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Abstract

This thesis concerns the development of methods that can provide, in real-
time, an early warning for an emerging blackout in electric power systems.
The blackout in E-Denmark and S-Sweden on September 23, 2003is the
main motivation for the method development. The blackout was caused by
occurrence of two severe system disturbances within a time interval of five
minutes. Following the second disturbance where initial oscillations had
damped out, a period of approximately 80s with slowly decaying voltage
magnitude was observed, before a system blackout was experienced. It was
of interest to develop methods, that could, in such situations, give an early
warning for the emerging blackout.

After investigation of data and plots taken from the time of the blackout, it
was decided to focus the development on assessment of aperiodic small sig-
nal stability. In order to assess the system generators aperiodic small signal
stability, expressions for stability boundaries were algebraically derived in
the injection impedance plane. A method for detecting aperiodic small signal
stability was established, which was based on one of the derived boundaries.
The method carries out an element-wise assessment of the system aperiodic
small signal stability where each generator is assessed specifically by using
the value of its injection impedance and its corresponding system Thevenin
impedance.

For the purpose of obtaining distance-to-instability information, the gener-
ators operating point were visualized in the injection impedance plane. A
mapping of the different operating points into a normalizedinjection imped-
ance plane was derived, which enabled a visualization of multiple operating
points on the same screen. Such visualization provides system operators a
new mean of graphically assessing the system conditions in respect of aperi-
odic small signal stability and enables a quick identification of critical gen-
erators.

The assessment method was implemented in an algorithm, thatcould effec-
tively determine the required information for carrying outthe stability as-
sessment. The algorithm received a PMU-snapshot of the system conditions
as an input and determined the injection and Thevenin systemimpedances
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for all system generators. A test bench software was writtenfor the pur-
pose of testing the developed algorithm. A large scale test of the assessment
method was carried out where a simulation of the blackout in E-Denmark
and S-Sweden September 23, 2003 was used as a test case scenario. The
simulation results were used to generate a synthetic PMU-snapshots of the
system conditions which were used as an input to the assessment algorithm.
The test results showed that the loss of aperiodic small signal stability of one
machine was detected approximately 54sbefore the simulated blackout was
experienced.

The developed assessment method was therefore capable of providing, in
real-time, an early warning for the occurrence of the emerging simulated
blackout almost a minute before it occurred.
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Resumé

Denne afhandling omhandler udviklingen af metoder der kan give en tidlig
varsel for forekomsten af en omfattende strømafbrydelse i elforsyningen.
Strømafbrydelsen på Sjælland og i Sydsverige i 2003 har været en særlig
motivation for metodeudviklingen. Strømafbrydelsen var forårsaget af to
alvorlige systemforstyrrelser der skete indenfor et tidsinterval på fem min-
utter. Som følge af den anden forstyrrelse, blev et langsomtspændingsfald
observeret i en periode af ca. 80 sekunder før strømafbrydelsen skete. For-
målet med projektet var at udvikle en metode, der kunne give en tidlig varsel
for forekomsten af en omfattende strømafbrydelse, når systemet befinder sig
i sådan en kritisk driftstilstand.

Efter en undersøgelse af måledata fra strømafbrydelsen, blev det besluttet
at metodeudviklingen skulle fokuseres på metoder, der kan vurdere aperi-
odisk små-signal stabilitet i systemet. Til det formål blevet analytisk udtryk
for systemets stabilitetsgrænser fundet. En af disse grænserblev herefter
anvendt som en basis for en ny metode der kan detektere og overvåge aperi-
odisk små-signal stabilitet i realtid.

Metoden blev software implementeret via en algoritme der effektivt kunne
bestemme den nødvendige information for at udføre en stabilitetsvurder-
ing. Som input får algoritmen et PMU-snapshot af systemets strømme og
spændinger, og returnerer en vurdering af systemets aperiodiske små-signal
stabilitet.

For at teste metoden, blev en simulering af 2003 strømafbrydelsen på Sjæl-
land og i Sydsverige udført. Resultaterne fra simuleringen blev brugt for at
generere syntetisk PMU-data, som blev anvendt som input tilalgoritmen der
skulle testes. Resultaterne fra testen viste, at den første maskine der krydsede
den kritiske stabilitetsgrænse, gjorde det ca. 54s før den omfattende strømaf-
brydelse skete.

Den udviklede overvågningsmetode kunne derfor give en tidlig varsel for
forekomsten af den simulerede strømafbrydelse, næsten et minut før dens
forekomst.
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Chapter1
Introduction

A stable and secure operation of electric power systems and asupply of
energy at competitive prices is of fundamental importance for all modern
societies. It is one of the cornerstones of sustainable development, providing
the foundation for societies’ social and economic well-being. The series of
blackouts occurring in 2003, demonstrated the modern societies’ complete
dependence on safe and reliable supply of electricity.

The aftermath of the 2003 blackouts was that investigation teams were estab-
lished which studied the causes of the blackouts and recommended actions
that would minimize the possibility of similar blackouts tooccur again. The
final reports from the investigations teams include, among others, recom-
mendations for an increased use of synchronized real-time measurements
for the purpose monitoring the system state.

In the final report from the Investigation Committee on the blackout in Italy
September 28, 2003 (Vandenberghe et al. 2004, p.95), it is recommended
that a focus is put on accelerating the ongoing wide-area measurement sys-
tem (WAMS) installation program for the purpose of providing support for
dynamic analysis and monitoring of the UCTE1 system.

In the final report from the U.S. - Canada Power System Outage Task-Force,
it was recommended, among others, that the focus should be increased on
research of reliability related tools and technologies, including development
of practical real-time applications for wide-area system monitoring using
phasor measurements and other synchronized measuring devices (Liscouski
& Elliot 2004, p.149).

A real-time application, that uses wide-area system measurements for mon-
itoring system stability boundaries could have been usefulin the moments
before the blackout in E-Denmark and S-Sweden on September 23, 2003.
The blackout was caused by occurrence of two severe system disturbances
within a time interval of five minutes. As the initial oscillations following the

1Union for the Coordination of Transmission of Electricity
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Chapter 1. Introduction

second disturbance damped out, a period of approximately 80s with slowly
decaying voltage magnitude was observed, before a system blackout was
experienced.

During this period, it would have been very valuable to have atrustwor-
thy real-time monitoring of the system stability boundaries. Such real-time
monitoring of the stability boundaries could have been usedfor obtaining an
early warning for the occurrence of the emerging stability problem, thereby
providing an increased time window for applying appropriate countermea-
sures that prevent the emerging blackout.

1.1 Project Objective

The overall purpose of the project is to develop methods thatcan provide,
in real-time, an early warning for an emerging stability problem. The 2003
blackout in E-Denmark and S-Sweden is a case scenario for motivation of
the work. For achieving this overall objective, several goals are defined that
together contribute to an early warning method:

• Express system stability boundaries in variables that can easily be ob-
tained from wide-area PMU-observations.

• Derive methods for stability assessment, which are capableof detect-
ing when stability boundaries are crossed and quantify the margin
from a given operating point to its critical boundary.

• Visualize the observed system conditions such that the distance of an
operating point to its stability boundary is represented, which thereby
provides a mean of visual identification of critical elements.

• Develop algorithms that enable real-time usage of the developed as-
sessment method.

1.2 Contributions

The main contributions of the work presented in the thesis are listed below:

• Assessment of the limitations associated with the use of voltage phase
angles for stability assessment:Analysis of why observations of sys-
tem phase angles cannot alone be used for accurate assessment of the

2



1.2 Contributions

power system operating conditions and two examples provided that
illustrate the limitations of the use of voltage phase angles alone for
stability assessment.

• Analytical expressions derived for the appearance of critical system
boundaries and characteristic lines in the injection impedance plane:
A simple two bus system was considered where the boundaries de-
scribed by the conditions where∂P/∂V, ∂Q/∂V, ∂P/∂Q, ∂V/∂Q, ∂V/∂P and
∂Q/∂P become zero, were derived in terms of injection impedance. Fur-
thermore, analytical expressions for lines of constant voltage magni-
tude, constant voltage phase angle, constant active power injection
and reactive power injection were derived in the injection impedance
plane.

• A method developed for real-time assessment of aperiodic small sig-
nal stability2: A method for element-wise assessment of individual
generators was developed. The developed method utilizes the derived
critical boundaries in the injection impedances for the assessment of
the generators aperiodic small signal stability.

• Mapping of multiple operating points into normalized impedance plane
for visualization:A mapping of an arbitrary generators operating point
was determined such way that the stability boundary for the mapped
points appears as unit circle in the normalized injection impedance
plane. This enables visualization of multiple operating points in the
same plane where all points have the same unit circle as theirstability
boundaries.

• Development of test-bench software for wide-area stability assessment
algorithms:A C++ software was developed that is used for implemen-
tation and test of wide-area stability assessment algorithms. The soft-
ware automatically generates synthetic PMU-data from PSS/E simu-
lation of a instability case scenario and uses it to test the considered
assessment method. The software provides capability of visualizing
the system operating points and their distance to the stability bound-
ary of concern.

• Fast algorithms developed and implementation of the stability assess-
ment method:A fast algorithm was developed that determines the

2Definition of aperiodic small signal stability is detailed in chapter 2
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Chapter 1. Introduction

information required for carrying out the assessment from aPMU-
snapshot of the system conditions. The algorithm was implemented in
the test-bench software and tested on a system containing 488 nodes
and 672 branches and 144 generators where the aperiodic small signal
stability of all 144 generators was determined in 7.86ms.

• Large Scale Test of the assessment method:A test of the assessment
method was carried out where a simulation of the blackout in E-Denmark
and S-Sweden September 23, 2003 was carried out. The simulation re-
sults were used to generate a synthetic PMU-snapshots of thesystem
conditions which were used as an input to the assessment algorithm.
The test results showed that the loss of aperiodic small signal stabil-
ity of one the machines was detected approximately 54s before the
system blackout was experienced.

1.3 List of Publication

Journal submissions and prepared manuscripts during the project period:

J1 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Shortcomings of the use
of Voltage Phase Angle Observations for Stability Assessment, Inter-
national Journal of Electrical Power and Energy, submittedfor publi-
cation. Manuscript Number: IJEPES-D-10-00151.

J2 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Interpretations of the
term Voltage Collapse in Textbooks and Scientific Papers, European
Transactions on Electrical Power, submitted for publication.

J3 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Description Procedure
for Voltage Instability Related Blackouts, European Transactions on
Electrical Power, submitted for publication.

J4 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Identification of Criti-
cal Transmission Limits in Injection Impedance Plane, International
Journal of Electrical Power and Energy, submitted for publication.
Manuscript Number: IJEPES-D-10-00388.

J5 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Method for Real-Time
Assessment of Aperiodic Small Signal Rotor Angle Stability, Manuscript.

4



1.4 Thesis Organization

J6 H. Jóhannsson, A.H. Nielsen, J. Østergaard,Fast Algorithm for Real-
Time Aperiodic Small Signal Stability Assessment, Manuscript.

Conference Submission:

C1 H. Jóhannsson, R. Garcia-Valle,Real-Time Stability Assessment based
on PMUs, IEEE Trondheim PowerTech 2011, June 19-23, 2011, Trond-
heim, Norway. Submitted.

The author had a minor contribution in the report listed below:

R1 P. E. Sørensen, M. Togeby, T. Ackermann, D. K. Chandrashekhara,
J. P. F. Horstmann,H. Jóhannson, A. H. Nielsen, J. Østergaard, and
et al. Ecogrid.dk Phase 1 WP4 report: New measures for integration
of large scale renewable energy. Technical report, Forskningscenter
Risø, 2008.

1.4 Thesis Organization

The topics treated in the papers written during the project period are incor-
porated into to the thesis and therefore, the papers are not provided in an
appendix. The the thesis is categorized into five parts as follows:

• Part I - Background, Theory and State of the Art:

– Chapter 2: Provides a description of the stability terms usedin
the thesis and an overview of the anatomy of power system black-
outs.

– Chapter 3: Provides a description of PMUs, their potentials and
limitations for stability assessment and a overview over the state
of the art for real-time stability assessment methods.

– Chapter 4: Discussion regarding potential approaches for obtain-
ing real-time assessment of the system stability from wide-area
PMU measurements.

• Part II - Development of Real-Time Stability Assessment Methods:

– Chapter 5: Concerns the analytical derivation of expressionsfor
critical stability boundaries and characteristic lines inthe injec-
tion impedance plane.
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Chapter 1. Introduction

– Chapter 6: Describes a method for an element-wise assessment
of aperiodic small signal stability.

– Chapter 7: Describes how stability margin can be quantified in
meaningful manner and how an informative visualization of mul-
tiple operating points in the same screen shot can be obtained by
normalizing each of the points in appropriate manner.

• Part III - Algorithms and Implementation:

– Chapter 8: Describes the development of a test-bench software
that can test wide-area stability assessment methods.

– Chapter 9: Describes algorithm suitable for real-time stability
assessment and the implementation of the method into the test-
bench software.

• Part IV - Test of Method:

– Chapter 10: The developed method is tested where a blackout
scenario, simulated in PSS/E is used as a test case.

• Part V - Conclusion and Perspective:

– Chapter 11: Conclusion and perspective on future research.
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Chapter2
Blackouts in Electric Power Systems

This chapter provides an overview of basic concepts and definitions related
to power system stability as it is used in the following chapters. Further-
more, a general description of how blackouts occur in electric power sys-
tems together with a description of an actual example of a system blackout
are provided.

2.1 Power System Stability Definitions

In 2004, an IEEE/CIGRE joint task force on stability terms and definitions
published a report (Kundur et al. 2004) where the problem of defining and
classifying power system stability was addressed. The aim of the report was
to define power system stability more precisely than before and provide a
systematic basis for stability classification.

The terminology related to power system stability that is used in the follow-
ing chapters is based on the suggestions from (Kundur et al. 2004). The
overall electric power system stability is defined as:

Power system stability is the ability of an electric power sys-
tem, for a given initial operating condition, to regain a state of
operating equilibrium after being subjected to a physical distur-
bance, with most system variables bounded so that practically
the entire system remains intact.

The overall power system stability problem is essentially asingle problem,
which can be classified into several subcategories. The classification is based
on considerations regarding (Kundur et al. 2004):

• The physical nature of the resulting instability as indicated by ob-
served physical system variable that reflect the appearanceof the in-
stability.

• The size on the disturbance considered.

• The time span of the devices and processes that have a considerable

9



Chapter 2. Blackouts in Electric Power Systems

Power System Stability

Angle
Stability

Frequency
Stability

Voltage
Stability

Small Signal
Stability

Transient
Stability

Large
Disturbance

Small
Disturbance

Short
Term

Short
Term

Long
Term

Short
Term

Long
Term

- Ability to remain in operating equilibrium
- Equilibrium between opposing forces

- Ability to maintain synchronism
- Torque balance of synchronous
machines

- Ability to maintain frequency
within nominal range

- Generation / load balance

- Ability to maintain steady voltages
- Transfer capability / load demand

Consideration
for

Classification

Physical Nature/
Main System
Parameters

Size of
Disturbance

Time Span

Figure 2.1: Classification of the overall power system stability problem into sub-
categories (Kundur et al. 2004).

contribution to the resulting instability

An overview of the overall stability problem and its classification into sub-
categories is provided in figure 2.1.

The overall stability problem is divided into three main categories (Kundur
et al. 2004):

Rotor Angle Stability: Refers to the ability of synchronous machines to re-
main in synchronism after being subjected to a disturbance.Rotor an-
gle stability is further divided into two subcategories; asmall signal
(or small disturbance) rotor angle stabilityandtransient(or large dis-
turbance) rotor angle stability. The small signal rotor angle stability
concerns the stability of the system equilibrium point (or steady state
point). Small signal rotor angle instability may appear in two forms:
a) as an aperiodic (non-oscillatory) increase of the rotor angle due to
lack of synchronizing torque, or b) rotor oscillations of increasing am-
plitude due to lack of sufficient damping torque. Transient rotor angle
stability concerns the ability of system to maintain synchronism when
subjected to a severe disturbance. The instability is usually in form of
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2.1 Power System Stability Definitions

aperiodic angular separation due to insufficient synchronizing torque,
manifesting as first swing instability.

Frequency Stability: Relates to the ability of a power system to maintain
steady frequency following a severe system disturbances resulting in a
significant imbalance between generation and load.

Voltage Stability: Refers to the ability of a power system to maintain steady
voltages at all busses in the system after being subjected toa distur-
bance from a given initial operating condition. Voltage stability is de-
pendent on the system ability to restore an equilibrium between load
demand and supply. Voltage instability may appear in progressive fall
or rise of voltages at some busses. In relation to voltage stability, the
termvoltage collapseis commonly used. It is described as the process
by which a sequence of events accompanying voltage instability leads
to abnormally low voltages in a significant part of the power system or
to a blackout.

In addition to the power system stability terminology provided in (Kundur
et al. 2004), the phraseaperiodic small signal stabilitywill be used in the
following chapters to refer to the ability of the system generators to establish
sufficient synchronizing torque for a given equilibrium condition. An aperi-
odic small signal instabilityappears as aperiodic (non-oscillatory) increase
of the rotor angle and subsequent loss of synchronism following a very small
disturbance (could be a small increase in applied mechanical power to a gen-
erator, or small changes in the system loading). In early literature on electric
power system stability the termsteady state stabilitywas used to cover the
area ofaperiodic small signal stability(Crary 1945, Kimbark 1956). The
aperiodic small signal stabilitycan be considered as an subcategory of the
rotor angle small signal stability category shown in figure 2.1.

The above given definition of the termvoltage collapse, recommended by
the joint IEEE/CIGRE task force on stability terms and definitions, is not the
only interpretation of the phenomenon that appears in scientific papers. This
inconsistency in terminology is addressed next.

2.1.1 Inconsistent Usage of the term Voltage Collapse
The interpretations of the termvoltage collapseappearing in technical liter-
ature and papers dealing with the topic of voltage stabilityare inconsistent
where few different interpretations ofvoltage collapsecan be identified. In

11



Chapter 2. Blackouts in Electric Power Systems

the following, three different textbook descriptions of the phenomena will be
introduced and afterwards, it is investigated wherefrom the different inter-
pretations originate and it is studied which interpretation of the termvoltage
collapseis most commonly used in papers published in IEEE Transactions
on Power System.

Textbook Descriptions of the Voltage Collapse Phenomena

Voltage stability in electric power systems has been a research topic for sev-
eral decades. The focus on the topic was greatly intensified during the late
eighties and is still today a field with high research activities. The research
has been successful for identifying mechanisms causing voltage instabil-
ity, establishing useful terminology related to voltage stability problems and
for providing several methods for analyzing voltage stability problems. As
the research progressed, several textbooks were written where the topic of
voltage stability is covered (Taylor 1994, Cutsem & Vournas 1998, Kundur
1994). In all of the three textbooks, the consistency in the terms used to
describe voltage stability problems is in general good. There is though one
term, voltage collapse, where different interpretations and descriptions of
phenomena appear in each book.

In Carson Taylor’s book (Power System Voltage Stability,1994) a definition
of voltage collapse is provided where it is stated that a system undergoes
a voltage collapseif, for a given operating state and a given disturbance,
the post-disturbance equilibrium voltages are below acceptable limits. Fur-
thermore, it is mentioned in the book that the termsvoltage instabilityand
voltage collapseare used somewhat interchangeably by most engineers. For
example, the decline in voltage magnitude due to under-loadtap transformer
action in a voltage unstable situation is denoted asvoltage collapseif the
resulting voltage levels are below some acceptable limits.

In Prahba Kundur’s book (Power System Stability and Control,chapter 14,
1994), it is stated that voltage instability is essentiallya local phenomena
where its consequences may have a widespread impact. Furthermore it is
said thatvoltage collapseis more complex than simple voltage instability.
Voltage collapseis referred to as the process by which a sequence of events
accompanying voltage instability leads to a low voltage profile in a signifi-
cant part of the power system.

In Van Cutsem’s and Costas Vournas’s book (Voltage Stability of Electric
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2.1 Power System Stability Definitions

Power Systems, 1998),voltage collapseis related to a sudden catastrophic
transition in voltage. Furthermore it is said thatvoltage collapsemay or may
not be the final outcome of voltage instability.

The difference between these descriptions is significant, where in (Kundur
1994) the termvoltage collapseis related to a process that results in system
wide low voltage profile while in (Cutsem & Vournas 1998)voltage collapse
is related to collapse in voltage magnitude over short period of time. The
difference between the usage of the term is illustrated graphically in figure
2.2.

Voltage collapse, as defined in (Cutsem & Vournas 1998), is illustrated in
figure 2.2.(b). A sudden transition in voltage magnitude, asillustrated in plot
can be caused by different phenomena. For example could suchbehavior be
observed on busses connected to large induction motor that suddenly stalls
due to insufficient voltage levels at the motor terminals. Another phenomena
that could result in observations of sudden transition in voltage magnitude is
when two subgroups of generators approach an angular separation of 180◦,
following a loss of synchronism. In such situation, rapid voltage drop can
be observed at busses close to the electrical center betweenthe subgroups of
generators.

Figure 2.2.(a) illustrates a potential outcome of a voltagecollapse as defined
in (Kundur 1994). The plot illustrates system wide voltage profile, where
an initially voltage unstable situation at a single bus has resulted in that the
automatic control actions of a tap changing transformer gradually caused a
decline in the system voltages. This decline in the system voltages resulted in
that the neighboring busses became as well voltage unstableresulting in fur-
ther decline in the system voltage that continued until the tap transformers hit
their limits. This process is a simple example of voltage collapse according
to the definition in (Kundur 1994) where the final outcome of such process
could be a low voltage profile in a significant part of the powersystem as
illustrated on in figure 2.2.(a) or a system blackout.

The Origins of the Different Interpretations

In all of the three above mentioned textbooks covering the topic of voltage
stability, extensive references to technical papers are provided as a base for
the theory presented. Since the interpretation of the termvoltage collapse
varies between the three books, it was of interest to analyzehow the term
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Figure 2.2: Graphical interpretation of the two different definitions of the term
voltage collapseas used in (Kundur 1994) on one hand and in (Cutsem & Vournas
1998) on the other hand. The definition in (Kundur 1994) relatesvoltage collapseto
a process that causes a low voltage profile in the system as illustrated in (a),while
the definition in (Cutsem & Vournas 1998) the phenomena related to the sudden
transition in the voltage magnitude at a given bus as illustrated in time domain in
(b).
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voltage collapsehad been used in scientific and technical papers written in
the past.

In early papers concerning voltage instability in electricpower systems, the
termsvoltage instabilityand voltage collapsewere used somewhat inter-
changeably (Nagao 1975, Barbier & Barret 1980). In (Barbier & Barret
1980), the phenomena ofvoltage collapseis explained by considering the
decline in voltage due to an unstable control action taken byunder-load tap
changing transformer when operating below the locus of critical points on
the PV-curves. This usage of the termvoltage collapseresembles the state-
ment in (Taylor 1994) thatvoltage instabilityandvoltage collapseare used
somewhat interchangeably by most engineers.

In the late 80’s and in the early 90’s, a great increase in the research activi-
ties within the field of voltage stability began. Different approaches for the
analysis of voltage stability problems emerged and in this period, bifurca-
tion analysis was introduced as a potentially useful tool for voltage stabil-
ity analysis. In several papers concerning the usage of bifurcation analysis
for voltage stability studies, a different formulation of the termvoltage col-
lapsebegan to appear. In these papers, the process of voltage collapse was
explained as an event characterized by a slow decline in the system volt-
age until a sharp collapse in voltage occurs (Brucoli et al. 1985, Dobson &
Chiang 1989). These interpretations of the phenomena are similar to the
definition from (Cutsem & Vournas 1998).

The usage of the Term Voltage Collapse in Technical Papers

For the purpose of analyzing which interpretation of the term voltage col-
lapseis most widely used in papers covering the topic of voltage stability, all
IEEE Transactions on Power Systemspapers in the period 1987-2009, con-
taining the termvoltage collapsewere investigated. It was analyzed which
of the three interpretation of the termvoltage collapsethe authors used. The
results from the analysis are shown in figure 2.3. The figure contains a his-
togram where the number of papers published each year containing the term
voltage collapse is shown. Each individual paper is represented as a citation
inside a square bracket.

The citations are marked in different ways, depending on which interpreta-
tion of the termvoltage collapseis used. Citations that are marked with a
squared box denote papers wherevoltage collapseis explained in same way
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as in Van Cutsem’s and Vournas’s book (Cutsem & Vournas 1998). Citations
marked with a circle represents papers where the interpretation of voltage
collapseis similar to the statement from Taylor’s book (Taylor 1994)where
voltage collapseandvoltage instabilityare used somewhat interchangeably,
while the papers marked with a hexagon explainvoltage collapsein similar
way as done in Kundur’s book (Kundur 1994).

The majority of the citations in the histogram are unmarked.An unmarked
citation represents a paper where no further explanations are provided for
the termvoltage collapse(assumed as common knowledge), or as in some
papers where there is referred to all of the three previouslymentioned text-
books for further details concerning the termvoltage collapse.

The figure reveals the inconsistency in the usage of the termvoltage collapse
in scientific papers over a long period. It is even more interesting to see that
in the majority of the papers, it is assumed that the termvoltage collapseis a
common knowledge and no further explanations or referencesare provided.

As previously mentioned, an IEEE/CIGRE joint task force on stability terms
and definitions published a report (Kundur et al. 2004) wherethe problem of
defining and classifying power system stability was addressed. In the report,
the termvoltage collapseis explained as the process by which the sequence
of events accompanying voltage instability leads to a blackout or abnormally
low voltages in a significant part of the power system. Furthermore, it is
stated that a stable operation at low voltage may continue after transformer
tap changers reach their boost limit, with intentional and/or unintentional
tripping of some load. This definition of the termvoltage collapseresembles
the one given in Kundur’s book (Kundur 1994).

In the report, it is mentioned that a rapid fall in voltage magnitude (as men-
tioned in the definition ofvoltage collapsein (Cutsem & Vournas 1998)) can
be associated with rotor angle instability. The voltage candrop rapidly at
intermediate points close to the electrical center betweentwo subgroups of
generators when the angular separation between the groups is approaching
180 degrees.

16



2.1 Power System Stability Definitions

0

2

4

6

8

10

12

14

16

18

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

[1] [2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113] [114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Figure 2.3: Histogram over number of papers per year from the IEEE Transactions
on Power Systems where the termvoltage collapseis used. The citations located
inside a box denote papers where the definition ofvoltage collapsefrom (Cutsem &
Vournas 1998) is used, the citations inside a circle represent papers wherevoltage
collapseandvoltage instabilityare used somewhat interchangeably as mentioned
in (Taylor 1994) while the citations inside the hexagons represent a papers where
the voltage collapseis defined as in (Kundur 1994). Unmarked citations indicate
a papers where no further explanations were given for the term voltagecollapse or
where it was referred to all three books for an explanation of the phenomena. A list
over the involved references can be found in appendix B.
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Chapter 2. Blackouts in Electric Power Systems

2.2 The Anatomy of a Blackout

The U.S - Canada Power System Outage Task-Force, which was established
to investigate the causes of the blackout on August 14, 2003 and recommend
actions that would minimize the possibility of similar blackouts, published a
final report concerning the blackout (Liscouski & Elliot 2004). In the report
it was recommended, among others, that the focus should be increased on
research of reliability-related tools and technologies, including development
of practical real-time applications for wide-area system monitoring using
phasor measurements and other synchronized measuring devices (Liscouski
& Elliot 2004, p.149).

When new solutions are to be developed that aim at avoiding large scale
blackouts to occur, it is important to understand causes andinvolved mech-
anisms in the process leading to a blackout. Figure 2.4 is derived from
(Pourbeik et al. 2006, Voropai & Efimov 2008) and illustratesa general se-
quence of events that can lead to a blackout. It is common thatthe operat-
ing conditions are normal and in compliance with system operating policies
prior to the ensuing events that lead to a blackout. Major system blackouts
are most of the time initiated by a single severe disturbance(loss of genera-
tor or a tripping of a critical line) or even a multiple related event such a fault
and a subsequent relay misoperation. Following the initiating event, a proper
automatic or operator remedial control actions could ensure a stable opera-
tion of the system. If proper operational planning criteriaare followed, most
systems are designed in such way that the system stability ismaintained for
such single outages. The system might, however, enter an emergency state if
the severity of the disturbance is great, particularly during peak load hours.
The normal operating state can be restored by applying a system readjust-
ment, such as generation shifting and increase of spinning power reserve.
The time frame for such system readjustment is usually in tens of minutes.

If proper automatic control actions or operator intervention are not taken
following a severe disturbance, the system may enter a stateof severe emer-
gency where it can be exposed to further failures and cascading outages.
The system can also enter this state if a second severe disturbance occurs
when remedial actions have ensured stable operation following the initial
disturbance and before the system readjustment has been carried out. The
blackout in Sweden and Denmark on September 23, 2003 is an example
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- May be a high-load situation
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- Before readjustment is finished,
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Figure 2.4: General sequence of events leading to a blackout. The diagram is
derived from (Pourbeik et al. 2006) and (Voropai & Efimov 2008).
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of such blackout scenario, where a second severe disturbance occurred ap-
proximately five minutes after the initiating disturbance and where the two
disturbances were independent of each other.

When the system is in the state of a severe emergency, a system blackout
can ensue due to many different instability mechanisms. Forthe most sim-
ple cases, the initial disturbance causes redistribution of power flow result-
ing in increased loading on other lines. The actions of ULTC-transformer,
thermostats and other load regulation devices tend to gradually restore load
which causes further loading and eventually overloading ofcritical trans-
mission lines. This can lead to a process of cascading line outages, which
at some point causes the system to be prone to dynamic performance is-
sues. The increase in the impedance between the load and generation, as
transmission lines trip, can lead to a number of stability problems (Pourbeik
et al. 2006):

• Transient Rotor Angle instability:The initial large disturbance (e.g.,
transmission system fault) will lead to deviations in generator rotor
angles. If this is then followed by inadequate electrical coupling be-
tween groups of generators (due to the loss of transmission lines), it
may lead to a lack of synchronizing power and thus an inability for
generators in different regions of the system to keep in synchronism
with each other. This phenomenon has a time frame of few seconds.

• Oscillatory Small Signal Instability:Due to the weakening of the
transmission system associated with high power transfer levels can
lead to uncontrolled growing electromechanical oscillations between
groups of generators. The growing oscillations in power continue until
line protection reacts causing further partitioning of thesystem. The
phenomenon may have a time frame from several seconds to tensof
seconds.

The above unstable phenomena can lead to partitioning of thesystem into
smaller islands with a large imbalance between load and generation. Even-
tually, a point of no return is reached when a rapid chain reaction of load and
generation tripping leads to the system blackout.

When the system is in the state of severe emergency, voltage instability can
as well be the driving mechanism in the evolution of a system blackout.
Voltage instability has been considered to be the main mechanism driving
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the evolution of many actual system blackouts where for example in (Taylor
1994) a list of 17 voltage instability related blackouts in the years 1965-1987
is provided. Voltage stability is still today a research topic of high focus.
A detailed description of how a blackout can unfold from the point when
conditions for voltage instability occurs, is provided in next section.

2.2.1 From Voltage Instability to System Blackout
For the purpose of visualizing some of the interrelationships between events
that cause a blackout to unfold from a initially voltage unstable operating
condition, figure 2.5 contains a state diagram that outlinessome of the in-
volved mechanisms.

Conditions for voltage instability occur when the point of maximum deliv-
erable power to a given system node have been reached and suchconditions
are represented as initial state of operation in the top leftcorner of the state
diagram in figure 2.5. During such conditions, the occurrence of voltage in-
stability is dependent on, among others, the longer term voltage dependency
of the system load and the voltage control equipment at the node of concern.
A tap action of a ULTC-transformer connected to a voltage unstable node,
results in further deterioration of the system operating conditions where the
voltage on the load side is reduced while the supplied current is increased.
This results in lowered system voltages, increased line currents and hence an
increased reactive power demand which is met by increased reactive power
output from the system generators. The ULTC-transformer will continue its
attempts to raise the voltage on the low-voltage side which results in fur-
ther deterioration of the system conditions with each change in tap-position.
The lowered system voltages gradually lead to neighboring busses becoming
voltage unstable as well, which escalates the deterioration further.

The gradual increase in generator reactive power output, due to reduced sys-
tem voltages, results in that overexcitation current limiters (OXLs) become
activated as the generators begin to hit their reactive power capability limits
one by one. When a generator’s OXL is activated, it is no longercapable of
maintaining a constant voltage at its terminal and its shareof reactive power
loading is transferred to the other generators which can lead to a cascading
overloading of the machines.

The increase in line currents due to the gradually deteriorating operating
contrition introduces as well the risk of cascading line tripping. A line that
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The Process of Voltage Collapse. (Long Term Phenomena)

(Short Term)

ULTC-Transformer
Control Actions

- Reduced voltage on load side
- Increased current flow to load
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Figure 2.5: State diagram illustrating how the occurrence of voltage instability can
evolve into a system blackout. Various mechanisms (ULTC-transformer control ac-
tions, line tripping or activation of OXLs) cause gradual deterioration of the system
conditions. In the figure, the deterioration continues until a) the point of maximum
injectable power from a given generator is reached resulting in a loss of synchro-
nism of the generator, which can gradually evolve into a loss of synchronism be-
tween subgroups of generators and a subsequent blackout, or until b) when trip of
a critical line results in partitioning of the system into uncontrollable islands with
large imbalance between load and generation resulting in blackout.
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trips results in additional loading of adjacent lines that might gradually lead
to a cascade of line outages.

The gradual deterioration of the system condition due to above mentioned
mechanism is an example of a voltage collapse process. It is along term
process where the system deterioration can gradually continue for several
minutes. As the voltage collapse process continues, it is possible that in-
duction motors begin to stall at voltage unstable busses dueto low supply
voltage, resulting in high current to be drawn resulting in further deteriora-
tion. If the motor protection does not react quickly enough,this could lead
to cascade of motor stallings in the area.

The voltage collapse process might stop when transformer tap changers reach
their boost limit, where stable operation continues after intentional or unin-
tentional tripping of some load. On the other hand, the system deterioration
due to the voltage collapse might reach a point, before the transformer tap
changers reach their limit, where a system blackout unavoidable. This could
be due to that the cascading outages have resulted in the formation of an
uncontrollable island where a large mismatch between the island genera-
tion and load results in a blackout. Another possibility is that the gradual
system deterioration have resulted in operating conditionwhere a loss of
synchronous operation between subgroup of generators occurs followed by
system separation and a blackout.

Voltage instability is associated with the operating conditions where the
maximum deliverable power (in steady state) to a given system node has
been reached while the point of maximum injectable power into a system
node (in steady state) is on the other hand related to aperiodic small signal
stability of the power injecting machine. The limits for maximum injectable
power into a given node are dependent on both the strength of the grid and
the system loading. The gradual deterioration of the systemcondition due
to the voltage collapse process, lead to a reduction of maximum amount of
power that can be injected into a given system node and eventually can lead
to conditions for the loss of aperiodic small signal stability. The resulting
instability can be observed as initially slowly growing angular shift between
groups of generators. As the two regions separate in voltagephase angle, the
voltage in between the two regions will be reduced and potentially leading
to transmission line protective relays tripping lines and possible separating
the two regions two regions resulting in a blackout.
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2.3 The Blackout in Sweden and Denmark
September 23, 2003

At noon September 23rd 2003, a sequence of disturbances occurred that
eventually caused a blackout of the eastern part of Denmark and the southern
part of Sweden. The blackout affected approximately 2.4 million persons in
E-Denmark and approximately 1.6 million persons in S-Sweden. The outage
resulted in that 18GWhof energy were not delivered to the customers.

In the following, a description of the events that caused theblackout and a
time line of events is established. The information provided in the following
is mainly gathered from two official reports concerning the blackout, one in
Danish (Elkraft System 2003) and the other in Swedish (Svenska Kraftnät
2003a).

2.3.1 The Swedish and the Danish Power System (2003)

Figure 2.6 shows the 400kV transmission system in Sweden and E-Denmark
along with the major thermal and hydro power plants in the system.

The Swedish transmission system is characterized by a strong transmission
grid between the northern part and the central and southern part of Sweden,
which enables utilization of the large amount of hydro powerresources in
the northern part of the country. The hydro energy resourcesin Sweden
are mainly located in the northern part of Sweden, while the consumptions
areas are mainly located in the central and the southern partof Sweden.
When the construction of nuclear plants was being planned it was chosen to
locate the plants near the large consumptions areas for two reasons; a short
transmission distances to consumption areas and an easy access to cooling
water.

In E-Denmark (Zealand) the distance between the main power plants and
the main consumption areas is short. The generation consists of large coal-
fired units (up to 650MW), combined heat and power plants and a significant
amount of wind power. The Swedish grid and the E-Denmark gridare con-
nected through a pair of 400kV cables and another pair of 132kV cables. The
total capacity of the connection between Sweden and Zealandis 1900MW.
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Figure 2.6: The 400kV system in Sweden and Zealand (E-Denmark). The system
is characterized by a strong connection between the hydro-generation innorthern
part of Sweden and the consumption areas in central and S-Sweden. The numbered
substations in the figure correspond to the bus numbers from figure 2.7.
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2.3.2 Pre-fault Conditions
Prior to the blackout, few production units and transmissions lines were not
in operation due to maintenance. In E-Denmark, the DC-connection to Ger-
many (Kontek) was out of order due to a planned maintenance, few 132kV
lines and one 400kV were disconnected and three thermal plant units were
not in operation. In the southern part of Sweden, both of the DC-connections
to the continent were out of order due to planned maintenance, two 400kV
lines were disconnected due to maintenance and revision, and three power
plant blocks were not operating due to an extended maintenance. Based on
these conditions, the operation conditions were considered to be stable and
well within the constraint laid out in operational planningand grid security
assessment (Svenska Kraftnät 2003b).

In figure 2.6, the pre-fault condition in S-Sweden and E-Denmark are shown.
The figure shows the 400kV transmission system and which major generat-
ing units were in operation. Prior to the first disturbance, the production from
power plants in E-Denmark was approximately 1.800MW and production
from wind turbines was approximately 450MW. This production covered a
consumption of 1.850MW in E-Denmark and a 400MW export to Sweden.
The available reserves in E-Denmark were 775MW which was more than
sufficient to cope with the loss of any of the operating production units in
E-Denmark (Elkraft System 2003).

The Swedish power system was moderately loaded prior to the first dis-
turbance with a total consumption in Sweden of approximately 15.000MW
which is almost half of the maximum yearly consumption (Svenska Kraftnät
2003a). The consumption in the southern part of Sweden was approximately
3.000MW (Elkraft System 2003).

2.3.3 Involved Events/Disturbances

First Event: Oskarshamn

The initiating event, which played a role for the evolution of the blackout was
the loss of a 1200MW nuclear unit at the Oskarshamn nuclear plant (bus 23
in figure 2.7). Internal valve problem in the feedwater circuits of the power
plant made it necessary to manually lower the production from 1.176MW
to 800MW in less than 10s. When the attempts to solve the valve problem
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Figure 2.7: The pre-fault operating conditions in the the 400kV Network in E-
Denmark and S-Sweden. The Generators in Zealand represent an aggregation of
several generators in corresponding area, while the generators in Swedish part rep-
resent the individual generating units that were operating prior to the blackout.
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failed, the reactor scrammed to a full shut-down and stoppedafter another
10s.

The loss of the production unit at Oskarshamn resulted in frequency dip to
49.66Hz whereafter the frequency stabilized in the range 48.80−48.85Hz.
The drop in frequency caused an automatic activation of the hydro power
reserves in Norway, northern Sweden and Finland along with emergency
reserves from Jutland (W-Denmark). The disturbance resulted in that the
voltage dropped approximately by 5kV in the southern part of Sweden but
remained within the 405−409kV level which is by no means critical. Fol-
lowing the activation of the reserves in the northern part ofSweden and in
the neighboring countries, the frequency was slightly below the normal op-
erating limit of 49,90Hz and therefore, actions were initiated to raise the
frequency.

The fault at Oskarshamn caused a redistribution of the powerflow in the
south-eastern part of Sweden. This redistribution caused more power flow-
ing in the western part of Sweden to supply the demand in south(more flow
through bus 25 in figure 2.7). The transmission voltage levelwere though
still within the predetermined security constrains. A lossof a single unit is
regarded as a standard contingency and active and reactive power reserves
shall be able to cope with this kind of disturbance without any subsequent
supply interruptions.

Second Event: Horred

Only five minutes after the loss of the Oskarshamn unit, a severe double bus-
bar fault occurred in a 400kV substation in Horred on the western coast of
Sweden (bus 7 in figure 2.7). The fault resulted in the tripping of four 400kV
lines, which again resulted in isolation of two 900MW nuclear units at Ring-
hals from the system and a subsequent shut down of the units. Figure 2.8
shows the situation in the southern part of Sweden after the fault in Horred.
Two of the four disconnected lines made an important connection from cen-
tral Sweden to S-Sweden (lines 7-9, and 7-12 in figure 2.8). The loss of the
two Ringshals units resulted in practically no power being produced in the
southern part of Sweden. Additionally, one of the DC-connections from Jut-
land (Konti-Skan 1) was lost following the disturbance, resulting in a loss of
250MW import.
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Figure 2.8: The system condition after the double busbar fault in Horred (bus 7). As
a consequence, practically no local production was available in the southern part of
Sweden (busses 6,7,10,14-16,18-24). The power was either supplied from Denmark
(through bus 6) or from the eastern and northern part of Sweden (through bus 25).

From figure 2.8, it can be seen that the only operating nuclearunit in the area
(Ringhals block 1) had no longer a connection to the South along the western
coast of Sweden. The power supply of the southern part of Sweden had to
come from either E-Denmark through Söderåsen (through bus 6) or from
north, through the Hedenlunda substation (through bus 25) in the eastern
part of Sweden. The disturbance resulted in a very high powertransfer from
mid to southern Sweden on the remaining 400kV lines in the SE-Sweden.

In the following seconds after the fault in Horred, powerfulelectromechan-
ical oscillations caused a large voltage drop in the southern part of Sweden.
At Simpervarp (substation at Oskarshamn), the voltage fellto approximately
300kV and at Söderåsen to approximately 320kV whereafter the voltage
level got stabilized in the range of 360kV -370kV in the area from Söderåsen
through Sege in south to Hall and Åker (in north of bus 25 in figure 2.7).

Approximately 10safter the fault in Horred, the voltage in the area began to
sink slowly over a period of 80s until a level below 320kV was reached in
the area from Sege in south to Hall and Åker in North. The voltage level was
lowest in Simpevarp.

The explanations provided in (Svenska Kraftnät 2003a, p.14) for the slowly
decreasing voltage is related to the voltage dependency of the load. Initially,
the load decreased when the voltage decreased on all levels level in the net.
Gradually the voltage levels at the consumer side got adjusted by the use of
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feeder transformer tap changers in the net, which resulted in an increase in
the load and thereby an increase of the power flowing into the area.

Third Event: Disconnection of 400kV lines

The decreasing transmission system voltage magnitudes andstrongly in-
creased power flow from north to south resulted in that the distance relays
on the lines between central and south Sweden considered thesituation as a
distant short circuit, leading to cascading tripping of 400kV lines resulting
in separation of southern part of Sweden from the rest of Sweden.
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Figure 2.9: The system condition after the disconnection of the 400kV lines in
the eastern part of Sweden. After the disconnection of the lines the southern part
of Sweden (busses 6,7,10,12,14,15,16,18,19 and 22) was supplied from Denmark
(busses 0-5).

Figure 2.9 shows the situation after the disconnection of the lines. The lines
between E-Denmark and Sweden remained connected resultingin that S-
Sweden was supplied from Denmark. Consequently, the system experienced
a blackout of both E-Denmark and S-Sweden.

2.3.4 Time line of Events
As a summary, the involved events and disturbances that played a role in
the process causing the blackout are listed on the time line of events in
figure 2.10. The time line is derived from data presented in the two offi-
cial reports covering the blackout incident (Elkraft System 2003, Svenska
Kraftnät 2003a).
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1176MW to 800MW within 10s.
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t = 301s
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t = 301s+
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The import from Finland and Norway is gradually increased by
approximately 870MW
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Chapter3
Phasor Measurement Units and Methods
for Real-Time Stability Assessment

In 1893 Charles Proteus Steinmetz revolutionized the AC circuit analysis by
introducing the concept of complex phasors (Steinmetz 1894), a simplified
mathematical representation of a sinusoidal waveform. Theintroduction of
phasors greatly simplified the analysis of AC circuits. Prior to this time,
AC circuit analysis had to be carried out using calculus, a difficult and time
consuming process involving integrals and derivatives of sinusoids. With
the introduction of phasors, the problem was reduced to a simple problem
in algebra where an AC circuit could be represented in terms of complex
impedances for the purpose of analysis.

Complex phasors of voltages and currents are used for the analysis of a given
stationary operating condition in electric power systems.In three phase elec-
tric power systems, the positive sequence voltage phasor ata power system
bus has become parameter of vital significance. It is a commonpractice
to describe a given stationary or a quasi-stationary systemoperating con-
dition in terms of positive sequence bus voltages and neglecting the neg-
ative sequence and zero components. A set of all positive sequence bus
voltage phasors is provided as an output from load flow analysis and state-
estimation, and thereby an unique description of a given system operating
conditions is obtained. The set of bus voltage phasors can beused, together
with the knowledge about the network impedances to determine the currents
and power flowing in the system.

Following the US Northeast Blackout of 1965, increased focuswas on devel-
oping methods and tools for monitoring the system operatingconditions in
real-time. After a few years of research and development, weighted least
square state estimators were introduced which made a real-time network
analysis possible (Savulescu 2006). The estimation of the system state was
carried out by estimating the system bus voltages from a set measurements of
several system parameters. The development of state estimators was the ini-
tial step in the development of real-time static security assessment methods
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that utilized the estimated operating conditions as input data.

Phadke et al. (1983) presented a new measurement technique that enabled
measurements of positive sequence voltage phasors in real-time. In 1986 a
prototype phasor measurement unit (PMU) was produced at Virginia Tech
and in 1991 a commercial production of PMUs began with the introduction
of the Macrodyne 1690 unit. Since the development of the firstPMU, many
other models have become available with a wide range range ofoptions.
At the present there are over 20 commercial manufactures of PMUs world
wide and PMUs have been installed in power systems through out the world
(Phadke & de Moraes 2008).

The aim of this chapter is to explore the basic principle of PMUs and inves-
tigate their added value to the system operation as well as their limitations
when used for stability assessment. Furthermore, an overview is provided
over few existing methods that can deploy PMU measurement for real-time
assessment of the system stability and security.

3.1 Phasor Measurement Units (PMUs)

A phasor measurement unit (PMU) is a device that provides synchronized
measurements, in real-time, of voltage and current phasorsalong with a
measurement of frequency. Synchronism between the individual PMUs is
achieved by the use of a common synchronizing signal from GPSsatellites.
The synchronization of the sampling process for different waveforms, mea-
sured at locations that may be hundreds of kilometers apart,makes it possible
to put their phasors on the same phasor diagram and use directly for circuit
analysis of the system.

Figure 3.1 illustrates the concept of PMUs, where a sinusoidal waveform
is sampled at two different system busses. A GPS signal ensures synchro-
nization of the sampling process, which makes it possible torepresent the
sampled waveforms as phasors in the same complex plane.
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Figure 3.1: Phasor Measurements in electric power systems. PMUs installed in
substations dispersed over a wide-area in a power system receive a GPS signal that
ensures a time synchronization of the phasor measurement. The synchronizing sig-
nal ensures that the sampled voltage or current waveform can be usedto derive the
phasor values that can be put in the same complex plane for the purpose ofanalysis.

3.1.1 Accuracy of Phasor Measurements
According to IEEE standard for PMUs, the accuracy limits of PMUs is de-
fined in terms of Total Vector Error (TVE) which is defined as:

TVE=

√

(Xr(n)−Xr)
2+(Xi(n)−Xi)

2

X2
r +X2

i

(3.1)

WhereXr(n) andXi(n) are the real and imaginary part of the phasor given
by the measuring device andXr andXi are the theoretical real and imaginary
phasor values of the input signal at the time of measurement.Accuracy limits
of PMUs, expressed as TVE should be within 1%. This implies a phase error
within ±0.01 rad (±0.57◦) or a maximum time error of 26.5µsat 60Hz and
31.8µsat 50Hz (Martin et al. 2008).

This high accuracy of the PMU elevates the standards of powersystem mon-
itoring, control, and protection to a new level. The introduction of PMUs

35



Chapter 3. PMUs and Methods for Real-Time Stability Assessment

provides a possibility for development of new methods for real-time stabil-
ity assessment, which might benefit from that a large scale deployment of
PMUs in electric power systems where a full observability ofthe system op-
erating conditions can be obtained in real-time, with a highrepetition rate.

3.1.2 Wide-Area Measurement Systems (WAMS) and
Phasor Data Concentrators (PDC)

Wide-area measurement systems (WAMS) focus on collecting the synchro-
nized system measurements in real-time and distribute themfurther to appli-
cations that make use of the data. A basic structure of a WAMS is illustrated
in figure 3.2. The figure shows a WAMS consisting of PMUs, communi-
cation links, and data concentrators which are needed to fully exploit the
benefits of synchronized phasors measurements. The PMU measurements
are transmitted immediately to a receiving unit, usually a phasor data con-
centrator (PDC). The data is then sent without delay to real-time applications
and to data storage for off-line use. The WAMS provide the possibility of
serving all measurement applications through different choice of data rates.

PDC
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PMU
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Figure 3.2: General overview of wide-area measurement systems.
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In the figure, PMUs provide measured phasors in a data stream that are trans-
mitted to a PDC. The measurement data from different locationmay not
arrive simultaneously, since different communication technologies may be
used (Naduvathuparambil et al. 2002). For this reason, the one of the most
important function of a PDC is to gather data from different locations and
align the data by time-tags before it is sent to appropriate applications.

PDCs from different utilities may also share data among them to support
wide-area applications. In large scale power systems, a Super Phasor Data
Concentrator (A PDC that gathers data from several other PDCs)can be used
to correlate data from several utilities within a power grid, thereby provid-
ing platform for application that assess the overall condition of the whole
system.

3.1.3 Added Value of PMUs
The PMU technology has matured in recent years and consequently, new in-
stallations of PMUs have been gradually increasing in powersystems through
out the world (Phadke & de Moraes 2008). The objective of the installations
is to reach for hierarchical WAMS, in which system measurements from
various substations are collected at central locations. The practical value of
wide-area PMU data, collected in a WAMS, is given by applications that
utilize the data. Few examples over existing and suggested applications are
listed below (Skok et al. 2007, Rehtanz & Pouyan 2006):

Real-Time Monitoring and Control: One of the benefits of PMUs is the
ability to inform not only operators that they face problemsin their
control areas, but as well neighboring operators of a stressed grid. In
(Taylor et al. 2005) a wide-area stability and voltage control system
(WACS) is presented that is intended to provide a flexible platform for
rapid implementation of generator tripping and reactive power com-
pensation switching for transient stability and voltage support of a
large power system.

Power System State Estimation:PMUs offer a number of benefits to the
State Estimation application such as improved accuracy androbust-
ness of bad data detection, and an availability of a faster numerical
solution to a linear problem (Zhao & Abur 2005, Nuqui 2001).

Real-Time Congestion Management:Real-time congestion management
is usually carried out by comparing a pre-calculated Nominal Transfer
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Capability (NTC) to the actual flow in a line or a path. The calcu-
lations of the NTC based on stability limitations, voltage level limi-
tation of thermal limitations, whichever is the most restrictive for the
given stress direction. The assumptions used in NCT calculations are
often conservative. This can result in that excessive margins are in-
troduced which may lead to unused transfer capability and thereby
a lost opportunity to reduce costs in the dispatch process (Leirbukt
et al. 2005, Mao et al. 2005). The high repetition rate and accuracy
of PMU-measurements contributes to speed and quality enhancement
of real-time algorithms that enable rapid computation of Real-time
Transfer Capability (RTC). On many lines or paths such RTCs will
exceed their corresponding NTCs which reduces the need for conges-
tion curtailments in real-time (Breidablik et al. 2003).

Benchmarking, validation and fine-tuning of system models:The imple-
mentation of phasor measurement based tools, methods and applica-
tions provides a means of improving existing models. The availability
of precise and time synchronized measurements from variousloca-
tions in the power system provides new opportunities for identifying
errors in system modeling data and for fine tuning power system mod-
els utilized throughout the industry for both on-line and off-line appli-
cations (Hiskens 2001, Hauer et al. 2005).

Post-Disturbance Analysis: The aim of a post-disturbance analysis is to
identify the sequence of events which caused that a given power sys-
tem interruption occurred. This is usually carried out by a team of
engineers that study measurements from various data recorders from
locations dispersed throughout the system. Since the recorders are not
synchronized, this job of understanding the process causing the dis-
turbance and reconstructing a time line of events is a time consuming
job. A utilization of synchronized measurements can make this pro-
cess significantly easier (Skok et al. 2007).

Power System Restoration:Under the process of power restoration, large
phase angle difference can occur across a breaker that connects two
adjacent substations. Closing a breaker on a large angle difference can
cause severe equipment damage, and eventually lead to a reoccurrence
of the system outage. The PMUs are capable of providing on-line
monitoring of system voltage phase angles and are thereforeuseful
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during a power restoration. The PMU can reduce the time needed
during a restoration process.(Skok et al. 2007)

Online Monitoring of Global and Inter-Area Oscillations: Several meth-
ods, which utilize PMU data, have been suggested for both online and
offline analysis of power system oscillations. Methods thathave been
applied for the detection and identification of oscillations are among
others based on prony analysis and wavelet analysis (Breulmann et al.
2000, Rehtanz & Pouyan 2006).

Adaptive Protection: Certain relays and protection schemes could be made
to adapt to prevailing system conditions observed from wide-area PMU
data and thereby enhance their performance (Skok et al. 2007).

Thermal Monitoring: By measuring voltage and current phasors at each
end of a transmission line, the line parameters can accurately be deter-
mined. Utilizing that the line resistanceR is temperature dependent,
the average temperature of the entire line between the two measure-
ment points can be estimated where the temperature reflects the actual
situation of ambient conditions like wind speed, sun and line current
(Weibel et al. 2006).

3.2 Potentials and Limitations of the usage of
PMUs for Stability Assessment

When new applications, which rely on PMU-data, are to be developed, it is
appropriate to identify the benefits and the limitations associated with the
usage of PMU-data. Some of the main advantages associated with the uti-
lization of PMU-data for stability assessment are listed below:

• A PMU-snapshot, which provides full observability of the network,
can be obtained in real-time at a repetition rate of once per cycle of
system frequency.

• The high repetition rate of PMU measurements makes it possible to
capture system dynamics over a wide-area. Previously, a wide-area
observability was provided from a SCADA system that had a repeti-
tion rate that was too slow to capture any but the slowest dynamics.
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The above mentioned benefits of PMU measurements contributeto a strong
base for the development of methods intended for wide-area assessment of
the system operating conditions in real-time. A PMU-snapshot, which pro-
vides a full observability of a system, can be directly used to update a system
model that is used for assessment of the the system state. Thestep of esti-
mating unobserved system variables is not needed when the measurements
provide full observability of the network and therefore, a significant reduc-
tion in assessment time can be obtained.

The high repetition rate opens as well up the possibility forreal-time tracing
the system dynamics which can eventually be used for prediction of future
states. The dynamics captured in PMU data must though be sufficiently
slow such that the PMUs repetition rate is sufficient for providing a good
representation of the actual system trajectory.

Some of the limitations of PMUs can be related to the concept of phasors,
which is a simplified representation of a stationary sinusoidal waveform.
This simplification results in that some information from the actual observed
waveform is lost. This imposes limitations on what complex phasors can be
used for, which in fact imposes limitation on what kind of applications PMU-
data can be used. To mention some of the limitation associated with the
usage of PMU data for assessment of the system conditions, the following is
outlined:

• Since PMUs are limited to a repetition rate of once per cycle of system
frequency, applications focusing on assessment of very fast phenom-
ena cannot use PMU data if the repetition rate is too slow for capturing
the dynamics of interest.

• The PMUs provide a measurement of the positive sequence compo-
nent of the observed waveforms, which limits their usage to applica-
tions that can manage without the knowledge of the negative sequence
or the zero sequence components.

• The performance of PMUs under transient conditions, where the mag-
nitude and relative phase angle of the observed waveform canchange
significantly during one period, is not standardized. It is uncertain
which voltage magnitude or phase angle the PMU phasor shouldrep-
resent during such conditions, bearing in mind that phasorsare a sim-
plified representation of a stationary sinusoidal waveform. It is not
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clear whether PMU measurements from a period involving fastdy-
namics can be used for accurate assessment of system stability.

It has been proposed, that real-time observations of systemvoltage phase
angles can be used for stability or security assessment observed system con-
ditions. In the following, the shortcomings of methods onlyrelying on phase
angle observations for system assessment are pointed out.

3.2.1 Shortcomings of the use of Voltage Phase Angles Ob-
servations for Stability/Security Assessment

In a power system where PMUs are covering a large part of the system
busses, a snapshot of the system operating conditions can beobtained if the
measurements are continually gathered at a control center.For the purpose
of utilizing the wide-area information obtained from such aset of PMU mea-
surements for stability assessment, several applicationsand ideas have been
suggested. One idea sometimes suggested is to use phase angle measure-
ments for assessing the system operating conditions. In (Venkatasubramanian
et al. 2009) it is suggested that a set of measured voltage phase angles can
be useful for assessing system stress and in (Dobson et al. 2010, Dobson &
Parashar 2010) phase angles across a cutset area are used as ameasure of the
system stress.

The suggestions for using voltage phase angle measurementsfor assessing
system stress are often based on practical experience wherestability/security
problems seem to occur when bus voltage phase angle differences exceeds
some particular value. In (Dobson & Parashar 2010), it is mentioned that
simulations of the grid before the Northeast blackout of August 2003 showed
an increasing angle differences between the Cleveland and West Mahican,
which are said to indicate that large angle differences could be a blackout
risk precursor.

The usage of a measurement data set consisting only of systemvoltage phase
angles, for the purpose of assessing the system operating condition has some
disadvantages compared to a data set containing both the voltage magnitude
and phase information. In the following, arguments are provided for why
observations of system phase angles cannot alone be used foraccurate as-
sessment of the power system operating conditions.

In order to assess the stability or security of a given operating point from
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a set of measured system variables, it is important that the observed system
variables provide a unique representation of the system operating conditions.
The termunique representationis used to denote a set of observed system
variables which can only be obtained from one specific operating point. This
means that the observed set of system variables provides full observability
of the system. If not sufficiently many system variables are observed, the ob-
served variable set cannot be used to represent one specific operating point.
In such cases, other operating points exist that would result in an identical
set of observed variables.

A unique representation of power system operating conditions can be ob-
tained in different ways. As an example, for a system withN busses and
M branches a unique description of a given operating point canbe obtained
if the network impedances are known together with all of theN bus voltage
phasors or together with all the currents flowing in theM branches along with
the voltage magnitude at one bus in the system. With the network configu-
ration known, all other network variables can be determinedfrom these sets
of theM complex current variables and one voltage magnitude (2M+1 real
variables) or from theN complex bus voltage variables (2N real variables).

In power system analysis it is common practice to represent aspecific system
operating point, by determining theN bus voltage phasors. The reason for
this is that in practical power system, the number of branches is greater than
the number of busses and hence, a larger number of independent equations
are needed to determine theM currents, than theN voltages.

Each operating point can be uniquely described by theN voltage phasors or
2N real variables (consisting ofN voltage magnitudes andN angles). The
number of required variables needed to provide a complete description of a
system operating point can be reduced by applying constraints to some of
the variables. For example, one of the bus voltage phasors can be used as an
angle reference which reduces the number of voltages phase angle variables
to N−1. It could be assumed that the voltages atn busses is maintained con-
stant (by e.g. AVRs or SVCs) which would reduce the number of required
variables to a set ofN−n bus voltage magnitudes.

When the stability (or security) of a specific operating pointis to be assessed
from an observed set ofN (or N− 1) bus voltage phase angles in the sys-
tem, then theN−n independent voltage magnitude variables are missing in
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order to have unique representation of the observed operating point. This
introducesN− n degrees of freedom to the description of the current op-
erating point. It is therefore obvious that the observed setof phase angles
cannot provide a unique description of the system operatingpoint and in fact
a given set ofN−1 phase angles can both represent a stable situation and
an unstable situation all depending on the values of theN−n free variables
(the bus voltage magnitudes).

In order to illustrate the difficulties associated with stability or security as-
sessment based only on voltage phase angle observations, the following two
examples are provided.

Example I - Simple 3-bus system

The aim of this example is to illustrate why information about the voltage
phase angles in an electric power system is not alone sufficient for assessing
the system operating conditions. The system used in this example is shown
in figure 3.3.a. The system consists of three busses and two lines where two
of the buses are connected to a voltage source while the thirdbus is a load
bus.

In this example, the term critical operating point is used todenote when
the point of maximum deliverable power to the load has been reached when
some specific constrains are applied to the system. It is though noted that
an operating point might be considered to be critical for several other rea-
sons. For example a given operating point could be considered critical when
thermal limits of a transmission line or a generator are reached or when the
voltage magnitude at some point in the system goes below somespecified
limits for minimum voltage magnitude. For the sake of simplicity of this
analysis, the maximum deliverable power to the load will only be used to
denote critical points since this maximum is critical for voltage stability in
electric power systems.

In order to determine whether a given operating point is critical or not, some
knowledge concerning the system behavior and control is needed. The point
of maximum deliverable power through a network to a load is dependent
on several factors such as how the production from the involved generators
changes as the system load is increased and how the relationship is between
active power consumption and reactive power consumption asthe loading
increases (whether the power factor is varying or fixed). Forexample, if
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Figure 3.3: a) Simple three bus system used to explain why the values of voltage
phase angles is not alone sufficient to asses whether a given operatingpoint is crit-
ical or not. Calculations are provided to show how the voltage phasors in b)were
determined. b) Representation of a critical operating condition for the system in a)
when the supply voltage is fixed and the load has a fixed load angle. The critical
operating conditions (point of maximum deliverable power) occur when thesys-
tem Thevenin impedance is equal the load impedance. c) Three different operating
conditions where in all cases the phase angles are the same, but the operating condi-
tions represented are either critical or non-critical all dependent on thebus voltage
magnitudes. d) Illustration which values ofVLD represent a non-critical situation
(non-shaded area to the right of the line of critical values) when the supply voltages
are fixed (both angle and magnitude) and the load is increased at fixed loadangle.
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the relationship between active and reactive power consumption is linear
(fixed power factor) the point of maximum deliverable power will be dif-
ferent than if there was a nonlinear relationship between active and reactive
power consumption. Different specifications or assumptionfor the behav-
ior of the devices connected to the network, result in that anoperating point
which is critical for one specific set of system constrains might not be critical
for another set of constrains.

In this example, the following constrains are used to describe the system
behavior; the load angle is maintained fixed as the loading isincreased and
the voltage magnitude and phase angle are maintained constant (generator
dynamics neglected). It is clear that these constrains do not reflect a practical
situation. On the other hand, this selection of system constrains makes it
easy to illustrate why the phase angle information alone is not sufficient to
describe a given operating condition. By this selection, it is ensured that the
system is stressed in specific way and that each operating condition can be
described by two free variables which are the phase angle andthe voltage
magnitude at the load bus.

Figure3.3.b shows an example of a critical operating point in voltage plane,
when the above mentioned constrains are applied to the system. If the idea
of using phase angle observations for stability assessmentof this situation
would be applied here, it would mean that whenever exactly the same set of
phase angles differences would be observed, the system conditions would be
considered to be critical.

Figure 3.3.c illustrates three different operating points, where all of them
have identical phase angle values. Only one of these points is critical while
the two others are non-critical. The only difference between the critical and
non-critical points is that the voltage magnitudes are different. From the fig-
ure, it is evident that the information about the voltage magnitude is needed
in order to determine whether a given point is critical or not.

In figure 3.3.d the line of all possible critical values ofVLD have been de-
termined for the previously mentioned system constrains. The set of critical
points are represented by the border line between the shadedregion and the
unshaded region. This picture clearly illustrates that it is not possible to use
phase angle information alone to determine whether the observed operat-
ing point is critical or not since the limits are both phase angle and voltage
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magnitude dependent.

Example II - 2×10bus system

In this example, the 20 bus system in figure 3.4 is used to illustrate how
large variations there can be in observations of system phase angle for two
different critical operating points of the system. In this section, the static
voltage stability boundaries, characterized by the non-solution of the power-
flow equation (Venkatasubramanian et al. 2009) are used as the critical op-
erating conditions. The system consists of 10 generators and 10 loads where
all of the lines are purely reactive with line reactanceXLN = 1pu. In the
following, the system will be gradually stressed accordingto two different
schemes.

In figure 3.4 the load/generation participation factorsλi for the two cases are
shown. The participation factors indicate the increment inpower injection
at each bus when the total system load is increased by one unit. For a total
system load increment of∆P the partial increment at busi is ∆Pi = ∆P ·λi,
where negative values correspond to increased generation and positive values
denote increased load. The voltage at the generator busses is maintained
fixed during the analysis and the loads are purely resistive.

In the first scheme (case a in figure 3.4) the generator participation is high-
est for the left most generator, and is gradually decreasingfor generators at
busses to the right. The load participation factors are, opposite to the gener-
ator participation factors, highest for loads furthest to the right in the figure
and become gradually smaller for busses to the left. This selection of load
and generation participation factors results in power flow in the system from
left to right. This means that a path of positive power flow canbe found from
the generator at bus 1 to the load at bus 19.

The resulting plot of the system bus voltages is shown in figures 3.5 and
3.6. The bus voltages are shown by a dot and the lines connecting the dots
represent the voltage drop over the transmission line between two adjacent
busses. In the leftmost plot in figure 3.5, the bus voltages are plotted when
the system has been loaded up to 60% of its maximum, the plot inthe middle
shows the situation when the system has been stressed to 80% of its maxi-
mum and the plot to the right illustrates the critical operating point for the
system when stressed according to the participation factors for case a in fig-
ure 3.4. By examining these three plots it can be seen how the system phase
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1 3 5 7 9 11 13 15 17 19

2 4 6 8 10 12 14 16 18 20

−0.1818 0.0261 −0.1455 0.0523 −0.1091 0.0588 −0.0727 0.0523 −0.0364 0.4572

0.0131 −0.1636 0.0392 −0.1273 0.0653 −0.0909 0.0594 −0.0545 0.1764 −0.0182

λ1 λ3 λ5 λ7 λ9 λ11 λ13 λ15 λ17 λ19

λ2 λ4 λ6 λ8 λ10 λ12 λ14 λ16 λ18 λ20

Case a:

Case b:

1 3 5 7 9 11 13 15 17 19

2 4 6 8 10 12 14 16 18 20

−0.10 0.10 −0.10 0.10 −0.10 0.10 −0.10 0.10 −0.10 0.10

0.10 −0.10 0.10 −0.10 0.10 −0.10 0.10 −0.10 0.10 −0.10

λ1 λ3 λ5 λ7 λ9 λ11 λ13 λ15 λ17 λ19

λ2 λ4 λ6 λ8 λ10 λ12 λ14 λ16 λ18 λ20

Figure 3.4: A 20 bus system with 10 generators and 10 loads. The load/genera-
tion participation factors for cases a) and b) are shown where a negative number
corresponds to an increment in production and positive number corresponds to a
increment in load. For a total system load increment of∆P the partial increment at
busi is ∆Pi = ∆P ·λi . Each branch in the network is purely reactive with a unit line
reactanceXLN = 1pu.
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angle differences gradually increase as the system stress is increased. It can
be seen from the plot of the critical operating point that theapplied stress pat-
tern causes large separation in the phase angles, where the maximum phase
angle separation in the data set is close to 360 degrees.

In the second participation scheme (case b in figure 3.4) all participation
factors are equal. When this scheme is applied the paths of positive power
flow can only be traced from generator busses to the adjacent load busses.
The three plots in figure 3.6 show the system bus voltages as the loading is
gradually increased to the critical point. It can be seen that the phase angle
separation as the system stress is increased is very different from the previous
case and the maximum phase angle separation in the data set ismuch smaller
in this case (approximately 50 degrees).

The difference between the two cases stems from the fact thatin case a, the
power flow in the branches was from the left to the right which resulted in
long paths of positive power flow could be traced in the network while in case
b the power was generally transmitted over short distances.When power is
transferred through a long path consisting of purely inductive elements the
voltage phase angles decreases on the busses in the path fromthe sending
end to the receiving end.

These two cases demonstrated that the difference in phase angle separation
of the bus voltages for two different critical operating points of the system
can be very substantial. If only the information about phaseangle separation
was to be used for assessment of the critical operating condition, it would
be impossible to identify the different critical situations. It is evident that
more information is required than only the phase angles in order to assess
the stability/security of such system.

It is interesting to compere the above results to suggested stability criteria
in publications describing stability constrained power flow. Nguyen & Pai
(2003) suggest when a relative rotor angleδi j = δi −δ j exceeds 180 degrees,
the system is considered unstable. Gan et al. (2000) refer tothis criteria as
an extreme case and an even lower threshold forδi j suggested. The above
example illustrates that it is not possible to define a fixed phase angle differ-
enceδi j to accurately represent the system stability boundary. Thesystem
boundary depends on the both the network topology and how thesystem is
loaded. A set voltage phase angles whereδi j is high, could be an indication
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Figure 3.5: Plot of the system bus voltages for the system in figure 3.4. The leftmost plotshows bus voltages when the system
is loaded to 60% of the maximum loading, when the participation factors from figure 3.4.a are applied. The middle plot shows
the situation when loaded to 80% and the right plot are the bus voltages for themaximum possible loading.
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Figure 3.6: Plots for the same loading levels as in figure 3.5 when the participation factors figure 3.4.b are applied. There is
a great difference between the two critical cases when the voltage phaseangle separation of the bus voltages is investigated.
In case a (figure 3.5), the maximum phase angle separation in the data is approximately 360 degrees while in case b it is
approximately 50 degrees.
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of that the path of positive power flow can be traced through a long distance
in the system rather than a specific indication of a stressed system condition.

It should though be noted, that the idea of using maximum phase angle dif-
ferenceδi j as stability criteria is often suggested by utility engineers that
observe that stability related problem seem to occur whenδi j exceeds some
practical limit. One potential explanation why utility engineers observe
problems whenδi j exceeds the practical limit, is that the system generation
and consumption patterns of the bulk power system are usually very similar
on daily basis. If the two, similar sets of participation factors were applied
on the system in figure 3.4, the observed value of criticalδi j might as well
be similar.

Even though similar system generation and consumption patterns are expe-
rienced on daily basis, the usage such experience based stability criteria for
δi j might be unreliable during some critical operating condition. This espe-
cially applies for stressed situations where the system topology might have
been changed due to a trip of a transmission line, or when a loss of a large
generator has resulted in redistribution of the power flow, such that a longer
path of positive power flow is experienced. In such situations, the actual
value for the criticalδi j might be significantly different from practical expe-
rience based limits and result in either a false alarm for stability problems,
or that the stability problem occurs before the practical limit is reached.

3.3 Existing Methods for Wide-Area Assessment
in Real-Time

In the following, examples of method that utilize wide-areameasurements
for stability or security assessment are provided.

3.3.1 Wide-Area Detection of Voltage Instability
In (Glavic & Van Cutsem 2008, Glavic & Van Cutsem 2009a, Glavic &
Van Cutsem 2009b) a method is presented that focusses on detecting the on-
set of voltage instability triggered by large disturbances. For this purpose,
the method utilizes PMU system snapshots of the post-disturbance condi-
tions. It is assumed the snapshot provides observability ofthe whole region
which is prone to voltage instability. The voltage stability assessment is
based on the singularity conditions of a computed Jacobian matrix derived
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from an extended set of equilibrium equations. The short term dynamics
of generators are not traced, but replaced by accurate equilibrium condi-
tions. The assessment is based on system model where the effects of ma-
chine AVRs and OXLs are considered as well as the effects of other voltage
control equipment in the system. No assumptions are made about the load
behavior since it is directly measured.

A coupling between time domain simulation and eigenvalue analysis of the
Jacobian has been suggested before (Moriso et al. 1993, Van Cutsem et al.
1995). The suggested method basically aims at replacing theoff-line noise-
free computations of the Jacobian sensitivities by a one carried out in real-
time and based on the PMU snapshots.

A case study provided in (Glavic & Van Cutsem 2009b) shows that the
method is capable of detecting when conditions for voltage instability oc-
cur. The method is though not capable of identifying the actual voltage sta-
bility boundaries and therefore not capable of assessing the distance to the
boundaries in real-time.

3.3.2 Wide-Area Nomograms
In (Makarov et al. 2010), an approach for real-time securityassessment is
presented, where a multidimensional security region is determined for a
specified operational base case. The security region boundary is represented
using its piecewise linear hyperplanes in a multi-dimensional space, consist-
ing of system parameters that are critical for security analysis. The security
regions are pre-calculated off-line in a time-consuming process where the
security region is derived for one particular system configuration. The de-
rived multidimensional security region represents a set ofoperating points
for which constrains thermal overloading, voltage levels,voltage stability,
transient and oscillatory stability are satisfied.

A real-time assessment of the system security margin is obtained by mon-
itoring the operating point in real-time and comparing it against the pre-
calculated security boundaries. The method provides a veryaccurate mul-
tidimensional representation of the system security boundaries which pro-
vides confidence for operating the system closer to the security boundaries
than before.

A drawback of the approach is that the boundaries are determined for a spe-
cific base case and fixed system topology. If the system is subjected to any
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topological changes (e.g. few lines out of order due to maintenance), the ac-
tual approach may introduce an inaccuracy for the assessment of the security
margin, as it has been based on the non-changed topological structure.

3.3.3 Monitoring System Stress by Cutset Angles
In (Dobson et al. 2010, Dobson & Parashar 2010) an approach ispresented
where the system stress is assessed by monitoring so called cutset angles.

A power system, with DC load flow approximation is consideredwhere the
topology and the impedances of the base case are known. A voltage phase
angle at a busi is denotedθi, the phase angle difference across the branchj
is denoted̂θ j and the branch susceptance isb j . A cutset of branchesc that
divides the network into area 1 and area 2 is chosen. Since a DCload flow
approximation of the network is considered, the power flowing through the
cutsetc can be determined as:

Pc = ∑
j∈c

b j θ̂ j (3.2)

The cutset susceptance:
bc = ∑

j∈c
b j (3.3)

And the cutset angle is defined as:

θ̂c = ∑
j∈c

b j

bc
θ̂ j (3.4)

Then (3.2),(3.3) and (3.4) imply thatPc = bcθ̂ which represents the power
flow through the cutsetc derived from the cutset angle and the cutset suscep-
tance.

The real-time assessment of the system stress is obtained bymonitoring the
cutset anglêθc, which yields specific information about changes to the grid
with respect to the chosen cutset.

The disadvantage of this approach is that it does not assess system stability
in an accurate way, it only provides an indicator of stressedsystem condi-
tions. Furthermore, as previously pointed out, by utilizing only the voltage
phase angles from a given PMU-set and discarding the voltagemagnitude
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observations, results in reduced observability of the system conditions. A
reduction of the system observability introduces greater uncertainty for the
assessment of critical operating conditions.
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Chapter4
Real-Time Stability Assessment -
Considerations

This chapter presents practical considerations related toreal-time stability
assessment where an element-wise stability assessment is presented as a po-
tential approach for real-time monitoring of the system stability boundaries.

4.1 Monitoring Multidimensional Stability Bound-
aries

Traditionally, power system stability analysis is carriedout by utilizing a
variety of different methods which cover among others time domain sim-
ulations and static analysis. Depending of the scope of the study, different
aspects are examined. For example, an analysis of transientstability involves
investigation of whether, for a given operating point, the system can with-
stand of severe contingencies. The analysis of voltage stability for a given
operating condition focusses on investigation of two aspects; the proximity
to voltage instability and mechanisms of voltage instability. For that purpose,
static methods such as continuation methods and QV-sensitivity analysis are
applied.

For the purpose of monitoring the overall system stability or security bound-
aries, multidimensional nomograms have been suggested (Makarov et al.
2010). The critical boundaries are determined in an offline analysis where
critical multiple critical boundary points are determinedby stressing the
system in various directions away from a given base operating point X0,
whereX0 ∈ R

N. After each step increase of the system stress in a particular
stress direction, a wide range of assessment method are applied to determine
whether the new operating point is secure and/or stable. Thestepwise in-
crease of the system stress is continued until one of the applied assessment
methods indicates that the current operating point is no longer stable or se-
cure whereafter the point is used to represent a critical boundary point in
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the multidimensional parameter spaceR
N. The security (or stability) region

boundary is represented using its piecewise linear hyperplanes in a multi-
dimensional space where the hyperplanes are determined from the critical
points determined by the offline analysis. Figure 4.1 depicts a piecewise
linear approximated security region.

System operating
point inRN

Piecewise linear approximation
of N-dimensional security region

Boundaries determined
by an offline analysis

Margin

Figure 4.1: Assessment of a multidimensional operating point (inR
N) against its

boundaries. The boundaries are determined by offline analysis, while theoperating
point is monitored in real-time.

The derived security/stability region is used for real-time assessment of the
system operating condition where the multidimensional operating point is
monitored in real-time and held against the boundaries. In this way, a mul-
tidimensional security/stability margin can be obtained.This approach pro-
vides an overall-assessment of power system stability fromobservation of
single multidimensional operating point.

Another approach for stability assessment, instead of monitoring a multidi-
mensional operating point, would be to monitor multiple operating points
where each point is associated to a specific element in a powersystem.
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4.2 Element-Wise Assessment of Stability

4.2 Element-Wise Assessment of Individual Mech-
anisms of Stability

One approach for real-time stability assessment, is to focus on assessment of
one particular mechanism of instability that is related to aspecific element
in the system. Such element-wise assessment of individual mechanisms of
stability could for example consist of determining the boundaries for the
maximum amount of power that can be delivered to the terminalof specific
ULTC-transformer. Another example could be an assessment ofthe maxi-
mum steady-state electrical torqueTe that a specific generator can apply for
a given steady state situation.
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Figure 4.2: Element-wise assessment of stability, where the one particular mech-
anism of instability is assessed explicitly for each relevant system element. An
individual operating point is associated with each element (in this case generators
Gi) is held against its stability boundary.

Figure 4.2 illustrates the concept of suchelement-wise assessment of indi-
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vidual stability mechanisms. In this case, the stability of a given system
element is evaluated in respect to a given mechanism of stability. This could
for example be the assessment of when generator (Gi) reaches its limit of
maximum injectable power in steady state condition. The limits for maxi-
mum injectable power represents the stability limit for aperiodic small signal
stability for the machine of concern. The assessment concept is illustrated in
figure 4.2, where each operating point is associated to one generator and the
point is held against a critical boundary for a given mechanism of stability
(the boundary could be presented inR

2 or evenR ).

By assessing the conditions of a one particular system element in respect
to one particular mechanism of stability offers possibilities for obtaining re-
duced computational time for carrying out the assessment. The reduction
in computational time is related to that the system description can be tai-
lored such that only factors that have a significant influenceon the stability
mechanism of concern are represented in the system model. Furthermore,
when the assessment of a particular system element is being carried out, the
network representation can potentially be reduced such that the areas that
have little influence on the element of concern are represented by a simpli-
fied equivalent. Such reduction of the system network can lead to reduced
computational efforts required for the assessment.

Another benefit of an element-wise assessment of stability is that the critical
system elements are quickly identified which provides a goodbackground
for choosing appropriate remedial action for improving theobserved system
operating conditions.

4.2.1 Overall Assessment of Stability
An overall real-time assessment of system stability can be obtained by di-
viding the assessment process into several subtasks, wherein each subtask
the aim is to assess one particular mechanism of instability. Figure 4.3 gives
an overview over the suggested assessment process.

Wide-area observations of the system operating conditionsare used as an
input to several different assessment methods, where each method concerns
the assessment of a single mechanism of instability. The assessment of the
different mechanisms of instability can be executed in parallel on different
processors where the output from all methods is gathered andinvestigated
for an overall assessment of the system stability. The division of the stability
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Real-Time
Wide-Area

Measurements

System observability obtained
by synchronized measurements

The N’th
Assessment

Method

. . .
The 2nd

The 1st

Paralell execution of N
different assessment methods

Overall
Stability

Assessment

Assambles the output from
the N assessment methods

Figure 4.3: Schematic overview over real-time stability assessment process.

assessment problem into subtasks offers several benefits when being used in
real-time:

• The system description can be tailored to the stability mechanism that
is being addressed. This enables model reduction where system dy-
namics, that have a limited or no effect on the addressed stability
mechanism, can be neglected. Hence, a reduction in the computational
efforts is obtained.

• Since each assessment method is focussing on a particular mechanism
of stability, it becomes easy to identify where in the systema problem
is emerging, and what kind of stability problem is emerging.

• The parallel execution of several assessment methods provides im-
proved speed of the assessment
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Chapter5
Critical Boundaries and Characteristic
Lines in Injection Impedance Plane

The main topic of this chapter concerns the mappings of some useful char-
acteristics of a three dimensional PQV-surface, for a simple two bus system,
into the injection impedance plane. The derived expressions for the charac-
teristic boundaries are used as foundations for a method providing situational
awareness that utilizes the derived expressions in this chapter for stability
assessment and for an informative visualization of the observed system con-
ditions in real-time.

5.1 Benefits of Describing Critical Boundaries in
Terms of Injection Impedance

The representation of stability boundaries in injection impedance plane for
the purpose of stability assessment has several advantagescompared to rep-
resentation of the boundaries in terms of other system variables. First of all,
as will be shown in the following, the critical boundaries and other charac-
teristic lines appear as circles in the impedance plane. This makes it possible
to visualize multiple operating points on the same screen when the operating
points have been normalized such that their critical boundary is represented
by a unit circle.

Furthermore, characteristic lines of constant voltage magnitude, phase angle,
active power and reactive power appear as well as circles in the injection
impedance plane which provides a good basis for providing a meaningful
and informative visualization of the system operating conditions.

5.2 Mapping of Critical Boundaries

In Figure 5.1 a diagram of a two bus system is presented which contains the
notations of the system variables used in the following. Therelationship be-
tween receiving and sending voltage, active and reactive power is formulated
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Chapter 5. Critical Boundaries and Characteristic Lines

in (5.1):

V4+V2(2(RP+XQ)−E2)+(R2+X2)(P2+Q2) = 0 (5.1)

The derivation of (5.1) is provided in appendix A.

E ZLN = ZLN∠φ

= R+ jX

V

P,Q

ZLD = ZLD∠θ

Figure 5.1: The simple two bus system and the notations used for deriving the
critical boundaries in the injection impedance plane.E denotes the sending end
voltage magnitude,V is the receiving end voltage magnitude,P andQ are the active
and reactive power at the receiving end.ZLN andZLD represent the line and the
injection impedance respectively. The angleφ is used to denote the angle ofZLN

andθ is the angle ofZLD.

In order to construct aPQV-surface a solution for eitherP,Q areV has to
be found. Rearranging (5.1) and solving the active powerP results in the
following two solutions:

P[1] = −
RV2−

√

−Q2 (R2+X2)
2
+(R2+X2)(E2−2QX)V2−X2V4

R2+X2 (5.2)

P[2] = −
RV2+

√

−Q2 (R2+X2)
2
+(R2+X2)(E2−2QX)V2−X2V4

R2+X2 (5.3)

By assumingR≥ 0 andX > 0, then the solutionP[2] corresponds to solution
whereP is negative whileP[1] describes the solutions forP values that can
be positive as well as negative. All solutions for positive values ofP are
therefore described byP[1], given the above constrains forR andX.

The two solutionsP[1] andP[2] describe the entire PQV-surface. If the region
Scontains all points on the PQV-surface and the subregionsS1 andS2 contain
the solutions ofP[1] and P[2] respectively, thenS= S1 ∪S2 is valid. This
means thatSrepresents the entire injection impedance plane.

64



5.2 Mapping of Critical Boundaries

Solutions forQ andV, can as well be obtained by manipulating (5.1):

Q[1] = −
XV2+

√

−P2 (R2+X2)
2
+(R2+X2)(E2−2RP)V2−R2V4

R2+X2 (5.4)

Q[2] = −
XV2−

√

−P2 (R2+X2)
2
+(R2+X2)(E2−2RP)V2−R2V4

R2+X2 (5.5)

V[1] =

√

−(RP+XQ)+
E2

2
+

√

E4

4
− (XP−RQ)2−E2(RP+XQ) (5.6)

V[2] =

√

−(RP+XQ)+
E2

2
−
√

E4

4
− (XP−RQ)2−E2(RP+XQ) (5.7)

V[3−4] = −

√

−(RP+XQ)+
E2

2
±
√

E4

4
− (XP−RQ)2−E2(RP+XQ) (5.8)

It can be seen that two different solutions exist forQ and four solutions forV
exists. Two of the four solutions forV result in negative values forV which
gives no physical meaning and therefore, only solutions forpositive values
for V are of interest (V[1−2]).

In the following, the regionsS3 andS4 represent the set of points described
by the solutionsQ[1] andQ[2] respectively and the regionsS5 andS6 represent
the set of points described by the solutionsV[1] andV[2] respectively. In the
same way as above,S= S3∪S4 = S5∪S6 are valid.

For the purpose of visualizing the relationship betweenP,Q andV, a three
dimensional surface can be plotted by utilizing one of the expressions pro-
vided in (5.2)-(5.6) and keeping the values ofR,X andE fixed. In figure 5.2
a plot of such surfaces can be found where the valuesE = 1,X = 0.1 and
R= 0.01 are used. The surfaces are shown for positive values ofP.

In figure 5.2.(a) several lines on the surface are shown that represent constant
load power factor (that is the path on the surface whereθ remains constant).
A projection of those lines onto the PV-plane results in the traditional nose
curves (PV-curves), which are often used in voltage stability analysis. Figure
5.2.(b) contains a set of lines which represent constant receiving end power
P. A projection of these lines onto the QV-plane results in theQV-curves
which also often are used in voltage stability analysis. Thecorresponding
PV-curves and PQ-curves for the surfaces in figure 5.2.(a) and (b) can be
found in figure 5.3.(a) and (b) respectively.
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Figure 5.2: Illustration of the relationship between receiving end power and reactivepower (P andQ) and the receiving end
voltageV when the sending end voltageE and the line parameters (RandX) are kept constant. Two surfaces are shown in the
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Chapter 5. Critical Boundaries and Characteristic Lines

Apart from the lines of constant power factor and constant power, two lines
that are of critical importance for stability studies are shown. The first line,
the one which intercepts the lines of constant power factor when P is at
maximum, is the line where the partial derivative∂P

∂V is zero. The second line

represents the set of points where∂P
∂Q = 0.

Both of these line represent the limits for maximum deliverable powerP for a
given system condition. The line∂P

∂V = 0 represents the maximum deliverable
power when the sending end voltage is fixed and the relationship betweenP
andQ is linear (that is changes inP are proportional to changes inQ). It is
as well the maximum deliverable power when the value reactive powerQ is
fixed.

The line ∂P
∂Q = 0 represents the maximum deliverable power when the receiv-

ing end voltageV is fixed. This could represent the maximum deliverable
power between to systems, where the voltage in each end is maintained con-
stant.

For voltage stability, it is the line where∂P
∂V = 0 that is of central importance

since it represents the situation when there can not be delivered more power
P to the load for the given value ofQ. Whether a voltage instability is expe-
rienced when the operating point crosses this limit line is dependent on the
dynamic behavior of the load. The line∂P

∂V = 0 is therefore only a borderline
between a safe region and unsafe region.

For the purpose of developing an early warning system which monitors volt-
age stability in power systems, it would be interesting to determine the dis-
tance between an operating point and the critical borderline where∂P

∂Q = 0.
It would as well be interesting to determine the "velocity" and direction
of the operation point and predict the time it takes for the operating point
to cross the borderline. It is not convenient to monitor multiple operating
points in the system on a PQV-surface, since the shape of PQV-surface is
dependent on the value ofZLN for each transmission line. A mapping of the
PQV-surface into the injection impedance plane enables themonitoring of
multiple operating points. Before the mapping of lines on thePQV-surface
can be be derived, it is necessary to identify some importantcharacteristics
of the PQV-surface that enable the derivation.
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5.3 Characteristics of the surface

As necessary background for the mapping of the critical lines of the PQV-
surface into the injection impedance plane, the following relationship must
be valid:

When
∂P
∂V

= 0, then
∂Q
∂V

= 0. (5.9)

When
∂P
∂Q

= 0, then
∂V
∂Q

= 0. (5.10)

When
∂Q
∂P

= 0, then
∂V
∂P

= 0. (5.11)

In the following subsections it will be shown that the statements above are
valid.

5.3.1 Proof of when∂P/∂V = 0 then ∂Q/∂V = 0
Differentiating the expression forP[1] in (5.2) with respect toV yields:

∂P
∂V

=− 2RV
R2+X2 +

V
(

E2−2QX
)(

R2+X2
)

−2X2V3

(R2+X2)

√

−Q2 (R2+X2)
2
+(R2+X2)(E2−2QX)V2−X2V4

(5.12)

Setting∂P
∂V = 0 and solving forQ results in:

Q(∂P/∂V=0) =
X
(

E2−2V2
)

±ER
√

4V2−E2

2(R2+X2)
(5.13)

Using the expression forP[2] instead of the expression forP[1] when deter-
mining the partial derivative in (5.12) results in the same expressions for the
solution forQ as in (5.13). From (5.13), it can be seen that there are two so-
lutions forQ, that describe the line where∂P/∂V = 0. This partial derivative
becomes zero whenP is either at its maximum its minimum.

It can be seen that (5.13) is valid forV in the range[E/2,∞[. A description
of the entire PQV-surface can be obtained by equations 5.2 and 5.3 which
correspond to the subregionsS1 andS2 respectively. By inspection of (5.13)
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Chapter 5. Critical Boundaries and Characteristic Lines

it can be seen that the solution with the negative sign lies entirely in the re-
gionS1 while the solution with the positive sign lies partly inS1 andS2. The
values ofQ(∂P/∂V=0) obtained by the solution with the positive sign should be
applied intoP[1] when the voltageV is in the range[E/2,E/(2sinφ)] and applied
into P[2] whenV is in the range[E/2sinφ,∞[. If the values ofQ(∂P/∂V=0) are not
applied inP[1] andP[2] as described, then they do not represent the set of
points on the PQV-surface where∂P/∂V = 0.

The aim is to show that when∂P
∂V = 0 then ∂Q

∂V = 0. Differentiation of the
expression forQ[1] in (5.4) in respect toV results in:

∂Q
∂V

=− 2XV
R2+X2 − V

(

E2−2PR
)(

R2+X2
)

−2R2V3

(R2+X2)

√

−P2 (R2+X2)
2
+(R2+X2)(E2−2PR)V2−R2V4

(5.14)

Setting∂Q/∂V = 0 and solving forP results in:

P(∂Q/∂V=0) =
R
(

E2−2V2
)

±EX
√

4V2−E2

2(R2+X2)
(5.15)

The results are the same as the one that would be obtained ifQ[2] would have
been used instead ofQ[1] in (5.14).

An analysis of the two solutions forP(∂Q/∂V=0) reveals that the expression is
valid for V in the range[E/2,∞[.

Inspection of the solutions for (5.15) it can be seen that thesolution with
the positive sign lies entirely in the regionS1 while the solution with the
positive sign lies partially inS1 andS2. The values ofP(∂Q/∂V=0) obtained by
the solution with the negative sign represent points inS1 when the voltage
V is in the range[E/2,E/(2sinφ)] and represent points inS2 whenV is in the
range[E/(2sinφ),∞[.

By constraining expression forP[1] in (5.2) by inserting the expression with

70



5.3 Characteristics of the surface

the positive sign forQ(∂P/∂V=0) in (5.13) (which lies entirely inS1) gives:

P=
−2RV2+

√

2XE2
√

R2E2 (2V −E)(2V +E)+E4R2+4X2V2E2−X2E4

2(R2+X2)

=
−2RV2+E

√

(

RE+X
√

(2V −E)(2V +E)
)2

2(R2+X2)

=
R
(

E2−2V2
)

+EX
√

4V2−E2

2(R2+X2)

(5.16)

The above expression forP, which is constrained by∂P/∂V = 0, is the same
as the expression forP with the positive sign in (5.15) where∂Q/∂V = 0. It is
therefore proven that the line on the surface where∂Q/∂V = 0 is the same line
as the one where∂P/∂V = 0.

5.3.2 Proof of when∂P/∂Q = 0 then ∂V/∂Q = 0
Differentiation of the expression forP[1] in (5.2) with respect toQ yields:

∂P
∂Q

=
−Q(R2+X2)−XV2

√

−Q2 (R2+X2)
2
+(R2+X2)(E2−2QX)V2−X2V4

(5.17)

Setting∂P/∂Q = 0 and solving for Q yields:

Q(∂P/∂Q=0) =− XV2

R2+X2 (5.18)

This result would be obtained as well ifP[2] would have been differentiated
in (5.17) instead ofP[1]. By inspecting the expressions forQ[1] andQ[2] in
(5.4) and (5.5) it can be seen than the expression forQ(∂P/∂Q=0) is identical to
Q[1] andQ[2] when the term under the root is equal zero. This means the the
line representing∂P/∂Q = 0 is at the boundary of regions described byQ[1]
andQ[2] (S3 andS4 respectively). Therefore, the expression forQ(∂P/∂Q=0)
represents the intersection betweenQ[1] andQ[2] (Q(∂P/∂Q=0) = S3∩S4). This
results in (5.18) being valid for all values ofV in both expressions forQ[1]
andQ[2] in (5.4) and (5.5) respectively.

The aim of this subsection is to show that when∂P/∂Q = 0 then∂V/∂Q = 0.
Expressions for the positive voltage magnitudes (V[1] andV[2]) were derived
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in (5.6) and (5.7). Differentiation of the expression forV[1] in respect toQ
yields:

∂V
∂Q

=
2R(XP−RQ)−E2X−X

√
d

√

2d
√

d+2d(E2−2(RP+QX))
(5.19)

Whered = −4(RQ−XP)2+E2(E2−4(RP+QX)). Setting∂V/∂Q = 0 and
solving forP results in:

P(∂V/∂Q=0) =
RQ±E

√−QX
X

(5.20)

This expression would have been obtained as well, if any one of the four so-
lutions for the voltages (V[1−4] in (5.6)-(5.8)) would have been differentiated
in (5.19) and used to determineP(∂V/∂Q=0). Equation 5.20 is valid for negative
Q if X is positive (inductive) and vice versa.

In order to show that when∂P/∂Q = 0 then∂V/∂Q = 0, the expression for
Q(∂P/∂Q=0) from (5.18) is put into the expression for the expression forP[1]
given by (5.2). Doing this results in:

P[1] =

(

−RV+
√

R2E2+X2E2
)

V

R2+X2 (5.21)

This expression can be achieved by inserting the expressionfor Q(∂P/∂Q=0)
from (5.18) into the expression forP(∂V/∂Q=0) with the positive sign given by
(5.20):

P(∂V/∂Q=0) =
RQ(∂P/∂Q=0)+E

√−Q(∂P/∂Q=0)X

X

=

(

−RV+
√

R2E2+X2E2
)

V

R2+X2

(5.22)

Since the same result is obtained by constraining the surface described by
P[1] with Q(∂P/∂Q=0) as by constraining the line described byP(∂V/∂Q=0) with
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Q(∂P/∂Q=0), it is proven that the line on the surface where∂V/∂Q = 0 is the
same as line where∂P/∂Q = 0.

5.3.3 Proof of when∂Q/∂P = 0 then ∂V/∂P = 0
Differentiation of the expression forQ[1] in (5.4) with respect toP yields:

∂Q
∂P

=
RV2+P(R2+X2)

√

−P2(R2+X2)2+(V2E2−2V2RP)(R2+X2)−R2V4
(5.23)

Rearranging and solving forP, when∂Q
∂P = 0 results in.

P(∂Q/∂P=0) =− RV2

R2+X2 (5.24)

This is the same result as would have been obtained ifQ[2] in (5.5) would
have been differentiated in (5.23) instead ofQ[1]. By inspection of equations
(5.2) and (5.3) forP[1] andP[2] respectively, it can be seen thatP(∂Q/∂P=0) is
identical toP[1] andP[2] when the term under the root is equal zero. This
means that the line representing∂Q/∂P = 0 at the boundaries ofP[1] andP[2]
(∂Q/∂P = 0 atS1∩S2). Therefore (5.24) is valid for all values ofV in either
P[1] or P[2].

The aim is to show that when∂Q/∂P = 0 then∂V/∂P = 0. Differentiating the
expression forV[1] in (5.6) in respect toP yields:

∂V
∂P

=
2X(RQ−XP)−E2R−R

√
d

√

2d
√

d)+2d(E2−2(RP+QX))
(5.25)

whered =−4(RP−QX)2+E2(E2−4(RP+QX)).

Rearranging and solving forQ, when∂V
∂P = 0 results in.

Q(∂V/∂P=0) =
PX±E

√
−RP

R
(5.26)

This expression would have been obtained as well, if any one of the four
solutions for the voltages (V[1−4] in (5.6)-(5.8)) would have been differenti-
ated in (5.25) and used to determineQ(∂V/∂P=0). Equation 5.26 is valid for
negativeP if R is positive and vice versa.

73



Chapter 5. Critical Boundaries and Characteristic Lines

By inserting the expression forP(∂Q/∂P=0) from (5.24) into the expressions for
Q[1] andQ[2] in (5.4-5.5) results in:

Q[1] =−XV2+EV
√

R2+X2

R2+X2 (5.27)

Q[2] =−XV2−EV
√

R2+X2

R2+X2 (5.28)

These are the same results which would be obtained if the expression for
Q(∂V/∂P=0) in (5.26) would have been constrained by insertingP(∂Q/∂P=0) from
(5.24). This proves that the line on the PQV-surface where∂Q/∂P = 0 is the
same as the line where∂V/∂P = 0.

5.4 Transformation of Critical Lines into Injec-
tion Impedance Plane

In the following sections the lines on thePQV-surface that represents the set
of points where the partial derivatives are zero, become transformed into the
impedance plane.

5.4.1 Transformation of ∂P/∂V = ∂Q/∂V = 0 into Injection
Impedance Plane

Previously, it has been shown that the expression forP(∂Q/∂V=0) in (5.15) and
the expression forQ(∂P/∂V=0) in (5.13) describe the same line on thePQV-
surface where∂P/∂V = ∂Q/∂V = 0.

Furthermore, it was stated in section 5.3.1 that the solution for P(∂Q/∂V=0)
with the negative sign lies entirely on the same surface as the solution of
Q(∂P/∂V=0) with the positive sign. By rewriting and manipulating the solutions
for P(∂Q/∂V=0) andQ(∂P/∂V=0) that lie on the same surface gives:

P(∂Q/∂V=0) =
R
(

E2−2V2
)

−XE
√

4V2−E2

2(R2+X2)
=

RA−XB
C

(5.29)

Q(∂P/∂V=0) =
X
(

E2−2V2
)

+RE
√

4V2−E2

2(R2+X2)
=

XA+RB
C

(5.30)
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WhereA =
(

E2−2V2
)

, B = E
√

4V2−E2 andC = 2
(

R2+X2
)

. The aim
is to derive an expression for the line where∂P/∂V = ∂Q/∂V = 0. For that
purpose, the following relationship is utilized:

(

V2

ZLD

)2

= P2+Q2 (5.31)

Inserting the expressions forP andQ in (5.30-5.29) into (5.31) gives:

(

V2

ZLD

)2

=
R2A2−2RXAB+X2B2

C2 +
X2A2+2RXAB+R2B2

C2

=
(R2+X2)(A2+B2)

C2

=
(A2+B2)

4(R2+X2)

=
V4

Z2
LN

(5.32)

and solving forZLD results in:

ZLD = ZLN (5.33)

Hence, the set of points on thePQV-surface that describe∂P/∂V = ∂Q/∂V = 0
appear as a circle in theRX-plane with center at the origin and radius equal
to the magnitude ofZLN.

5.4.2 Transformation of ∂P/∂Q = ∂V/∂Q = 0 into Injection
Impedance Plane

By writing the expression forQ(∂P/∂Q=0) from (5.18) in terms of apparent
injection impedanceZLD results in:

Q(∂P/∂Q=0) =− XV2

R2+X2 =
V2sinθ

ZLD
(5.34)
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and solving forZLD results in:

ZLD =−ZLN sinθ
sinφ

(5.35)

From (5.35) it can be seen that the line that represents∂P/∂Q = ∂V/∂Q = 0 is
mapped as a circle in the RX-plane. The circle intercepts the origin of the
plane, the complex conjugate of the line impedance and the negative of the
line impedance. That is, the line where∂P/∂Q= ∂V/∂Q= 0 appears as a circle
with center in the impedance plane at(RLD = 0,XLD = −r) wherer is the
radius of the circle and can be expressed as:

r =
ZLN

2sinφ
(5.36)

5.4.3 Transformation of ∂Q/∂P = ∂V/∂P = 0 into Injection
Impedance Plane

By writing the expression forP(∂Q/∂P=0) where∂Q/∂P= ∂V/∂P= 0 from (5.24)
in terms of apparent injection impedanceZLD results in:

P=− RV2

R2+X2 =
V2cosθ

ZLD
(5.37)

and solving forZLD yields:

ZLD =−ZLN cosθ
cosφ

(5.38)

From (5.38) it can be seen that the line that represents∂Q/∂P = ∂V/∂P = 0 is
mapped as a circle in the RX-plane. The circle intercepts the origin of the
plane, the real conjugate of the line impedance and the negative of the line
impedance. That is, the line where∂Q/∂P= ∂V/∂P= 0 appears as a circle with
center in the impedance plane at(RLD = −r,XLD = 0) wherer is the radius
of the circle and can be expressed as:

r =
ZLN

2cosφ
(5.39)
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5.4 Transformation of Critical Lines into Impedance Plane

5.4.4 Graphical Representation of the Critical Lines in the
Injection Impedance Plane
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Figure 5.4: Graphical representation of the critical lines in the injection impedance
plane.

Figure 5.4 shows a plot of the three borderlines of interest.It has been shown
that the line where∂P/∂V = ∂Q/∂V = 0 appears as a circle in the impedance
plane with its center at the origin and a radius equal the sizeof the line
impedanceZLN. This line is plotted as a black circle in the impedance plane
and it can be said to represent the maximum deliverable powerthroughZLN

when the sending end voltage is maintained fixed as well asθ or Q.

The line where∂P/∂Q= ∂V/∂Q= 0 is plotted as a red circle in the figure. This
borderline represents the maximum deliverable power through the line im-
pedanceZLN when both the sending end and the receiving end voltages are
fixed. This borderline could be useful in determining the maximum trans-
ferrable power between two subsystems where the voltage in each subsystem
is maintained constant by local generators.
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Chapter 5. Critical Boundaries and Characteristic Lines

The third line shown in figure 5.4 (green line) represents thesituation where
∂P/∂Q = ∂V/∂Q = 0. This borderline represents the situation where maximum
or minimum reactive power is transferred throughZLN when both the send-
ing end and receiving end voltage is fixed. This line is of limited interest
when studying stability in power system.

5.5 Transformation of Other Characteristic Lines
on thePQV-Surface into the Impedance Plane

The previously derived mappings of the critical lines on thePQV-surface,
where all the partial derivatives are zero, are useful for stability studies. For
the purpose of establishing meaningful visualization of a given operating
condition in injection impedance plane, the mapping of lines of constantP,
Q, V and δ become of interest. In the following section, the mapping of
those lines are derived.

5.5.1 Lines of ConstantP
In order to derive expressions for lines of constantP in the injection imped-
ance plane, the expression (5.6) is used. In order to relate the values ofP
to ZLD,it is necessary to expressV andQ as a function of those variables.
ExpressingV andQ in terms of the injection impedance and the receiving
end power gives:

V2 =
ZLDP
cosθ

(5.40)

Q = Ptanθ (5.41)

An expression for values of constantP described as a function ofZLD can be
obtained by putting (5.6) into powers of two and inserting the expressions for
V2 andQ from (5.40) and (5.41). After some manipulation, an expression of
ZLD as circle in polar coordinates can be obtained:

ZLD = r0 ·cos(θ−ϕ)±
√

r2+ r2
0 ·sin2(θ−ϕ) (5.42)
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where:

r =

√

E4−4E2RP
4P2

r0 =

√

X2+R2+
E4

4P2 −
RE2

P

tanϕ =
−X

−
(

R− E2

2P

)

The expression in (5.42) represents the set of points in the injection imped-
ance plane where the receiving end powerP is constant. Lines of constant
power appear as circles in the injection impedance plane where r0 is the dis-
tance from the origin to the center of the circle,r is the radius of the circle
andϕ is the angle between the positive real axis and the line connecting the
origin and the center of the circle.

5.5.2 Lines of ConstantQ

In order to derive expressions for lines of constantQ in the injection imped-
ance plane, the expression in (5.6) is used again along with the following
expressions forV2 andQ:

V2 =
ZLDQ
sinθ

(5.43)

P =
Q

tanθ
(5.44)

Inserting (5.43) and (5.43) into the square of (5.6) and solving for ZLD results
in the following expression in polar coordinates:

ZLD = r0 ·cos(θ−ϕ)±
√

r2+ r2
0 ·sin2(θ−ϕ) (5.45)
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where:

r =

√

E4−4E2XQ
4Q2

r0 =

√

X2+R2+
E2

4Q2 −
XE
Q

tanϕ =
−
(

X− E2

2Q

)

−R

For a fixed value ofQ, equation 5.45 represents a circle in the injection
impedance plane wherer0 is the distance from the origin to the center of the
circle,r is the radius of the circle andϕ is the angle between the positive real
axis and the line connecting the origin and the center of the circle.

5.5.3 Lines of ConstantV

In order to derive expressions for lines of constantV in the injection imped-
ance plane, the expression (5.3) is used along with the following expressions
for P andQ:

P =
V2

ZLD
cosθ (5.46)

Q =
V2

ZLD
sinθ (5.47)

By inserting (5.46) and (5.46) into (5.3) and solving forZLD results in the
following expression in polar coordinates.

ZLD = r0 ·cos(θ−ϕ)±
√

r2+ r2
0 ·sin2(θ−ϕ) (5.48)
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where:

r =
EV

√
R2+X2

V2−E2

r0 =
V2

√
R2+X2

V2−E2

tanϕ =
−X
−R

Again, it can be seen that that the lines of constant voltage are represented as
circles in the injection impedance plane. As before,r0 is the distance from
the origin to the center of the circle,r is the radius of the circle andϕ is the
angle between the positive real axis and the line connectingthe origin and
the center of the circle.

5.5.4 Lines of Constant Voltage angleδ
In order to derive expressions for lines of constant bus voltage phase angleδ
in the injection impedance plane, the following expressions for P andQ are
used:

P =
V2

ZLD
cosθ (5.49)

P =
EVcos(δ+φ)−V2cos(φ)

ZLN
(5.50)

Q =
V2

ZLD
sinθ (5.51)

Q =
EVsin(δ+φ)−V2sin(φ)

ZLN
(5.52)

By setting (5.49) equal (5.50) and solving forV results in:

V =
EZLD cos(δ+φ)

ZLN cosθ+ZLD cosφ
(5.53)

Similar results are obtained by setting (5.51) equal (5.52)and solving forV:

V =
EZLD sin(δ+φ)

ZLN sinθ+ZLD sinφ
(5.54)
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Setting (5.53) equal (5.54) and solving forZLD yields:

ZLD =− ZLN

sinδ
·sin(δ+φ−θ) (5.55)

This equation represents a circle in the injection impedance plane whenδ is
constant. The circle represented in (5.55) has a diameter equal ZLN/sinδ and
intercepts the origin of the injection impedance plane and the pointZLD =
−ZLN for all values of constantδ.

It can be seen that (5.55) represents the same circles in the impedance plane
for δ = δ0 andδ = −180+ δ0 whereδ0 is arbitrary. Therefore, it must be
investigated which part of the circles represents constantδ = δ0 and which
part represents constantδ = −180+ δ0. For simplicity, it is assumed that
0◦ ≤ δ0 < 180◦. If δ0 = 0◦, it can be seen from (5.55) that the circle repre-
sentingδ = δ0 andδ = −180+ δ0 has a radius going towards infinity; eg.
these conditions are represented by the straight line that intercepts the origin
and the point whereZLD = ZLN. By inspection it can be seen that the part of
the line between the two singular points (eg. the origin and the point where
ZLD =−ZLN represents the condition whereδ =±180◦ while the other parts
of the line represents the points in injection impedance plane whereδ = 0◦.

If the line intercepting the origin andZLD = −ZLN is used to split the im-
pedance plane into two halves, it can be seen by inspection that all of the
circles represented constantδ lie in both halves. The lines of constantδ
whereδ = δ0 are represented by the part of the circle laying in the left half
while the part of the circle laying in the right half represents the condition
whereδ = −180+ δ0. In figure 5.5 it is illustrated how the same circle in
the impedance plane represents two different conditions ofconstant phase
angle, depending on in which half plane the circle parts lie in.

5.5.5 Graphical Representation of the Characteristic Lines
in the Injection Impedance Plane

Figures 5.6.a, 5.6.b, 5.7.a and 5.7.b illustrate how lines of constantP,Q, V
and δ appear in the injection impedance plane. The figures represent the
situation whereZLN = (1∠φ) andφ = 75◦.

Figure 5.6.a shows how the lines of constant receiving end powerP appear in
the complex injection impedance plane. By inspecting the lines of constant
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P, some sort of symmetric appearance can be recognized. Constant positive
values of the receiving end power appear as circles in the right half plane
where the radius of the circle gradually decreases as the power is increased
towards the point of maximum deliverable power. The point ofmaximum
deliverable power appears where the injection impedance isequal the com-
plex conjugate of the line impedance. Values of constant negative power
at the receiving end are represented in the right half pane ofthe injection
impedance plane. The radius of the circles representing constant negative
power (positive bus injection) gradually decreases as the absolute value of
the power increases. The point of minimum deliverable power(maximum
bus injection) occurs at the singular point where the injection impedance is
equal to the negative of the line impedance. At this point thereceiving end
power goes towards−∞. The set of points representing the situation where
P is zero, appears as straight line that satisfiesRLD = 0.

Figure 5.6.b shows how the lines of constantQ appear in the complex injec-
tion impedance plane. The lines for constantQ have a similar appearance as
lines of constantP. The circles for constant positive values ofQ appear in the
upper half plane, where the radius of the circles gradually decreases until the
point of maximum positiveQ is obtained. The point of maximumQ occurs
when the value of the injection impedance is equal to the realconjugate of
the line impedance (XLD = XLN andRLD =−RLN). The circles representing
negative constant values ofQ appear in the lower half plane and the min-
imum occurs at the singular point where the injection impedance is equal
to the negative of the line impedance. At the singular point,the value ofQ
goes towards−∞. The set of points representing the situation whereQ is
zero, appears as straight line that satisfiesXLD = 0.

Figure 5.7.a shows how lines of constantV appear in the injection imped-
ance plane. From the figure it can be seen that circles representing constant
values of the receiving end voltageV have center points on the lines inter-
cepting the origin of the injection impedance plane and the singular point
whereZLD = −ZLN. The set of points whereV = E/2 appears as straight
line that is perpendicular to the line between the origin andZLD =−ZLN and
intercepts this line in the point whereZLD = −ZLN/2. The line representing
V = E divides the injection impedance plane into to half planes, where con-
stant voltages lower thanE appear as circles in the half plane containing the
origin, while voltages higher thanE appear as circles in the half containing

86



5.6 Example - Analytical Load Flow for two Bus System

the singular pointZLD =−ZLN.

The lines of constant voltage phase angleδ appear as circles in the injection
impedance plane where all circles intercept the origin and the singular point
whereZLD =−ZLN. The part of the circles going in clockwise direction from
the origin toZLD = −ZLN represents positive angles ofδ (if δ is defined as
−180◦ < δ ≤ 180◦) while the part of the circle going in counter clockwise
direction from the origin toZLD = −ZLN represents the points whereδ is
negative.

Furthermore, it can be noted that the circle where the partial derivative∂P/∂Q=
0 is the same as the circle representing fixed phase angle where δ =−φ and
δ = 180−φ. This means that the point of maximum deliverable power to the
receiving end in figure 5.1 whenV andE are fixed occurs whenδ =−φ and
the point of minimum deliverable power (maximum injectablepower) to the
receiving end for fixedV andE occurs for the conditions when:

δ = 180−φ (5.56)

Similarly, it can be seen that the circle where the partial derivative ∂Q/∂P= 0
is the same as the circle representing fixed phase angle whereδ =−90◦−φ
andδ = 90◦−φ. This means that the part of the circle whereδ = −90◦−φ
represents the points of maximum deliverable reactive power whenV andE
are fixed, whileδ = 90◦−φ represents the minimum deliverable (maximum
reactive power injection) reactive power for the same conditions.

5.6 Example - Analytical Load Flow for two Bus
System

The expressions for the PQV-characteristics of the system in figure 5.1 in
the injection impedance plane can be used to provide an analytical solution
of the simple two bus system. By using the sending end as a reference bus,
power flow solutions can be obtained analytically by considering where the
circles of constantP andQ intercept in the injection impedance plane.

Equation 5.42 describes the lines of constantP as function ofE,R,X andθ.
With values ofP andQ specified,θ is known and the injection impedance
values corresponding to the load flow solutions can be determined directly
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from (5.42). With the injection impedance known, the receiving end bus
complex voltage can be determined.
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Chapter6
Method for Early Warning Against System
Blackout

The purpose of this chapter is to describe a method that can determine the
aperiodic small signal stability boundaries for the systemgenerators from a
set of PMU-data that provides a full observability of the system grid. The
presented method enables real-time monitoring of stability boundaries and
the corresponding margin to the observed operating point, which is used to
provide an early warning for emerging stability problems.

The chapter begins by providing the background for the presented assess-
ment method, followed by a description of the method and how synchronous
machines should be represented so that effects of differentexcitation con-
trol, effects of saliency and iron saturation are included.Finally, a simple
test of the method is carried out, where the method’s capability of detecting
the occurrence of aperiodic small signal instability is validated.

6.1 Background

As described in chapter 2, the principal causes and involvedmechanism that
provoke blackouts in electric power systems can be of various nature. The
challenge of providing, in real-time, an awareness for a potentially emerging
blackout would require an assessment of many different mechanisms that
can contribute to the evolution of a system blackout. Such real-time situa-
tional awareness could for example require that the system voltage stability
and the risk of voltage collapse is assessed, that the risk ofcascading outages
is evaluated and that a measure of the proximity to system stability bound-
aries can be determined in real-time. The establishment of such real-time
awareness tool would require research efforts within several fields, where
methods for real-time assessment of specific mechanisms contributing to the
occurrence of blackouts are to be developed.

The blackout in E-Denmark and S-Sweden on September 23, 2003has been
the motivation for the following work, which concerns the development of
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Chapter 6. Method for Early Warning Against System Blackout

a method that can provide an awareness, or an early warning, for impeding
stability problems and a subsequent blackout. The method development is
focused on detection and assessment of the instability mechanisms that were
the driving forces in evolution of the blackout.

The principal causes of the blackout in E-Denmark and S-Sweden were two
severe system disturbances, independent of each other, that occurred within
a time frame of five minutes. In an official report concerning the incident
(Svenska Kraftnät 2003a), it is stated that it was a voltage collapse process
(as illustrated in figure 2.5 in chapter 2) that eventually lead to the system
blackout. It is difficult to point out specific indicators from system record-
ings or other data, provided in the two official reports concerning the inci-
dent, which clearly indicate that voltage collapse was the driving mechanism
leading to the blackout.

In order to develop real-time assessment method, which can provide an early
warning for the occurrence of a blackout similar to the one inE-Denmark
and S-Sweden, it is important to identify the driving mechanism for the oc-
currence of the blackout. Figure 6.1 is taken from (Svenska Kraftnät 2003a,
appendix 3) and shows recordings of the bus voltage magnitude and sys-
tem frequency measured at the Odensala substation (close tothe Stockholm
area) for the period spanning before the fault in Horred occurred until after
the system partitioning and the subsequent blackout.

An inspection of the two plots reveals the following:

• As the initial oscillations following the disturbance damped out, a pe-
riod with slowly decreasing voltage magnitude can be identified from
t ≈ 20s to t ≈ 80−85s.

– Such decline in voltage can be explained by considering the long
term dynamics of the system load. The ULTCs of substation
transformers try to restore voltages to pre-fault voltage levels.
With each tap-change operation results in further decreaseof
voltages at the transmission system levels. Another factorpoten-
tially contributing the gradual voltage decline is load dynamics
due to electric heating. The lowered voltage following the dis-
turbance results in that thermostatically controlled loadhas to be
turned on for a longer period of time to reach the level calledby
the thermostats. This leads to a gradual increase in the number of

90



6.1
B

ackground

t/s
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

B400/kV

325

350

375

400

t/s
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0/mHz

-750

-500

-250

0

250

Frekvensstegring

kV

mHz

Fault in Horred System split-up

Measurements From Odensala (Uppland) 23/09/2003

Bus Voltage Magnitude

Frequency Deviation from50Hz
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double busbar fault in Horred and until after the split-up of the system andthe subsequent blackout. The plots are taken from
(Svenska Kraftnät 2003a, appendix 3).
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such devices connected at any given time which results in further
decrease of the system voltages.

– Voltage instability is not a necessary condition for such slow de-
cline in voltage to occur.

• During the last seconds before the system partitioning, thevoltage is
decaying more rapidly.

– That could be an indication of a loss of synchronism between
two subgroup of generators.

– Such rapid fall in voltage magnitude is experienced at interme-
diate points between two subgroups of generators that are ap-
proaching angular separation of 180 degrees.

• The measured system frequency begins to increase rapidly from ap-
proximatelyt = 80swhich indicates that system load is being heavily
reduced. Such load reduction could occur:

– when voltage instability is experienced at system load busses.
The automatic control actions of ULTC-transformers would re-
sult in reduced voltage on the load side and hence reduced con-
sumption at that bus.

– when phase angle separation between two subgroups of gener-
ators is increasing. This causes the voltage to decline overa
large area between the groups of generators. The reduction in
the voltage magnitude is directly reflected into the distribution
grid, resulting in an immediate load reduction.

It is not likely that the rapid increase in frequency (fromt = 80s) could be
explained from voltage instability mechanisms. The actions of the ULTC-
transformers would decrease the system loading in relatively small discrete
steps, repeated at intervals that could be few tens of seconds. The rapid
increase in the frequency indicates that the load is decreasing more rapidly
than can be explained by mechanisms of voltage instability.

On the other hand, a loss of synchronous operation between the group of
generators in E-Denmark and the remaining generators in north of the dis-
turbed area, provides a likely explanation for the observedrapid increase in
frequency. As the phase angle difference between the two groups of genera-
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tors increases, the voltage in the southern part of Sweden decreases, causing
further reduction in consumption in the area. As the angularseparation ap-
proaches 180 degrees, the voltage begins to fall more rapidly resulting in
large decrease in the area consumption and consequently rapid increase in
the observed frequency.

During the period between the fault in Horred and the occurrence of the
blackout, the system entered a state of severe emergency. Itis not possi-
ble to determine, from the data available in official reportsconcerning the
blackout, whether a state of voltage instability had been experienced in the
southern part of Sweden during this period. On the other hand, based on the
above considerations, it can be argued that a state of aperiodic small signal
instability occurred in this period.

When the system was in the state of severe emergency, it would have been
of great value, if real-time time monitoring of the system stability bound-
aries would have been available. If, for example, the boundaries for gen-
erators aperiodic small signal stability would have been monitored, criti-
cal machines could have been identified in time before the boundaries were
crossed. By this, valuable information could have been obtained concerning
the instantaneous operating conditions that might be used for determining
appropriate emergency control actions that could have avoided the emerging
blackout.

Based on the above, it was decided to focus the research on methods for
real-time assessment of aperiodic small signal stability.In the remains of
this chapter, one such method is presented.

6.2 Assessment Method for Aperiodic Small Sig-
nal Stability

In the following, a method for determining boundaries of aperiodic small
signal stability is presented. The method is based on the availability of real-
time measurement set of the system operating conditions, which provides
full observability of the system grid. The full network observability is used
to establish a deterministic representation of the system conditions. The
system conditions are represented as a network of impedances which have
the following characteristics:
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• All power injections into the system enter the network in a node of
constant steady state voltage magnitude.

– Might result in the introduction of additional network nodes and
branches depending on the type of machine excitation control
and state of machine protection equipment.

• The system loads are represented as impedances in the network.

– Longer term load dynamics due to the voltage dependency of the
load are not represented.

– The method evaluates the instantaneous operating conditions, there-
fore the instantaneous impedance as seen from the generators is
used.

– When the stability boundary is crossed, the resulting instability
is in short time frame. Therefore a short term representation of
the load is used.

The benefit of representing the power injections at nodes of constant steady
state voltage magnitude is that the point of maximum injectable power, into
a given node, can be expressed in terms of the voltage phase angle. If power
injections would not have been represented to enter the system at nodes of
constant steady state voltage magnitude, the point of maximum injectable
power would have been a function of both the voltage magnitude and the
phase angle at the node of injection. The chosen representation of system
conditions results in a reduction of the degrees of freedom associated with
the determination of the boundaries for aperiodic small signal stability.

In the following, the system in figure 6.2 will be considered when deriving
boundaries for aperiodic small signal stability. The figureshows a system
where all loads are represented as constant impedances and where all gener-
ators are assumed to maintain a constant terminal voltage. With all system
impedances known, the system operating conditions can be determined from
the generators terminal voltages (V1,V2,V3 andV4).

The boundaries for aperiodic small signal stability are reached when the
point of maximum power that a given generator can inject intoa system node
in steady state is reached. In the following, the point for maximum injectable
power will be determined for a given steady state condition described by the
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V1

V2
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Figure 6.2: System used when deriving equations for maximum injectable power.
The system loads are represented as impedances and the generators are assumed to
maintain constant terminal voltage in the following derivations.

impedance network and the four complex voltage phasors (V1,V2,V3 and
V4). Since the voltage magnitude at the nodes of injection is constant, only
changes in voltage phase angles at injection busses can result in changes in
power injection. The boundary of maximum injectable power for G1 will be
determined by fixingV2,V3 andV4 and determine at which phase angleδ1

(V1 = (V1∠δ1)) the point of maximum injectable power occurs.

The changes in current injection into node 1 can be determined by applying
the superposition principle. The voltage at the point of constant voltage
magnitude forG1 will be changed fromV1∠δ1 to V1∠δ1+∆δ. By applying
the superpositions principle, the current fromG1 (IG1) can be expressed as
the sum of the current flowing fromG1 when all other nodes of constant
voltage magnitude are shorted (Isup,G1) plus the current contributions due to
all other nodes of constant voltages when node 1 is shorted.

IG1 = Isup,G1+
N

∑
i=2

Isup,Gi (6.1)

HereN = 4 is the number of generators. For a small change in the angleδ1,
the sum in 6.1 will remain unchanged since it is independent of voltageV1.
The current due toV1 when all other sources are shorted (Isup,G1) does, on
the other hand, have the same magnitude but its angle will change by∆δ.
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The apparent powerSG1 injected into node 1 can be expressed as:

SG1 =V1 I
∗
G1

=V1I
∗
sup,G1+V1

N

∑
i=2

I
∗
sup,Gi (6.2)

For small changes inδ1, the apparent power due the termV1 I
∗
sup,G1 will be

constant since the magnitudes ofIsup,G1 andV1 and their relative angle re-
mains the same. Therefore the additional increase in injected power comes
from the current component represented by the sum in (6.2). It is appar-
ent that the point of maximum injectable power into node 1, occurs when
the voltageV1 (of constant magnitude) is aligned with the current phasor,
represented by the sum in (6.2).

By considering figure 6.2 it should be noted that the impedancethatG1 looks
into, when all other points of constant voltage are shorted is the same as the
Thevenin impedance between node 1 and one of the other nodes of constant
voltages. Utilizing this, the currentIG1 can be expressed as:

IG1 =
V1

Zth
−

N

∑
i=2

Vth,Gi

Zth
=

V1

Zth
−Vth

Zth
(6.3)

WhereVth=∑N
i=2Vth,Gi andVth,Gi is the Thevenin voltage behind the Thevenin

impedance that can be used to determine the current component due to the
voltage source at busi. As mentioned above, the maximum injectable power
occurs when the current contribution represented by the sumin (6.1) is
aligned withV1. Therefore, the maximum injectable power occurs when:

argV1 = arg−Vth

Zth
(6.4)

If Vth is used as phase angle reference, the above conditions for the point of
maximum injectable power can be expressed as:

δ1 = 180◦−φth (6.5)

Whereφth is the angle of the system Thevenin impedanceZth. The result in
(6.5) is identical to the previous observation presented by(5.56) in chapter
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6.2 Assessment Method for Aperiodic Small Signal Stability

5. There it was shown that the point of maximum injectable power into a
two bus system occurs when the phase angel difference between the two bus
voltages is equal 180◦−φ. The obtained expression in (6.5) means that the
stability boundaries, represented by (5.35), derived for the simple two bus
system in chapter 5, can be applied to an arbitrary system. This results in
that the boundaries for aperiodic small signal stability ofa given machine
can be determined if the system Thevenin impedance, seen from the node of
injection, and the corresponding injection impedance are known.

ℑm(Zin j)

ℜe(Zin j)

ZTH

Z
∗
TH

−Z
∗
TH

−ZTH

Boundary of maximum
injectable power

Figure 6.3: The boundary of aperiodic small signal stability (red circle) in the injec-
tion impedance plane. The boundary is described in terms of the system Thevenin
impedance by equation 6.6.

Figure 6.3 shows how the stability boundary for aperiodic small signal sta-
bility appears in the injection impedance plane. The boundary is derived
from (5.35), which is rewritten below:

Zin j =−Zthsinθ
sinφth

(6.6)
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The boundary appears as an circle with radiusr = Zth/(2sinφth). An operation
outside the circle indicates a stable operation where a relative increase in
the phase angle at the bus of injection results in an increased injection. An
operation inside the circle represents unstable conditions characterized by
a decrease in the injected power as the phase angle increasesat the bus of
injection. By utilizing (6.6), the aperiodic small signal stability of a given
generator can therefore be described by the following set ofinequalities:

∣

∣

∣

∣

Zin j · (2sinφth)+ j ·Zth

Zth

∣

∣

∣

∣











> 1 Stable operation

= 1 On the stability boundary

< 1 Unstable operation

(6.7)

Based on the above analysis, a method for assessing the aperiodic small
signal stability of the system generators can be outlined consisting of the
steps shown as algorithm 6.1.

Algorithm 6.1: An outline of aperiodic small signal stability assessment.
Input: Continuous sequence of system PMU-snapshots

foreach System Snapshotdo
foreach Generator j= 1 : K do

Determine the injection impedanceZin j, j ;
Determine the Thevenin impedanceZth, j seen from the injection node;
Apply (6.7) to assess the generator aperiodic small signal stability;

end
end

The most computational demanding step in the suggested approach, is the
determination of the Thevenin impedanceZth, j for each of the generators
from a given snapshot of the system conditions. This problemis treated
in chapter 9, where efficient algorithms are presented that can effectively
determine the Thevenin impedances for each of theK system generators.

From the knowledge of a generator’s injection impedanceZin j, j and the cor-
responding Thevenin impedanceZth, j , an information concerning the ma-
chine’s stability boundary and the location of the machine’s operating point
relative to the boundary can be derived. This means that an impedance mar-
gin from a given operating point to its corresponding stability boundary can
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6.3 Representation of the Synchronous Machine

be determined for a given observed system conditions. In thefollowing, the
notation

{

Zin j, j ,Zth, j
}

is used to denote an operating point for generatorG j .

In chapter 7 it is addressed how the impedance margin from an observed
operating point to its corresponding stability boundary can be expressed in
other useful system quantities. The information concerning the generators
margin to their stability boundary is a highly useful early warning indicator
for emerging stability problems.

Before it is studied how impedance margins can be interpretedin terms of
useful system quantities, it is appropriate to test whetherthe derived bound-
aries for aperiodic small signal stability in (6.6), can be used to detect when
a given generator experiences aperiodic small signal instability. Therefore,
the remaining of the chapter is focused on how the synchronous machine
can be appropriately represented so their power injectionsoccur into a node
of constant steady state voltage magnitude. Furthermore, asimple test of
the assessment method is carried out for the purpose of verifying the con-
cept of detecting the occurrence of aperiodic instability,merely by using
the observed values of the system Thevenin impedance and thegenerator’s
injection impedance.

6.3 Representation of the Synchronous Machine

The following sections concern how the synchronous machinecan be appro-
priately represented in the previously suggested stability assessment method.
The method aims at determining the maximum amount of power that, in
steady state, can be injected into a node of constant voltage. Therefore, it
is of importance that a real or fictitious node of constant voltage magnitude
is used to represent the point where a given machine injects the power into
the system. The representation of the appropriate point of constant voltage
magnitude for power injection is dependent on the control and protection of
the machine as well as physical characteristics of the machine, such as rotor
saliency and magnetic saturation in the machine rotor and stator iron.

6.3.1 Mathematical Model and Steady State Operation
Extensive literature exist that concerns the modeling of synchronous ma-
chines, which offer various approaches for deriving a set ofdifferential equa-
tions that describe the performance of the synchronous machine. In (Kundur
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1994) such equations are derived for the machine stator and rotor circuits
shown in figure 6.4.

a,b,c: Stator phase windings k: 1, . . . ,n; n= number of amortisseur circuits
f d: Field Winding ωr : Rotor angular velocity
kd: d-axis amortisseur circuit θ: Angle by which d-axis leads
kq: q-axis amortisseur circuit the magnetic axis of phase a

Figure 6.4: Stator and rotor circuits of a synchronous machine for which a mathe-
matical model is derived in (Kundur 1994).

The figure shows the three-phase stator windings carrying the stator currents
ia, ib and ic and the rotor circuits which comprise a field winding and d-
and q-axes amortisseur windings. After establishing basicequations of a
synchronous machine, applying dq0-transformation and normalizing them
using theLad-base reciprocal per unit system, the per unit machine equations
in dq-reference frame are expressed as:

ed = pΨd−Ψqωr −Raid (6.8)

eq = pΨq+Ψdωr −Raiq (6.9)

e0 = pΨ0−Rai0 (6.10)

ef d = pΨ f d +Rf di f d (6.11)

0 = pΨ1d +R1di1d (6.12)

0 = pΨkq+R1qi1q (6.13)

where:

p=
1

ωbase

d
dt

In the above equations, the windings’ flux-linkages are usedas state vari-
ables, and only one amortisseur winding is included on each each axis. The
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6.3 Representation of the Synchronous Machine

d- and q-axes flux-linkages can be related to the d-and q-axescurrents re-
spectively, in the following way:





Ψd

Ψ f d

Ψ1d



=





−(Ll +Lad) Lad Lad

−Lad L f f d L f 1d

−Lad L f 1d L11d









id
i f d

i1d



 (6.14)

[

Ψq

Ψ1q

]

=

[

−(Ll +Laq) Laq

−Laq L11q

][

iq
i1q

]

(6.15)

and the per unit air-gap torque can be expressed as:

Te = Ψdiq−Ψqid (6.16)

All of the above machine equations are expressed in per unit quantities. The
stator and rotor voltage equations (6.8)-(6.13) together with the flux-linkage
equations (6.14)-(6.15), and the torque equation (6.16) describe the electrical
dynamic performance of the machine.

For balanced steady-state conditions, the performance of synchronous ma-
chines can be analyzed by utilizing (6.8)-(6.13) where all time derivatives
are put equal to zero. During steady state conditions, the rotating magnetic
field due to stator currents is stationary with respect to rotor and therefore all
amortisseur currents are zero. Utilizing (6.8)-(6.13) and(6.14)-(6.15), the
machine equations under balanced steady state conditions can be written as:

ed = −Ψqωr −Raid (6.17)

eq = Ψdωr −Raiq (6.18)

ef d = Rf di f d (6.19)

Ψd = −Ldid +Ladi f d (6.20)

Ψq = −Lqiq (6.21)

Ψ f d = L f f di f d −Ladid (6.22)

In the above equations the per unit reactances can be used instead of the
per-unit inductances, since their values are equal in per unit. Rearranging
(6.18) and substitutingΨd by utilizing (6.20), the following expression for
the steady state field current is obtained:

i f d =
eq+Raiq+Xdid

Xad
(6.23)
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In the above equations, the dq0-transformation was carriedout using the
scaling factorskd = kq = 2/3. This selection ensures that for a balanced
steady state operation, the peak value of the stator currentis equal the maxi-
mum value of which the corresponding d- and q-axis current can have. This
results in that a complex phasor representation of the stator currents and
voltages appears as phasors of same magnitude when transformed into dq-
reference frame. This makes it possible to apply a phasor representation of
the steady state values of dq-components of the armature quantities in con-
ventional AC-circuit analysis of the system network. The stator terminal
voltages can be expressed as complex phasor:

Et = ed + jeq (6.24)

By utilizing (6.17), (6.18), (6.20) and (6.21),ed andeq can be written as:

ed = −Ψqωr −Raid = Xqiq−Raid (6.25)

eq = ωrΨd −RaiQ =−Xdid +Xadi f d −Raiq (6.26)

and similarly, the terminal current can be expressed as phasor in terms of d-
and q-axes components:

I t = id + jiq (6.27)

by lettingδ be the angle by which the q-axis leadsEt andφ be the load angle,
id andiq can be expressed as:

id = It sin(δ+φ) (6.28)

iq = It cos(δ+φ) (6.29)

A mean of relating the terminal voltage and current phasors to the q-axis is
to define a voltageEq as:

Eq = Et +(Ra+ jXq)I t = ed+ jeq+(Ra+ jXq)(id + jiq) (6.30)
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substituting (6.25 and (6.25) into (6.30) yields:

Eq = j(Xadi f d − (Xd−Xq)id) (6.31)

It can be seen from the above expression thatEq is purely imaginary, and
lies therefore along the q-axis. If saliency is neglected (Xd = Xq), then (6.31)
represents a constant steady state voltage behind the synchronous reactance
Xs (Xs = Xd = Xq) if the applied field voltage is constant. Figure 6.5 shows
a steady state phasor diagram of the machine when machine saliency is ne-
glected.

d-axis

q-axis

I t

Et

Eq

jXsI t

δ

φ

Figure 6.5: Phasor diagram of the synchronous machine when saliency is neglected.
If the machine is manually excited (constant field voltage), the steady state values
of the internal voltageEq behind the synchronous reactanceXs will be constant.

Points of Constant Voltage Magnitude in Steady State

In the previous section it was shown that a synchronous machine can be rep-
resented as a constant voltage behind the synchronous reactanceXs when
saliency is neglected and a constant field voltageEf d is applied to the field
winding. If the machine is equipped with a automatic voltageregulator
(AVR) which maintains a constant voltage at the terminal of the machine
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jXs
Zext

Power System

Eq Et Vext

Point of constant voltage
when the machine is manu-
ally excited or when an
OXL is activated

Point of constant voltage
when AVR is maintaining
constant terminal voltage

Point of constant voltage
when AVR is maintaining
constant voltage at an ex-
ternal point locatedZext
away from the terminal

Machine
terminalInternal

node
External

node

Figure 6.6: The point of constant steady state voltage magnitude for a synchronous
machine dependent on the excitation control and protection used. The points of con-
stant voltage determine wherefrom system impedances and injection impedances
are calculated.

or at a point external from the generator, the machine can be represented as a
source of constant voltage magnitude at its node of voltage control. When an
overexcitation limiter is activated, the generator field current becomes lim-
ited to a constant value. The activation of an OXL results in the point of
constant steady state voltage being behind the synchronousreactanceXs.

Figure 6.6 shows how the synchronous machine can be represented depend-
ing on its excitation control and the status of its overcurrent protection.

In the previously presented stability assessment method, the synchronous
generators have to be represented as voltage sources of constant steady state
voltage magnitude. This means that if the generator is manually excited, the
node behind the synchronous reactanceXs must be added to the network.
On the other hand, if an AVR maintains a constant voltage at a distance
Zext away from the machine terminals, bothZext and the terminal node are
excluded from the network equations.

Treatment of Saliency in Synchronous Machines

Figure 6.7 shows a phasor diagram for a salient pole machine,derived from
equation 6.31. When the machine is manually excited, the saliency results
in that the fixed voltage component due tojXadi f d (represented by pointc)
can no longer be described as an internal voltage behind a fixed reactance.

104



6.3 Representation of the Synchronous Machine

Furthermore, the voltages behindXd (pointa) andXq (pointb) will not main-
tain a constant steady state magnitude for changes inδ when the machine is
manually excited.

d-axis

q-axis

I t

Et

Eq

jXqI t

Xadi f d

id

iq
δ

φ

j(Xd −Xq)I t

j(Xd −Xq)id

c

a

b

Figure 6.7: Phasor diagram over the steady state operation of a salient pole syn-
chronous machine. The pointsa and b represent the voltage behindXd and Xq

respectively. Neither of these two points represents a constant steady state voltage
magnitude for different operating conditions, when the machine is manually excited.
The pointc represents voltage that will be fixed for different operating conditions,
but its effective impedance to the machine terminal will vary for different operating
conditions.

In order to investigate the effect that rotor saliency has onthe assessment
method, a simple test is carried out on the system shown in figure 6.8. The
system consists of a manually excited salient pole generator connected to an
infinite bus through the external impedanceZext.

The changes in the steady state magnitudes of the voltages behind Xd and
Xq (pointsa andb in figure 6.7) will be investigated for six different system
configurations. It will be studied how the excitation voltage Xadi f d ( point
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Salient Pole Machine

Manually Excited

c Vt
Ein f

Xadi f d

Zext

Zext∠φ

Figure 6.8: The system used for illustrating the effect that rotor saliency has on the
assessment method. The effect is investigated for variations in the external imped-
ance (both inZext andφ), and variations in the ratio between two termsXadi f d (point
c in figure 6.7) andEin f .

c in the phasor diagram) and the value of the external impedance influence
the effect that the rotor saliency has on the assessment method. Table 6.1
provides an overview of the six different system configurations used in the
test.

Case: Xd Xq Zext φ Xadi f d Ein f

(a) 1.0 0.5 1.0 90◦ 1.8 1.0
(b) 1.0 0.5 0 90◦ 1.8 1.0
(c) 1.0 0.5 3.0 90◦ 1.8 1.0
(d) 1.0 0.5 1.0 90◦ 1.0 1.0
(e) 1.0 0.5 1.0 90◦ 2.8 1.0
(f) 1.0 0.5 1.0 60◦ 1.8 1.0

Table 6.1: The six different system configuration, corresponding to the system in
figure 6.8, for which the effect of rotor saliency on the assessment method is inves-
tigated. All impedance and voltage values are in per unit.

The six considered cases have the following characteristics:

(a) a base case for the investigation

(b) a case with zero external impedance to the infinite bus

(c) a case with larger external impedance than in (a)

(d) a case with lower excitation voltage than in (a)

(e) a case with higher excitation voltage than in (a)
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(f) a case were significant resistance is introduced in the external imped-
ance

Figure 6.9 shows the results for the different scenarios described in table 6.1
The voltage magnitude behindXd is plotted in blue and the voltage mag-
nitude behindXq is plotted in red. In all plots, the corresponding voltage
magnitude whenδ = 0◦ is used to normalize the plots. The plots reveal that
the voltage magnitude behindXd is closer to a constant voltage asδ changes
than the voltage behindXq. By comparing plots (a)-(c) it can be seen that
the larger the external impedance, the smaller is the effectof the saliency.
Case (b) represents a situation where no external impedance is present and is
provided here to illustrate a worst case scenario. This caseis not of concern,
since in practical power system there will always exist an external Thevenin
system impedance, seen from the terminal of the machine.

Plots (d) and (e) illustrate that an increased excitation ofthe salient pole ma-
chines causes reduction in the effect that saliency has on the approximation
of constant voltage behindXd. The last case (f), indicates that if the resistive
part of the Thevenin system impedance is significant (here shown for an im-
pedance angleφ = 60◦), the deviation from the constant voltage assumption
increases.

In all plots (a)-(f) an information is provided regarding which effect the as-
sumption of constant voltage behindXd has on the suggested assessment
method. In each case, the difference between when the assessment method
would detect the occurrence instability and when the actualboundaries are
crossed is given in degrees. Bearing in mind that (b) does not represent a
practical situation, the error is quite small (below 1.5◦ for all except (b)).
This can be considered to be quite insignificant especially since the change
in injected power per a change in degree is very small when operating close
to the limits of maximum injectable power.

The detection error introduced, by using the voltage behindXd to represent
the point of constant voltage magnitude for a manually excited salient pole
machine, will result in instability being detected before the actual stability
boundary is crossed. This introduces a slight conservatismfor the stability
assessment when the method is used.

The machine saliency introduces uncertainties when the machine’s aperiodic
small signal stability is to be assessed by the suggested method. It can though
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Error: 0.31◦

(a) Base Case
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(b) ZeroZext
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(c) LargeZext

Error: 1.43◦

(d) Lowered Excitation

Error: 0.09◦

(e) Increased Excitaiton

Error: 1.29◦

(f) Increased Resistance inZext
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Figure 6.9: Plot of the voltage magnitude behindXd (blue line) andXq (red line)
as function ofδ for the different situations described in table 6.1. The voltages are
normalized in such a way that the voltage magnitude atδ = 0◦ is 1pu. The error in
degrees by which the assessment method would detect instability before it actually
occurred is shown in each plot when the voltage behindXd is used to denote the
point of constant voltage.
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be argued, that the effect of the saliency will have a limitedeffect on the
accuracy of assessment method for the following reasons:

• For the situations, when the machine terminal voltage is controlled
by an AVR, the terminal of the machine is represented as the point
of injection and therefore the internal impedance is not used for the
stability assessment.

• When a salient pole machine is manually excited, or when an OXLis
active, the machine’s internal reactance has to be considered. Since
the machine is connected to a system, which can be represented by a
Thevenin voltage behind the system Thevenin impedance, theeffect
of the saliency is reduced.

Based on the above investigations it is chosen to represent salient pole ma-
chines, when manually excited or when an OXL is active, as a voltage
source behind the direct axis reactanceXd. In worst case, this introduces
a slight conservatism for the detection of stability boundary crossover which
is though preferred rather than a late detection of the boundary crossover.

Treatment of Machine Saturation

The values of machine inductances are dependent on the saturation level of
the iron in the machine. It is therefore important that the machine iron satu-
ration is considered in order to obtain the actual value of the machine reac-
tance for a given operating conditions. In stability studies, the representation
of saturation is usually based on the following assumptions(Kundur 1994):

• The leakage inductances are usually independent of saturation. The
leakage fluxes are in air for large portion of their paths so that they
are not significantly affected by saturation of the iron portion. This
means that the only machine inductances that saturate are the mutual
inductancesLad andLaq.

• The leakage fluxes do not contribute to the iron saturation. This is
based on that the leakage fluxes are usually small and share a path with
that of the main flux for only small portion and hence the saturation is
determined by the air-gap flux linkage.

• The saturation relationship between the resulting air-gapflux and the
mmf under loaded conditions can be considered to be the same as un-
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der no-load conditions. This allows the use of the open circuit satura-
tion curve to represent the saturation characteristics.

• There is no magnetic coupling between d- and q- axes.

Based on the above assumptions, the effects of saturation canbe expressed
by letting the superscripts denote saturated values:

Ls
d = Ll +Ls

ad (6.32)

Ls
q = Ll +Ls

aq (6.33)

where:

Ls
ad = KsdLadu (6.34)

Ls
aq = KsqLaqu (6.35)

The saturation factorsKsd andKsq describe the degree of saturation on the
d- and q-axes respectively. For salient-pole machines the saturation in the
q-axes is usually negligible, and thereforeKsq is considered to be at unity.
For a round-rotor machine,Ksd andKsq are different in principle, but closer
to each other. In most practical cases, a q-axis saturation is not available and
Ksd is taken to be equalKsq (Kundur 1994).

The saturation factorKsd can be determined from the open circuit character-
istics (OCC) that relates the open circuit terminal voltage tothe field current.
Figure 6.10 shows a typical OCC that is used to represent the saturation char-
acteristics of a loaded generator. The air-gap line represents the field current
required to overcome the reluctance of the air-gap. The OCC deviates from
the air-gap line as the field current increases, which indicates a saturation in
the rotor and stator iron.

In order to represent the deviation of OCC from the air-gap line, the satura-
tion S, at a given air-gap flux linkageΨat, is defined as:

S(Ψat) =
I − I0

I0
(6.36)
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Figure 6.10: Typical open circuit characteristic (OCC) of a synchronous generator.
The straight line is the air gap line, which indicates the field current needed to
overcome the reluctance of the air gap. The deviation of the OCC from the airgap
line gives an indication of the level of rotor and stator iron saturation.
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where I0 and I are the field currents required to generateΨat for the un-
saturated and saturated characteristics in the OCC. In several power system
simulation tools, the machine saturation is specified by providing two dif-
ferent values of the machine saturation,S1.0 andS1.2, which represent the
saturation whenΨat is equal to 1.0pu and 1.2pu respectively.S1.0 can be
determined from figure 6.10 as:

S1.0 =
I1.0− I0,1.0

I0,1.0
(6.37)

There exist many different approaches for representing saturation effects. In
PSS/E, the standard synchronous machine models GENROE and GENSAE
assume the saturation curve to be exponential, where the saturationS is de-
termined by:

S= S1.0Ψ

(

ln(S1.2)−ln(S1.0)
ln(1.2)

)

at (6.38)

The saturation factorKsd, for a given operating point is defined as:

Ksd=
I0
I
=

1
S+1

(6.39)

If the machine terminal voltage and current phasors are measured by a PMU,
the saturation factorKsd can be determined. The air gap voltage can be
determined as:

Ea =Vt + I t(Ra+ jXl ) (6.40)

Utilizing that Ψat in per unit is equal to the per unit air-gap voltage (Ψat =
Ea), the corresponding level of saturationS can be determined by (6.38)
and subsequentlyKsd can be found by utilizing (6.39). For the previously
presented assessment method, the saturated value of the machine inductance
should be used to represent the point of constant voltage when the machine
is manually excited. This requires that the saturation coefficient Ksd has to
be determined for every system snapshot obtained.
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6.4 Simple Example - Test of Methodology

In the following, it is tested whether the suggested assessment method is
capable of detecting when the boundaries of aperiodic smallstability are
crossed. For that purpose, a time domain simulation of an aperiodic small
signal instability scenario is carried out and the simulation output used to
generate a sequence of synthetic PMU-snapshots of system conditions. The
synthetic PMU-snapshots are at last used to test the suggested assessment
method. A description of the case study, simulation resultsand the test re-
sults is provided in the following.

6.4.1 Case Description

V1

1

V2

2

V3

3

G1 G2j5Ω j12.5Ω

SLD = PLD + jQLDModel parameters forG1

MVA: 50 Xd: 2.54
T ′

do: 3.00 Xq: 2.54
T ′′

do: 0.025 X′
d: 0.360

T ′
qo: 2.00 X′

q: 0.468
T ′′

qo: 0.025 X′′
d : 0.183

H 5.97 X′′
q : 0.183

D 0.0 Xl : 0.10

Initial conditions

V1: (20.00∠-7.76◦) kV
V2: (18.53∠-27.36◦) kV
V3: (20.00∠ 0◦) kV
PG1: 24.87 MW
PG2: 13.63 MW
PLD: 38.50 MW
QLD: 0.0 MVAr

Figure 6.11: The three-bus system, used to test the suggested assessment method.
The system voltage is 20kV line-to-line and the generatorG3 represents an infi-
nite bus (H → ∞). GeneratorG1 is manually excited and is operated with constant
mechanical power input.

Figure 6.11 shows the system used to test the suggested assessment method.
The system consists of three 20kV busses, two generator busses and one load
bus. GeneratorG2 at bus 3, represents an infinite bus where the voltage at
bus 3 is constant during the analysis. GeneratorG1 is a 50MVA round rotor
machine that is manually excited and operated with a constant mechanical
power input. The dynamic model parameters forG1 are provided in figure
6.11.

The initial conditions for the simulation are provided in the figure, where
the load is purely resistive of 38.5MW for which the generators share the
burden. The generators terminal voltage magnitude is 20kV line-to-line. In
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the following, a loss of synchronous operation ofG1 is provoked by applying
to two minor disturbances in the form of increase in load demand on bus 2.

6.4.2 Analysis of the Initial Condition
For the purpose of investigating the initial operating conditions, the system
in 6.11 will be represented in such a way that the generatorG1 is represented
as a source of constant voltage magnitude behindXd, the voltage at the in-
finite bus is assumed constant and the load at bus 2 is represented by its
impedance value. Figure 6.12 illustrates the extended system representation
for the initial conditions provided in figure 6.11.

E1

0

V1

1

V2

2

V3

3

G1 G2j5Ω j12.5Ω

ZLD

j20.32Ω

jXd

Additional Initial conditions

E1 = (39.48∠32.04◦) kV
ZLD = 8.9210Ω

Figure 6.12: Representation of the system used for testing the stability assessment
method. The manually excited generatorG1 is represented as voltage source of
constant magnitudeE1 behind the direct axis reactanceXd and the load at bus 2 is
represented as the impedanceZLD. The point of constant voltage forG2 is at its
terminal since it represents an infinite bus.

Since the steady state voltage magnitudes at the points of injections are con-
stant, all potential operating conditions (for the chosen manual excitation
of the machine) can be determined from the knowledge of the value of the
phase angle difference betweens the two nodes of constant voltage (∆δ ) and
the value of load impedance (ZLD = RLD + jXLD). In other words, the con-
strained system represented in figure 6.12 only has three degrees of freedom
(∆δ,RLD andXLD). If the load impedance is constrained in such way that
the load angle is fixed, the system operating point can be described by the
knowledge of∆δ and the load impedance magnitudeZLD.
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Figure 6.13: Contours of constant injected power in theδ-ZLD plane forG1 in figure
6.12. The dashed line represents the boundary of maximum injectable powerfor a
fixed ZLD, the dotted line represents maximum injectable power for a fixedδ and
the straight line represents the conditions when the load impedanceZLD is equal to
the Thevenin impedance magnitude seen from bus 2. The contours show per unit
values where the maximum injectable power is used as a base value.

In the following analysis the load angle is constant (φ = 0◦), and the power
injection from G1 into the node of constant voltage (node 0) is inspected
in respect to variations of∆δ andZLD. Figure 6.13 shows how the power
injection fromG1 varies as a function of these two variables. For simplicity,
the phase angle of the infinite bus is chosen as angle reference resulting in
that∆δ = δ whereδ is the angle ofE1

The figure shows contours of constant injected power in theZLD - δ plane.
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The contours have been normalized in such a way, that the value of maxi-
mum injectable power is used as per unit base. The initial conditions, from
figure 6.11, are represented at the pointa, which is on the contour where
P = 0.925pu (equivalent toPG1 = 24.87MW). The figure contains three
characteristic lines; a dotted line representing the conditions where the max-
imum injectable power for a fixed value of delta occur (where∂PG1/∂ZLD = 0),
a dashed line where the maximum amount of injectable power for a fixed
value ofZLD occurs (where∂PG1/∂δ= 0) and a straight line representing where
the load impedanceZLD is equal to the magnitude of system Thevenin im-
pedance, seen from the load at bus 2 (Zth,2).

In this study, it is the dashed line (where∂PG1/∂δ = 0) that is of interest. The
dashed line represents the aperiodic small signal stability boundary for ma-
chineG1. For any fixed value of the load impedanceZLD, it can be seen
that an increase inδ causes a reduced power injection into the system if the
operating point is to the right of the dashed line in figure 6.13. For such
conditions, a small increase ofδ would lead to acceleration of the machine
causing further increase in the angleδ. Since the machine acceleration in-
creases with increasingδ, an operation on the right side of the dashed line is
unstable and would gradually lead to a loss of synchronous operation ofG1

with the infinite bus.

In the example, the machineG1 is operated with a constant mechanical
power input. This means that the contour whereP= 0.925pu in figure 6.13
represents the trace of possible steady state operating points as a function of
ZLD. That is, if the initial conditions are considered (pointa in figure 6.13), a
small decrease in the load impedanceZLD (corresponding to increased load
demand) would result in a new steady state operating point, located on the
contourP= 0.925pucloser to the critical stability boundary.

In the following section, it will be shown how a loss of aperiodic small sig-
nal stability ofG1 is provoked by applying two small step decreases in the
load impedanceZLD. The effect of the two disturbances is illustrated in fig-
ure 6.14 which shows an enlarged view of the contour plot in figure 6.13.
In the figure, pointa represents the initial operating conditions. The first
disturbance to be applied is a decrease inZLD from 8.9210Ω to 8.3039Ω
which results in thatG1 will approach a new equilibrium represented by the
point b. The post-disturbance equilibrium at pointb is stable, but very close
to the stability boundary. The second disturbance applied,is the very small
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decrease inZLD from 8.3039Ω to 8.2936Ω which results in the loss of aperi-
odic small signal stability of machineG1. The effect of the disturbance can
be seen by considering the box containing an enlarged view ofthe region
close to pointb.

It can be seen that the contour of constantPG1 and the line representing
new value ofZLD do not intersect following the second disturbance, which
results in that no equilibrium can be obtained and consequently the machine
eventually looses synchronism.
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0.925

30 32 34 36 38 40 42 44 46 48 50
8

8.2
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8.8
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L

D
[Ω

]
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a

b

Crossover∂PG1
∂δ = 0

b

Figure 6.14: Enlarged view of figure 6.13. Pointa represents the initial steady state
operating conditions and pointb shows the new equilibrium point following first
disturbance. Pointb is very close to the critical stability boundary and when the
second disturbance is applied, no intersection can be found for the contour of con-
stantPG1 and the line representing the new value forZLD following the disturbance
(shown in further enlarged view inside the box). Therefore the seconddisturbance
results in thatG1 looses synchronism.

6.4.3 Simulation Results
This section contains the results from a time domain simulation, carried out
in PSS/E (version 30), of the system in figure 6.11 where previously men-
tioned disturbances were applied to provoke an aperiodic small signal in-
stability. Figure 6.15 contains plot of the simulation results. Plot (i) shows
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Figure 6.15: Simulation results. plot (i) shows the two applied disturbances and in
(ii)-(v) are plots of the internal rotor angle and active power output from machine
G1 and the bus voltage magnitudes. Disturbance a, brings machineG1 very close
to its stability boundaries, whereafter the tiny disturbance b, causes eventual loss of
rotor angle stability.
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the applied changes in the load impedance that eventually caused the system
instability. The first disturbance was applied att = 1s where the load im-
pedance was changed from 8.9210Ω to 8.3039Ω. The second disturbance
was applied at the timet = 110s where the impedance was changed from
8.3039Ω to 8.2936Ω. It can be seen from the other plots that approximately
200spassed from the second disturbance until a sudden decrease in the sys-
tem voltages occurred.

Plot (ii) shows the internal rotor angle ofG1, where the infinite bus is used
as an angle reference. When the second disturbance is applied(t = 110s),
a very slow increase in the rotor angle was experienced over aperiod of ap-
proximately 200s until a sharp increase in the rotor angle occurred. This
result is in good accordance with the above provided description of the in-
stability process.

Plots (iii) and (iv) show the power output fromG1 (PG1). Plot (iv) provides
an enlarged view of plot (iii). The second disturbance can barely be seen in
(iii), but yet, it is sufficient to causeG1 to lose its synchronous operation.
In plot (iv), the size of the second disturbance can more clearly be seen.
It is worth noticing, that the power output fromG1 was constant following
the second disturbance until the sudden sharp decrease in the power output
occurred. The emerging stability problems ofG1 are not reflected in the
power output from the machine and could therefore not have been identified
from observationsPG1 alone.

Plot (v) in figure 6.15, shows the bus voltage magnitudes in the system.
Following the first disturbance, the bus voltages on busses 1and 2 appear to
be very slowly decreasing until a sharp decrease occurs. It is interesting to
notice that these plots resemble the plot of bus voltage magnitude from the
Odensala substation in figure 6.1, for the last 80 seconds before the blackout
in E-Denmark and S-Sweden.

6.4.4 Test of the Assessment Method
The time domain simulation was carried out in such a way that values of,
among others, line flows and bus voltages were stored in an output file for
every 20ms of the simulated time interval. The output data was used to
generate synthetic PMU-measurements of voltage and current phasors. In
that way, a snapshot of the system operating conditions for every 20mswas
obtained.
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In order to test the previously suggested assessment method, the synthetic
PMU-data was used to determine the value of the injection impedance for
G1 (Zin j ) and the value of the system line and load impedances shown in
figure 6.12. With all network impedances known, the system Thevenin im-
pedanceZth, as seen from the point of injection, could be determined. The
values ofZin j andZth are determined for every PMU-snapshot and then it is
investigated when the stability boundaries, represented by (6.6), are crossed.

The results from the test are shown in figure 6.16. The figure shows four
plots, where in (i) a time domain plot of the voltage magnitude at bus 2 is
shown. The dots on the plotted line are used to illustrate a fixed interval
of time where the distance between two adjacent dots represents ∆t = 5s.
Three events are marked on the plots, where pointsa andb denote the time
when the two disturbances were applied and pointc is used to denote when
the stability boundary was crossed. The time of detected instability occurred
approximately 71safter the second disturbance had been applied. It is worth
noticing that the time elapsed from the detection of the boundary crossover
until the sharp decline in voltage magnitude occurred is approximately 130s.

Plots (ii)-(iv) in figure 6.16 show all the same trajectory ofthe injection
impedanceZin j , but in different level of detail. The value of the injection
impedanceZin j is normalized in such a way that stability boundary, at any
instant of time, always appears as a circle with a diameter atunity. In plot
(ii), the trajectory of the injection impedance can be seen for nearly the whole
time interval shown in (i). It can be seen that the initial conditions (point
a) are quite close to the stability boundary, and when the disturbances are
applied the trajectory slowly moves towards the boundary. The boundary
are crossed at pointc whereafter the the machine gradually accelerates and
looses synchronism with the infinite bus.

Plot (iii) shows enlarged view of the trajectory froma throughb to c. It can
be seen that the system gradually approaches the operating point b following
the first disturbance where the distance between two dots (that denote time
interval of 5s) gradually gets shorter and shorter. A gradual decrease in the
distance between two points indicates that the machine is gradually deceler-
ating and approaching an equilibrium point and a synchronous speed.

Plot (iv), provides a further enlarged view of the injectionimpedance tra-
jectory from the occurrence of the second, very small disturbance, and until
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Figure 6.16: Test results. (i) plot of the voltage magnitude on bus 2 where the two
disturbances are marked witha andb respectively, and the time when the bound-
aries are crossed is markedc. (ii)-(iv) the corresponding trajectory of the injection
impedance for generatorG1. The injection impedance values are normalized in such
a way that the stability boundary has a diameter at unity at any instance of time.
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after the boundary was crossed. If the trajectory fromb to c is studied, it can
be seen that the disturbance initially caused increase in the average angular
velocity of the machine, which is reflected by a gradual movement of the
system operating point towards the boundary. As the operating point moves
closer to the boundary (fromb to c), the distance between adjacent dots is
gradually decreasing, which indicates that the machine is slowly decelerat-
ing towards synchronous speed during that period. When the boundary is
crossed, it can be noticed that the distance between the dotsis gradually in-
creasing. This indicates that the machine is accelerating,which is expected
behavior when the boundary for aperiodic small signal instability has been
crossed.

The test result in figure 6.16 shows that the suggested assessment method
accurately detects, for the studied system, when the boundary of aperiodic
small signal stability is crossed.

Furthermore, it is interesting to see how long it can take from when the sta-
bility boundary is crossed until the sharp decline in the voltage magnitude
occurs. During this time interval the machine is slowly but gradually ac-
celerating, yet it is very difficult to identify that the machine was unstable
merely by inspecting the plots of the system voltage magnitude and power
output in figure 6.15.

6.5 Voltage instability vs Rotor Angle Instability

In the previous example it was illustrated how the suggestedassessment
method was capable of detecting when the generatorG1 crossed the criti-
cal boundary for aperiodic small signal stability. In the example, voltage
instability was of no concern since the system load was represented as fixed
impedance and no voltage control equipment was included in the example.
This means that no mechanisms were present that could cause avoltage in-
stability at the load bus, even if the point of maximum deliverable power to
the load would have been reached.

In the following, it is investigated where the boundary for voltage instability
appears in the previous example, if the load bus would have been equipped
with an ideal ULTC-transformer. In such situation, the boundary of voltage
instability at bus 2 is reached when the point of maximum deliverable power
to the load is reached.
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A few methods for detecting the point of voltage instabilityhave been sug-
gested that are based on comparison of the load impedanceZLD at a given
bus to the system Thevenin impedance seen from the same bus. The con-
cept is that the maximum deliverable power to the load occurswhen the
magnitude of the load impedance becomes equal to the magnitude of the
system Thevenin impedance. This would be true, if the systemThevenin
voltage magnitude would remain constant as the value of the load imped-
ance changes. For practical power systems this is not the case and it will be
shown in the following that, for the system in previous example, the point of
maximum deliverable power to the load occurs well before themagnitude of
ZLD becomes equal the magnitude ofZth,2.

The boundary of maximum deliverable power to the load, whenG1 is sup-
plied with constant mechanical input power, can be investigated by consid-
ering two different contour plots; one showing contours of delivered power
to the load (PLD) and the other showing contours of injected power byG1

(PG1). Figure 6.17 contains those two plots. In the upper left plot, contours
of constant delivered power to the loadPLD are shown in per unit where the
peak value ofPLD is used as per unit base. Inspection of the plot reveals that
the maximum deliverable power to the load, when the angleδ is fixed, occurs
whenZLD is equalZth,2. A fixed value ofδ asZLD changes results in that the
system Thevenin voltage, seen from bus 2, remains constant and therefore
does the point of maximum deliverable power to the loadPLD occur when
ZLD is equalZth,2. Furthermore, it can be seen that the maximum amount
of power delivered to the load for a fixed value ofZLD occurs whenδ = 0◦.
The reason for this is that the system Thevenin voltage magnitude is at its
maximum, for the considered system, whenδ = 0◦.

Contours of constant injected power fromG1, PG1, are revisited in the up-
per right plot. WhenG1 is operated with constant mechanical power, the
contours represent the trajectory of the system steady state operating points
as a function of the parametersδ andZLD. It should be noticed that, for a
constant value ofPG1, the value ofδ changes asZLD changes. The changes
in δ results in that the system Thevenin voltage magnitude will vary with
changes inZLD and therefore, the point of maximum deliverable power to
the load cannot be described by the straight line whereZLD = Zth,2.

For the purpose of illustrating where the boundary of maximum deliverable
power to the load is located, when the generatorG1 is operated with constant
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Figure 6.17: Contours of constant delivered power to load (PLD) and contours of
constant injected power fromG1 (PG1) combined into one plot for visualizing the
boundary for maximum deliverable power to the load whenG1 is operated with
constant mechanical input power.
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mechanical power input, the bottom plot in figure 6.17 is considered. In the
plot, the contours from the two above plots have been combined into one.
In order to determine the boundaries of maximum deliverablepower to the
load, it is useful to consider the contour wherePG1 = 0.95pu, starting from
the pointB. As the load impedanceZLD decreases, the operating point moves
along the contourPG1 = 0.95pu towards the pointO resulting in an increase
of the delivered power to the load. WhenZLD has reached the a value corre-
sponding to the pointO, it can be seen that the maximum deliverable power
to the load has been reached. A further decrease inZLD, beyond the pointO,
results in a reduction of the power delivered to the load. It can be seen that
the pointO, which represents maximum deliverable power to the load when
PG1 = 0.95pu occurs at a value forZLD that is significantly higher than the
system Thevenin impedanceZth,2.

The locus of maximum deliverable power to the load, whenG1 is operated
with constant mechanical power is shown as a dashed-dotted line in the
plot. This line would be the boundary for voltage instability, if an ULTC-
transformer would have been attempting to maintain a constant voltage at
the load side on bus 2. It can be seen that actual border line for voltage
instability deviates significantly from the line whereZLD equalsZth,2. This
shows that methods, which assess the system voltage instability by compar-
ing system load impedanceZLD to the Thevenin impedanceZth,2 (e.g. (Julian
et al. 2000)) would fail for the system in context.

In fact, if the casePG1 = 0.95pu is considered, both the boundary of voltage
stability (at pointO) and the boundary for aperiodic small signal stability (at
point C) would be crossed, before the conditionsZLD = Zth,2 are reached.
This means that the control actions of an ULTC-transformer atbus 2 would
continually decrease the load impedanceZLD when the actual voltage sta-
bility boundaries are crossed. This automatic deterioration of the system
operating conditions would results in that machineG1 looses synchronism
and eventual blackout occurs before a voltage stability assessment method,
which uses theZLD = Zth,2 criteria, would detect voltage instability.

6.6 Partial Conclusion

A method suitable for real-time monitoring of aperiodic small signal sta-
bility boundaries has been presented. The method utilizes the boundaries
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for maximum injectable power into a two bus system derived inchapter 5.
The assessment method uses the system Thevenin impedance, seen from the
node of injection, and the injection impedance seen from thesame node.
The Thevenin impedance is used to derive the generator’s stability bound-
ary, while the injection impedance determines the positionof the machine’s
operating point in respect to the boundary.

The method is based on a linear network representation of thesystem con-
ditions, which are represented in terms of impedances and constant voltage
magnitudes at the nodes of injection. By representing the synchronous ma-
chine as a constant voltage behind a reactance introduces some inaccuracy
for the detection of stability crossover compared to when the machine non-
linearity due to saliency and saturation effects are considered. The effects
of the machine saliency is reduced and can even be neglected if the system
Thevenin impedance is large compared to the machine’s direct axis reactance
and if the internal voltage magnitude is significantly higher than the system
Thevenin voltage behind the Thevenin impedance.

At last it was shown by a simple example, where both saliency and satura-
tion were excluded, that the presented assessment method accurately detects
when the boundaries for aperiodic small signal stability are crossed.

Since it has been verified that the analytically derived stability boundaries
can be used for instability detection, the boundaries will therefore be used for
providing early warning for an emerging stability problem,where the margin
from the generators injection impedances to the boundary ismonitored. It
is though important, that the monitored stability margin isrepresented in
terms of meaningful system quantities. The following chapter covers, among
others, how stability margins in terms of injection impedance can be related
to meaningful system quantities.
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Chapter7
Visualizing the System Operating
Conditions

This chapter provides a description of how multiple operating points for all
of the system generators, can be visualized in a single plot.The visualization
of the operating conditions enables visual identification of critical machines
and its corresponding margin to the boundaries of aperiodicsmall signal
stability.

7.1 Interpreting Stability Margins

It was shown in the previous chapter that the presented assessment method
for aperiodic small signal stability is capable of detecting when the stability
boundary is crossed by a given generator. For the purpose of obtaining an
early warning for an emerging stability problem, it is not sufficient to merely
detect when the stability boundary is crossed. It is necessary that the early
warning is received in time before that actual boundaries are crossed, such
that appropriate remedial control actions can be taken to avoid instability.

For the purpose of providing an early warning for an emergingstability
problem, the margin from an observed operating point to its correspond-
ing stability boundary may become a useful indicator. In thesuggested as-
sessment method, the stability boundary related to a given operating point
{

Zin j,i ,Zth,i
}

, is presented in the injection impedance plane. A margin from
the pointZin j,i to its critical boundaries expressed in term of injection im-
pedance does not provide a useful physical interpretation of the closeness
to instability. For that purpose, it is more useful to derivemargins that are
expressed in quantities such as active power or as percentage power margin
to the maximum.

In chapter 6 it was shown that the stability boundary is represented by a
line of constant phase angle whereδ = 180− φth. By utilizing this, the
margin from a observed operating point

{

Zin j,i,Zth,i
}

to its corresponding
boundaries can be expressed in several different ways. For the purpose of
deriving one such margin, the apparent power injection is expressed in terms
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of Thevenin voltage and the Thevenin impedance:

Sin j =

(

Eth−V

Zth

)?

V =
EthV
Zth

ej(δ+φth)− V2

Zth
ej(φth) (7.1)

WhereEth is used as phase angle reference. The active power injection
becomes:

Pin j =
EthV
Zth

cos(δ+φth)−
V2

Zth
cos(φth) (7.2)

A power injection is represented by a negative value ofPin j . As mentioned
previously, the maximum injected power occurs whenδ = 180◦− φth and
can therefore be expressed as:

Pin j,max=−EthV
Zth

− V2

Zth
cos(φth) (7.3)

An active power margin∆Pin j becomes:

∆Pin j = Pin j,max−Pin j =−EthV
Zth

(cos(δ+φth)+1) (7.4)

The above can be expressed as a percentage margin to the maximum %∆Pin j
in the following way:

%∆Pin j =
∆Pin j

Pin j,max
·100%=

cos(δ+φth)+1

1+
∣

∣

∣

Zin j

Zth+Zin j

∣

∣

∣
cos(φth)

·100% (7.5)

The above margins describe how much the active power injection can be
increased as the phase angleδ is increased to its critical value atδ = 180−
φth, while other system variables are fixed. The margin is therefore derived
considering changes in only one system variable, the voltage phase angleδ.

This is different from how stability margins are derived by means of con-
tinuation methods where the system is stressed in a particular direction by
applying some pre-defined loading and dispatch patterns. The stress patterns
are usually based on operational experience, where the daily consumption
patterns are usually the same and well known by the system operators.
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7.2 Normalizing Multiple Operating Points

Even though the above suggested stability margins, derivedfrom the phase
angle margin∆δ, are not obtained by applying specific "normal" stress pat-
terns they do anyhow provide a useful information. The method is intended
to provide a stability assessment during emergency operating conditions.
During such conditions, it is not likely that the normal stress patterns would
give the most likely stress direction of the system, since many other con-
trol and load restoration mechanisms have a more significantrole in such
situations. The actual stress direction might be dominatedby the actions of
ULTC-transformers and other devices that try to restore the pre-disturbance
consumption. This means that the "normal" stress direction is not suitable for
determining a margin to the system stability boundary. On the other hand,
the element-wise margins (7.4)-(7.5) provide a valuable information con-
cerning which of the system generators is operating close to, or approaching
its stability boundaries. Such information could be used totake remedial
actions to avoid an emerging instability.

7.2 Normalizing Multiple Operating Points

The suggested method performs an element-wise assessment of the gener-
ators aperiodic small signal stability. In a system havingk generators,k
individual Thevenin impedancesZth,i (i = 1, . . . ,k) are determined resulting
in thatk different stability boundaries are used for the assessment. In chapter
5 it was shown that the stability boundaries are circular, and therefore it is
possible to normalize all thek boundaries in such way that they appear as
a circle with radius at unity centered at the origin of the normalized imped-
ance plane. By doing so, all of thek operating points for the generators can
be visualized in the same normalized injection impedance plane where all of
the points are held against the same stability boundary.

In chapter 5 it was shown how several characteristic lines ofconstantP,Q,V
andδ could be represented in the injection impedance plane, if only the sys-
tem Thevenin impedance is known. It would be desirable if some character-
istic lines could be derived in a normalized injection impedance plane, such
that the lines provide a useful information regarding the operating conditions
of all normalized operating points.

In the following, it will be shown how a given operating point
{

Zin j,i ,Zth,i
}

can be mapped into a normalized injection impedance plane such that the
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Chapter 7. Visualizing the System Operating Conditions

voltage phase angle margin∆δ to the critical stability boundary and the lines
of constantV/Eth,i ratio are preserved.

7.2.1 Mapping of lines of constantV and ∆δ
In this section, the lines of constant phase angle margin∆δ and normalized
voltageV/Eth in the injection impedance plane for an arbitraryZth will be
mapped into a plane where the boundaries are derived from Thevenin im-
pedance having the same magnitude asZth and purely inductive. That is, the
operating point

{

Zin j,0,Zth,0
}

is mapped as the point
{

Zin j,?,(Zth,0∠90◦)
}

in the injection impedance plane as illustrated in figure 7.1.

Zth,0∠φ

Zin j,0

Eth V0 Zth,0∠90◦

Zin j,?

Eth V?f

Original System Mapped System

Figure 7.1: It is desired to derive the mapping of a original operating point
{

Zin j,0,Zth,0
}

(represented by the system to the left) to an equivalent point
{

Zin j,?,(Zth,0∠90◦)
}

(represented by the system to the right). The characteristics
of the mapped operating point should be such that the normalized voltage magni-
tude is preserved (V0/Eth = V?/Eth) and the phase angle margin∆δ is as well preserved
after the mapping.

In the following, the mapping:

f :
{

Zin j,0,Zth,0
}

→
{

Zin j,?,(Zth,0∠90◦)
}

(7.6)

is determined where the following properties of the mapped operating point
are preserved:

• The normalized voltage magnitudeV/Eth is the same for both operating
points

• The phase angle margin∆δ to the critical boundary is preserved after
the mapping

In the subsequent derivations,Zin j,0,Zth,0,V0 andδ0 are used to denote orig-
inal variables whileZin j,?,Zth,?,V? andδ? denote the mapped variables. It is
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7.2 Normalizing Multiple Operating Points

desired that the phase angle difference from operating point to the boundary
is preserved after the mapping which results in:

∆δ = 180◦−φ−δ0 = 90◦−δ? (7.7)

It is also desirable that the normalized voltage magnitude is the same. For
that purpose, the following relation between the original voltage phasorV0

and the mapped voltage phasorV? can be utilized:

V?

Eth
=

V0ej(δ?−δ0)

Eth
=

V0ej(φ−90◦)

Eth
(7.8)

The normalized voltage magnitude can be expressed in terms of variables
shown in figure 7.1:

V?

Eth
=

Zin j,?

Zth,0ej90◦ +Zin j,?
=

Zin j,0

Zth,0+Zin j,0
ej(φ−90◦) (7.9)

Utilizing thatZth,0ej90◦ej(φ−90◦) = Zth,0 and solving forZin j,? gives:

Zin j,? =
1

1
Zin j,0

+ 1
Zth,0

(

1−ej(φ−90◦)
) =

1

Yin j,0+Yth,0
(

1−ej(φ−90◦)
) (7.10)

Equation 7.10 describes the mapping in (7.6) such that the above mentioned
characteristics are preserved after the mapping.

Figure 7.2 illustrates the effect of the mapping of injection impedances ac-
cording to (7.10). The plot to the left shows an equally meshed grid in the
injection impedance plane, the stability boundary whenZth,0 = 1∠70◦ (the
black circle) and line of constant∆δ that is 36◦ away from the boundaries
(light blue circle). Additionally, several reference points are marked on the
circles for illustrating the effect of the mapping.

The plot to the right shows the results of the mapping when (7.10) is ap-
plied. Each of the mapped injection impedance points is suchthat the volt-
age magnitude and the phase angle difference to the criticalboundary has
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Chapter 7. Visualizing the System Operating Conditions

been preserved. The stability boundary appears now as a circle with diame-
ter at unity, which is the same as the boundary obtained whenZth = 1∠90◦

and the blue line represents the line of constant phase angelwhenδ = 54◦

which corresponds to a phase angle margin∆δ = 36◦.

Figure 7.2 illustrates that an arbitrary operating point
{

Zin j,0,Zth,0
}

can be
mapped as

{

Zin j,?,(Zth,0∠90◦)
}

by utilizing (7.10) where characteristics
concerning∆δ and normalized voltageV/Eth,i are preserved after the map-
ping. In order to visualize multiple operating points in thesame impedance
plane, further manipulation of (7.10) is needed such that the same normal-
ized stability boundary can be applied to all of thek operating points for the
k system generators.

7.2.2 Characteristics of the Normalized Injection Imped-
ance Plane

For the purpose of normalizing the stability boundary for aperiodic small sig-
nal stability, it is relevant to consider how boundary appears in the injection
impedance plane. In chapter 5 it was mentioned that the stability boundary
appears as a circle with the following characteristics:

• With radiusr = Zth/(2sinφ)

• The center of the circle is located on the imaginary axis where
Xin j =−r

In the following, the stability boundaries will be normalized in such way,
that they appear as a unit circle centered at the origin of thenormalized
impedance plane. For that purpose, all impedance valuesZin j,? have to be
shifted byr in the direction of the imaginary axis and scaled down by factor
r. For achieving that, the expression (7.10) can be manipulated:

Zin j,?,pu =
Zin j,?

r
+ j =

2Zin j,?

Zth,0
+ j (7.11)

By applying (7.11), the characteristic lines for constantδ andV and the
stability boundary can be used to visualize all of thek operating points
{

Zin j,i,Zth,i
}

in the same impedance plane, where the same boundary ap-
plies for all operating points.
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Figure 7.2: Illustration of the mapping of injection impedances. To the left, the critical boundary (in black) and the circle
representing the conditions where∆δ = 36◦ (in light blue), whenZth,0 = 1∠70◦. To the right, mapping of all points in the left
into a impedance plane whereZth,? = 1∠90◦
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Figure 7.3: Illustration of the normalized injection impedance plane when (7.11) is
used. The boundaries appear as a unit circle at the origin. The figure shows lines of
constant voltage ratioV/E (blue lines) and lines of constant phase angle difference
∆δ from the critical boundaries (green lines). These characteristics are valid for all
operating points

{

Zin j,i ,Zth,i
}

that have been normalized by (7.11).
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7.2 Normalizing Multiple Operating Points

In figure 7.3, the appearance of the stability boundary and few lines of con-
stant phase angle margin∆δ and normalized voltage magnitudeV/E are visu-
alized in the normalized injection impedance plane. An arbitrary operating
point

{

Zin j,i,Zth,i
}

can be mapped into this plane by applying (7.11).
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Chapter8
Development of Test Bench Software

This chapter describes a test bench software that was written for the purpose
of testing the suggested assessment method and to make the development
and implementation of the assessment algorithms easier.

8.1 Objective

The development and test process of wide-area stability assessment algo-
rithms can be quite time consuming, especially if the testing procedure is
not carried out in a systematic and automatic way. For the purpose of testing
real-time wide-area assessment algorithms, a sequence of synthetic PMU-
snapshots is generated from a time domain simulation of a given power sys-
tem incident. The sequence of PMU-snapshots is then used to emulate the
system response following the considered incident, where anew snapshot is
fed to the assessment algorithm once per cycle of system frequency. In this
way, the real-time performance of the assessment method canbe studied.

It is of high importance that the generation of synthetic PMU-measurements
and the test of the assessment algorithms is carried out in automatic manner.
If the test procedure is not automated, the following time consuming work is
needed to be carried out manually:

• The synthetic PMU-measurements have to be generated for every new
case study. This involves the time consuming work of finding the right
variables in the output file, generate the PMU data and assignthe data
to the right bus.

• The network of concern must be represented when the assessment
method is tested. This involves formulation of the system admittance
matrix and manual assignment of the generated PMU-data to anap-
propriate node in the system.

• The analysis results need to be viewed and hence relevant information
must be accessible. The work of accessing the data associated with
each operating point is time consuming if manual search is used.
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Chapter 8. Development of Test Bench Software

By automation of the above mentioned points, great amount of time is saved
in the development and implementation process of the assessment algorithm,
where different systems and operating scenarios can quickly be applied. Fur-
thermore, by avoiding manual generation of PMU data, the risk of errors has
been eliminated in that process.

For the above reasons, it was decided to develop a software that can function
as a test-bench for wide-area assessment algorithms under development. The
aim of the software is to automatically generate synthetic PMU-data from a
simulated case scenario, and automatically obtain the necessary network in-
formation needed by the assessment algorithm. Furthermore, the software
aims at visualizing the results from the algorithm and to provide an easy ac-
cess to the necessary information associated with each visualized operating
point.

8.2 Structural Overview

The software was written in C++. The main reason for choosing C++ in-
stead of MATLAB is due to the flexibility for memory allocation in C++.
When large systems with great amount of data are being analyzed, memory
related problems might be experienced in MATLAB , while in C++ software
the flexibility in the memory allocation can be utilized to avoid the problem.

A structural overview of the software is provided in figure 8.1. The figure
shows four boxes that represent the main modules in the software. As an
input, the software receives a PSS/E simulation case files that are used for
the testing of the assessment algorithm.

The main objective of each module is listed below:

GUI Controller: This module is responsible for the interface between the
user and the system. In this module, the user can select whichPSS/E
case scenario should be analyzed, start, stop and pause the emulation
of the selected scenario.

Case Reader / PMU generation: This module reads the input data, which
consists of PSS/E network (*.raw), dynamic (*.dyr) and simulation
output data (*.out), together with a node position file (*.pos) which
is used to represent the network in the viewer module. The PSS/E
data is used to generate an initial graph representation of the system,
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Case Reader /
PMU Generation

Analyzer Viewer

GUI Controller

PSS/E Case Files:
Power Flow Raw Data File (*.raw)

Dynamics data file (*.dyr)

Simulation Output file (*.out)

User Input:

System Boundary

Figure 8.1: Structural overview of the test-bench software. The drawing shows the
main modules in the software. The module "Analyzer" is where the assessment
algorithms will be implemented for testing purposes.

where appropriate model and simulation output data is related to the
nodes and edges in the graph. The module checks whether the PSS/E
simulation output files contain enough variables to generate synthetic
PMU-snapshots of the system conditions.

Analyzer: In this module, the wide-area assessment algorithms shouldbe
implemented. This module receives the system graph constructed in
the "Case Reader" module. The system graph contains all the neces-
sary system model information and information concerning the syn-
thetic measurement data associated with each node and edge in the
graph. Several different assessment methods could be implemented in
the analyzer module, where the system graph provides all theneces-
sary system information required for each method.

Viewer: This module is responsible for visualizing the assessment results
where the observed operating points are held against their critical sta-
bility boundaries. Furthermore, a interface for plotting the PSS/E sim-
ulation results is provided. The viewer provides an interface as well
for identifying each of the observed operating points.
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8.3 Screen Shots

In this section, few screen shots are provided from the developed test-bench
software. Figure 8.2 shows the graphical user interface where the user can
select which simulated case scenario should be analyzed. Furthermore, the
user can control the emulation of the case scenario by using the player con-
trol buttons. This enables the user to pause, move forward orbackward the
emulation at any time in order to investigate interesting system snapshots.

Figure 8.2: The Graphical User Interface. The user can specify the PSS/E case data
to be used and control the emulation of the simulated event by using player control
buttons (play, pause, fast forward, fast backward, etc.).

Figure 8.3 shows the "State Viewer" window. In this window, the observed
operating points for the system machines are visualized together with their
corresponding stability boundaries. By clicking on one of the operating
points, an information regarding which generator is represented by the point
and is percentage margin to the boundaries is provided. Furthermore, the se-
lected operating point can be highlighted in the "Network Viewer" window,
which enables a visual identification of the generators’ locations in the grid.
At the bottom in figure 8.3 the voltage magnitude at selected busses is plot-
ted. A vertical line moves along the time axis, as the emulation is running,
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8.3 Screen Shots

which indicates the instance of time that is currently beinganalyzed.

Figure 8.3: The State Point Viewer. Above, the stability boundaries are plotted
together with lines of constant∆δ andV/E in the normalized impedance plane, as
described in chapter 7. The system state points shown were mapped into the nor-
malized impedances plane using (7.11). Each of the individual state points can
be selected by a mouse click, resulting in the generator corresponding to thepoint
becomes highlighted in the "Network Viewer" window. Below, a plot of system
voltage magnitude at busses that can be chosen from the "Network Viewer" window
can be seen.
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Figure 8.4: The Network Viewer. The systems busses, branches and generators are
shown in a multilayered diagram. The different levels are used to illustrate different
system voltage levels.
Figure 8.4 shows a screenshot from the "Network Viewer" window where
the systems busses, branches and generators are shown in a multilayered di-
agram. The different levels are used to illustrate different system voltage
levels. The position of the system busses is loaded from a *.pos file to-
gether with the PSS/E case files. It is possible to select eachcomponent
(bus, branch or generator) in the diagram and plot the simulation results as-
sociated with the component. Furthermore, generators representing the state
points that have selected in "State Viewer" window can be highlighted for
easy identification of critical machines.

Figure 8.4 provides another screenshot from the "Network Viewer" window,
where a top view of the system network is applied. The viewpoint of the
network can be freely varied.
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Figure 8.5: The same as in figure 8.4, where a top view of the system network is
applied. The viewpoint of the network can be freely varied.

When a system component (bus, branch or generator) is selected in the "View
Network" window, the simulation results associated with the component can
be plotted in other windows. Figures 8.6 and 8.7 provide screenshots of the
windows that plot the selected voltage magnitudes togetherwith phase angle
and the active and reactive flow in each end of a selected branch. A voltage
phase angle reference can be chosen arbitrary in the "NetworkViewer" win-
dow, resulting in voltage phase angles values relative to the reference bus,
being plotted. An example of this can be seen in figure 8.6.
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Figure 8.6: Plots of bus voltage magnitudes and voltage phase angles from busses
selected in the "Network Viewer". A reference bus for the system phaseangle can
be chosen freely in the "Network Viewer". The phase angles on the selected busses
are then plotted relative to the selected reference bus.
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Figure 8.7: Plots of active and reactive power flow in branches selected in the
"Network Viewer". Similar plots of the active and reactive outputs from selected
generators can also be obtained.
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Chapter9
Algorithm and Implementation of the
Method

Chapters 5-7 presented a method for assessing and visualizing aperiodic
small signal stability of the system generators. This chapters concerns the
implementation of the assessment method, where algorithm for fast assess-
ment of the generators Thevenin impedance is presented as well as a special
matrix ordering scheme that improves the computational efficiency of the
presented algorithm. The chapter is concluded by presenting results from a
time performance test of the algorithm.

9.1 System Representation

5

2

6

7

10

8

3

4

1

G1

G2 G4

9
G3

jXd

Nodes of Constant Voltage Magnitude

Manually excited generator

Figure 9.1: System used for illustrating how system nodes are indexed in the fol-
lowing. The nodes of constant steady state voltage magnitude are colored red, while
nodes that are non-controlled are colored black. The voltage magnitude at node 10
is maintained constant by means of voltage control equipment such as a SVC.The
node of constant voltage magnitude for generatorsG1-G4 is either at the terminal of
the machines (nodes 6-8), or behind the direct axis reactancejXd (internal node 9).

In the following description, an arbitrary system is represented in such a way
that the system load is represented as impedances and power injections from
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synchronous machines occur into nodes of constant voltage magnitude as
described in chapter 6. Figure 9.1 provides an example of howa system is
represented in the following, where an additional node has been added to the
network due to the manual excitation ofG3. The system considered in the
following, has characteristics as listed below:

• The number of system nodes isN

• The number of nodes of constant steady state voltage magnitude isM
whereM ≤ N

• The number of synchronous generators isK

For the purpose of structuring the following description, the system nodes
are indexedi = 1. . .N in the following way:

• A nodei in the range 1≤ i ≤N−M represents a node of non-controlled
voltage magnitude.

• A node i in the rangeN−M < i ≤ N represents a node of constant
steady state voltage magnitude.

• The voltage controlled nodes are divided into two categories:

– A nodei in N−M < i ≤ N−M+K, where voltage magnitude is
maintained constant by a generator.

– A node i in N −M +K < i ≤ N, where voltage magnitude is
maintained constant by means of synchronous condensers, SVCs
etc.

This indexing is applied on the system in figure 9.1.

9.2 Algorithm

For the subsequent discussion, it is helpful to introduce the notationA i? and
A?i to denote theith row and column ofA respectively.A i? is understood to
be row vector andA?i is understood to be column vector.

The objective is to describe how the system Thevenin impedance, as seen
from a node of constant voltage, can be determined. To begin with, the
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system node voltage equation is provided:

I = YV (9.1)

which can be expressed as:







i1
.
.
.

iN−M

.

.

.
iN






=











y1,1 . . . yN−M,1 . . . yN,1

.

.

.
.. .

.

.

.

y1,N−M . . . yN−M,N−M

.

.

.

.

.

.
. . .

y1,N . . . yN,N

















V1

.

.

.
VN−M

.

.

.
VN






(9.2)

Due to the chosen structure of the node indices, the system admittance matrix
Y can be expressed in terms of sub-matrices in the following way:

Y =

[

Ync Y link

YT
link Yvc

]

(9.3)

whereYnc is the admittance matrix containing only the nodes of non-con-
trolled voltage magnitude,Yvc is the admittance matrix containing only nodes
of controlled voltage magnitude andY link is an admittance matrix contain-
ing the elements that connect the two subsets of system nodesin Ync andYvc

respectively.

The matrix Ync would be the system admittance matrix, if all nodes of
constant voltage magnitude were short circuited. The objective is to de-
termine the impedanceZth,k seen from a given node of constant voltagek
(N−M < k≤ N ), when all other nodes of constant voltage are shorted. For
that purpose, the matrixYnc can be used together with the column ofY link,
the row ofYT

link and the diagonal element fromYvc that corresponds to the
node of interest. In the followingY link,?k is used to denote the column of
Y link corresponding to nodek, YT

link,k? is row vector ofYT
link corresponding

to nodek andYvc,(k,k)=Y(k,k) is the diagonal element ofYvc corresponding
to the nodek.

The system impedance seen from the nodek, can be determined by shorting
all nodes of constant voltages except the nodek and inject current of 1A into
nodek. The resulting voltage at nodek is then equal to the system impedance
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Zth,k. The value ofZth,k can be determined from the admittance matrix for
the system when all nodes of constant voltage have been shorted except node
k. This matrix can be expressed as:

Yk =

[

Ync Y link,?k

YT
link,k? Yvc,(k,k)

]

(9.4)

The voltage at nodek, when 1A current is injected into the node, can be
obtained by the node equationV = Y−1

k I . Since the only non zero element
in I is the last element in the vector, the system Thevenin impedanceZth,k is
the last diagonal value inY−1

k .

The Thevenin impedance for the other system generators can be obtained in
the same way, where the matrixYk has to be reformulated by updating the
values corresponding toY link,?k,yT

link,k? andYvc,(k,k) in Yk. A procedure for
determining all of theK Thevenin impedanceZth,k is described in algorithm
9.1.

Algorithm 9.1: Computationally inefficient approach for determining theK
Thevenin impedancesZth,k from a single PMU-snapshot.
Input: PMU-snapshot of the system conditions

Update matricesYnc, Y link andYvc;
foreach generator node k (M< k≤ N−M+K) do

ConstructYk from (9.4);
Find the inverse ofYk;
Find the value ofZth,k as the last diagonal element ofY−1

k ;
end

The approach listed in algorithm 9.1 requires that the matrix inverse of the
(N−M+1)×(N−M+1) matrixYk, has to be determinedK times, in order
to determine allK Thevenin impedances. Matrix inversion is a computation-
ally demanding operation, where for example the Gauss-Jordan inversion al-
gorithm requiresO(n3) arithmetic operations. For large systems, the above
approach for determining theK Thevenin impedances would be inefficient
and not suitable for real-time assessment of the system conditions.

The computational burden required for determining all of the K Thevenin
impedances can be heavily reduced by utilizing useful characteristics of
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the LU-factorization. It turns out that it is sufficient to determine the LU-
factorization of the fullN×N matrix Y only once in order to determine the
K Thevenin impedances. This approach is described in next section.

9.2.1 Determining Thevenin Impedances from a LU-factorization

Useful Observation

In the previous section, it was shown that the Thevenin impedanceZth,k can
be determined as the last diagonal element ofY−1

k . The admittance matrix
Yk can be decomposed into a product of a lower triangular matrixL and an
upper triangular matrixU such as:

Yk = LkUk (9.5)

whereL andU have the following form:

Lk =











1
l21 1
...

...
...

ln1 ln2 · · · 1











and

Uk =











u11 u12 · · · u1n

u22 · · · u2n
.. .

...
unn











andn= N−M. The inverse ofYk can be expressed as:

Y−1
k = U−1

k L−1
k (9.6)

The inverse ofLk is also a lower triangular matrix with 1’s on its diagonal.
The last diagonal element ofY−1

k can be determined as the vector product
of the last row inU−1

k and the last column ofL−1
k , which has only the last
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element as a non-zero element. Therefore, the last diagonalelement ofY−1
k

can be expressed as:

Y−1
k (k,k) = U−1

k (k,k) = [Uk(k,k)]
−1 (9.7)

This means that the Thevenin impedance can be determined when the LU-
factorization ofYk has been carried and therefore the full inverse ofYk is
not needed. The computational cost of LU-factorization of sparse matrices
is much lower than the cost of matrix inverse; the exact valuedepends in a
complicated way on the size of the matrix, the number of zerosin the matrix
and its sparsity pattern.

Determining all Thevenin Impedances from a Single LU-factorization

It has been shown that theZth,k can be determined from the last diagonal
element of theUk matrix from a LU-factorization ofYk. In the following,
it will be shown how all of theK Thevenin impedances can be determined
from a single LU-factorization of the full admittance matrix Y.

For that purpose, it is useful to expressYk(k,k) in terms of elements from
Lk andUk:

Yk(k,k) =
k−1

∑
i=1

Lk(k, i)Uk(i,k)+Lk(k,k)Uk(k,k) (9.8)

SinceLk(k,k) = 1, the last diagonal element inUk can be determined as:

Uk(k,k) = yth,k = Yk(k,k)−
k−1

∑
i=1

Lk(k, i)Uk(i,k) (9.9)

In (9.3) the full system admittance matrixY was expressed in terms of sub-
matrices. Similarly, the resulting LU-factorization ofY can be expressed in
terms of submatrices:

Y =

[

Ync Y link

YT
link Yvc

]

= LU =

[

Lnc 0

L link Lvc

][

Unc Ulink

0 Uvc

]

(9.10)
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where:

Lnc: Lower triangular submatrix ofL with same indices asYnc in (9.3)
Lvc: Lower triangular submatrix ofL with same indices asYvc in (9.3)
L link: Rectangular submatrix ofL with same indices asYT

link in (9.3)
Unc: Upper triangular submatrix ofU with same indices asYnc in (9.3)
Uvc: Upper triangular submatrix ofU with same indices asYvc in (9.3)
Ulink: Rectangular submatrix ofU with same indices asY link in (9.3)

LU-factorization of each of theK differentYk matrices are needed to deter-
mine theK different Thevenin impedances. Due to the chosen indexing of
the admittance matrixY, the submatrixYnc of Yk in (9.4) will be the same
for all of theK differentYk matrices. This results in that the part of the LU-
factorization corresponding to the matrixYnc (Lnc andUnc) will be the same
in all K cases and therefore, they do not have to be recomputed every time a
new Thevenin impedance is determined.

In fact, by considering (9.9) it can be seen that the only information needed
from the resulting LU-factorization of theYk to determine the Thevenin im-
pedance, is the last diagonal value ofUk. This value can be determined from
the last row inLk and last column inUk. By letting L link,k? be the row in
L link that corresponds to system nodek andUlink,?k be the column ofUlink

corresponding to the same node, each of the Thevenin admittancesYth,k seen
from the node of injection can be determined as:

Yth,k = Yvc,kk−L link,k?Ulink,?k (9.11)

wherek (N−M < k ≤ N−M+K) represent a node which voltage magni-
tude is maintained constant by a generator. The Thevenin impedanceZth,k is
found as the inverse ofYth,k.

All of the K values ofZth,k can be determined from the matricesL link and
Ulink together with the diagonal elements ofYvc. This means, that only a
single LU-factorization of the full system admittance matrix Y is required
for the assessment of the system aperiodic small signal stability of all K
generators, which lays the foundation for a fast assessmentalgorithm.
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9.2.2 Suggested Algorithm
Based on the the above analysis, algorithm 9.2 is suggested for carrying out
an assessment of aperiodic small signal stability of allK system generators
based on a single PMU-snapshot of the system conditions.

Algorithm 9.2: Suggested approach for determining theK Thevenin
impedancesZth,k from a single PMU-snapshot.

Input: PMU-snapshot of the system conditions

foreach PMU-snapshotdo
Determine theK injection impedancesZin j,k;
Update the full system admittance matrixY;
DecomposeY into L andU;
foreach generator node k (N−M < k≤ N−M+K) do

DetermineYth,k by (9.11) andZth,k =Y
−1
th,k;

Assess stability of the operating point
{

Zin j,k,Zth,k
}

by (6.7);
Determine the margin to the boundary by (7.5);
Visualize the operating point and the boundary by (7.11);

end
end

Algorithm 9.2 outlines how all of theK operating points can be determined
by only carrying out one LU-factorization of the full systemadmittance ma-
trix Y.

9.3 Implementation of the Method

As mentioned in chapter 8, a test bench software was written in C++ for
the purpose of developing and testing algorithms for wide-area stability as-
sessment. The assessment method for aperiodic small signalstability was
implemented into the test bench software, where the implementation of the
method consisted of two routines:

Initialization Routine where the extended network representation was for-
mulated, system nodes categorized, specialized matrix ordering scheme
applied, the system admittance matrix generated, the LU-factorization
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initialized and the PMU-data structured in such a way that the admit-
tance matrix can be efficiently updated.

Snapshot Assessment Routinewhere the assessment algorithm 9.2 is im-
plemented.

Figures 9.2 and 9.3 show block diagrams that describe the twomain routines
used as a software implementation of the assessment method.The figures
refer to external software libraries and packages that wereused for the im-
plementation of the method. The external libraries and packages used for the
implementation are:

Start

End

Represent the extended network
as a graphG

Categorize the nodes ofG into
nodes of controlled voltage and
nodes of non-controlled voltage

Apply the modified ordering
scheme onG

Generate the ordered admittance
matrixY

Initialize the LU-factorization
routines

Structure PMU-data for fast
update of theY matrix

External Packages Used

- Boost Graph Library

- AMD

- UMFPACK, ATLAS (BLAS)

Figure 9.2: Overview of the steps involved for the initialization of the assessment
method and the external software packages used in each step.
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Start

End

Update the system admittance
matrixY and determine theK

injection impedancesZin j,i

DecomposeY into L andU

Determine theK system
impedancesZth,i

Analyze theK operating points
{

Zin j,i ,Zth,i
}

by applying (6.7),
(7.5) and (7.11).

- UMFPACK, ATLAS (BLAS)

Figure 9.3: Involved steps in the assessment method which is executed when a new
PMU-snapshot is received.

UMFPACK is a set of routines that implement LU-factorization algorithm
for sparse matrices (Davis 2004).

ADM is a set of routines for carrying out the approximate minimumdegree
ordering algorithm to permute sparse matrices prior to LU-factorization
(Amestoy et al. 2004).

ATLAS BLAS is a high performance implementation of BLAS (Basic Lin-
ear Algebra Subprograms) which is needed by the UMFPACK rou-
tines (Whaley et al. 2001). BLAS are a set of subroutines which pro-
vide a standard application programming interface for simple linear
algebra operations. The BLAS operations are divided into 3 levels:

Level 1: Vector operations. Consist mainly of vector-scalar, norm, inner-
product and rotation operations. These areO(N) operations.

Level 2: Matrix-vector routines and Special Matrix Solvers. These are
O(N2) operations.

Level 3: Matrix-matrix operations, which areO(N3) operations.

Boost graph library is a graph analysis toolkit that provides general pur-
pose graph classes (Siek et al. 2002). It contains differentchoices of
graph containers and efficient graph theory algorithms implemented
as generic C++ template specifications.

In the following subsections, additional description is provided for few of the
blocks in figures 9.2 and 9.3 that were of crucial significancefor obtaining a
computationally efficient implementation of the assessment method.
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9.3.1 LU-factorization
The single most computationally demanding step in algorithm 9.2 is the
LU-factorization of theY matrix. Several software packages exist that con-
tain efficient routines for carrying out LU-factorization of sparse matrices.
One of these is the software package UMFPACK (Davis 2004) which is the
choice of MATLAB for carrying out LU-factorization of sparse matrices.

The UMFPACK packages was chosen for carrying out the LU-factorization
of the Y matrix in the project. UMFPACK requires the packages BLAS
(for dense matrix operations) and AMD (for sparse matrix minimum degree
ordering) to be implemented. Algorithm 9.2 was implementedusing the C++
programming language and ATLAS library (Whaley et al. 2001) as a high
performance implementation of BLAS.

The computational efficiency of algorithms for decomposition of sparse ma-
trices is strongly depended on the number of fill-ins that arerequired for
completing the decomposition. The fill-in of a matrix are theentries which
change from an initial zero to a non-zero value during the execution of the
decomposition algorithm. A higher number of fill-ins results in increased
memory requirements and increased number of arithmetic operations for
completing the matrix decomposition. The number of fill-inscan be reduced
by switching rows and columns in the matrix according to a chosen matrix
ordering scheme.

9.3.2 Matrix Ordering Schemes
For illustrating the effects that fill-ins have on the required number of arith-
metic operations for decomposing a matrixA into upper and lower matrices,
figures 9.4 and 9.5 are considered. The figures illustrate howthe augmented
matrix [A|I ] is decomposed into[U|R] by row operations, whereU andR
are upper and lower triangular matrices respectively.

In figure 9.4 it can be seen that the initial coefficient matrixA is sparse, but as
the elimination phase progresses, new non-zeros (or fill-ins) are introduced.
After the first step, fill-ins were generated such that all initially zero elements
of the coefficient matrixA became non-zero elements. Apart from increasing
the storage requirement, the fill-ins enter into the calculation of subsequent
elimination steps and thereby increase the number of arithmetic operations
needed for completing the elimination process.
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∼

∼

∼

Figure 9.4: Decomposition of an augmented coefficient matrix[A|I ] into [U|R],
whereU and R are upper and lower triangular matrices respectively. The green
elements represent original elements of[A|I ], the yellow elements are the one de-
termined in each step and the red elements represent additional fill-ins created after
the first step. The eliminated elements are shown as dashed boxes. The resulting
upper and lower matrices have no sparsity.
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∼

∼

∼

Figure 9.5: The same elimination steps of the same augmented matrix as in figure
9.4 except that the matrixA was re-ordered such that the first and the last rows
and columns were swapped. The reordering results in that no fill-ins are generated
during the elimination process and the resulting upper and lower matrices havethe
same sparsity structure as the original matrix.

The resulting upper and lower triangular matrices[U|R] are both full trian-
gular matrices, which results in increased storage requirements forL and
R.

The amount of fill-ins generated in an elimination process can be heavily
reduced by applying appropriate reordering scheme of the coefficient ma-
trix A. This is illustrated in figure 9.5, where the last and the fist rows and
columns ofA have been swapped before the elimination process began. Due
to the reordering, no fill-ins are generated in the elimination process and the
resultingL andR matrices are therefore sparse.

Few algorithms exists for reordering sparse matrices, which aim at reducing
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the storage requirement and increasing the computational efficiency for de-
composition algorithms. The reverse Cuthill-McKee (Liu & Sherman 1975)
and King’s (King 1970) algorithms aim at reducing the bandwidth of the
sparse matrix while the minimum degree algorithm (George & Liu 1989)
reduces the number of non-zeros in the resulting matrix after a Choelsky
factorization.

The above mentioned LU-factorization routine provided in UMFPACK, ap-
plies approximate minimum degree algorithm for its symmetric ordering
strategies. The approximate minimum degree algorithms areimplemented
in the AMD ordering package (Amestoy et al. 2004).

Reordering the Admittance Matrix Y

None of the above mentioned ordering schemes can be used to reorder the
admittance matrixY in algorithm 9.2. The reason is that the assessment al-
gorithm is dependent on the system admittance matrix being structured in a
specific manner such that allK system admittances can be determined from
a single LU-factorization. This requires that every node ofuncontrolled volt-
age must have a lower index than every node of constant voltage. The result
of this requirement is that a minimum degree algorithm cannot be applied on
the full admittance matrix. Instead, specialized orderingschemes have to be
applied such that the requirements for the structure of the admittance matrix
are met.

Modified Ordering Scheme for Y

In order for algorithm 9.2 to function correctly, it is necessary that the nodes
of non-controlled voltage are represented at the firstN−M indices of the
full admittance matrixY. A reordering of the full admittance matrixY by
the minimum degree ordering algorithm can therefore not be used, since it
might results in that some of the voltage-controlled nodes would be indexed
among the firstN−M indices of the reordered matrix.

For the purpose of reducing the fill-ins generated during theLU-factorization
of the Y matrix, modified minimum degree ordering scheme was applied.
The ordering consisted of finding the approximate minimum degree order-
ing of the Yuc and Yvc submatrices ofY. By reordering the submatrices
individually, it is ensured that all nodes of uncontrolled voltages are repre-
sented before nodes of controlled voltages when the new ordering has been
applied toY.

162



9.3 Implementation of the Method
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(a) Original Matrix

nz=1620

(b) Minimum Degree Ordering

nz=1620
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Figure 9.6: Illustration of the ordering scheme. a) The original unordered 464×464
admittance matrixY with 1620 non-zero elements, where blue diagonal elements
represent nodes of non-controlled voltage and red elements are nodesof constant
voltage. b) Matrix structure after minimum degree ordering of the full matrixY. c)
the matrixY categorized into submatricesYnc,Yvc,Y link andYT

link as represented in
(9.3). d) The chosen ordering scheme where minimum degree ordering was applied
onYnc andYvc individually.
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nz=48452

(a) Original Matrix

nz=2160

(b) Minimum Degree Ordering

nz=51984

(c) Categorized Matrix
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(d) The Modified Ordering
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Figure 9.7: The sparsity patterns after LU-factorization of the four matrices in
figure 9.6. The figure illustrates the non-zero elements of the matrixL +U, where
the green elements are inL and the red elements are inU. The number of generated
fill-ins, during the factorization, is greatly affected by which ordering scheme is
applied. By using the modified ordering scheme, theL and U matrices become
quite sparse except for indices that correspond to the submatriceYvc.
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Figure 9.6 visualizes the steps involved in achieving the reordered admit-
tanceY by showing the sparsity pattern at different stages. In (a) the original
structure of the admittance matrixY is shown, where nodes of uncontrolled
voltage magnitude are represented as blue diagonal elements and nodes of
controlled voltage are represented as red diagonal elements. In (b) the ap-
proximate minimum degree ordering of the fullY is shown for later com-
parison. Plot (c) shows the matrix whereY has been reordered and has the
same structure as in (9.3) whereYnc is the upper left submatrix andYvc is the
lower left submatrix. In (d) the above modified minimum degree ordering
scheme has been applied onY. The difference between approximate mini-
mum degree of the entireY matrix and the modified scheme can be noticed
by comparing (b) and (d).

The sparsity pattern of the resultingL andU matrices from a LU-factorization
of the matrices in figure 9.6 is visualized in figure 9.7. The effect that the
approximate minimum degree ordering has on the reduction offill-ins is ap-
parent by comparing (a) and (b). The number of non-zero elements in the
matrix L +U is more than 20 times larger in (a) than in (b). The matrices in
(c) and (d) are categorized in such a way, that they can be usedin algorithm
9.2. By applying the modified ordering, the number of non-zeroelements in
theL +U matrix is greatly reduced in (d) compared to (c).

It is interesting to note that the most dense part ofL +U in (d) is in theLvc

andUvc submatrices, and those matrices are not needed in-order to determine
theK Thevenin impedancesYth,k, as can be seen in (9.11). This means, that
the algorithms carrying out the LU-factorization could be modified in such a
way that calculation of elements inLvc andUvc are not carried out. By doing
so, a further increased computational efficiency of algorithm 9.2 would be
achieved.

The modified ordering scheme forY, presented in this section, contributes
increased efficiency of the LU-factorization of theY matrix, which is the
single most computational demanding step in algorithm 9.2.

9.4 Performance Test

For the purpose of testing the efficiency of the assessment implementation,
a test was carried out on a network containing 488 nodes and 672 branches
and 144 generators. The test consisted of that a loop of 1000 iterations was
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executed, where in each loop the LU-factorization of the system admittance
matrix was determined, whereafter the Thevenin impedancesfor all 144 gen-
erators were determined. The total execution time for completing the loop
was used to determine an average computational time for determining the
Thevenin impedances from the system admittance matrixY.

The test was carried out on a 64bit laptop machine having an Intel Core 2
Duo 2.26GHz processor and 8 GB RAM. The results from the test were that
the 144 system Thevenin impedances for the system in context, could be de-
termined in 7.86ms. The results mean that an aperiodic stability assessment
of all 144 system generators can be carried out well within the time interval
between two PMU-snapshots. Therefore, the assessment of the generators
operating conditions can be updated once per cycle of systemfrequency,
enabling full exploitation of the high repetition rate thatPMUs can provide.
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Chapter10
Full Scale Test - The Blackout on
September 23, 2003

In this chapter describes a full scale test of the real-time assessment method.
For the purpose of carrying the test out, a PSS/E simulation was conducted
of the blackout in E-Denmark and S-Sweden that occurred September 23,
2003. The simulation output data was used to generate synthetic PMU-
measurements from the event, which again were used for emulation of the
blackout in the test-bench software described in chapter 8.

A detailed description of the blackout in E-Denmark and S-Sweden was pro-
vided in chapter 2 where the initial conditions were described and a time line
of events was established. The simulation results presented in this chapter
are based on this case description.

10.1 The Simulation Model

The model of the Scandinavian power system used to simulate the blackout
is a combination of two models; a simplified model of the Scandinavian
power system and a detailed model of the power system in E-Denmark. The
two models where merged into a single model and used for the simulation.
It was not possible to provide a detailed model of the Swedishpower system
within the time frame decided for the analysis of the blackout, and therefore
the simplified model was used.

Figure 10.1 shows an overview drawing of the simplified model. The model
is simplified in such way that all local production and consumption in certain
area is aggregated into one equivalent generator and one equivalent load. The
generator located in E-Denmark in figure 10.1 is replaced with the detailed
Danish model which gives the resulting model used for the simulation of the
blackout. The detailed Danish model consisted of 320 bussesfrom 400kV
to 50kV level, 480 branches and approximately 300 generators whichin-
cludes distributed generation. The model details and data are not provided
in the thesis due to a non-disclosure agreement with the Danish transmission
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Figure 10.1: Overview drawing of the simplified Scandinavian model used for sim-
ulating the blackout on September 23, 2003. The generator in Zealand is replaced
by a detailed model of the power system in Zealand.
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system operators Energinet.dk, the provider of the model.

10.1.1 Applying Disturbances in the Simplified Model
For carrying out a time domain simulation of the blackout, itis necessary to
identify the locations in the simplified model that corresponds to the actual
fault locations. Figure 10.2 shows a diagram of the southernpart of the
Swedish power system and is used to relate the actual locations of involved
generating units and tripped transmission lines to a corresponding location
in the simplified model.
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Figure 10.2: The southern part of the Swedish power system. The locations of the
nuclear plants (Forsmark, Ringhals and Oskarshamn) have to be identifiedin the
simple model in figure 10.1.

The first incident that played a role in the development of theblackout was
the loss of the Oskarshamn unit. The Oskarhamn power plant isrepresented
by the generator located at bus 3000 (in figure 10.1) which also represents the
production at the Forsmark nuclear power plant located north of Stockholm.
The Ringhals power plant is represented by the generator at bus 3359 and the
Barsebäck, which was not operating the day of the blackout, isrepresented
by the generator at bus 3300.
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The loss of the Oskarshamn block and the two Ringhals blocks issimulated
by splitting the generators at busses 3000 and 3359 into two,where the new
generators represent the units that are disconnected during the simulation.
Such modifications do not affect the dynamics represented bythe model,
since the sum of the machines size at each of the two busses is preserved
after the modifications.

The line Halmsberg-Kimstad, between busses 17 and 21 in figure 10.2, was
not in operation on September 23rd 2003. This line provides aconnection
between the mid and southern Sweden and in order to take this into con-
sideration, the line between bus 3100 and bus 3200 is disconnected in the
simplified model.

In chapter 2 a time line of events associated with the blackout was estab-
lished. Table 10.1 provides an overview of the actual location of the involved
events and their corresponding location in the simplified model.

Location of Incident description Component in model How to simulate
the incident
Oskarhamn Output lowered from Generator 2 at bus 3000 Reduce output by 376MW
block 3 1.176MW to 800MW in 10s
Oskarhamn Output lowered from Generator 2 at bus 3000 Reduce output by 800MW,
block 3 800MW to 0MW in 10s disconnect the unit.
Jutland reserve DC-power activated load at bus 3359 Add ∆P=−55MW

to the load
Horred Double busbar fault, Line from 3359 to 3200 Switch both of the lines

four lines tripped and line from 3359 to 3300
Ringhals Both blocks are disconnected Generator 2 at bus 3359 Disconnect the generator
block 3 and 4 from the grid
Jytland Loss of one of the load at bus 3359 Add ∆P= 250MW

DC-connections to the load

Table 10.1: The actual location of the involved events and their corresponding lo-
cation in the simplified model.

10.2 Time Domain Simulation and Results

For the purpose of ensuring that the time domain simulation results reflect
the actual situation on the September 23rd 2003, the simulated response was
gradually fitted to a measurement data set of system frequency taken dur-
ing the unfolding of the blackout. The data of the measured frequency was
downloaded from the web page of Svenska Kraftnät1. A plot of the measured

1www.svk.se
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values of the frequency is shown in figure 10.3. The figure shows measured
frequency at the 220kV substation in Beckomberga.
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Figure 10.3: Available measurements of the frequency in Beckomberga at the time
of the blackout on the September 23rd 2003. These measurements are found at the
web page of Svenska Kraftnätwww.svk.se. The measurements are used as reference
for the time domain simulation of the blackout.

Figures 10.4 to 10.7 show the simulation results in the period from before
the occurrence of the fault in Horred and until the blackout occurred. In
figure 10.4, the measured values of the system frequency are compared to
simulated values at bus 3100. The simulated frequency is well aligned with
the measured values of the frequency. The increase in frequency experienced
during the last 10 seconds of the simulation indicate that the instability mech-
anisms that caused the blackout have been captured by the simulation. The
mechanisms of voltage instability do not play a role in the simulated black-
out since the system ULTC-transformers and other load restorative dynamics
were not represented in the simulation model. This means, even though an
operational condition for voltage instability would have been achieved, there
were no voltage instability mechanisms represented in the model that could
be a driving force in a potential voltage instability.

A likely explanation of the observed increase in the system frequency for the
last 10 seconds of the simulation is that the group of generators in Denmark
and the remaining generators in the system are slowly losingsynchronism.
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Figure 10.4: The simulated frequency at bus 3100 compared to measured values of
the frequency at the time of the fault in Horred.

When the two subgroups of generators approach a phase angle separation
of 180◦, the voltage magnitude at intermediate busses begin to fallrapidly
which results in a large reduction in the system consumption. The large
reduction in the system consumption causes a rapid increasein the system
frequency, similar to the one observed in figure 10.4.

In figure 10.5, the simulated flow of active and reactive powerfrom E-
Denmark to S-Sweden is shown. For comparison, the actual import of active
and reactive power form E-Denmark to S-Sweden is provided infigure 10.6
(Elkraft System 2003). If the simulated values of deliveredreactive power
from E-Denmark are investigated, it can be seen that a reactive power is
flowing into Denmark, which is the opposite to what happened in the actual
case.

It can be seen from figure 10.6 that there was a great increase in the imported
reactive power from E-Denmark to S-Sweden. The simulation result in fig-
ure 10.5 show therefore the opposite direction of the flow of reactive power.
A flow pattern similar to the one observed in the actual case isgiven in figure
10.7. In this plot, the simulated flow from bus 3000 (the Stockholm area) to
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bus 3300 (S-Sweden) is shown. It can be seen that the reactivepower flow
into the area increased very much during the last seconds before the black-
out, which similar to the observed flow in the actual case. This indicates
that the instability problems that caused the blackout, initially emerge in a
different area in the simulated scenario compared to the actual case.

Active Power Import from Denmark into 3300
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Figure 10.5: Results from the simulation of the blackout on the September 23rd
2003. The plots show the imported active and reactive power from E-Denmark to
bus 3300, which corresponds to Söderåsen.

The simulated increase in reactive power injection to E-Denmark can be ex-
plained by that it were the Danish generators that were accelerating away
from the remaining system generators. When a generator is loosing it syn-
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chronism with remaining system generators and its internalrotor angle is
approaching a 180 degree separation from others generatorsin the system,
an increase of lagging armature current is experienced (Matsuki et al. 1992).
The increase of the current flowing in the armature windings causes an in-
creased reactive power demand by the generator which might explain the
increase in reactive power import to E-Denmark during the last 10-15 sec-
onds in the simulation results.
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Figure 10.6: Measured values of imported active and reactive power from E-
Denmark to Söderåsen, during and after the fault in Horred. The plot is taken
from the official report from the Danish TSOs concerning the blackout(Elkraft
System 2003, p.10). The red line represents delivered active power while the blue
lines represents delivered reactive power.

It turned out to be difficult to imitate the actual development of the Blackout
using the simplified model of the Scandinavian system. The greatest problem
was the flow direction of the reactive power between E-Denmark and S-
Sweden. A more detailed representation of the Swedish system is needed in
order to accurately capture the resulting instability mechanism causing the
blackout.

Even though it was not possible to simulate the blackout as itwas seen from
the Danish power system, it was possible to simulate a blackout that matched
quite well with the actual measurements of system frequencyfrom the time
of the blackout. The simulation results will in the next section, be used to
test the developed assessment method.
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Active Power From 3000 to 3300
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Figure 10.7: Simulation results for the active and reactive power flow from bus
3000 into bus 3300. These results are similar to the actual power flow from Den-
mark to Sweden under the development of the blackout, where a large increase in
imported reactive power into the area is observed.

10.3 Test of the Method

The simulated blackout scenario was used to generate synthetic PMU mea-
surements, and thereby a sequence of PMU-snapshots could beused as a test
data for the developed assessment method. The results from the test of the
assessment method are provided in figures 10.8 to 10.10.

Above, in figure 10.8 the simulated voltage magnitude at bus 3300 (S-Sweden)
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in the simplified model is provided where five different snapshots are marked
from I to V. The operating conditions for each of the snapshots I-V is pro-
vided in figure 10.8.(b), and in figures 10.9 and 10.10. The point of detected
boundary crossover is represented by snapshot III and thereelapsed approxi-
mately 54sbefore a rapid decline in the voltage could be observed (snapshot
V).

The plot (b) in figure 10.8 shows the system conditions at snapshot I, prior
to the fault in Horred. The generators operating conditionsare shown in the
normalized injection impedance plane, as described in chapter 7. Two dif-
ferent shapes are used to represent the operating conditions, where the green
circle represents a machine with a point of constant voltagemagnitude be-
hind Xd (manually excited) and the brown box shows where the operating
point of a machine equipped with an AVR would be when an OXL hasbeen
activated. The squared points provide a security information, since they in-
dicate where the operating point would be when a given machine protection
has been activated. The operating point closest to the stability boundary has
an active power margin of 2.5% when calculated according to (7.5).

The situation, when the most severe oscillations have decayed out following
the disturbance in Horred, is shown by snapshot II in figure 10.9. The pre-
fault situation is shown light dots and light gray lines linkthe new operating
point to the prefault operating point. The margin of the mostcritical operat-
ing point is 0.3%. System has not yet settled to a stationary operating point,
and therefore the operating points closest to the margin continue to slowly
drift towards the boundaries.

Approximately 18s later, the first machine crosses the stability boundaries.
This situation is represented by snapshot III and is illustrated below in figure
10.9. The machine that crossed the boundaries is a 74MVA machine in the
Danish system. After the boundary crossover, other generators in the Danish
part of the system slowly began to move towards the boundaries.

Approximately 27s after the detected boundary crossover, a 310MVA ma-
chine crossed the boundaries as shown by snapshot IV. The crossover of the
second machine resulted in a more rapid movement of the operating points
for the Danish generators towards the boundaries, which eventually resulted
in a fast decline in the system bus voltages and a subsequent blackout.
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Voltage at Bus 3300 (S-Sweden)
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Figure 10.8: (a) plot of simulated voltage magnitude at bus 3300 (S-Sweden) for
the period from before the double busbar fault in Horred and until the occurrence
of the blackout. Five instances I-V are marked, which correspond to five snapshots
provided in (b) and in figures 10.9 and 10.10. (b) is an assessment snapshot cor-
responding to point I, where the most critical point has an active power margin of
2.5%.
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Figure 10.9: Assessment snapshots corresponding to point II (above) and III (be-
low). Snapshot III shows when the first machine crossed the boundaries.
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Figure 10.10: Snapshots IV and V represent an unstable situation. Snapshot V
represents the condition approximately 54safter the detected boundary crossover.
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10.3.1 Discussion
The results from the test showed that the method was capable of detecting
when the system machines crossed boundaries of aperiodic small signal sta-
bility. When the first machine crossed the boundary, the remaining machines
in the Danish part of the system slowly began to move towards their bound-
aries. This process gradually continued until the second machine crossed its
boundaries, which further deteriorated the situation and lead to a cascade of
generators crossing their boundaries and consequently a blackout.

The time from, when the first machine crossed the critical operational bound-
aries until the simulated blackout occurred, was approximately 54s. This
means, that the system operators would have had a quite significant time
window to take appropriate emergency actions for the purpose of avoiding
the emerging blackout.

An even earlier warning for the emerging system blackout, could have been
obtained if some minimum security margins would have been applied. Such
security margin could be used to indicate the operator abouta potential sta-
bility problem, when a given machine operating point exceeds the security
boundaries. In this way, the operators are informed about which machines
are the most critical ones and their distance to stability boundaries is obtained
as well.

A further extension of the method would be to use the time information of
previous operating points to predict future boundary crossover. In this way, a
slowly drifting operating point could be identified as a potential threat, some
time before an actual boundary crossover.
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Chapter11
Conclusion and Future Outlook

In this chapter, a conclusion of the thesis is provided together with a dis-
cussion on future outlook for research based on the contributions from the
project.

11.1 Conclusion

The overall purpose of the PhD project was to develop methodsthat in real-
time provide an early warning for an emerging stability problem. The 2003
blackout in E-Denmark and S-Sweden was considered a case scenario of
inspiration for the work. The blackout was caused by occurrence of two
severe system disturbances within a time interval of five minutes. Following
the second disturbance where initial oscillations had damped out, a period of
approximately 80s with slowly decaying voltage magnitude was observed,
before a system blackout was experienced. It was of interestto develop
methods, that could in such situations give an early warningfor the emerging
blackout.

For achieving the project’s overall purpose, several goalswhere defined that
included derivation of stability boundaries, developmentof instability detec-
tion method and development of an algorithm for carrying outthe stability
assessment.

For the purpose of understanding the limitations imposed onthe injection
of power into transmission systems, analytical expressions were derived for
the appearance of critical system boundaries and characteristic lines in the
injection impedance plane. Boundaries described by the conditions where
∂P/∂V, ∂Q/∂V, ∂P/∂Q, ∂V/∂Q, ∂V/∂P and∂Q/∂P become zero, were derived in terms
of injection impedance. Analytical expressions for lines constant voltage
magnitude, constant voltage phase angle, constant active power injection
and reactive power injection were as well derived in the injection impedance
plane.

The derived boundary where∂P/∂Q = 0 was used as a cornerstone for the
development of a method for real-time assessment of aperiodic small signal
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stability. The developed method carries out an element-wise assessment of
aperiodic small signal stability where the stability of each system generator
is determined from the knowledge of its injection impedanceand the cor-
responding Thevenin system impedance seen from the generator. A test on
a simple system illustrated that the method is capable of accurately detect-
ing when a given machine crosses the boundaries for aperiodic small signal
stability.

For an informative visualization of multiple operating points, a mapping of
an arbitrary operating point was determined such that the stability boundary
for the mapped point appeared as a unit circle in the normalized injection
impedance plane. Furthermore, the mapping was derived in such a way that
actual values of constant voltage ratioV/E and constant phase angle margin
∆δ were represented in the normalized plane. This enabled an informative
visualization of multiple operating points in the same plane where all points
have the same unit circle as their stability boundaries.

In order to implement the developed assessment method, a fast algorithm
was developed that determines the information required forcarrying out the
assessment from a PMU-snapshot of the system conditions. The algorithm
was implemented in the test-bench software that was writtenfor the purpose
of testing the method. The algorithm was tested on a system containing
488 nodes and 672 branches and 144 generators. The aperiodicsmall signal
stability of all 144 generators was determined in 7.86ms.

A large scale test of the assessment method was carried out where a simula-
tion of the blackout in E-Denmark and S-Sweden September 23,2003 was
used as a test case scenario. The simulation results were used to generate
a synthetic PMU-snapshots of the system conditions which were used as an
input to the assessment algorithm. The test results showed that the loss of
aperiodic small signal stability of one machine was detected approximately
54s before the system blackout was experienced.

The test results show for the simulated case scenario that anaperiodic small
signal instability was detected well before the actual blackout occurred. The
detection of a boundary crossover could therefore be used asan early warn-
ing for an emerging blackout. An even earlier warning is received if a min-
imum margin to the stability boundary is used as a criteria. An early warn-
ing criteria which defines a minimum active power margin to be2%, would
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have resulted in an early warning immediately after the initial oscillations
had decayed out in the simulated case scenario. The presented method could
therefore be of high importance in emergency situations, where some system
generators are prone to the loss of aperiodic small signal stability.

For methods that should provide an assessment of the system conditions dur-
ing emergency operating conditions, it is of paramount importance that the
computational times required for carrying out the assessment are short. The
presented method fulfils these requirements, and in fact it is possible carry
out the assessment of the 144 generators in the considered 488 node system
in only 7.86ms. This means that a full exploitation of the high repetition
rate for PMU-measurements could be achieved. These resultsmake the pre-
sented assessment method an attractive tool for real-time stability assessment
in future emergency situations.

11.2 Future Outlook

By considering the contributions this project, several research topics can be
identified which are based on, or even continue, the work carried out in the
project. The identified future research topics related to the presented work
are listed below:

• Further work on the stability assessment method

• Representation of Asynchronous Machines

• Security assessment of aperiodic small signal stability

• Improvements of the assessment algorithm computational time

• Visualizing other characteristic lines in the normalized impedance plane

• Utilizing Early Warning for Early Prevention of System Blackouts

Each of the above listed points will be elaborated in the following.

Further work on the stability assessment method

The time synchronized PMU-snapshot provide an informationregarding the
systems time domain trajectory. It could be useful to extendthe current
assessment method such that previously observed system conditions could
be used to predict future system states. In this way, it becomes possible to
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identify a critical operating point that is slowly moving towards the stability
boundary before it crosses the boundary. Furthermore, an estimation of when
the boundary is crossed could be obtained which provides an increased time
window for system operators to apply appropriate countermeasures. It could
as well be useful to express the margins to the stability boundaries in terms
of system load increase. This requires a study of how the machines’ stability
boundaries and their injection impedances are affected by changes in system
consumption. A margin expressed in terms of system loading level might
have a greater practical value for the system operators thana margin for the
rotor angle expressed in degrees.

Representation of Asynchronous Machines

With an increased utilization of wind energy in electric power systems, the
share of power generations from asynchronous generators isincreasing. Asyn-
chronous generators are as well prone to stability problemswhen their me-
chanical input power is greater than the maximum amount of power that can
be injected into the system at the point of their connection.

If the power from a asynchronous machine is injected into a system node of
constant steady state voltage magnitude (voltage controlled node), the pre-
sented assessment method can be used to determine the boundaries of max-
imum injectable power. If, on the other hand, the power is notinjected into
a node of constant voltage, the power injection from the asynchronous ma-
chine must be represented in such a way that an assessment of its operating
condition can be carried out.

Security Assessment of Aperiodic Small Signal Stability

A fast security assessment could be carried out by using the presented as-
sessment method together with a method that can quickly determine the
steady state post-fault conditions following a given contingency. In this way,
aN−1 contingency study of aperiodic small signal stability could be carried
out. This requires though that a method for fast determination of theN−1
steady state conditions is developed.

Improvements of the Assessment Algorithm Computational Time

A work can be carried out for improving the computational efficiency of
the presented algorithm. By stopping the LU-factorization process when
nodes of constant voltage magnitude are to be processed can results in a
significant reduction of the number of fill-ins generated andhence a reduced
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computational burden. Further reductions in computational burden could
be obtained, if ordering algorithms are developed that reorder the rows and
columns ofYT

link andY link respectively for improving the efficiency.

Visualizing Other Characteristic Lines in the Normalized Impedance
Plane

It was shown how the mapping of operating points into a normalized in-
jection impedance plane could be carried out such that theiractual values
constant voltage ratioV/E and constant phase angle margin∆δ were repre-
sented in the normalized plane. For advancing the visualization of multiple
operating points several other mappings of system characteristic could be of
interest. The operating points could be mapped such that thevalues of two
variables out ofP,Q,V or ∆δ is preserved after the mapping.

Utilizing Early Warning for Early Prevention of System Blackou ts

The next natural step following the development of a method that provides
an early warning for an emerging stability problem is to focus the research
on methods that can automatically determine appropriate control actions for
preventing the occurrence of the problem.
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AppendixA
Derivation of equation 5.1 on page 64

E ZLN = ZLN∠φ

= R+ jX

V

P,Q

ZLD = ZLD∠θ

Figure A.1: The simple two bus system and the relevant notations used in the fol-
lowing.

It is desired to derive an expression that describes the relationship between
the voltageV, delivered powerP and delivered reactive powerQ. The line
currentI can expressed as:

I =
E

ZLN +ZLD
(A.1)

It is convenient to perform the following calculations in terms of the magni-
tude of the variables rather than using a complex number representation of
the variables. When the complex voltageE is selected as reference for the
system (E = E∠0), the magnitude of the current can be written as:

I =
E

√

(ZLN cos(θ)+ZLD cos(φ))2+(ZLN sin(θ)+ZLD sin(φ))2
(A.2)

This can also be written in simplified form as (Kundur 1994, p.961):

I =
1√
F

E
ZLN

(A.3)
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Where:

F = 1+

(

ZLD

ZLN

)2

+2

(

ZLD

ZLN

)

cos(θ−φ) (A.4)

The magnitude of the voltageV can be expressed as:

V = ZLDI

=
1√
F

ZLDE
ZLN

(A.5)

The supplied power to the load can be written as:

P=VI cosφ

=
ZLD

F

(

E
ZLN

)2

cos(φ)
(A.6)

As mentioned above, is it desired to find an expression for therelationship
between the voltageV P andQ. For the purpose of doing so, the following
expressions become useful:

cos(θ) =
R

√

(R2+X2)
, sin(θ) =

X
√

(R2+X2)
(A.7)

cos(φ) =
P

√

(P2+Q2)
, sin(φ) =

Q
√

(P2+Q2)

By using (A.7), the expression cos(θ−φ) can be written as:

cos(θ−φ) = cos(θ)cos(φ)+sin(θ)sin(φ) =
RP+XQ

√

(R2+X2)(P2+Q2)
(A.8)

The expressionZLD represents the magnitude of the load impedance, which
can be calculated as:

ZLD =
V2

S
=

V2
√

P2+Q2
(A.9)
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The expressionZLN represents the magnitude of the line impedance which
can be calculated as:

ZLN =
√

R2+X2 (A.10)

By using the expressions in (A.7),(A.8),(A.9) and (A.10), the expression in
(A.6) can be rewritten as:

P=
ZLD

F

(

E
ZLN

)2

cos(φ)

=
V2E2P

Z2
LN(P

2+Q2)F

=
V2E2P

Z2
LN(P

2+Q2)

(

1+
(

ZLD
ZLN

)2
+2

(

ZLD
ZLN

)

cos(θ−φ)
)

=
V2E2P

Z2
LN(P

2+Q2)

(

1+
(

V4

Z2
LN(P

2+Q2)

)

+2

(

V2(RP+XQ)

ZLN(P2+Q2)
√

(R2+X2)

))

=
V2E2P

V4+V22(RP+XQ)+(R2+X2)(P2+Q2)
(A.11)

By rearranging (A.11) yields:

V4+V2(2(RP+XQ)−E2)+(R2+X2)(P2+Q2) = 0 (A.12)

which is the same expression as (5.1) on page 64.
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