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Abstract The practical implementation of the European Water Framework 
Directive has resulted in an increased focus on the groundwater-surface water 
interaction zone. A gap exists with respect to preliminary assessment 
methodologies that are capable of evaluating and prioritising point sources of 
contamination. In particular, adaptive management tools designed to work 
with sparse data sets from preliminary site assessments are needed which can 
explicitly link contaminant point sources with groundwater, surface water and 
ecological impacts. Here, a novel integrated modelling approach was 
employed for evaluating the impact of a TCE groundwater plume, located in 
an area with protected drinking water interests, to human health and surface 
water ecosystems. This is accomplished by coupling the system dynamics-
based decision support system CARO-Plus to the aquatic ecosystem model 
AQUATOX via an analytical volatilisation model for the stream. The model is 
tested on a Danish case study involving a 750 m long TCE groundwater plume 
discharging into a stream. The initial modelling results indicate that TCE 
contaminant plumes with µgL-1 concentrations entering surface water systems 
do not pose a significant risk to either human or ecological receptors. 
Key words groundwater-surface water interfaces; integrated modelling; system dynamics; 
contaminated sites; uncertainty 

 
INTRODUCTION 
 
Due to increasing global exploitation of both stream water and groundwater resources, 
a better awareness of the connections between these two systems and the roles they 
play in maintaining water quality is essential, as well as on how human activities may 
impair them. In recognition of this, implementation of the Water Framework Directive 
within the individual countries necessitates the evaluation of all types of contamination 
sources within a specific watershed in order to assess their direct impact on water 
quality and ecosystem health. Chlorinated solvents, such as trichloroethylene (TCE), 
and pesticides are among the most prevalent and serious contaminants of surface and 
groundwater resources in the world (e.g. Winter et al., 1998). In Denmark this is a 
major problem because almost all drinking water comes directly from groundwater 
(Henriksen et al., 2008). Due to their widespread use, mobility and persistence, 
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chlorinated volatile organic compounds (VOCs) are considered to have the greatest 
potential to discharge to surface waters (Ellis and Rivett, 2007). This paper focuses on 
the ecological impact of VOCs, specifically those discharging to streams from point 
sources in groundwater. 
 
MODELLING STUDY 
 
Modelling approach 
An integrated modelling approach was used to support both the human health and 
ecological risk assessment for TCE at this site. This was accomplished by coupling the 
system dynamics-based decision support system CARO-Plus (Serapiglia et al., 2005; 
McKnight and Finkel, 2008) to the process-based aquatic ecosystem model 
AQUATOX (Park et al., 2008) via a simple analytical volatilization model, which 
could be shown to be the dominant removal process in the stream at this site (see 
McKnight et al., 2010). 
 
Case study site 
The aquifer at Skensved is contaminated by TCE originating from an auto lacquer 
shop, which has used the solvent for degreasing metal parts since 1974. A leaking 
storage tank was found in 1993 where TCE had been seeping directly into the ground 
below, with a plume extending up to 1000 m (see Fig. 1). Although little data exists 
regarding the source zone, measured TCE concentrations (in the mgL-1 range) reveal 
the presence of separate phase of contaminant and show that the source will not be 
depleted for many decades (McKnight et al., 2010). The TCE plume is currently under 
hydraulic control through the implementation of pump-and-treat (GEO, 2009). 
 

 
Fig. 1 Propagation of the TCE contaminant plume at the Skensved site (McKnight et al., 
2010). 
 
RESULTS 
 
Impact of TCE on Skensved stream 
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This section shall summarize previous findings from McKnight et al. (2010), which 
was focused on TCE. Volatilization was found to rapidly attenuate TCE concentrations 
in the surface water. Thus, only a 300 m stream reach failed to meet surface water 
quality criteria. A human health risk assessment of surface water found no risk for the 
developed worst-case scenario, i.e. children in a recreational setting. Risk was only 
found to exist if the groundwater was to be used as drinking water. An ecological risk 
assessment found that the TCE contamination does not impact the stream ecosystem.  
 
Impact of VOCs 
In order to generalise the findings in the case study, the study was extended to 
additional volatile organic compounds, see Table 1, for a range of contaminant 
concentration scenarios (indicative for different flow conditions). Starting from the 
point source discharge of 15 gd-1 (e.g. predicted for TCE) in surface water, the 
concentrations were then increased (or decreased) by factors of ten in order to 
determine the “threshold” at which toxicant stress could perturb the AQUATOX 
ecosystem model. 
 

Table 1 Physico-chemical and ecotoxicological parameters for the organic contaminants. 
Parameter Benzene TCE PCE Naphthalene 
Molecular weight [g/mol] 78.12 131.39 165.83 128.17 
Solubility [mg/L] 1790 1280 206 31 
Log Kow [-] 2.13 2.42 3.4 3.3 
Kp sediment [L/kg]* 146 253 1610 1333 
Vapor pressure [mm Hg] 94.8 69.0 18.5 0.085 
Henry constant – 15 deg. C [atm*m3/mol] 0.0037 0.00615 0.01135 0.000395 
LC50 Chironomid, 48 hr acute test [ug/L] 34000 42000 14169** 2810 
LC50 Minnow, 48 hr acute test [ug/L] 12500 52000 10800 1990 
*Calculated dynamically by AQUATOX using Log Kow, pH and pka. 
**Calculated by AQUATOX, regression using D. magna. 

 
Figure 2 illustrates the modelling results for predicted biomass patterns for (A) 
chironomid (benthic invertebrate) and (B) minnow (representative fish species). For 
the base case scenario (15 gd-1), water volume was found to be the limiting factor most 
influencing the biomass concentration. Results for the perturbed and control scenarios 
were identical. A clear threshold value could be determined for chironomid at 1500 gd-

1, whereas the minnow was already impacted at 150 gd-1. Interestingly, at 150 gd-1, the 
simulated chironomid actually increases during high TCE concentration exposure, e.g. 
most likely due to decreased predation. 
 Similar figures were created for tetrachloroethylene (PCE), benzene and 
naphthalene (data not shown). PCE and benzene produced comparable results to that of 
TCE, the only notable exception being that for benzene, the clear threshold for 
chironomid occurred first at 15,000 gd-1. For naphthalene, the results were simply 
shifted one order of magnitude smaller, i.e. 1.5 gd-1 produced results similar to TCE 
base case results (15 gd-1) and the threshold value could be found already at 150 gd-1. 
Sensitivity analyses point to the importance of the parameter Kp sediment (see Table 
1) especially for sediment feeders (e.g. chironomid), as well as the ecotoxicology 
parameter LC50, which determines the concentration at which mortality for 50% of the 
species occurs. Additional physico-chemical properties, such as lower vapour pressure 
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and lower solubility, most likely explain the increased ecosystem sensitivity towards 
the compound naphthalene. 
 

 
Fig. 2 Predicted biomass patterns for (A) chironomid and (B) minnow 
over time for four TCE concentration scenarios. Note that in (A) water 
volume and (B) TCE concentration is shown on the right-hand y-axis. 
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