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The modulation bandwidth of quantum well nanoLED and nanolaser 
devices is calculated from the laser rate equations using a detailed model for 
the Purcell enhanced spontaneous emission. It is found that the Purcell 
enhancement saturates when the cavity quality-factor is increased, which 
limits the maximum achievable spontaneous recombination rate. The 
modulation bandwidth is thereby limited to a few tens of GHz for realistic 
devices. 
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Introduction 

In the emerging field of photonic signal processing there is an expressed need for small and 
efficient light emitters that can be integrated in photonic circuits and which have large 
modulation bandwidths. Today’s fastest diode lasers exhibit modulation speeds on the order 
of a few tens of GHz and nanolasers and nanoLEDs have been suggested as interesting 
alternatives. In the past two decades process technology has matured sufficiently to enable 
fabrication of active cavities with high quality-factors and low mode volumes [1], where the 
Purcell enhancement of spontaneous emission [2] can become large enough to affect the 
dynamics of the device [3–6]. Early predictions of the properties of nanolasers by Altug et al. 
[5], based on an analysis of the laser rate equations with a phenomenological Purcell 
enhancement of the spontaneous emission rate, suggested modulation speeds exceeding 100 
GHz. Recently, the same system was investigated numerically in a paper by Lau et al. [6] 
where the importance of gain suppression was pointed out and it was indicated that the 
ultrahigh modulation speeds reported by Altug et al. were the result of the measurement 
method and are in reality only achievable in non-lasing devices with ultralow mode volume. 
Because of the potentially very high Purcell factor, the dynamics of the device is very 
dependent on the details of the spontaneous emission and a rigorous treatment of spontaneous 
emission is needed. In this paper we therefore calculate the spontaneous emission from 
fundamental principles and study the effect on the dynamic properties of nanoLEDs and 
nanolasers. We find that the high-speed properties predicted in ref [6]. for nanoLEDs are 
deteriorated due to a reduction and saturation of the Purcell enhancement factor, which is 
intrinsic to quantum well and bulk active materials. 

First, we will state the basic laser rate equations and a general expression for the 3dB-
bandwidth. Then we will outline the model for the Purcell enhanced spontaneous emission 
rate and discuss the general behavior of the calculated rates. Next, the steady-state carrier and 
photon densities, the spontaneous and stimulated emission rates and the 3dB-bandwidth are 
calculated for two characteristic devices: one in the LED regime and one in the lasing regime 
and the results are discussed in the context of previous models. Finally, the 3dB-bandwidth is 
calculated for a wide range of nanoLEDs and nanolasers. 

General rate equations and modulation response 

Conventional diode lasers are well described in terms of the carrier (N) and photon (S) 

densities in the laser rate equations [6,7]  

 bc st nrN J RR RR= − − − −ɺ   (1) 

 ( )c st

p

N
RS R

τ
+Γ −=ɺ   (2) 

where J is the carrier injection into the active volume, Γ is the confinement factor and τp = 
Q/ω0 is the lifetime of the photon in the cavity given by the quality (Q) factor and the cavity 
resonance frequency [8] (see Table 1 for parameter values used in this paper). The total carrier 
recombination rate has been separated into contributions from stimulated emission (Rst), 
spontaneous emission into the cavity (Rc), spontaneous emission into all other modes (Rb) and 
non-radiative losses (Rnr). For the latter we approximate Rnr = N/τnr with τnr being the non-
radiative life time. For the stimulated emission we use 

 
0
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1
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which is suitable for the quantum well type devices considered [7]. Here vg = c/n is the group 
velocity, G0 is the material gain, Ntr is the transparency carrier density and Ns is a gain 
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parameter [7]. The gain, G, in Eq. (3) is inversely proportional to 1 + εS [9] to include gain 
suppression due to spectral hole burning and carrier heating at high photon densities. 

An important measure for the performance of laser diodes is the modulation bandwidth 
which can be estimated from a small-signal analysis of Eq. (1) and (2). Following a standard 
derivation (ref [7]. p. 195-201) the general form of the small-signal response function can be 
written as 

 ( )
2

2 2

R

R R

H
i

ω
ω

ω ω ωγ
=

− +
  (4) 

Table 1. Definition and standard values of the parameters used in this paper. If nothing 
else is specified in the text, the value stated here has been used in the calculations. 

Parameter Description Value 

Γ Confinement factor 0.1 [6] 

n Refractive index 3.5 [7] 

G0 Material gain parameter 1.284 × 105 m−1 [6] 

Ntr Transparency density 1.2 × 1024 m−3 [6] 

Ns Logarithmic gain parameter 0.92 Ntr [6] 

ε Gain suppression factor 18 Ntr
−1 [6] 

   
τsp Spontaneous recombination time 1 ns [6] 

τnr Non-radiative recombination time 1 ns [6] 

τ21 Differential recombination time 125 ps 

   
hν0 Cavity resonance 0.8 eV [7] 

hνL Lower photonic band edge 0.9 hν0 [10] 

hνU Upper photonic band edge 1.1 hν0 [10] 

   
W Quantum well width 8 nm [7] 

me* Effective electron mass 0.045 me [7] 

mh* Effective hole mass 0.37 me [7] 

where ωR is the resonance frequency of the response function and γR is the damping. Both ωR and γR will be defined 
below. Solving |H(ω3dB)|2 = |H(0)|2/2 for the frequency gives the 3dB-bandwidth 
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  (5) 

The terms Rc and Rb are spontaneous emission processes that depend only on the carrier 
density and not on the photon density, therefore, with Eq. (1) and (2), ωR and γR are given by 
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and 
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Γ

+Γ   (7) 

where N0 and S0 are steady-state carrier and photon densities and a = dG/dN, ap = -dG/dS, Rc,N 
= dRc/dN and Rb,N = dRb/dN. In the following we specify Rc and Rb and use Eq. (5) - (7) to 
calculate the modulation response. 
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Purcell enhanced spontaneous emission 

For nanocavity devices with high Q and low mode volume (V) the Purcell effect should be 
taken into account when calculating the spontaneous emission [2,5,6,11]. The Purcell factor 
reflects the increased spectral density of a single mode centered in a cavity and can be written 
as 

 
2

6

n

Q
F

Vπ
=   (8) 

where Vn = V/(λ/(2n))3
 is the mode volume in half wavelengths. There exist a number of 

different definitions of the Purcell effect, but here we take F to be the spontaneous emission 
rate into the cavity mode relative to the spontaneous emission rate in a bulk (homogeneous) 
medium at the same spectral position and use Eq. (8) to describe its magnitude. We consider 
two models for spontaneous emission, which include the Purcell enhancement. 

Linear Model 

In conventional semiconductor diodes operated near threshold the spontaneous emission can 
be approximated as being linear in the carrier density, Rsp = N/τsp, where τsp is the spontaneous 
lifetime in bulk. In the linear model the spontaneous emission is often split so that Rc = βRsp 
and Rb = (1-β)Rsp, where β = Rc/Rsp is the spontaneous emission factor. 

The Purcell effect is taken into account phenomenologically by multiplying F onto Rc 
[5,6,12,13] to include the relatively larger emission into the cavity. We use the spontaneous 
emission terms from ref [6]. as an example of the linear model, i.e. 

 c

sp

N
R Fβ

τ
=   (9) 

 ( )1b

sp

N
R β

τ
= −   (10) 

Inserting Eq. (9) and (10) into Eq. (6) and (7) above, we thus recover Eq. (9) and (10) of ref 
[6]. For systems with β ~1 this model assumes that the Purcell effect acts on all the carriers in 
the system as it does not take into account the details in the optical density-of-states (DOS), 
which are important when discussing devices with large Purcell factors. Furthermore, the 
linear model is only valid close to its Taylor expansion point. 

Full Model 

In the full model we follow ref [7]. and write the differential spontaneous recombination rate 
for a semiconductor device in terms of the differential carrier population, dN2, as dRsp = 
A21dN2, where the Einstein coefficient (A21) is proportional to the optical DOS (ρop) and the 
B21 coefficient, i.e. A21 = hνρopB21. dN2 can be written in terms of the electron (f2) and hole (f1) 
Fermi functions and the reduced electronic DOS (ρel) as dN2 = ρelf2(1-f1)dE21 and 
homogeneous broadening is taken into account by convoluting with the lineshape function 
L(E - hν), which is usually taken to be a Lorentzian. Integrating over energy we arrive at an 
expression for spontaneous emission rate (ref [7]. p. 459-472) 

 ( ) ( ) ( )( ) ( ) ( )2 1 21 dh1 dEsp el A h L ER E f E f hEρ ν ν ν−= −∫∫   (11) 

The optical DOS is modeled as the bulk DOS plus a Lorentzian shaped cavity spectrum 
[14] placed in the center of a photonic bandgap, i.e. 

 ( ) ( )( )
( )

2

3 2

21 21 0

2
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Fig. 1. The relative positions of the background optical DOS (black), the cavity optical DOS 
(red) and the electronic well DOS (green). 

Here H is the Heaviside function and the cavity is centered at hν0 = (hνU - hνL)/2, with hνL 

(hνU) being the lower (upper) edge of the photonic band gap and 2 /p pτΓ = ℏ  the width of the 

Lorentzian (c.f. Figure 1). The Einstein B21 coefficient is found by setting A21(hν0) = 1/τ21 = 
hν0B21ρop(hν0), where the differential recombination time (τ21) is chosen so that the bulk 
spontaneous emission time (τsp) is recovered in the absence of the cavity, i.e. so that Rsp(Ntr) = 
Ntr/τsp in bulk. We then have 

 ( ) ( ) ( )( )
( )

3

21 2

21 0 0

2
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A h H h h H h h
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  (13) 

This model for the optical DOS thus describes the Purcell enhancement as the redistribution 
of the modes, which are suppressed by the photonic bandgap, into the cavity. The increase in 
the DOS near the edges of the photonic bandgap, which is usually observed in photonic 
crystals [17] and follows a sum rule [15], is not taken into account. 

The reduced electronic DOS is given by [7] 

 ( ) ( )( )2

12
1

r
el g

n

m
E H E E n E

W
ρ

π

∞

=

= − +∑
ℏ

  (14) 

where mr = (me*mh*)/(me* + mh*) is the reduced effective mass, me* (mh*) is the effective 
electron (hole) mass, W is the well width, Eg is the bandgap energy and E1 = h2/(8mrW

2) is the 
energy of the first energy level in a quantum well with infinitely high barriers. The use of a 
more accurate description of the quantum well does not change the conclusions of the paper. 

In this model (Eq. (11) - (14)), which we will refer to as the “full model”, Rb is the integral 
over the bulk part of Eq. (13) while the Lorentzian part gives Rc. Although the full model 
specifically describes quantum well devices it is also suitable for bulk devices if an 
appropriate electronic DOS is chosen. Quantum dot devices, however, are governed by a 
different set of laser rate equations than Eq. (1) and (2) and should account for the dynamics 
in both the wetting layer and quantum dot levels. Furthermore, the electronic DOS for 
quantum dots is markedly different from that of bulk and quantum wells and including 
quantum dots in the treatment would make the discussion less clear. Although the use of 
quantum dot structures may be very promising, we therefore only treat quantum well (and 
bulk) devices in this paper. 
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Fig. 2. a) The calculated spontaneous recombination rates for Q equal to 100 (red), 1000 (blue) 
and 10000 (green). In the full model the emission into the cavity (solid lines) is several orders 
of magnitude lower than in the linear model (dashed lines). Also shown is the emission into the 
background in the full model (dotted line) and Rel for Q = 100 (dot-dashed line). β is 0.94 and 
Vn is 0.1. b) The effective Purcell factor in the full model (solid lines) and in the linear model 
(dashed lines) for Q equal to 100 (red), 1000 (blue) and 10000 (green). The effective Purcell 
factor for Q = 10 is also shown. 

Saturation of Purcell enhancement 

In Fig. 2a the spontaneous emission calculated in the linear and the full model are compared. 
It is seen that the spontaneous emission in the full model is significantly lower than in the 
linear model and does not have a linear dependence on N. To see clearly the contribution from 
the electronic part of Eq. (11) we also plot (for a Q of 100) 
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∫
  (15) 

As can be seen from Fig. 2a, Rel approaches the slope of the linear model for high carrier 
density, i.e. for the quasi-Fermi level separation high above the electronic band edge, where 
the integral in Eq. (15) is almost equal to the carrier density. For low carrier density Rel 
follows Rc, although Rc is somewhat smaller due to the limiting effect of the cavity DOS. The 
saturation of Rc for N > Ntr is not seen in Rel and originates from the finite quantum well DOS 
and associated band filling effects at the cavity resonance E0, i.e. the quasi-Fermi level 
separation becomes much larger than E0 so that f2 (1 – f1) ~1 near E0. 

Perhaps the most interesting feature in Fig. 2a is that Rc does not increase with the Q-
factor in the full model. This can be explained by evaluating the integral over frequency in Eq. 
(11). This is usually done by assuming the homogeneous broadening term, L (E - hν), to be 
sharply peaked at hν = E compared to the other terms in Eq. (11) so that it can be replaced by 
a Dirac delta-function. However, for high-Q cavities the cavity linewidth can easily become 
smaller than the homogeneous broadening and in this case the integral over frequency in Eq. 
(11) should be evaluated exactly. The results in the present model, however, are not 
significantly changed when evaluating the frequency integral exactly using a Lorentzian for 
the homogeneous broadening as the electronic DOS is much wider than the homogeneous 
broadening. Therefore, we will use L(E – hν) = δ(E - hν) from here on. 

The cavity part of the integral over frequency in Eq. (11) becomes 
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which is a new Lorentzian. Then the cavity part of Eq. (11) becomes 
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Taking now the Lorentzian to be sharply peaked compared to the remaining terms in Eq. (17), 
which is the case for high Q, the remaining integral is effectively over the Lorentzian and we 
end up with 
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ℏ
 (18) 

which is independent of the Q-factor. Put in another way; when increasing the Q-factor, the 
increase in spontaneous emission into the cavity due to the Purcell enhancement is exactly 
cancelled by the simultaneous decrease in the effective integration range. Thus for increasing 
Q-factor, the Purcell enhancement reaches a maximum value when the cavity linewidth 
becomes δ-like compared to the other terms in Eq. (17), i.e. for Q larger than a few hundreds. 
The reduction thus originates from the mismatch between cavity bandwidth and the effective 
inhomogeneous broadening expressed by the electronic DOS. This agrees with the qualitative 
discussion given in ref [16]. 

Notice that the expression in Eq. (18) is still inversely proportional to the mode volume, so 
that the rate can be enhanced by lowering Vn. Note also that we here neglect features in the 
electronic DOS such as the exciton peak near the band edge, which may challenge the 
requirement that the electronic DOS be slowly varying. Deviations of this type from the 
assumed smooth electronic DOS do not affect the conclusions, but rather increase the Q-factor 
at which the Purcell enhancement saturates. However, a rigorous treatment of the electronic 
DOS is beyond the scope of this work. 

Finally, we note that the emission into the background (Rb) shown in Fig. 2a is negligible 
for N < 10 Ntr. Reducing the size of the photonic bandgap increases Rb, but the change is 
insignificant compared to Rc. 

Effective Purcell factor 

In order to make the subsequent discussion more transparent we now introduce an effective 
Purcell factor, which we define as 

 c
eff

bulk

R
F

R
≡   (19) 

where Rbulk is the total spontaneous emission in the absence of a cavity, i.e. 
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 (20) 

The effective Purcell factor encompasses a number of the interesting effects described above, 
namely: the reduction of the Purcell enhancement due to the limited cavity bandwidth as 
compared to the inhomogeneous broadening, the saturation effect that occurs when the quasi-
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Fermi level separation is much larger than the cavity resonance frequency and the increase in 
the β-factor, which follows from the Purcell enhanced emission into the cavity. 

Using the definition in Eq. (19) and the expression for Rc in Eq. (9) the effective Purcell 
factor reduces to Feff = βF in the linear model. In the full model the effective Purcell factor is a 
function of the optical and electronic DOS and thus depends on Q, Vn and N and is therefore 
markedly different from the Feff in the linear model. 

The effective Purcell factors in the two models are plotted in Fig. 2b for the devices in Fig. 
2a. For N < Ntr we have Feff in the full model almost constant, but lower than Feff in the linear 
model due to the reduction originating from the limited cavity bandwidth. The decrease for N 
> Ntr in the full model is a combination of the bandfilling effect and Rb growing large. 

Results 

We now proceed to calculate the steady-state carrier and photon densities, the spontaneous 
and stimulated emission and the 3dB-bandwidth for two specific devices in the linear and full 
model. To ease comparison, the β-factor calculated from the full model is used in the linear 
model. Device A has a Q-factor of 10

4
 and a mode volume of 10 Vn and device B has a Q-

factor of 10
2
 and a mode volume of 0.1 Vn. The results for device A are plotted in Fig. 3a-c, 

and for device B in Fig. 3d-f. 
In Fig. 3a the carrier and photon densities are shown as a function of the pump (in units of 

J0 = Ntr/τsp). For J < J0 the carrier density in the linear model is much lower than in the full 
model. This is an effect of the reduction of the effective Purcell factor for high Q-factors in 
the full model, which limits Feff to ~1 for low carrier density, whereas Feff ~610 in the linear 
model. The higher spontaneous emission rate in the linear model explains the lower carrier 
density. 

The carrier density in the full model clamps for J ~J0, when lasing sets in, and remains 
constant until J ~100 J0, where it again begins to increase. This increase is due to the gain 
suppression that becomes a significant process for S0 ~1/ε ~ 0.05 Ntr and must be compensated 
by an increase of the linear gain. The β-factor is close to unity for the entire pumping range, 
which explains why the photon densities for the two models are equal for J > 10 J0 even 
though the linear model is dominated by spontaneous emission, while the full model is 
dominated by stimulated emission. 

Figure 3b compares the spontaneous and stimulated emission for the two models. In the 
full model the spontaneous emission increases strongly until the carrier density clamps, where 
after the stimulated emission becomes dominant. The spontaneous emission remains constant 
until J ~100 J0, where the carrier density begins to increase again due to the gain suppression 
effect discussed above. In the linear model the carrier density is much lower than in the full 
model, giving a lower stimulated emission. This pushes the threshold pump up to around J 
~1000 J0. 

Several features observed in Fig. 3a and b are also found in the 3dB-bandwidth in Fig. 3c. 
In the full model the 3dB-bandwidth is dominated by spontaneous emission until J ~J0, after 
which stimulated emission dominates until gain suppression becomes important around J 
~100 J0. Over the entire pumping range the 3dB-bandwidth does not exceed 20 GHz. In the 
linear model the high 3dB-bandwidth for J < 100 J0 is due to the high spontaneous emission 
and the drop-off for J >100 J0 is due to the damping rate (γR) increasing more rapidly than the 
resonance frequency (ωR) as explained in ref [2]. 
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Fig. 3. Results from device A with Q = 104 and Vn = 10 and device B with Q = 102 and Vn = 0.1 
plotted against pump (in units of J0 = Ntr/τsp). a) The carrier (solid) and photon (dashed) 
densities for device A, b) the spontaneous (solid) and stimulated (dashed) emission for device 
A and c) the 3dB-bandwidth for device A. d-f) are the same as a-c) but for device B. Both the 
full model (red) and the linear model (blue) are shown. 

The results for device B are shown in Fig. 3d-f, where both the Q-factor and mode 
volume, Vn, are 100 times lower than in device A, so that Feff remains ~610 in the linear 
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model, but changes to ~70 in the full model (for low carrier density). For this device the 
photon loss is 100 times larger than for device A and therefore the photon densities for the 
two models in Fig. 3d are 100 times lower. In the linear model, the relatively lower photon 
density is reflected in the carrier density, which is also lowered to balance the photon loss. 

In the full model the carrier density is only slightly lower than for device A for J < J0. This 
is because the spontaneous emission rate in the full model follows another dependence on N 
(approximately N2

) than in the linear model and therefore a smaller adjustment of N is 
necessary to compensate the lower photon density. 

In Fig. 3e the spontaneous emission rate in the linear model is lower by a factor 
corresponding to the lowering of carrier density compared with device A. In the full model the 
spontaneous emission almost follows the increase in Feff, but is also modified by the lower 
carrier density. In neither models the gain becomes large enough to initiate lasing and this is 
reflected in the carrier densities, which do not clamp in this device. 

Figure 3f shows that the 3dB-bandwidth calculated in the two models differs significantly. 
The 3dB-bandwidth is almost an order of magnitude lower in the full model compared to the 
linear model. This can be explained by studying Eq. (5) in the LED regime, i.e. for 
dominating spontaneous emission. For the linear model Eq. (5) reduces to 
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with the effective carrier life time 
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Thus the high bandwidth observed in Fig. 3f is due to the effective Purcell factor growing 
large. In the full model the 3dB-bandwidth is also given by Eq. (21), but in this model we 
have 
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From Eq. (21), Eq. (23) and Fig. 2b the behavior of the 3dB-bandwidth in the full model now 
becomes clear. 

For J < 50 J0 the effective Purcell factor is almost constant and Rb,N ≈0, so that the first 
term in Eq. (23) determines τeff. For 50 J0 < J < 800 J0 the term Rb,N is still low, while Feff 
starts to decrease so that the first term of Eq. (23) becomes smaller and the second term 
becomes negative, leading to a decrease in the 3dB-bandwidth. For J > 800 J0 the background 
emission increases sharply, making τeff decrease and leading to the final increase in the 3dB-
bandwidth. Thus the 3dB-bandwidth in the full model is roughly an order of magnitude lower 
than in the linear model and this clearly underlines the necessity for a detailed description of 
the spontaneous emission. 

The same analysis can be made for Fig. 3c for J < 2J0, as spontaneous emission is also 
dominant in this pumping range. Here the effective Purcell factor in the full model is 100 
times lower than for device B, making 1/τnr the dominating term in Eq. (23) and giving the 
low 3dB-bandwidth compared to device B. Another way of expressing the behavior is that the 
Purcell enhancement only affects the carriers associated with transitions within the bandwidth 
of the cavity resonance. When the cavity resonance is much narrower than the electronic 
bandwidth the influence from the enhanced spontaneous emission only has a small effect on 
the total carrier density life time and thus also the speed. 
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Fig. 4. The 3dB-bandwidth for a) J = J0 and b) J = 100 J0. The red lines are contours of equal 
3dB-bandwidth in GHz. The black line separates the potential laser devices from the LED 
devices and the white line indicates which of the laser devices that have larger stimulated 
emission than spontaneous emission at the given pump. 

In order to examine the modulation bandwidth for a large range of devices, the 3dB-
bandwidth has been calculated in the full model versus Q-factor and mode volume for a range 
of devices and the result is plotted in Fig. 4 for J = J0 and J = 100 J0. The white line in the 
figure shows, for the given pump current, the device parameters for which stimulated and 
spontaneous emission are equal in magnitude. Devices to the right of this boundary are 
dominated by stimulated emission. The black line shows the limiting value of this boundary 
for large pump current, i.e. devices to the left of this line will always be dominated by 
spontaneous emission, independently of the strength of the pump, and are thus always in the 
LED regime. 

All the devices in Fig. 4a are dominated by spontaneous emission for the given pump and 
are therefore in the LED regime. It is seen that the 3dB-bandwidth is below 3 GHz for most 
devices, except at extremely low mode volumes, which are probably unattainable in practice, 
where the bandwidth starts to increase. This is due to the effective Purcell factor, which is 
large at low mode volume, so that the first term in Eq. (23) dominates. The slight dependence 
on Q is due to the photon life time that becomes smaller at low Q and thereby increases the 
3dB-bandwidth in Eq. (21). 

The same dependence on Q is seen in Fig. 4b, where the 3dB-bandwidth exceeds 200 GHz 
in the lower left corner, i.e. in the LED regime. In the top right area, which corresponds to 
conventional laser structures, the effective Purcell factor saturates at a Q of a few hundreds 
and the stimulated emission therefore becomes the dominant recombination process so that 
the term aS0/τp in Eq. (6) becomes large, giving the large modulation speed in this area. In the 
lower right corner the photon loss is too large to meet the lasing condition and the effective 
Purcell factor is low, giving the lower 3dB-bandwidth. In general the ultrahigh modulation 
speeds previously reported [6] are not seen, neither at low or high pump, because the effective 
Purcell factor saturates and becomes independent of the Q-factor as discussed above. 

We note that for two level structures, such as quantum dot devices the upper left corner of 
Fig. 4a and b may correspond to devices operating in the strong coupling regime [11], where 
the calculated 3dB-bandwidth would be invalid. However, for quantum well structures and 
operation at room temperature, as considered here, this is not considered to be an issue. 

Discussion and conclusions 

In this paper we have discussed how to treat Purcell enhancement of spontaneous emission in 
quantum well nanoLEDs and nanolasers in the laser rate equation model. In the present model 
for the spontaneous emission rate, which incorporates details about the optical density-of-
states, it was shown that the spontaneous emission rate saturates for high carrier density and 
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that it does not follow the usual linear enhancement with the cavity Q-factor. The 
independence of the Q-factor was found to originate from the cavity bandwidth being small 
compared to the electronic density-of-states and this limits the magnitude of the enhancement 
of the spontaneous emission in nanocavity systems. We introduced an effective Purcell 
enhancement that incorporates the important features due to the optical and electronic density-
of-states and can be used to describe the spontaneous emission in a simple way. The limited 
effective Purcell enhancement entails that for devices with mode volumes attainable with 
today’s technology the highest modulation bandwidth is found above threshold and limited by 
well-known damping effects due to gain nonlinearities [6,18]. The ultrafast modulation speeds 
previously reported in ref [6]. are only found in devices with extremely low mode volume and 
even for these devices the 3dB-bandwidth is below a few hundred GHz and the spectral 
bandwidth is very broad making wavelength division multiplexing systems difficult. 

The limited modulation bandwidth is due to the wide electronic density-of-states as 
compared to the cavity spectrum. However, it can also be seen from Eq. (17) that if the 
electronic density-of-states function is narrower than the cavity bandwidth the saturation of 
the effective Purcell factor is lifted. This indicates that ultra-high bandwidths may be 
obtainable in quantum dot systems. However, it will be necessary to include inhomogeneous 
broadening in the analysis of quantum dot systems as this effect will widen the electronic 
density-of-states significantly. The same is true for the homogeneous broadening, which will 
be present even if the inhomogeneous broadening is made insignificant. A rigorous treatment 
of quantum dot systems is beyond the scope of this paper and whether the ultra-high 
modulation speeds are attainable in quantum dot systems remains an open question. 
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