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Abstract—The paper presents an Angular Spectrum Approach
(ASA) for simulating pulsed non-linear ultrasound fields. The
source of the ASA is generated by Field II, which can simulate
array transducers of any arbitrary geometry and focusing. The
non-linear ultrasound simulation program - Abersim, is used as
the reference. A linear array transducer with 64 active elements
is simulated by both Field II and Abersim. The excitation is
a 2-cycle sine wave with a frequency of 5 MHz. The second
harmonic field in the time domain is simulated using ASA.
Pulse inversion is used in the Abersim simulation to remove the
fundamental and keep the second harmonic field, since Abersim
simulates non-linear fields with all harmonic components. ASA
and Abersim are compared for the pulsed fundamental and
second harmonic fields in the time domain at depths of 30 mm,
40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM)
are {0.97, 0.95} mm at the focal depth for the fundamental
fields for ASA and Abersim, and {0.56, 0.55} mm for the second
harmonic fields. Full widths at -12 dB are {1.27, 1.26} mm for
the fundamental fields for ASA and Abersim, and {0.77, 0.73}
mm for the second harmonic fields. The calculation time, for
the second harmonic fields, using ASA is 12 minutes and for
all harmonic fields using Abersim is 14 hours. Compared to
Abersim, the error of ASA for calculating the second harmonic
fields is 1.5% at -6 dB and 6.4% at -12 dB, and the calculation
time is reduced by a factor of 70.

I. INTRODUCTION

An efficient optimization of non-linear ultrasound imaging
can be carried out using simulation programs, which should
be fast and yield accurate results. Simulation of non-linear
wave equation is usually solved by numerically integrating the
KZK [1]–[4] or Burgers equation [5] based on the operator
splitting method [6]. This makes the simulation slow and
inefficient, since a small stepsize in the propagating direction
has to be used each time in calculation of the forward non-
linear acoustic pressure. Thus, hundreds of steps are needed, if
the desired simulated points are far from the original acoustic
source.

Our previous studies [7], [8] presented an analytical solution
to the non-linear Westervelt equation [9], where an Angular
Spectrum Approach (ASA) has been used to solve it in
one iteration step. This makes the simulation of non-linear
ultrasound fields hundreds of times faster than using numer-
ical solutions. The previous studies focused on simulating
the monochromatic field. However, in an ultrasound imaging

system, a short pulse is usually emitted from the transducer.
This yields a high bandwidth signal, and calculation with a
single temporal frequency is insufficient. The purpose of this
paper is to develop the ASA for simulating pulsed non-linear
ultrasound fields. The source for the ASA will be created by
Field II [10], [11] that can simulate array transducers of any
arbitrary geometry, focusing, and excitation. A released non-
linear ultrasound simulation program - Abersim [12], [13] is
used as the reference to validate the accuracy of ASA.

The solution for the pulsed non-linear ultrasound field is
given and the implementation is described in Section II. The
simulated results using both ASA and Abersim are illustrated
in Section III.

II. METHOD

A solution to the Westervelt equation for monochromatic fields
using the ASA can be expressed by [14], [15]

P̂2(kx, ky, z1) =
βk2

2π2ρ0c20

∫∫
P̂0(k

′
x, k
′
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′
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]
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where

kz2 =
√
4k2 − k2x − k2y,

k′z =
√
k2 − (k′x)

2 − (k′y)
2,

k′′z =
√
k2 − (kx − k′x)2 − (ky − k′y)2.

P̂0 and P̂2 are the pressures of the source and second harmonic
components in k-space. c0 is sound speed, ρ0 is medium
density, β is the coefficient of nonlinearity, and k is the wave
number. kx and ky are wave numbers along the x-axis and
y-axis as shown in Fig. 1, which also shows the acoustic
propagation and calculation of the second harmonic fields p2
using the ASA. The first plane at z = z0 is the source, which
is close to the transducer surface and, thus, non-linear effect
at z = z0 can be neglected. The source plane is calculated
using Field II. The second harmonic component at z = z1 is
then obtained after propagation using the ASA as formulated
in (1).
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ultrasonic transducer

Fig. 1: Schematic view of the acoustic propagation using ASA - The
planes are parallel to the transducer surface. Source plane at z = z0;
Simulated plane at z = z1.

The previous solution using (1) is for simulating monochro-
matic fields. To expand it to a high bandwidth ultrasound
field, each temporal frequency component is supposed to be
calculated individually. In this case, (1) can be transferred and
given by

P̂2(kx, ky, z1, 2f) =
2βf2

ρ0c40

∫∫
P̂0(kx − k′x, ky − k′y, z0, f)
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]
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′
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′
y, z0, f)dk

′
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′
y, (2)

where f is the temporal frequency variable. P̂0(kx, ky, z0, f)
is the Fourier transform of p0(x, y, z0, t) that is the pres-
sure for the ASA source in time domain and calculated
by Field II using the function ”calc hp” [16]. A linear
array transducer is configured by Field II using the func-
tion ”xdc focused array”. The transducer parameters, and
impulse and frequency responses used in the simulation are
shown in Table I and Fig. 2, respectively. These data refer
to a commercially available linear array transducer. The size
of a kerf for the transducer is too small and not specified by
Abersim. To match it, the kerf is set to zero in Field II. The
fundamental and second harmonic components are obtained
using the ASA by implementing (2) as shown in Fig. 1, where
the bandwidth of the second harmonic components are twice
of the fundamental one. The time domain pressure p1 and p2
at the simulated plane are calculated using a 3D (2D for space
and 1D for time) inverse Fourier transform.

The transducer with the same setup as shown in Table I is
also simulated in Abersim [17], [18] as a reference. A pulse
inversion method [19], [20] is used to remove the fundamen-
tal component. This will be made by sending two inverted
excitations in turn and adding the reflected simulated signals
resulting in the cancelation of odd harmonic components. Then
a bandpass filter is applied to remove the 4th and higher even
harmonic components.

TABLE I: Parameters of the transducer
Center frequency f0 7 MHz
Bandwidth bw 60%
Sampling frequency fs 100 MHz
Excitation 2-cycle sine wave
Excitation’s frequency 5 MHz
Electronic focus 40 mm
Elevation focus 20 mm
Number of elements 64
Pitch 0.208 mm
Height of element 4.5 mm
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Fig. 2: Impulse and frequency responses of the simulated transducer

III. RESULTS

The emitted pressure fields are calculated by the ASA and
Abersim. Fig. 3 presents the fundamental and second harmonic
fields in the time domain at the focal depth 40 mm from the
transducer surface. A visibly good agreement can be found
from the comparison of the results. The calculation time, for
Abersim, which can simulate all harmonic fields, is 14 hours,
and for ASA, it is 12 minutes for simulating the second
harmonic fields. The simulations are made by Matlab 7.11.0
(R2010b) using a computer with 2.4 GHz Q6600 CPU and
4 GB memory. To further investigate the ASA results, the
fundamental and second harmonic fields at different depths are
calculated by ASA and Abersim as shown in Figs. 4 and 5. The
full widths at -6 dB and -12 dB of the results using different
methods are compared and shown in Table II.

TABLE II: Comparison of the full width (FW)
Depth = 30 mm ASA Abersim Error

FW at -6 dB 2.97 mm 2.98 mm 0.6%
Fundamental

FW at -12 dB 4.40 mm 4.41 mm 0.2%
FW at -6 dB 2.56 mm 2.62 mm 2.5%

2nd harmonic
FW at -12 dB 3.37 mm 3.45 mm 2.4%

Depth = 40 mm ASA Abersim Error
FW at -6 dB 0.97 mm 0.95 mm 1.7%

Fundamental
FW at -12 dB 1.27 mm 1.26 mm 1.2%
FW at -6 dB 0.56 mm 0.55 mm 1.5%

2nd harmonic
FW at -12 dB 0.77 mm 0.73 mm 6.4%

Depth = 60 mm ASA Abersim Error
FW at -6 dB 6.06 mm 5.99 mm 1.1%

Fundamental
FW at -12 dB 8.90 mm 8.82 mm 1.0%
FW at -6 dB 5.29 mm 5.21 mm 1.4%

2nd harmonic
FW at -12 dB 7.01 mm 6.89 mm 1.6%
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Fig. 3: Emitted ultrasound fields calculated by ASA and Abersim - Fundamental and second harmonic fields at the focal depth (40 mm) are
shown in the figure with 6 dB between two adjacent color lines.
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Fig. 4: Emitted fields calculated by ASA and Abersim - Fundamental and second harmonic fields are at 30 mm from the transducer.
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Fig. 5: Emitted fields calculated by ASA and Abersim - Fundamental and second harmonic fields are at 60 mm from the transducer.

IV. CONCLUSION

The pulsed non-linear ultrasound fields are successfully sim-
ulated by the ASA, whose accuracy is investigated and com-
pared to Abersim. The ASA using the source generated by
Field II, makes the non-linear ultrasound simulation flexible
to any kind of transducer with arbitrary focus and excitation.
The calculation speed using the ASA is 70 times faster than
using Abersim for simulating the second harmonic fields.
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