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The Liner Service Network Design Problem (LSN-DP) is the problem of constructing a set

of routes for a heterogeneous vessel fleet of a global liner shipping operator. Routes in the liner

shipping context are non-simple, cyclic routes constructed for a specific vessel type. The problem

is challenging due to the size of a global liner shipping operation and due to the hub-and-spoke

network design, where a high percentage of the total cargo is transshipped. We present the first

construction heuristic for large scale instances of the LSN-DP. The heuristic is able to find a

solution for a real life case with 234 unique ports and 14000 demands in 33 seconds.

Literature overview: A MIP model of the LSN-DP consist of a highly unconstrained routing

problem subject to a large degree of symmetry and a multicommodity flow problem dominating

the constraint set and accountable for a large fraction of the cost. Previous work on liner service

network design may be found in [1],[2], [3] and [4]. The models are distinct with regards to

transshipments and the vessel fleet. In the early paper of [1] transshipments are not supported,

whereas they are supported in [2], [3] and [4]. Transshipment costs are accounted for in the

objective function of [2],[4] as opposed to [3]. The characteristics of the fleet differ as to whether

it is heterogeneous for every vessel [1],[2] or consist of a heterogeneous fleet of homogeneous vessel

classes [3],[4]. Non-linear capacity constraints are found in [1],[2] assuming that a vessel may

complete its route an integral number of times during the planning horizon. Integrality is not

imposed by [4]. The weekly frequency constraint is introduced by [3] assuming a number of

homogeneous vessels assigned to each service to offer a weekly visit to each port en route with the

capacity of the vessel class in question. Optimal results for smaller instances are presented by [2]

and [4]. The approaches of [1],[2] and [3] have focused on solving the liner service network design

problem with traditional decomposition and integer programming methods and fail to produce



results for realistic network sizes of a global liner shipping operator anno 2009. This is addressed

by [4] benchmarking a tabu search approach presenting results within 3-5% of the optimal solution

for up to 7 ports. The multicommodity flow problem is solved in each iteration, which is reported

by [4] to become computationally expensive already for the 7 port instance. A case study of 120

ports in [4] show that a heuristic approach may scale to large instances but no execution time is

reported and the quality of the solution is hard to evaluate. It is reported to visit important ports

infrequently. A global network connects several hundred ports worldwide and the corresponding

forecasted cargo demand comprises a commodity set of 4 orders of magnitude. Methods based on

relaxation of the proposed models or simply evaluating the objective function during a search is

not computationally efficient for large scale problems.

Heuristic approach: A solution to the LSN-DP is a set of routes covering the ports serviced

by the shipping operator and transporting the forecasted cargo demand. Viewed as a graph

partitioning problem the solution is a set of strongly connected components with a high degree of

interconnection. The construction heuristic is based on the Multiple Quadratic Knapsack Problem

(MQKP) and relies on a graph of the current schedule, which is divided into a set of dense subgraphs

related by demand, expected transshipment flow and geographical proximity. A solution found by

the construction heuristic is expected to be feasible and realistic, but the quality of the solution

cannot be guaranteed as the heuristic cannot account for the flow problem and the transshipment

cost. In MQKP a set of mutually exclusive items i ∈ V are placed in R knapsacks with different

weight bounds Cr. The objective is to maximise the profit of the knapsacks defined by the profit

matrix P .
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The variables xri indicate whether item i is included in the r’th knapsack. The knapsack constraint

(2) makes the total item weight obey the bound Cr and constraints (3) ensure that items are

mutually exclusive to the knapsacks. When the MQKP is applied to the LSN-DP the knapsack

items i ∈ V are the accumulated port visits of each port t ∈ T and the knapsacks r ∈ R represent

services, which are a specific vessel class visiting a sequence of ports. Let A be the set of vessel

classes and let Na denote the number of available vessels of class a ∈ A in the fleet. Let Ca

denote the capacity in TEU of a single vessel of class a ∈ A. The number of services/knapsacks

is dependent on the expected rotation time of a service σ(Ca). σ(Ca) depends on vessel capacity



as large vessels are typically assigned to cross regional services and small vessels are assigned

to regional services. The number of knapsacks for the LSN-DP is hence |R| =
∑
a∈A |Ra| =∑

a∈Ad
Na

σ(Ca)e. The profit matrix P defines each entry pij = f(lij , dij , hij) where lij is the sailing

distance in nautical miles and dij is the demand between ports i, j ∈ V . hij is the potential

hub flow between port i ∈ V and a hub port j ∈ H ⊂ V , where H ⊂ V are ports with a small

percentage of demand compared to the terminal capacity. A port t ∈ T may be visited multiple

times mt by multiple services according to the capacity and schedule requirements of a port. Let

M be a vector of size |T | containing the number of weekly visits to each port t ∈ T . In the MQKP

port t ∈ T is duplicated mt times for the knapsack items i ∈ V , V = {T ×M} to represent the

current schedule of ports. It is important to observe the weekly frequency constraint of the original

problem in order to obtain a feasible solution to the LSN-DP using the construction heuristic. To

ensure feasibility, each knapsack r ∈ R is required to provide a Hamiltonian cycle of the items in

knapsack r. The length of the cycle cannot exceed the mileage coverable by the vessels assigned

to knapsack r. Edge variables yrij and enumeration variables uri are introduced in the MQKP to

order the ports in each knapsack into a simple, cyclic route constrained by σ(Ca). taij express the

sailing time between ports i and j and tai is the expected time spent in port i for vessel type a.
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yrij ∈ {0, 1} ∀i ∈ V, j ∈ V, r ∈ R (13)

uri ∈ Z+ ∀i ∈ V, r ∈ R (14)

Constraints (6) ensure that an edge variable can only be activated if both endpoints of the arc

are included in the knapsack. Constraints (7) ensure a cyclic route. Constraints (8) ensure that

the cyclic route is simple and constraints (9) that the route is connected. Constraints (10) are the

weekly frequency constraint ensuring that the simple, cyclic route has a voyage duration less than

the expected rotation time.



The MQKP is solved using a greedy heuristic, where the knapsacks apply the football teaming

principle taking turns at picking the best remaining item max ∆f(lij , dij , hij), i ∈ r, j ∈ V̄ where

V̄ are the unassigned items.

In a hub-and-spoke network design large vessels are deployed on deep sea services to achieve

economies of scale[6], while smaller vessels are deployed between spoke and hub. The algorithm is

multilayered to reflect the hub-and-spoke network design of major liner shipping operators. The

function f(lij , dij , hij) is adapted to each layer of the network and the ports are correspondingly

assigned to the layers according to their capacity requirements.

Computational results: The computational results are based on a real life case from Maersk

Line with 234 unique ports and 14000 demands. The MQKP is able to find a solution in 33

seconds for the entire network with some ports unplaced. The solutions have been evaluated

by optimization managers at Maersk Line regarding them as realistic with some modifications.

Current work is on implementing layer specific seeding to improve the number of unplaced ports.

We evaluate the actual flow and the network cost of the solution. We believe that meta heuristic

approaches are needed to optimize liner service networks of global shipping operators and are

working on specializing the Adaptive Large Neighbourhood Search [5] VRP framework towards

the context of transshipments and cyclic routes. The first step is the construction heuristic for

the LSN-DP presented here. The ALNS is to search for an improved solution according to a more

sophisticated objective function and cargo allocation detection.
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