is stored by blocks with each block in
row-major order, as illustrated in Figure 1b. Unless the order is an integer multiple
of the block size, the final block will be shorter than the rest. Later in this section,
we will explore alternative formats. We assume that the block size is chosen so that
a block fits comfortably in level-1 cache. We defer discussion of the upper packed
format to Section 5.

If the matrix order is n and the block size is nb, this rearrangement may be
performed efficiently in place with the aid of a buffer of size n×nb. For each block
column, we copy the data to the buffer, reordering it so that it is held by rows in
packed format, then copy the data back, overwriting the original block column. To
reduce cache misses, the blocks are copied one by one, each copy being completed
before the next is commenced. Within each block, we access the columns one by
one and copy each to its new position. Little cache memory will be needed for the
original columns and the whole block in the buffer should remain in the cache until
its last column has been formed. On some machines, there is an efficiency gain

4 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

2a. Each block by columns
0
1 3
2 4 5

6 9 12

7 10 13
8 11 14

∣

∣

∣

∣

∣

27

28 30
29 31 32

15 18 21
16 19 22
17 20 23

∣

∣

∣

∣

∣

33 36 39
34 37 40
35 38 41

∣

∣

∣

∣

∣

45
46 48
47 49 50

24 25 26
∣

∣ 42 43 44
∣

∣ 51 52 53
∣

∣ 54

2b. Rect. part of each block col. by cols
0
1 3
2 4 5

6 13 20

7 14 21
8 15 22

∣

∣

∣

∣

∣

27

28 30
29 31 32

9 16 23
10 17 24
11 18 25

∣

∣

∣

∣

∣

33 37 41
34 38 42
35 39 43

∣

∣

∣

∣

∣

45
46 48
47 49 50

12 19 26
∣

∣ 36 40 44
∣

∣ 51 52 53
∣

∣ 54

Fig. 2. Alternative Lower Blocked Formats.

from the use of the Level-1 BLAS COPY [Lawson et al. 1979], which copies vectors
with uniform strides and uses loop unrolling. The subroutine COPY may be used
directly for copying a column of a rectangular block to the buffer (with stride nb
in the buffer) and for copying the whole rearranged block column back from the
buffer. We may use COPY for the triangular block, too, by treating it separately;
we expand the triangle to full form in the buffer and copy it back row by row; a
simple copy may still be used for the rest of the block column.

It would have been easier to perform this rearrangement had we held each block
by columns, as illustrated in Figure 2a, or the whole rectangular part of each block
column by columns, as illustrated in Figure 2b and used by Duff and Reid [1996].
We explain in the next section why we expect that holding the blocks by columns
will be less efficient.

We use the same block form for holding the Cholesky factor, which of course
means that new codes are needed for forward and back substitution. We could have
rearranged the matrix back to the packed format used by LINPACK and LAPACK,
but the blocking is also helpful during forward and back substitution, particularly
for multiple right-hand sides where the blocking allows the use of Level-3 BLAS.

3. BLOCK CHOLESKY FACTORIZATION

The Cholesky factorization of a symmetric and positive-definite matrix A usually
takes the form

A = LLT (2)

where L is a lower-triangular matrix. If the same partitioning is applied to the rows
and columns of A and the rows and columns of L, the resulting blocks Aij and Lij ,
with i and j in the range 1 to l, satisfy the relation

Aij =

j
∑

k=1

(LikLT
jk) , i ≥ j (3)

which allows the diagonal blocks Ljj of L to be found from the equation

LjjL
T
jj = Ajj −

j−1
∑

k=1

(LjkLT
jk) (4)

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 5

do j = 1, l ! l = dn/nbe
do k = 1, j − 1

Ajj = Ajj − LjkLT
jk

! Call of Level-3 BLAS SYRK

do i = j + 1, l
Aij = Aij − LikLT

jk
! Call of Level-3 BLAS GEMM

end do
end do
LjjLT

jj
= Ajj ! Call of LAPACK subroutine POTRF

do i = j + 1, l
LijLT

jj
= Aij ! Call of Level-3 BLAS TRSM

end do
end do

Fig. 3. LLT Implementation for Lower Blocked Hybrid Format. The BLAS calls take the forms
SYRK(’U’,’T’,...), GEMM(’T’,’N’,...), POTRF(’U’,...), and TRSM(’L’,’U’,’T’,...).

and the off-diagonal blocks Lij (i > j) to be found from the equation

LijL
T
jj = Aij −

j−1
∑

k=1

(LikLT
jk). (5)

We will assume that the first l − 1 blocks are of size nb and that the final block is
of size at most nb, so that l = dn/nbe.1

We have some choice over the order in which these operations are performed and
how they are grouped. For the lower blocked hybrid form, it is natural to calculate
the blocks column by column as shown in Figure 3. Each of the computation lines
in the figure can be implemented by a single call of a Level-3 BLAS or LAPACK
subroutine and we show which as a comment. However, it may be better to make a
direct call to an equivalent ‘kernel’ routine that is fast because it has been specially
written for matrices that are held in contiguous memory and are of a form and size
that permits efficient use of the level-1 cache. We propose a recursive full storage
format Cholesky subroutine in Section 6 for situations where a fast kernel is not
available from the vendor or elsewhere.

For large problems, the most significant computation is that of GEMM, which
is performed on matrices held in contigous memory and is actually called for the
transpose of the equation in Figure 3, that is,

AT
ij = AT

ij − LjkLT
ik.

Note that Ljk is held by rows and AT
ij and LT

ik are held by columns. The oper-
ation can therefore be applied efficiently with streaming, as explained in Section
1, without any data rearrangement. This is why we have not chosen either of the
alternative formats of Figure 2. Similarly, the format of Figure 1b is favourable for
the call of SYRK; in fact, Ljk should remain in cache for the call of SYRK and all
the calls of GEMM in the loop that follows. Similarly, the array that holds first Ajj

and then Ljj will remain resident in the cache during the factorization of Ajj by
POTRF and throughout the TRSM call, during which the rows are streamed into the
cache as Aij and out of the cache as Lij .

1The notation dxe refers to the least integer i ≥ x, that is, the ceiling function.

6 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

do j = 1, l ! l = dn/nbe
do k = 1, j − 1

Ajj = Ajj − LjkLT
jk

! Call of Level-3 BLAS SYRK

Aij = Aij − LikLT
jk

,∀i > j ! Single call of Level-3 BLAS GEMM

end do
LjjLT

jj
= Ajj ! Call of LAPACK subroutine POTRF

LijLT
jj

= Aij ,∀i > j ! Single call of Level-3 BLAS TRSM

end do

Fig. 4. LLT Implementation for Lower Blocked Hybrid Format with BLAS Called Once for
Each Block Column. The BLAS calls take the forms SYRK(’U’,’T’,...), GEMM(’T’,’N’,...),
POTRF(’U’,...), and TRSM(’L’,’U’,’T’,...).

The fact that our blocks are held contiguously is significant. Without this (see,
for example, Figure 2b) either the cache is used less efficiently with unneeded data
being brought in, or a preliminary rearrangement is needed.

For the operations with Ajj , use of the subroutines SYRK and POTRF requires
that a temporary full-format copy of Ajj be made at the beginning of the main
loop. POTRF overwrites this by Ljj , which is used by TRSM and then packed to
overwrite Ajj . A buffer of size nb×nb is needed for the full-format copy.

A further merit of the lower blocked hybrid format (Figure 1b) is that all the
operations

Aij = Aij − LikLT
jk, ∀i > j

may be performed in a single call of GEMM that involves multiplying a matrix of order
n − j × nb by nb by a matrix of order nb by nb. This is possible since the whole
trapezoidal block column is held by rows, which means that all the rectangular
blocks of the block column can be passed as a single matrix to GEMM. Similarly, the
equation

LijL
T
jj = Aij , ∀i > j

may be solved with a single call of TRSM for a matrix of order n − j × nb by nb.
We summarize the resulting code in Figure 4. The data format allows both GEMM

and TRSM to perform their operations with streaming and without data copying,
but we have no guarantee that library versions that are written for more general
situations will do this.

The LAPACK subroutine POTRF performs block Cholesky factorization of a sym-
metric positive-definite matrix held in full format (see LAPACK Users’ Guide [An-
derson et al. 1999, pages 29 and 295]). We show in Figure 5 how POTRF is organized.
The subroutine POTF2 is an unblocked version of POTRF. Note that Figures 4 and
5 are very similar. The difference is that the inner do loop of Figure 4 has been
replaced by single calls of SYRK and GEMM, possible with the full format since any
off-diagonal submatrix can be passed directly to a Level-3 BLAS as a rectangular
matrix. For a large problem, most of the work is done by GEMM and passing it a
bigger problem gives it more scope for optimization. However, there is the disad-
vantage that the matrix that is sent to it is not in contiguous memory. It is our
belief that most implementations of Level-3 BLAS begin with a data copy for each
block of each operand to put it in contiguous memory and for each block of the

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 7

do j = 1, l ! l = dn/nbe
Ajj = Ajj −

∑j−1

k=1
(LjkLT

jk
) ! Single call of Level-3 BLAS SYRK

LjjLT
jj

= Ajj ! Call of LAPACK subroutine POTF2

Aij = Aij −
∑j−1

k=1
(LikLT

jk
),∀i > j ! Single call of Level-3 BLAS GEMM

LijLT
jj

= Aij , ∀i > j ! Single call of Level-3 BLAS TRSM

end do

Fig. 5. LAPACK Cholesky Implementation for Lower Full Format (POTRF). The BLAS
calls take the forms SYRK(’L’,’N’,...), POTF2(’L’,...), GEMM(’N’,’T’,...), and
TRSM(’R’,’L’,’T’,...).

result to return it to its original format. For this reason, we expect that the code
for the blocked hybrid format will usually be faster (as well as needing about half
the memory).

4. SOLVING EQUATIONS USING A BLOCK CHOLESKY FACTORIZATION

Given the Cholesky factorization (2), we may solve the equations

AX = B (6)

by forward substitution

LY = B (7)

followed by back-substitution

LT X = Y. (8)

If the rows of B, Y , and X are partitioned in the same way as A and L, equations
(7) and (8) take the form

LiiYi = Bi −

i−1
∑

j=1

(LijYj), i = 1, 2, . . . , l (9)

and

LT
jjXj = Yj −

l
∑

i=j+1

(LT
ijXi), j = l, l − 1, . . . , 1, (10)

where l = dn/nbe.
We begin by discussing the important special case where B has only one column.

This, of course, means that Bi, Yi, and Xi are all blocks that have a single column. If
L is held in lower blocked hybrid format, the forward substitution may be performed
by subtracting LijYj from Bi as soon as Yj is available using a single call of GEMV,
as shown in the first part of Figure 6. The back-substitution can be performed with
a single call of GEMV for each summation, as shown in the second part of Figure 6.
The whole of L must be accessed once during forward substitution and once during
back-substitution and in both cases the whole of the rectangular part of each block
column is accessed in a single call of GEMV.

Similar code could be applied in the case where B has m > 1 columns, with TRSM

replacing TPSV (this will require making a copy of Ljj in full storage) and GEMM

8 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

do j = 1, l
LjjYj = Bj ! Call of Level-2 BLAS TPSV(’U’,’T’,’N’,...)

Bi = Bi − LijYj ,∀i > j ! Single call of Level-2 BLAS GEMV(’T’,...)

end do
do j = l, 1, −1

Yj = Yj −
∑

i>j
(LT

ij
Xi) ! Single call of Level-2 BLAS GEMV(’N’,...)

LT
jjXj = Yj ! Call of Level-2 BLAS TPSV(’U’,’N’,’N’,...)

end do

Fig. 6. Forward substitution and back-substitution for a single right-hand side using Lower
Blocked Hybrid Factorization LLT .

0 3 6 9
1 4 7 10
2 5 8 11

12 15 18 21
13 16 19 22
14 17 20 23

24 27 30 33
25 28 31 34
26 29 32 35

36 37 38 39

Fig. 7. The blocked format for B.

replacing GEMV. However, the blocks Bi, Yi, and Xi would not occupy contiguous
memory, so there is scope for improving the performance.

If the number of columns m is modest, we therefore make a copy of B as a
block matrix, with each block Bi held contiguously by columns and the blocks held
contiguously, as illustrated in Figure 7.

Code for forward substitution and back-substitution is shown in Figure 8. Each
of the operations LijYj and LT

ijXi is performed by a separate call of GEMM, but
each submatrix involved is held contiguously and streaming is available. Finally, X
is copied back to overwrite the original B.

The overhead of copying all the diagonal blocks Ljj to full storage may be halved

do j = 1, l
LjjYj = Bj ! Call of TRSM(’L’,’U’,’T’,...)

do i = j+1, l
Bi = Bi − LijYj ! Call of GEMM(’T’,’N’,...)

end do
end do
do i = l, 1, −1

LT
ii

Xi = Yi ! Call of TRSM(’L’,’U’,’N’,...)

do j = 1, i − 1
Yj = Yj − LT

ijXi ! Call of GEMM(’N’,’N’,...)

end do
end do

Fig. 8. Forward substitution and back-substitution for many right-hand sides using Lower
Blocked Hybrid Factorization LLT .

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 9

if we have a buffer that is big enough to hold them all, so that they are already
available for the back-substitution. The size needs to be n × nb, which is the same
as we used in Section 2. Of course, this means that we need two buffers, one of size
n × nb for the diagonal blocks and one of size n × m for the right-hand sides.

For very small numbers of columns, say 2 or 3, the copying overhead probably
means that it is better to handle each column separately, as in Figure 6.

For very large numbers of columns, we simply apply the same process of forward
substitution and back-substitution (Figure 8) to successive blocks of columns. In
our code, we allow for a different block size mb. Buffers of total size n × (nb+mb)
are needed. Note that with two buffers, the overhead of copying the diagonal blocks
is incurred only once for all the forward substitutions and back-substitutions on all
the block columns.

For very big problems, the block size mb is probably best chosen to be similar
to nb for two reasons. The first is simply that making it much bigger would sub-
stantially increase the total buffer size. The second is that for a very big problem
the factorized matrix has to be moved from memory or level-3 cache for each block
of mb columns, a total data movement of about n2 m

mb
reals. Meanwhile, if n×mb

is too big for level-2 cache, the data movement for the right-hand side averages at
about n

2
×mb reals for each block step of the forward or back substitution to give

a total of about (n×mb)× n
nb
× m

mb
= n2 m

nb
reals. It follows that the data movement

is balanced with mb = nb and will be increased if either is mb or nb is increased at
the expense of the other.

If the problem is big but not such that the level-2 cache cannot hold n×nb reals,
there are likely to be performance advantages in chosing the block size mb to be
larger than nb (or even equal to m). This is because each of the blocks of the
factorized matrix is accessed once for each block column of B, so increasing mb
reduces level-2 cache movement provided there is still room in level-2 cache for
n×mb reals.

9a. Upper Packed Format

0 1 3
2 4

5

∣

∣

∣

∣

∣

6 10 15
7 11 16
8 12 17

∣

∣

∣

∣

∣

21 28 36
22 29 37
23 30 38

∣

∣

∣

∣

∣

45
46
47

9 13 18
14 19

20

∣

∣

∣

∣

∣

24 31 39
25 32 40
26 33 41

∣

∣

∣

∣

∣

48
49
50

27 34 42
35 43

44

∣

∣

∣

∣

∣

51
52
53

54

9b. Upper Blocked Hybrid Format

0 1 3
2 4

5

∣

∣

∣

∣

∣

6 9 12
7 10 13
8 11 14

∣

∣

∣

∣

∣

21 24 27
22 25 28
23 26 29

∣

∣

∣

∣

∣

45
46
47

15 16 18
17 19

20

∣

∣

∣

∣

∣

30 33 36
31 34 37
32 35 38

∣

∣

∣

∣

∣

48
49
50

39 40 42
41 43

44

∣

∣

∣

∣

∣

51
52
53

54

Fig. 9. Upper Packed and Blocked Hybrid Formats.

5. UPPER PACKED FORMATS

We will now consider the Cholesky factorization of a matrix in upper packed format
(see Figure 9a). Our chosen blocked hybrid format is illustrated in Figure 9b. It
is ordered by block columns, which allows us to get the same desirable properties

10 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

do i = 1, l ! l = dn/nbe
do k = 1, i − 1

Aii = Aii − UT
ki

Uki ! Call of Level-3 BLAS SYRK

do j = i + 1, l
Aij = Aij − UT

ki
Ukj ! Call of Level-3 BLAS GEMM

end do
end do
UT

ii
Uii = Aii ! Call of LAPACK subroutine POTRF

do j = i + 1, l
UT

ii
Uij = Aij ! Call of Level-3 BLAS TRSM

end do
end do

Fig. 10. UT U Cholesky Implementation for Upper Blocked Hybrid Format. The
BLAS calls take the forms SYRK(’U’,’T’,...), GEMM(’T’,’N’,...), POTRF(’U’,...), and
TRSM(’L’,’U’,’T’,...).

do i = 1, l ! l = dn/nbe
Aii = Aii −

∑i−1

k=1
(UT

ki
Uki) ! Call of Level-3 BLAS SYRK

UT
ii Uii = Aii ! Call of LAPACK subroutine POTF2

Aij = Aij −
∑i−1

k=1
(UT

ki
Ukj), ∀j > i ! Single call of Level-3 BLAS GEMM

UT
ii

Uij = Aij ,∀j > i ! Single call of Level-3 BLAS TRSM

end do

Fig. 11. LAPACK Cholesky Implementation for Upper Full Format. The BLAS calls take the
forms SYRK(’U’,’T’,...), POTF2(’U’,...), GEMM(’T’,’N’,...), and TRSM(’L’,’U’,’T’,...).

for the rearrangement that we had for the lower packed format (Section 2). The
individual blocks are ordered by columns to permit efficient calls of Level-3 BLAS.
A consequence is that the rearrangement code runs a little faster than for the lower
packed hybrid format since the entries of each column of each block are contiguous
before and after rearrangement.

LAPACK returns the matrix U of the UT U factorization, so we first consider
how this may be done with a blocked hybrid format. We then consider the alterna-
tive of using a backwards pivot sequence, that is, performing a UUT factorization.
From the error analysis point of view, this is equally satisfactory; both are uncon-
ditionally stable for a symmetric positive-definite matrix. The UUT factorization
has performance advantages, but is unsuitable if compatibility with LAPACK is
needed.

The algorithm we have chosen may be obtained by transposing every matrix in
Figure 3 and interchanging i with j to obtain Figure 10. The outer loop is over
block rows and within it there is a block outer product. Note also the similarity
with the way the LAPACK subroutine POTRF performs a block UT U factorization
of a matrix held in upper full format, see Figure 11.

If we use the upper blocked hybrid format of Figure 9b, we now get all the same
desirable properties for level-1 cache usage, but we cannot combine the GEMM calls
in the inner loop into one call since the blocks are not held contiguously. Note,
however, that the same block UT

ki is used for each call in the inner loop, so this
will remain resident in level-1 cache for all the calls in the inner loop. Similarly,

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 11

the TRSM calls cannot be merged, but the block UT
ii will remain resident in level-1

cache.
We anticipate that the effect of the blocks not being contiguous in memory will

be quite minor and this is borne out by the results in Section 7, where we see that
the code for the upper packed hybrid format is only sightly slower than that for
the lower packed hybrid format. There are more procedure calls, but each does a
significant amount of work, so the call itself is a small overhead. There will also
be some unnecessary data movement to and from the cache at the edges of the
blocks, but this will be small compared with that needed for the blocks themselves.
Finally, if the level-2 cache is not big enough for the whole matrix but is big enough
(with a reasonable margin) for a block row, the pivot block row will be resident in
level-2 cache for all the operations associated with the block pivot even though the
blocks are not contiguous.

To get contiguous blocks, we considered rearranging the blocks so that they are
held by block rows, see Figure 12a. Actually, this rearranged form is also the
lower blocked hybrid format representation of the matrix (see Figure 1b), since
any ordering of the upper triangular entries aij , i ≤ j, of a symmetric matrix A
is also an ordering of its lower triangular entries aji, i ≤ j. Hence, if we did this
rearrangement, we could apply a code implementing the algorithm of Figure 3 and
thereby get all the desirable properties of that algorithm. However, we rejected
this approach because of the difficulty of constructing an efficient in-place code
for rearrangement. The best rearrangement algorithm that we found requires an
additional integer array of length the total number of blocks and we estimate that
it would run about twice as slowly as our present rearrangement code.

12a. The Blocks Ordered by Rows

0 1 3
2 4

5

∣

∣

∣

∣

∣

6 9 12
7 10 13
8 11 14

∣

∣

∣

∣

∣

15 18 21
16 19 22
17 20 23

∣

∣

∣

∣

∣

24
25
26

27 28 30
29 31

32

∣

∣

∣

∣

∣

33 36 39
34 37 40
35 38 41

∣

∣

∣

∣

∣

42
43
44

45 46 48
47 49

50

∣

∣

∣

∣

∣

51
52
53

54

12b. Each Block Ordered by Rows

0 1 2
3 4

5

∣

∣

∣

∣

∣

6 7 8
9 10 11

12 13 14

∣

∣

∣

∣

∣

21 22 23
24 25 26
27 28 29

∣

∣

∣

∣

∣

45
46
47

15 16 17
18 19

20

∣

∣

∣

∣

∣

30 31 32
33 34 35
36 37 38

∣

∣

∣

∣

∣

48
49
50

39 40 41
42 43

44

∣

∣

∣

∣

∣

51
52
53

54

Fig. 12. Alternative Upper Blocked Hybrid Formats.

For solving sets of equations, similar considerations apply for the upper blocked
hybrid format to those discussed in Section 4. The code for many right-hand sides
is illustrated in Figure 13. The code for a single right-hand side is very similar,
again with GEMM replaced by GEMV and TRSM replaced by TPSV. Note that we are
not able to combine calls of GEMV with this data format.

If it is acceptable to reverse the pivot order, that is perform a UUT factorization

A = UUT (11)

where U is upper triangular, we can get the desirable properties without an addi-
tional rearrangement. Now we have the relation

12 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

do j = 1, l
do i = 1, j − 1

Bj = Bj − UT
ijYi ! Call of GEMM(’T’,’N’,...)

end do
UT

jj
Yj = Bj ! Call of TRSM(’L’,’U’,’T’,...)

end do
do j = l, 1, −1

UjjXj = Yj ! Call of TRSM(’L’,’U’,’N’,...)

do i = 1, j − 1
Yi = Yi − UijXj ! Call of GEMM(’N’,’N’,...)

end do
end do

Fig. 13. Forward substitution and back-substitution for many right-hand sides using Upper
Blocked Hybrid Factorization UT U .

Aij =
l

∑

k=j

(UikUT
jk) , i ≤ j (12)

which allows the diagonal blocks Ujj to be found from the equation

UjjU
T
jj = Ajj −

l
∑

k=j+1

(UjkUT
jk) (13)

and the off-diagonal blocks Uij (i < j) to be found from the equation

UijU
T
jj = Aij −

l
∑

k=j+1

(UikUT
jk). (14)

We now need to loop through the block columns in reverse order, as illustrated in
Figure 14. Again, each of the computation lines in the figure can be implemented
by a single call of a Level-3 BLAS or LAPACK subroutine or an equivalent kernel
routine and we show which as a comment. If each block is held by rows, see Figure
12b, we get all the desirable properties of the Figure 3 algorithm for level-1 cache
usage and we can merge the BLAS calls in the inner loops into single calls. There is
the disadvange that we will need to permute the diagonal block Ajj before passing
it to POTRF and permute the factor when packing it back.

For the use of a UUT factorization to solve a set of equations, similar consider-
ations apply for the upper blocked hybrid format to those discussed in Section 4.
Here, we need to perform a back-substitution followed by a forward substitution,
see Figure 15.

The disadvantage of having to permute the diagonal block may be avoided by
reversing the order within each block and of the blocks within each block column.
We do not reverse the order of the block columns themselves since this does not
impact the efficiency of the algorithm and allows the rearrangement to blocked
hybrid format to be performed independently for each block column. The format
is illustrated in Figure 16a.

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 13

do j = l, 1,−1 ! l = dn/nbe
do k = j + 1, l

Ajj = Ajj − UjkUT
jk

! Call of Level-3 BLAS SYRK

do i = 1, j − 1
Aij = Aij − UikUT

jk
! Call of Level-3 BLAS GEMM

end do
end do
UjjUT

jj = Ajj ! Call of LAPACK subroutine POTRF

do i = 1, j − 1
UijUT

jj
= Aij ! Call of Level-3 BLAS TRSM

end do
end do

Fig. 14. UUT Implementation for Upper Blocked Hybrid Format. With the format of Figure
12b, the BLAS calls take the forms SYRK(’L’,’T’,...), GEMM(’T’,’N’,...), POTRF(’L’,...),
and TRSM(’L’,’L’,’T’,...).

do j = l, 1, −1
UjjYj = Bj ! Call of TRSM(’L’,’L’,’T’,...)

Bi = Bi − UijYj ,∀i < j ! Call of GEMM(’T’,’N’,...)

end do
do j = 1, l

Yj = Yj −
∑

i<j
(UT

ij
Xi) ! Call of GEMM(’N’,’N’,...)

UT
jj

Xj = Yj ! Call of TRSM(’L’,’L’,’N’,...)

end do

Fig. 15. Back-substitution and forward substitution for many right-hand sides using Upper
Blocked Hybrid Factorization UUT with the format of Figure 12b.

16a. The Ordering

0
∣

∣ 9 8 7
∣

∣ 27 26 25
∣

∣ 54 53 52

6 5 4
3 2

1

∣

∣

∣

∣

∣

24 23 22
21 20 19
18 17 16

∣

∣

∣

∣

∣

51 50 49
48 47 46
45 44 43

15 14 13
12 11

10

∣

∣

∣

∣

∣

42 41 40
39 38 37
36 35 34

33 32 31
30 29

28

16b. When Rotated by 180 degrees
28
29 30
31 32 33

34 35 36
37 38 39
40 41 42

∣

∣

∣

∣

∣

10
11 12
13 14 15

43 44 45
46 47 48
49 50 51

∣

∣

∣

∣

∣

16 17 18
19 20 21
22 23 24

∣

∣

∣

∣

∣

1
2 3
4 5 6

52 53 54
∣

∣ 25 26 27
∣

∣ 7 8 9
∣

∣ 0

Fig. 16. Another Upper Blocked Hybrid Format, obtained by reversing the order within each
block and of the blocks within each block column.

14 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Figure 16b depicts Figure 16a rotated by 180 degrees and shows how it represents
the matrix PAP T for P the permutation that reverses the order. Figure 16b is
closely related to Figure 1b. The only difference is that the order of the trapezoidal
block columns is reversed. If the offsets -28, 17, 44, 54 are applied to all locations in
block columns 1, 2, 3, and 4, respectively, of Figure 16b, we obtain Figure 1b. This
means that we can apply the algorithm depicted in Figure 3 to PAP T by adding
the appropriate offset to all the addresses in each block column. And for forward
and back substitution, the code in Figure 8 will work by adding the appropriate
offset to all addresses in each block column.

6. LEVEL-3 CHOLESKY KERNEL SUBROUTINES

For each of our block factorizations (see Figures 3, 4, 10, and 14), we have employed
the LAPACK subroutine POTRF to factorize the diagonal blocks, held in upper full
format. This is itself a block algorithm and is summarized in Figure 11. We
expect its block size to be about the same as ours. This means that a significant
proportion of its computation, or perhaps all of it, is performed by POTF2. This is
unsatisfactory since it uses Level-2 BLAS. The purpose of this section is to consider
alternatives that use Level-3 BLAS.

In this section, we still use the notation A for the matrix, n for its order, and
LLT and UT U for its Cholesky factorizations, but these refer to a diagonal block
of the overall computation. This should be no confusion since the discussion is
confined to factorizing a block. If should be borne in mind that n will be modest,
small enough for the computation to reside in level-1 cache.

The subroutine POTRF uses full storage mode, that is, it requires n2 memory
locations even though it only access n(n + 1)/2 matrix elements. The rest of the
locations are not used. We have chosen to follow this for our alternatives because
all our algorithms rely on SYRK and TRSM and because it allows Level-3 BLAS to
be used on submatrices without any further data movement.

Recently, four papers focusing on recursive Cholesky algorithms were published,
[Gustavson 1997], [Waśniewski et al. 1998], [Gustavson and Jonsson 2000], and
[Andersen et al. 2001]. These papers demonstrate that full storage data format
recursive Cholesky algorithms can be developed using Level-3 BLAS for almost all
the computation. The appendices of the first and fourth papers contain Fortran 77
and Fortran 90 implementations of the algorithms.

For the upper packed format, these recursive algorithms rely on partitioning the
matrices A and U into submatrices:

A =

(

A11 A12

AT
12 A22

)

and U =

(

U11 U12

U22

)

,

where A11 and U11 are p × p and p = bn/2c. Of course, only the upper-triangular
parts of A11 and A22 are stored. The matrices U11 and U22 are upper triangular
and the matrices A12 and U12 are square or nearly square (of size p × n−p).

We arrive at a recursive algorithm by simple algebraic manipulations on the parti-
tioning indicated above, see Figure 17. Note that the only floating-point operations
that are performed outside calls to TRSM and SYRK are the calculation of n square
roots.

In Figure 17, the recursion continues all the way down to the single diagonal

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 15

if n > 1 then
UT

11
U11 = A11 Cholesky factor A11 recursively

UT
12

U11 = A12 TRSM (triangular multiple solve)

Â22 = A22 − UT
12

U12 SYRK (symmetric rank-k update)

UT
22

U22 = Â22 Cholesky factor Â22 recursively
else

U =
√

A A and U are 1 by 1

Fig. 17. Recursive Cholesky Kernel.

do i = 1, l ! l = dn/kbe
Aii = Aii −

∑i−1

k=1
(UT

ki
Uki) ! Like Level-3 BLAS SYRK

UT
ii

Uii = Aii ! Cholesky factorization of block
do j = i + 1, n

Aij = Aij −
∑i−1

k=1
(UT

ki
Ukj) ! Like Level-3 BLAS GEMM

UT
ii Uij = Aij ! Like Level-3 BLAS TRSM

end do
end do

Fig. 18. Cholesky Kernel Implementation for Upper Full Format.

elements. During the factorization of very small matrices close to the end of the
recursion, there are very few floating-point operations in comparison to the number
of subroutine calls, administrative, and fixed-point calculations in the recursively
called subroutine. This makes the factorization relatively inefficient. A way to
alleviate this inefficiency is to inline the code for these small matrices; for instance,
for matrices of size up to 4 × 4. The first line of Figure 17 must be replaced by

if n > 4 then

and the last line by the Cholesky factorization of A, using special unrolled code.
By choosing the recursive division of the coefficient matrix differently, it is possi-

ble to make sure that the final factorization at the leaves of the recursion is a 4× 4
matrix in all cases except the final leaf. This is done by choosing p always to be a
multiple of 4. It means that a special inlined code can be used for the 4 × 4 case.
Of course, when n is not a multiple of 4, there must be some code that handles a
single block that is smaller than 4 × 4.

Another possibility is to use a block algorithm with a very small block size kb,
designed to fit in registers. To avoid procedure call overheads for a very small
computations, we replace all calls to BLAS by in-line code. This means that it is
not advantageous to perform a whole block row of GEMM updates at once and a
whole block row of TRSM updates at once (see last two lines of the loop in Figure
11) . This leads to the algorithm summarized in Figure 18.

We have found the block size kp = 2 to be suitable. The key loop is the one that
corresponds to GEMM. For this, the code of Figure 19 is suitable. The block Ai,j

is held in the four variables, t11, t12, t21, and t22. We reference the underlying
array directly, with Ai,j held from a(ii,jj). It may be seen that a total of 8
local variables are involved, which hopefully the compiler will arrange to be held in
registers. The loop involves 4 memory accesses and 8 floating-point operations.

On some processors, faster execution is possible by having an inner GEMM loop

16 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

DO k = 1, ii - 1

aki = a(k,ii)

akj = a(k,jj)

t11 = t11 - aki*akj

aki1 = a(k,ii+1)

t21 = t21 - aki1*akj

akj1 = a(k,jj+1)

t12 = t12 - aki*akj1

t22 = t22 - aki1*akj1

END DO

Fig. 19. Code corresponding to GEMM.

Table 1. Computers Used. The IBM level-2 and level-3 caches are shared between two processors.
Processor MHz Peak Cache sizes TLB

Mflops level-1 level-2 level-3 entries

IBM Power4 1700 6800 64K 1.5M* 32M* 1024
SUN UltraSparc IIICu 900 1800 64K 8M None 512
SGI MIPS R12000 300 600 32K 8M None 64
HP Alpha EV6 500 1000 64K 4M None 128
HP Itanium 2 1000 4000 32K 256K 1.5M 128

INTEL Pentium III 500 500 16K 512K None 32

*Shared with another processor.

that updates Ai,j and Ai,j+1. The variables aki and aki1 need only be loaded
once, so we now have 6 memory accesses and 16 floating-point operations and need
14 local variables, hopefully in registers. We found that this algorithm gave very
good performance (see next section).

We will make our implementation of this kernel available in a companion paper,
but alternatives should be considered. A version of a recursive Cholesky algorithm
was programmed and added to the ATLAS library by [Whaley et al. 2000]. The
LAPACK library can be updated to use this new recursive subroutine by using
a simple script from the ATLAS subdirectory (ATLAS/doc/LAPACK.txt; the AT-
LAS library can be found on http://www.netlib.org/atlas/). Further, every
computer hardware vendor is interested in having good and well-tuned software
libraries.

We recommend that all the alternatives of the previous paragragh be compared.
Our kernel routine is available if the user is not able to perform such a comparison
procedure or has no time to do it. Finally, note that LAPACK, ATLAS and the de-
velopment of computer vendor software are ongoing activities. The implementation
that is the slowest today might be the fastest tomorrow.

7. PERFORMANCE

For our performance testing, we have used the computers listed in Table 1 with the
compilers listed in Table 2 and the libraries listed in Table 3.

In normal running, the shared level-2 cache on the IBM resulted in speeds that
varied by up to about 30% according to the activity of the sharing processor.
This made it impossible to conduct detailed comparisons between the algorithms.
We therefore ran on a quiet machine, which means that the speeds we report are

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 17

Table 2. Compilers Used.
Processor Compiler Option

IBM Power4 F95, version 8.1 -O5

SUN UltraSparc IIICu F95, Forte 7.1 -fast -xarch=v8plusb

-xchip=ultra3 -free

SGI MIPS R12000 F95, version, 7.3 -O3 -64 -freeform

HP Alpha EV6 F95, version 5.3-915 -free -O

HP Itanium 2 F95, version v2.7 -O3

Intel Pentium III NAG F95, 4.1(340) -free -O4

Table 3. Computer Libraries Used.
Processor Library

IBM Power4 ESSL, version 3.3; LAPACK routines
for PPTRF and PPTRS

SUN UltraSparc IIICu Sun Performance Library 4.0
SGI MIPS R12000 SGI Scientific Library, 7.3.1.2
HP Alpha EV6 CXML Extended Math Library V3.6
HP Itanium 2 HP MLIB BLAS Library
Intel Pentium III ATLAS, version 3.0

optimistic for normal runs.

7.1 Kernels

We begin by considering the alternatives for the Cholesky kernel subroutine (Sec-
tion 6). We consider orders 40, 72, and 100 since these will typically allow the
computation to fit comfortably in level-1 cache. For each computer, we have com-
pared

—the optimized LAPACK implementation provided by the vendor, if available, or
otherwise the ATLAS optimized code;

—the published LAPACK source code compiled with the highest level of optimiza-
tion;

—the recursive code of Section 6;

—the mini-blocked code of the end of Section 6 with all blocks of size 2×2; and

—the mini-blocked code of the end of Section 6 with blocks of sizes 2×2 and 2×4.

It may be seen from the results in Table 4 that the mini-blocked code with blocks
of sizes 2×2 and 2×4 is remarkably successful. In all six cases, it significantly out-
performs the compiled LAPACK code and the recursive algorithm. It outperforms
the vendor’s optimized codes except on the IBM platform at order 100. If compared
with the mini-blocked code with all blocks of size 2×2, the performance is signif-
icantly better on the SUN (about 20% times better except at order 72), slightly
better on the Alpha (about 15% times better), and much the same on the other
four.

For our remaining performance testing, we use the vendor’s optimized kernel on
the IBM and the mini-blocked code with blocks of sizes 2×2 and 2×4 on the others.

18 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 4. Performance in Mflops of the Kernel Cholesky Algorithm. Comparison between different
computers and different versions of subroutines.

Order LAPACK Recur- Mini-block
Vendor Comp. sive 2×2 2×2

& 2×4

IBM Power4, 1700 MHz, ESSL Library:
40 1658 1503 707 1999 1999
72 2653 2303 1447 2751 2753

100 3037 2481 1930 2957 2945

SUN Ultra III, 900 MHz, Sunperf BLAS Library:
40 392 427 251 803 941
72 598 664 417 1191 1012

100 619 830 589 1143 1506

SGI Origin 2000, R12000, 300 MHz, Math Library:
40 117 121 94 369 372
72 197 212 166 455 466

100 238 289 217 485 496

Alpha EV6, 500 MHz, DXML Library:

40 311 313 165 457 533
72 340 343 250 523 625

100 393 400 323 551 647

HP Itanium 2, 1000 MHz, HP MLIB BLAS Library:
40 449 448 153 1125 1133
72 597 595 266 1711 1722

100 567 559 364 2103 2103

Intel Pentium III, 500 MHz, ATLAS BLAS Library:
40 83 97 86 177 169
72 138 148 132 193 184

100 157 155 147 182 179

7.2 Factorization

The LAPACK subroutine PPTRF performs Cholesky factorization of a symmetric
positive-definite matrix held in unblocked packed format and the LAPACK sub-
routine PPTRS solves corresponding sets of equations using the factorization (see
LAPACK Users’ Guide [Anderson et al. 1999, pages 29 and 301]). Equations (2)
to (5) remain applicable if we take all the blocks to have size 1. For the upper
packed format, the source-code implementation of PPTRF uses the Level-2 BLAS
TPSV for each column of U to solve the triangular set of equations that determine
its off-diagonal entries (see equation (5)). For the lower packed format, PPTRF uses
the Level-2 BLAS SPR [Dongarra et al. 1988] to perform a rank-1 update of the
remaining matrix. In both cases, the code is inefficient because the Level-2 BLAS
involve an amount of data movement through the cache that is proportional to the
number of arithmetic operations performed.

We have written Fortran 90 subroutines HPPTF and HPPTS with the same ob-
jectives for the blocked hybrid format as PPTRF and PPTRS have for the unblocked
packed format and their argument lists are very similar. In addition, the sub-
routines PPHPP and HPPPP perform in-place rearrangements between the formats,
using the ideas discussed in section 2. These subroutines are available in the com-
panion algorithm [Andersen et al. 2004].

We have used the computers listed in Table 1 with the libraries listed in Table 3

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 19

Table 5. Mflops, Cholesky factorizations including rearrangement, different nb values, IBM
Power4.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 956 1444 2055 2679 3156 3626 3861 3933 3968 3960 4040
nb=72 957 1520 1972 2650 3100 3626 3971 4086 4162 4166 4292
nb=100 943 1494 2103 2741 3193 3715 3971 4119 4162 4117 4258
nb=200 947 1515 2116 2417 2895 3440 3786 4059 4213 4322 4500

Upper Packed Hybrid
nb=40 1117 1425 1916 2523 2911 3404 3598 3655 3710 3720 3716
nb=72 1111 1743 2052 2590 3006 3489 3761 3947 4015 4084 4102
nb=100 1102 1732 2376 2831 3159 3678 3832 4033 4112 4150 4191
nb=200 1105 1732 2375 2584 2997 3447 3761 4033 4266 4340 4481

Table 6. Size of the packed matrix in megabytes.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Mbytes 0.006 0.016 0.039 0.098 0.239 0.612 1.6 3.8 9.8 23.9 61.1

to compare our blocked hybrid codes with the full-format codes in LAPACK and
the recursive packed codes of Andersen, Gustavson, and Waśniewski [2001]. Note
that the full-format code does most of its work in calls of GEMM for subarrays that
are not held contiguously in memory and the recursive packed code does most of its
work in calls of GEMM for arrays that are held contiguously but may be too large for
level-1 cache. In both cases, the performance is therefore marred by GEMM doing
data copying before starting its actual computation and, possibly, upon completion
of that computation.

We compiled the LAPACK source codes with the highest level of optimization
available and called the vendor-supplied BLAS. We believe that this is what most
users will do, but we also ran the vendor-supplied LAPACK codes or the ATLAS
LAPACK codes on the Intel Pentium III where vendor codes were unavailable.

The speeds were obtained by running the code repeatedly until at least a second
and a half had elapsed, which gives reasonably reliable figures, though some of the
final digits shown in the tables varied when runs were repeated.

For the block size nb in the blocked hybrid codes, we have experimented with
the values 40, 72, 100, and 200. The first three were used in Section 7.1. We added
nb=200 to see what would happen with a larger value.

The speeds for factorization, including rearrangement to the packed hybrid for-
mat, on the IBM Power4 are shown in Table 5. Since a square matrix of order 72
occupies 41.5K bytes of memory, this is the biggest of our nb values to permit full
advantage of streaming to be taken in calls of GEMM. However, this value rarely
gives the best speed. For small n, the kernel performance is of overriding impor-
tance. For n ≥ 640, the packed matrix does not fit into level-2 cache, see Table 6,
so a larger value of nb will reduce the movement from level-3 cache. Our conclusion
is that nb=100 is suitable for this machine, but note that higher performance is
available for large n with nb=200.

Similar performance figures for the SUN Ultra III are shown in Table 7. This
has a larger level-1 cache, which permits full advantage of streaming to be taken

20 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 7. Mflops, Cholesky factorizations including rearrangement, different nb values, SUN Ultra
III.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 394 548 644 773 832 963 1046 1106 1110 949 842
nb=72 391 558 660 760 857 993 1107 1182 1215 1120 1045
nb=100 389 557 708 738 824 959 1095 1115 1137 1144 1083
nb=200 390 557 708 782 867 965 1080 1180 1201 1206 1254

Upper Packed Hybrid
nb=40 526 608 680 804 830 943 1006 1040 1052 915 791
nb=72 520 769 767 838 916 1032 1104 1182 1168 1123 1004
nb=100 516 770 957 841 901 1026 1116 1177 1213 1145 1065
nb=200 518 768 954 988 983 1032 1144 1181 1240 1280 1243

Table 8. Mflops, Cholesky factorizations including rearrangement, different nb values, SGI Origin
2000.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 197 199 242 292 339 384 420 445 454 451 447
nb=72 201 269 274 327 366 411 448 430 474 464 450
nb=100 193 269 330 339 382 427 461 484 476 461 439
nb=200 192 264 323 342 359 369 377 397 409 523 529

Upper Packed Hybrid
nb=40 236 204 245 290 335 380 416 441 448 442 436
nb=72 237 312 294 331 367 411 447 442 456 459 449
nb=100 235 320 389 352 386 429 462 484 470 458 453
nb=200 237 316 384 381 380 386 383 404 406 488 528

in calls of GEMM when nb=72. But, again, the kernel performance is of overriding
importance for small n and level-2 cache is important for large n (the packed matrix
does not fit in level-2 cache for n ≥ 1600). Here, our conclusion is that nb=200 is
suitable.

Tables 8 to 11 show the speed variation with nb on our other platforms and they
show similar patterns. We conclude that suitable values for nb are 100 for the SGI
Origin 2000, 200 for the Alpha EV6, 200 for the Itanium rx2600s and 40 for the
Intel Pentium III.

Having chosen nb values, we now make comparisons with other algorithms and
show the rearrangement overheads. In Table 12, we show factorization speeds
on the IBM Power4 computer. The first two rows show the performance of the
LAPACK code PPTRF for the lower and upper packed formats when compiled
with full optimization and calling the vendor-supplied BLAS. Their performance
deteriorates markedly as n increases beyond 640. We believe that this is because
they are using Level-2 BLAS. None of the other codes have this defect. It is clear
that using Level-2 BLAS is not a good strategy. The ESSL library contains an
equivalent code for the lower packed format and we show its speed in the third
line of the table. Part of this code is based on the work of Gustavson and Jonsson
[2000].

The next four lines show the speeds of comparable codes for the full format and

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 21

Table 9. Mflops, Cholesky factorizations including rearrangement, different nb values, Alpha
EV6.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 370 326 380 456 525 576 622 638 645 649 657
nb=72 368 473 396 450 511 582 642 677 694 713 726
nb=100 345 457 497 476 533 600 655 689 712 738 749
nb=200 343 455 491 537 525 591 648 695 731 764 789

Upper Packed Hybrid
nb=40 432 347 388 465 518 588 626 645 660 652 655
nb=72 412 531 426 460 521 585 642 659 688 703 711
nb=100 431 525 563 494 538 600 655 689 718 733 742
nb=200 432 521 554 595 566 591 662 701 744 767 790

Table 10. Mflops, Cholesky factorizations including rearrangement, different nb values, Itanium
rx2600s.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 696 388 510 608 805 1094 1418 1694 1978 2225 2326
nb=72 700 1034 600 683 827 1109 1385 1687 2027 2244 2449
nb=100 668 1011 1701 763 869 1108 1419 1709 2017 2284 2483
nb=200 657 1017 1689 1731 1279 1384 1552 1829 2089 2216 2402

Upper Packed Hybrid
nb=40 805 437 508 674 854 1144 1437 1687 1941 2188 2238
nb=72 800 1142 680 742 899 1150 1419 1709 2017 2274 2443
nb=100 762 1107 1630 831 945 1180 1446 1709 1998 2274 2446
nb=200 768 1110 1837 1805 1385 1469 1609 1840 2167 2468 2690

Table 11. Mflops, Cholesky factorizations including rearrangement, different nb values, Intel
Pentium III.

n 40 64 100 160 250 400 640 1000 1600 2500 4000

Lower Packed Hybrid
nb=40 116 113 139 182 215 241 261 273 282 284 286
nb=72 118 116 136 169 194 226 257 277 296 308 317
nb=100 111 113 131 169 191 224 244 274 294 307 317
nb=200 108 113 136 137 148 180 219 257 292 310 324

Upper Packed Hybrid
nb=40 131 136 157 199 233 259 278 294 300 302 303
nb=72 131 136 150 179 202 226 249 267 280 290 296
nb=100 127 133 148 182 202 227 241 267 282 289 297
nb=200 122 131 152 152 166 199 236 265 288 301 311

22 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 12. Mflops, Cholesky factorizations, nb = 100, IBM Power4.

n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 747 951 1043 1024 1059 1101 1037 709 638 621 635
Packed LAPACK U 530 864 1201 1530 1772 2038 2055 1616 1460 1400 1426
Vendor Packed LAPACK L 1750 2359 2658 2346 3107 3560 3773 3870 3969 3815 3836

Full LAPACK L 440 722 1390 2119 2562 3242 3495 3797 3901 3787 4010
Full LAPACK U 436 646 1271 2063 2573 3390 3810 4008 4039 3975 4102
Vendor Full LAPACK L 1492 2165 2486 3194 3454 3677 3832 3921 4162 4037 4327
Vendor Full LAPACK U 1651 2448 3020 3269 3553 3878 3924 4000 4137 4053 4301

Packed Recursive+ L 170 379 593 1024 1586 2077 2621 3030 3434 3555 3943
Packed Recursive L 181 406 618 1060 1652 2133 2700 3111 3523 3604 3980
Packed Recursive+ U 194 418 629 1122 1724 2189 2931 3289 3690 3801 4094
Packed Recursive U 210 444 660 1185 1783 2249 3031 3401 3750 3858 4142

Packed Hybrid+ L 878 1488 2085 2721 3211 3754 3974 4112 4188 4200 4275
Packed Hybrid L 1006 1717 2334 2977 3441 3938 4149 4279 4266 4269 4309
Packed Hybrid+ U 1090 1702 2339 2792 3211 3690 3832 4034 4137 4150 4207
Packed Hybrid U 1095 1702 2339 2990 3416 3868 4045 4194 4214 4200 4249

provide our benchmark. We aim to get similar performance while saving storage
with a packed format. We note that the vendor codes are much faster for small
n, which is probably because the LAPACK code uses Level-2 BLAS (POTF2) to
factorize the blocks on the diagonal, but only slightly faster for n ≥ 1000 where the
speed of GEMM is of prime importance.

There are two rows for each of the recursive and hybrid formats, according to
whether the overheads of rearrangement to this format are included. Whether
rearrangment will be needed in practice will vary from case to case. Where the
data is generated by computer code, it may be equally efficient to generate it in
the chosen format. We do not include rearrangement of the factor back to ordinary
packed format since the recursive or hybid format is more suitable for forward and
back substitution.

The two lines in Table 12 labelled ‘Packed Hybrid+ L’ and ‘Packed Hybrid+ U’
do not show exactly the same times as the rows labelled ‘nb=100’ in Table 5 because
they come from separate runs, but the differences are very small.

The recursive algorithms achieve performance that approaches that of the
LAPACK full codes when the order is large. This is because both are then do-
ing most of their work in significant calls of the Level-3 BLAS GEMM. However,
for smaller n, their performance is poor, probably because of the larger ratio of
procedure calls to actual computation.

The hybrid algorithm is much faster than the recursive algorithm for small n,
significantly faster for medium n, and slightly faster for large n.

If we compare the lower-packed hybrid code with the compiled lower-full
LAPACK code, we see that it is always faster, and significantly so for small n.
We see this as very encouraging. Furthermore, it is slightly faster than the vendor
packed code except for small n. It is sometimes faster than the vendor full code and
would have been faster for all n≥1600 if we had switched to nb=200 at n=1600 (see
Table 5). The hybrid code for the upper-packed format does not permit us to com-
bine calls of GEMM, so we expect it not to perform quite so well as the lower-packed

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 23

Table 13. Percentage overheads for rearrangment, IBM Power4.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed Recursive L 6.1 6.7 4.0 3.4 4.0 2.6 2.9 2.6 2.5 1.4 0.9
Packed Recursive U 7.6 5.9 4.7 5.3 3.3 2.7 3.3 3.3 1.6 1.5 1.2
Packed Hybrid L 12.7 13.3 10.7 8.6 6.7 4.7 4.2 3.9 1.8 1.6 0.8
Packed Hybrid U 0.5 0.0 0.0 6.6 6.0 4.6 5.3 3.8 1.8 1.2 1.0

Table 14. Mflops, Cholesky Factorizations, nb = 200, SUN UltraSPARC III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 183 247 296 312 321 325 328 331 315 200 169
Packed LAPACK U 203 256 302 336 365 393 412 425 409 256 218

Full LAPACK L 299 436 637 842 933 1086 864 1173 1203 1169 1236
Full LAPACK U 302 403 627 810 942 1087 1137 1211 1259 1209 1050

Packed Recursive+ L 95 202 275 426 550 727 913 1010 1093 1118 1215
Packed Recursive L 102 219 290 454 581 760 945 1043 1146 1162 1249
Packed Recursive+ U 90 187 251 381 554 687 864 1044 1119 1173 1238
Packed Recursive U 97 201 264 403 586 717 893 1076 1176 1227 1278

Packed Hybrid+ L 390 557 708 782 867 965 1080 1180 1201 1206 1254
Packed Hybrid L 529 778 959 973 1003 1077 1164 1267 1277 1257 1304
Packed Hybrid+ U 518 768 954 988 983 1032 1144 1181 1240 1280 1243
Packed Hybrid U 520 770 955 988 1008 1068 1178 1209 1268 1280 1275

Notes: Vendor Packed Lapack results very similar to Packed Lapack results. Vendor Full Lapack
results similar to Full Lapack results.

format, but the difference is slight and it is faster for small n (see next paragraph).
The rearrangement overheads are shown as percentages in Table 13. We see that

it is tiny for large n, but can be quite significant for small n. The higher percentage
overhead for the hybrid code is a consequence of the greater speed of the hybrid code
and not an inherent inefficiency of the rearrangement. The very small overhead for
the upper-packed hybrid case for small n deserve an explanation. This because the
upper packed and upper blocked hybrid formats are identical if there is only one
block, that is, if n ≤ nb. Thus the overheads arise only from the procedure call and
some simple tests. On the other hand, for the lower blocked hybrid format (Figure
1), the block has to be rearranged from being held by columns to being held by
rows.

We show in Table 14, factorization speeds on the SUN UltraSPARC III in the
same format as that of Table 12. Here, we do not show the vendor LAPACK speeds
since they were very similar to the corresponding speeds for the compiled codes.
Once again, the packed LAPACK codes perform poorly, the recursive codes are
competitive with the full LAPACK codes for large n but not for small n and the
packed hybrid codes significantly outperform the packed recursive codes for small
n. The hybrid performance is slightly better than that of the recursive code for
large n, except in one case where the difference is within the timing uncertainty.
When we compare the hybrid code with the full LAPACK code, we see that it faster
in more than half the cases, with some particularly marked improvements for small
n.

The rearrangement overheads for our principal packed hybrid code (hybrid L)
are less than on the IBM, see Table 15. For the other packed hybrid U code, the

24 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 15. Percentage overheads for rearrangment, SUN UltraSPARC III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed Recursive L 6.9 7.8 5.2 6.2 5.3 4.3 3.4 3.2 4.6 3.8 2.7
Packed Recursive U 7.2 7.0 4.9 5.5 5.5 4.2 3.2 3.0 4.8 4.4 3.1
Packed Hybrid L 26.3 28.4 26.2 19.6 13.6 10.4 7.2 6.9 6.0 4.1 3.8
Packed Hybrid U 0.4 0.3 0.1 0.0 2.5 3.4 2.9 2.3 2.2 0.0 2.5

overheads are similar to those of the packed hybrid L code except when n is small.
The rearrangement overheads for the recursive algorithms are broadly comparable
with those on the IBM.

We show in Tables 16, 17, 18 and 19, corresponding factorization speeds on
our other computers. We do not show the vendor LAPACK speeds since they were
always very similar to the corresponding speeds for the compiled codes. The packed
LAPACK codes always perform poorly, the recursive codes are always competitive
with the full LAPACK codes for large n but not for small n and the packed hybrid
codes outperform the packed recursive codes for small n. There is a slight fall
in the hybrid performance for large n on the Sgi Origin, but not on the other
platforms. When we compare the hybrid code with the full LAPACK code, we see
that it faster on each machine in more than half the cases, with some particularly
marked improvements for small n. The performance of the upper hybrid code is
on the whole better than that of the lower hybrid code, which is contrary to our
expectation.

We do not show separate tables for the rearrangement overheads because they
are similar to those on the IBM (Table 13).

Table 16. Mflops, Cholesky Factorizations, nb = 100, Sgi Origin 2000, R12000.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 111 144 157 143 144 145 145 143 80 55 35
Packed LAPACK U 77 123 167 203 230 251 265 260 121 52 21

Full LAPACK L 126 207 294 373 446 478 446 444 414 404 331
Full LAPACK U 116 175 238 306 375 435 474 491 496 446 471

Packed Recursive+ L 38 77 135 225 324 412 462 491 466 453 425
Packed Recursive L 41 83 145 241 344 431 478 506 484 468 435
Packed Recursive+ U 34 70 119 198 287 370 422 479 465 466 476
Packed Recursive U 37 74 128 210 302 385 435 493 482 482 489

Packed Hybrid+ L 193 269 330 339 382 427 461 484 476 461 439
Packed Hybrid L 236 324 390 375 411 449 480 499 496 474 447
Packed Hybrid+ U 235 320 389 352 386 429 462 484 470 458 453
Packed Hybrid U 238 322 389 375 411 449 480 500 490 472 460

7.3 Solution with many right-hand sides

We next consider the solution for many right-hand sides of a system whose matrix
is already factorized. In Table 20, we show the speed on the IBM Power4 for
max(100, n/10) right-hand sides. There is no rearrangement of the matrix here,
since we assume that its factorization has been retained in its recursive or hybrid
packed form. For all our values of n, the LAPACK codes using the packed formats

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 25

Table 17. Mflops, Cholesky Factorizations, nb = 200, HP Alpha EV6.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 198 238 265 276 268 275 273 219 141 134 123
Packed LAPACK U 163 238 292 352 374 400 415 325 203 181 184

Full LAPACK L 318 442 398 469 526 607 607 625 655 679 706
Full LAPACK U 300 402 411 481 552 619 661 701 724 738 752

Packed Recursive+ L 109 195 267 379 480 535 622 659 666 683 723
Packed Recursive L 122 216 286 405 508 555 642 674 677 691 729
Packed Recursive+ U 100 186 246 351 458 514 571 618 650 680 733
Packed Recursive U 111 202 264 376 484 538 588 645 666 691 740

Packed Hybrid+ L 343 455 491 537 525 591 648 695 731 764 789
Packed Hybrid L 426 498 566 596 562 618 669 720 751 779 799
Packed Hybrid+ U 432 521 554 595 566 591 662 701 744 767 790
Packed Hybrid U 437 521 554 595 572 616 669 714 758 781 799

Table 18. Mflops, Cholesky Factorizations, nb = 200, HP-UX Itanium rx2600s.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 218 328 463 644 825 952 1039 660 609 595 590
Packed LAPACK U 167 224 272 320 359 387 406 416 425 430 433

Full LAPACK L 376 581 838 1307 1728 2189 2546 2777 2904 3028 3141
Full LAPACK U 433 734 559 633 889 1146 1385 1821 2068 2540 2676

Packed Recursive+ L 110 232 378 698 1079 1608 2170 2531 2758 2861 3013
Packed Recursive L 121 256 411 742 1147 1675 2305 2666 2874 2942 3056
Packed Recursive+ U 82 176 313 580 951 1479 1967 2424 2576 2726 2867
Packed Recursive U 89 187 333 616 1004 1551 2063 2531 2659 2785 2910

Packed Hybrid+ L 657 1017 1689 1731 1279 1384 1552 1829 2089 2216 2402
Packed Hybrid L 763 1139 1849 1815 1390 1504 1661 1910 2167 2274 2438
Packed Hybrid+ U 768 1110 1837 1805 1385 1469 1609 1840 2167 2468 2690
Packed Hybrid U 768 1124 1849 1805 1394 1489 1664 1886 2214 2480 2724

Table 19. Mflops, Cholesky Factorizations, nb = 40, Intel Pentium III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 111 130 104 99 95 57 41 37 36 35 35
Packed LAPACK U 96 127 130 137 146 102 82 77 75 72 71

Full LAPACK L 106 113 161 193 226 247 266 289 300 298 297
Full LAPACK U 81 98 144 180 210 237 213 278 244 303 325

Packed Recursive+ L 32 60 93 148 161 199 225 259 288 306 325
Packed Recursive L 34 64 101 160 170 212 236 271 296 313 330
Packed Recursive+ U 34 66 101 161 175 210 233 263 288 307 325
Packed Recursive U 36 72 111 175 187 223 242 273 296 313 330

Packed Hybrid+ L 117 113 139 183 215 241 261 276 284 285 287
Packed Hybrid L 134 131 156 202 236 258 274 288 292 290 290
Packed Hybrid+ U 132 135 156 201 232 263 281 294 303 304 305
Packed Hybrid U 134 151 174 222 253 283 295 307 311 309 308

perform less well than the other codes. The hybrid codes give performance that is
always at least as good as the recursive codes, and is much better for small n.

We show comparable figures for the other systems in Tables 21, 22, 23, 24,
and 25. We see that the performance of the packed LAPACK codes is poor in

26 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 20. Mflops, Solution, many right-hand sides, Notes: Results for Vendor Packed Lapack L
and Vendor Full Lapack very similar to corresponding Lapack results. nb = 100, mb = 100, IBM
Power4.

n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 919 1298 1577 1822 2027 2182 2088 1733 1526 1460 1456
Packed LAPACK U 912 1296 1572 1836 2044 2197 2088 1710 1517 1467 1469

Full LAPACK L 3195 3368 3750 4021 4210 4266 4259 4257 4441 4320 4368
Full LAPACK U 3205 3392 3740 4045 4175 4238 4259 4222 4495 4320 4353

Packed Recursive L 1240 1510 1956 2658 3075 3306 3524 3734 4147 4166 4571
Packed Recursive U 1225 1493 1935 2655 3091 3306 3510 3750 4147 4166 4555

Packed Hybrid L 2359 2941 3411 3778 3991 4084 4231 4285 4362 4422 4620
Packed Hybrid U 2374 2927 3389 3736 3965 4132 4231 4293 4415 4380 4555

Notes: Results for Vendor Packed Lapack L and Vendor Full Lapack very similar to corresponding
Lapack results.

every case and is always inferior to the other codes. The hybrid codes always give
performance that is reasonally close to that of the full code. It is slightly inferior
for small n but slightly superior for large n. On the SUN, Sgi Origin, and HP
Alpha, the recursive codes are inferior to the hybrid codes for small n, but superior
for large n; this is particularly marked on the SUN. For the Itanium, the recursive
code is remarkably successful, consistently out-performing the full code and the
hybrid code. On the Pentium III, the full, recursive, and hybrid codes have broadly
comparable performance.

We are very pleased to see that the performance of the hybrid code continues
to improve as n gets very large, which demonstrates the success of working with
blocks of mb columns and rearranging each to the form illustrated in Figure 7.
We believe that this explains why the packed hybrid codes outperform the Full
LAPACK codes for large n on the SUN, Origin, Alpha, and Itanium. For n≤nb,
the rearrangement probably does not speed up the solution since the columns of B
are already contiguous in memory, but we have not written special code that avoids
the rearrangement in this case.

Table 21. Mflops, Solution, many right-hand sides, nb = 200, mb = 100, SUN UltraSPARC III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 289 341 373 265 220 209 203 199 119 63 54
Packed LAPACK U 276 326 357 294 271 277 281 270 179 99 87

Full LAPACK L 901 933 1045 1089 1103 1279 1238 1300 1268 1312 1299

Full LAPACK U 894 974 1042 1095 1103 1276 1244 1312 1261 1390 1290

Packed Recursive L 280 467 489 678 849 981 1081 1241 1296 1362 1436
Packed Recursive U 267 466 477 659 843 968 1071 1239 1291 1360 1434

Packed Hybrid L 766 852 959 1023 1083 1236 1317 1334 1373 1420 1436
Packed Hybrid U 767 858 959 1031 1074 1234 1316 1336 1401 1453 1435

Notes: Vendor Packed Lapack results very similar to Packed Lapack results (slightly inferior for
small n). Vendor Full Lapack results inferior to Full Lapack results.

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 27

Table 22. Mflops, Solution, many right-hand sides, nb = 100, mb = 100, Sgi Origin 2000, R12000.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 125 162 185 201 212 218 221 170 57 56 39
Packed LAPACK U 123 161 184 200 211 218 220 171 51 53 38

Full LAPACK L 264 330 394 442 483 510 510 507 492 481 447
Full LAPACK U 260 316 373 420 461 496 491 512 477 476 446

Packed Recursive L 206 209 319 370 434 475 483 516 497 480 484
Packed Recursive U 206 209 319 370 434 475 487 516 498 494 487

Packed Hybrid L 229 290 345 403 444 482 504 509 513 517 510
Packed Hybrid U 228 290 345 402 445 481 504 509 503 518 506

Notes: Results for Vendor Packed Lapack and Vendor Full Lapack very similar to corresponding
Lapack results.

Table 23. Mflops, Solution, many right-hand sides, nb = 200, mb = 100, HP Alpha EV6.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 224 293 360 380 403 421 427 318 254 203 203
Packed LAPACK U 226 296 358 384 403 428 422 330 219 203 197

Full LAPACK L 443 478 556 624 669 718 732 712 750 759 762
Full LAPACK U 444 488 553 625 668 709 732 727 750 756 761

Packed Recursive L 328 395 425 576 649 702 687 712 687 732 766
Packed Recursive U 324 389 432 579 635 702 672 712 687 732 766

Packed Hybrid L 407 460 526 597 656 722 739 774 792 804 827
Packed Hybrid U 413 448 522 597 645 717 747 774 799 811 823

Notes: Results for Vendor Packed Lapack same as Packed Lapack and for Vendor Full Lapack
same as Full Lapack, apart from timing uncertainties.

Table 24. Mflops, Solution, many right-hand sides, nb = 200, mb = 100, HP-UX Itanium rx2600s.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 223 305 385 471 538 576 608 628 640 649 655
Packed LAPACK U 225 308 385 465 532 578 614 632 642 648 655

Full LAPACK L 272 411 593 844 1150 1525 1878 2222 2452 2637 2813
Full LAPACK U 271 406 593 835 1157 1538 1881 2222 2452 2626 2813

Packed Recursive L 712 958 1325 1641 2071 2440 2678 2765 3015 3094 3062
Packed Recursive U 695 958 1289 1617 2077 2392 2636 2784 3015 3094 3062

Packed Hybrid L 251 396 581 817 1103 1473 1853 2196 2560 2765 2976
Packed Hybrid U 251 396 577 808 1103 1463 1853 2193 2544 2777 2969

Notes: Results for Vendor Packed Lapack same as Packed Lapack and for Vendor Full Lapack
same as Full Lapack, apart from timing uncertainties. No significant difference with mb=200 or
mb=48.

7.4 Solution with one right-hand side

Finally, we have measured the speeds while solving for single right-hand side, for a
system whose matrix is already factorized. The results are shown in Tables 26 to
31. It is inherently more difficult to obtain a high speed when n is large since the
matrix will need to be read into cache once for forward substitution and once for
back-substitution. It should therefore be possible for the packed codes to execute
faster than the full codes. For the LAPACK codes, this is quite often the case; it
is particularly so for large n on the Sgi Origin and the Itanium. However, on the
SUN, the packed LAPACK codes do not perform well.

28 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 25. Mflops, Solution, many right-hand sides, nb = 40, mb = 100, Intel Pentium III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 110 128 123 120 123 94 67 60 55 54 53
Packed LAPACK U 114 132 127 123 124 95 67 59 55 53 53

Full LAPACK L 160 131 223 259 277 300 262 317 339 346 327
Full LAPACK U 161 192 231 259 274 294 262 319 341 346 325

Packed Recursive L 164 160 230 228 274 290 267 314 330 342 352
Packed Recursive U 163 157 225 226 271 285 268 310 328 341 352

Packed Hybrid L 144 187 221 256 277 300 313 314 311 315 317
Packed Hybrid U 141 188 222 257 277 302 315 314 305 310 314

Notes: Results for Vendor Packed Lapack within timing uncertainties of Packed Lapack Results
for Vendor Full Lapack same as Full Lapack, apart from timing uncertainties.

Table 26. Mflops, Solution, one right-hand side, nb = 40, IBM Power4.
n 40 64 100 160 250 400 640 1000 1600 2500
Packed LAPACK L 906 1205 1496 1798 2021 2253 1907 1645 1479 1432
Packed LAPACK U 899 1187 1488 1814 2022 2275 1868 1612 1508 1473
Vendor Packed Lapack L 894 1196 1489 1789 2022 2257 1892 1592 1488 1479

Full LAPACK L 896 1175 1505 1852 2073 2206 1669 1331 1358 1432

Full LAPACK U 885 1178 1537 1804 2085 2217 1578 1294 1313 1390
Vendor Full LAPACK L 896 1161 1512 1824 2069 2204 1683 1309 1356 1430
Vendor Full LAPACK U 860 1152 1520 1793 2066 2231 1579 1297 1306 1444

Packed Recursive L 283 417 555 810 887 1335 1299 1095 1239 1290
Packed Recursive U 280 419 558 808 907 1344 1356 1107 1242 1274

Packed Hybrid L 880 1177 1498 1647 1851 2098 1480 1150 1027 1009
Packed Hybrid U 874 1167 1474 1622 1826 1993 1452 1121 1017 993

Table 27. Mflops, Solution, one right-hand side, nb = 200, SUN UltraSPARC III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 285 339 383 268 221 208 204 199 84 56 51
Packed LAPACK U 270 325 371 290 274 280 281 280 154 96 85

Full LAPACK L 363 479 575 657 665 798 798 495 370 285 286
Full LAPACK U 373 472 601 698 667 786 791 540 340 306 288

Packed Recursive L 71 113 155 229 299 404 504 560 318 258 252
Packed Recursive U 72 114 155 229 306 405 505 566 314 263 277

Packed Hybrid L 247 310 354 294 338 411 519 554 348 265 229
Packed Hybrid U 240 309 352 292 337 411 520 584 325 231 224

Notes: Vendor Packed Lapack results inferior to Full Lapack results.

For small n, the hybrid codes give consistently better performance than the
recursive codes, and they are broadly comparable with the packed LAPACK codes.

For large n, the recursive code is usually better than the hybrid code, but there
is a notable exception on the Pentium III (Table 31) and there is little difference
on the Sgi Origin (Table 28). When compared to the best LAPACK code, the
recursive code is usually slightly slower but is much faster on the Sgi Origin and
Itanium. Where the packed LAPACK code performs well, consideration should be
given to rearranging the factorized matrix back to the packed format.

For the IBM processor, we have omitted the results for n=4000 since those that

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 29

Table 28. Mflops, Solution, one right-hand side, nb = 100, Sgi Origin 2000, R12000.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 117 157 199 208 211 217 215 184 78 59 55
Packed LAPACK U 116 156 193 204 209 215 213 182 77 56 56

Full LAPACK L 166 236 254 258 260 263 161 120 33 19 12
Full LAPACK U 175 230 252 243 283 270 160 160 34 19 12

Packed Recursive L 30 45 66 98 133 171 210 214 82 88 74
Packed Recursive U 30 45 67 100 132 174 215 216 82 87 86

Packed Hybrid L 115 151 190 233 270 295 323 327 91 58 87
Packed Hybrid U 112 148 187 231 266 291 313 316 83 60 53

Notes: Results for Vendor Packed Lapack and Vendor Full Lapack very similar to corresponding
Lapack results.

Table 29. Mflops, Solution, one right-hand side, nb = 200, HP Alpha EV6.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 217 290 351 400 409 425 424 322 228 203 192
Packed LAPACK U 220 289 358 399 406 423 410 306 238 214 192

Full LAPACK L 190 249 298 312 324 338 283 257 217 199 192
Full LAPACK U 191 243 286 304 320 334 289 263 214 197 174

Packed Recursive L 105 152 200 245 286 312 354 261 194 172 174
Packed Recursive U 102 152 200 242 280 317 344 257 194 172 174

Packed Hybrid L 215 293 345 379 377 403 384 253 201 183 174
Packed Hybrid U 218 284 343 382 381 403 379 258 201 183 160

Notes: Results for Vendor Packed Lapack within timing uncertainties of Packed Lapack Results
for Vendor Full Lapack same as Full Lapack, apart from timing uncertainties.

Table 30. Mflops, Solution, one right-hand side, nb = 200, HP-UX Itanium rx2600s.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 221 301 382 471 518 587 655 622 640 649 639
Packed LAPACK U 225 301 385 462 542 584 738 663 657 653 640

Full LAPACK L 181 263 341 452 522 625 317 307 314 285 266
Full LAPACK U 183 261 344 438 554 603 344 312 317 287 266

Packed Recursive L 76 118 173 268 370 529 615 662 779 886 1065
Packed Recursive U 72 118 169 258 382 527 591 658 771 888 799

Packed Hybrid L 194 279 371 449 618 847 743 649 624 620 640
Packed Hybrid U 193 280 370 450 620 855 776 670 640 633 639

Notes: Results for Vendor Packed Lapack within timing uncertainties of Packed Lapack except
that Vendor Packed Lapack achieved 799 Mflops for n=4000. Results for Vendor Full Lapack
same as Full Lapack, apart from timing uncertainties.

we obtained look unreliable. We are investigating this case further.

8. SUMMARY AND CONCLUSIONS

Our primary goal when we commenced this work was to investigate how much
better the recursive algorithm performed than a simple blocking algorithm. We
expected that it to be better since it can take advantage of all levels of cache, but
did not know by how much. What we have found is that it tends to be inferior
for systems of small order where a single well-chosen block size can take good
advantage of level-1 cache, often by a factor of about 3-4 for our implementations.

30 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Table 31. Mflops, Solution, one right-hand side, nb = 40, Intel Pentium III.
n 40 64 100 160 250 400 640 1000 1600 2500 4000
Packed LAPACK L 112 121 120 128 100 67 59 57 55 54 54
Packed LAPACK U 115 140 131 133 119 85 65 59 54 53 54

Full LAPACK L 38 48 68 90 75 70 61 56 57 52 45
Full LAPACK U 39 51 73 95 83 69 60 57 56 52 44

Packed Recursive L 12 19 28 42 44 51 52 52 52 49 45
Packed Recursive U 12 19 28 42 44 50 51 51 52 48 46

Packed Hybrid L 100 108 121 139 146 120 110 109 109 109 106
Packed Hybrid U 91 108 120 137 129 111 101 98 98 97 99

Notes: Results for Vendor Packed Lapack within timing uncertainties of Packed Lapack Results
for Vendor Full Lapack same as Full Lapack, apart from timing uncertainties.

For large systems, performance of the recursive algorithm is similar on the SUN
and Sgi, worse on the IBM, Alpha, and better only on the Itanium and Pentium.
An advantage of the recursive method, of course, is that no choice of block size is
needed.

On balance, we therefore see that the hybrid algorithm performs better than
the recursive algorithm. Also, we see that it often outperforms the full-storage
LAPACK code.

In the course of this investigation, we have considered carefully exactly how the
blocks should be chosen to permit good advantage to be taken of level-1 cache during
factorization and solution to allow rapid rearrangement to the block form without
undue use of temporary memory. We noted that where the data is generated by
computer code, it may be equally efficient to generate it in the chosen format so
that no rearrangement is needed.

We have also developed some new kernel codes for the Cholesky factorization of
the diagonal blocks because the LAPACK kernel POTF2 is unsatisfactory as it uses
Level-2 BLAS. We obtained remarkably fast performance for our kernel by using
mini-blocks of order 2 in standard Fortran code.

9. ACKNOWLEDGEMENTS

The work described here is partly the outcome of collaborations with HPCN at the
University of Umea, Sweden and UNI•C in Lyngby, Denmark. At Umea we thank
Isak Jonsson.

We would like to thank Niels Carl W Hansen for consulting on the IBM and
SGI systems; Bernd Dammann for consulting on the SUN system; Susanne Balle
and Martin Antony Walker for making the HP Itanium 2 system available to us;
Tim Regan for consulting on the HP Itanium 2 system; and Minka and Alexander
Karaivanov for several discussions.

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm · 31

REFERENCES

Agarwal, R., Gustavson, F., and Zubair, M. 1994. Exploiting functional parallelism on
power2 to design high-performance numerical algorithms. IBM Journal of Research and

Development 38, 5 (September), 563–576.

Andersen, B., Gunnels, J., Gustavson, F., Reid, J., and Waśniewski, J. 2004. Fortran
90 Subroutines for the Cholesky Algorithm in Blocked Hybrid Format. For submission to
the ACM Transactions on Mathematical Software.

Andersen, B., Gunnels, J., Gustavson, F., and Waśniewski, J. 2002. A Recursive For-
mulation of the Inversion of symmetric positive definite Matrices in Packed Storage Data
Format. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, and P. R. V. Savolainen

Eds., Proceedings of the 6th International Conference, PARA 2002, Applied Parallel Com-

puting , Number 2367 in Lecture Notes in Computer Science (Espoo, Finland, June 2002),
pp. 287–296. Springer.

Andersen, B., Gustavson, F., and Waśniewski, J. 2001. A Recursive Formulation of
Cholesky Facorization of a Matrix in Packed Storage. ACM Transactions on Mathematical

Software 27, 2 (Jun), 214–244.

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.

1999. LAPACK Users’ Guide (Third ed.). Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA.

Calahan, D. 1986. Block-Oriented local memory-based linear equation solution on the
Cray-2; Uniprocessor algorithms. In Proceedings International Conference on Parallel Pro-

cessing , IEEE Computer Society Press (Yew York, USA, August 1986).

Chatterjee, S., Jain, V. V., Lebeck, A. R., Mundhra, S., and Thottethodi, M. 1999.
Nonlinear array layouts for hierarchical memory systems. In International Conference on

Supercomputing (1999), pp. 444–453.

Dongarra, J., Bunch, J., Moler, C., and Stewart, G. 1979. Linpack Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Dongarra, J., Du Croz, J., Duff, I. S., and Hammarling, S. 1990. A Set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Dongarra, J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An Extended
Set of Fortran Basic Linear Algebra Subroutines. ACM Trans. Math. Soft. 14, 1 (March),
1–17.

Duff, I. S. and Reid, J. K. 1996. Exploiting zeros on the diagonal in the direct solu-
tion of indefinite sparse symmetric linear systems. ACM Transactions on Mathematical

Software 22, 2, 227–257.

Frens, J. D. and Wise, D. S. 1997. Auto-blocking matrix-multiplication or tracking blas3
performance from source code. In Proceedings of the sixth ACM SIGPLAN symposium on

Principles and practice of parallel programming (1997), pp. 206–216. ACM Press.

Gallivan, K., Jalby, W., Meier, U., and Sameh, A. 1987. The impact of hierarchical
memory systems on linear algebra algorithm design. CSRD Report 625 (SEP), CSRD.

Gustavson, F. 1997. Recursion Leads to Automatic Variable Blocking for Dense Linear-
Algebra Algorithms. IBM Journal of Research and Development 41, 6 (November), 737–
755.

Gustavson, F. and Jonsson, I. 2000. Minimal storage high performance cholesky via block-
ing and recursion. IBM Journal of Research and Development 44, 6 (Nov), 823–849.

IBM. 1986. Engineering and Scientific Subroutine Library, Guide and Reference. First Edi-
tion (Program Number 5668-863).

Lawson, C. L., Hanson, R. J., Kincaid, D., and Krogh, F. T. 1979. Basic Linear Algebra
Subprograms for Fortran Usage. ACM Trans. Math. Soft. 5, 308–323.

Valsalam, V. and Skjellum, A. 2002. A framework for high-performance matrix multi-
plication based on hierarchical abstractions, algorithms and optimized low-level kernels.
14, 10 (Aug.), 805–839.

32 · B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Waśniewski

Waśniewski, J., Andersen, B., and Gustavson, F. 1998. Recursive Formulation of

Cholesky Algorithm in Fortran 90. In B. Kågström, J. Dongarra, E. Elmroth, and

J. Waśniewski Eds., Proceedings of the 4th International Workshop, Applied Parallel

Computing, Large Scale Scientific and Industrial Problems, PARA’98 , Number 1541 in
Lecture Notes in Computer Science Number (Ume̊a, Sweden, June 1998), pp. 574–578.
Springer.

Whaley, R., Petitet, A., and Dongarra, J. 2000. ATLAS: Automatically Tuned Lin-
ear Algebra Software. http://www.netlib.org/atlas/. University of Tennessee at Knoxville,
Tennessee, USA.

