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Adaptive modelling and forecasting of offshore wind
power fluctuations with Markov-switching autore-
gressive models
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Abstract

Wind power production data at temporal resolutions of a few minutes exhibits successive periods with

fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolu-

tion of some explanatory variable. Our proposal is to capture this regime-switching behaviour with an

approach relying on Markov-Switching AutoRegressive (MSAR) models. An appropriate parameteriza-

tion of the model coefficients is introduced, along with an adaptive estimation method allowing to ac-

commodate long-term variations in the process characteristics. The objective criterion to be recursively

optimized is based on penalized maximum-likelihood, with exponential forgetting of past observations.

MSAR models are then employed for 1-step-ahead point forecasting of 10-minute resolution time-series

of wind power at two large offshore wind farms. They are favourably compared against persistence and

AutoRegressive (AR) models. It is finally shown that the main interest of MSAR models lies in their

ability to generate interval/density forecasts of significantly higher skill.
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1 Introduction

Future developments of wind power installations are more likely to take place offshore, owing to

space availability, less problems with local population acceptance, and more steady winds. This is

especially the case for countries that already experience a high wind power penetration onshore,

like Germany and Denmark. This latter country hosts the two largest offshore wind farms world-

wide: Nysted and Horns Rev, whose nominal capacities are of 165.5 and 160 MW, respectively.

Today, each of these wind farms can supply alone 2% of the whole electricity consumption of Den-

mark (Mandelbaum 2002). Danish authorities have actually formulated the objectives of having

50% of the electricity consumption met by wind energy at the horizon 2025 (Ea Energy Analyses

2007), mainly by the commissioning of more large offshore wind parks. Such large offshore wind

farms concentrate a high wind power capacity at a single location. Onshore, the same level of in-

stalled capacity is usually spread over an area of significant size, which yields a smoothing of power

fluctuations (Focken et al. 2002). This smoothing effect is hardly present offshore. The magnitude

of power fluctuations may thus reach very significant levels. Characterizing and modelling the

power fluctuations for the specific case of offshore wind farms is a current challenge (Akhmatov

2007; Hendersen et al. 2003), for better forecasting offshore wind generation, developing appropri-

ate control strategies, or alternatively for simulating the combination of wind generation with stor-

age or any form of backup generation. A discussion on these aspects is available in Sørensen et al.

(2007). So far the focus in the wind power forecasting literature has been on forecast horizons in the

range of hours to days for energy trading, scheduling and economic dispatch, see (Costa et al. 2008;

Giebel et al. 2003) and references therein. As wind power penetration reaches a certain level, and

with large-scale wind farms injecting power at a single point of the electricity network, it becomes

crucial to have new types of forecasts with horizons of a few minutes ahead. Two example appli-

cations are: (i) the optimal operation of reserves for the case of the Transmission System Operator

(TSO), for which the relevant horizons is of 10-15 minutes (Sørensen et al. 2007); or (ii) the use of

forecasts as input to the (offshore) wind farms controllers themselves, for which the typical time

step is of 5-10 minutes (Kristoffersen and Christiansen 2003).

When inspecting offshore wind power production data averaged at a few-minute rate, one ob-

serves sudden changes in the fluctuations characteristics at time scales of a few hours, which so

far might be best explained by local atmospheric changes e.g. frontline passages and rain show-

ers (Sørensen et al. 2008). Actually, analysis of corresponding wind speed data in the frequency do-

main reveals that changes in the frequency and magnitude of fluctuations may be the combination

of diurnal, mesoscale, and local effects (Vincent et al. 2008). These meteorological phenomena add

complexity to the modelling of wind power production, which is already non-linear and bounded ow-

ing to the characteristics of the wind-to-power conversion function, the so-called power curve. Such

succession of periods with power fluctuations of lower and larger magnitudes calls for the use of

regime-switching models. Recently, Pinson et al. (2008) showed that for the case of the Nysted and
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Horns Rev wind farms, Markov-switching approaches, i.e. for which the regime sequence is not di-

rectly observable but is assumed to be a first-order Markov chain, were more suitable than regime-

switching approaches relying on an observable process e.g. using Smooth Transition AutoRegres-

sive (STAR) models. Note that the idea of employing Markov-Switching AutoRegressive (MSAR)

models has also been proposed by e.g. Ailliot et al. (2006) for the modelling of the spatio-temporal

evolution of wind fields. Despite the final application being somewhat different, the developments

of Ailliot et al. (2006) also go along the idea that regime switches in wind-related processes may be

appropriately modelled with a hidden Markov Chain. Though, a drawback of the Markov-switching

approach described by Pinson et al. (2008) is that model coefficients are not time-varying, while it

is known that wind generation is a process whose dynamic features have smooth long-term vari-

ations, at time scales of weeks to months (Costa et al. 2008; Giebel et al. 2003). Focusing on wind

speed first, a number of recent papers have shown that statistical models employed for modeling

and forecasting at time-scales in the order of a few hours would clearly benefit from adaptive estima-

tion. If taking the example of the space-time regime-switching model of Gneiting et al. (2006), or of

the multivariate wind vector model of Hering and Genton (2009), they both concluded that an opti-

mal size for the sliding window used for adaptive estimation is of 45 days. Similarly for the question

of (probabilistic) forecasting of wind speed at time scales of hours to days, Sloughter et al. (2009)

showed that estimation over a sliding window of fairly similar size leads to optimal forecast perfor-

mance. This is due to some smooth variations in local wind dynamics, which are difficult to account

for in a parametric form directly in the models. When considering offshore wind speed at a time

resolution of a few minutes, recent works by Vincent et al. (2008) (using 4 years of wind speed data

recorded at the Horns Rev wind farm) have clearly demonstrated how the spectral characteristics

of offshore wind speed exhibit frequent and abrupt changes, in parallel to smooth variations at the

time-scales of months and seasons. An important implication of the analysis works of Vincent et al.

(2008) is that assuming stationarity of wind power fluctuations dynamics does not appear appro-

priate. These smooth variations in the characteristics of the process dynamics are more complex

than a simple periodicity in the signal or in the coefficients of a dynamic model. Furthermore, if

focusing then on the specific case of wind power, one should realize that wind power generation

is a complex nonlinear function of meteorological conditions, not of wind speed and direction only.

Air density and temperature for instance can influence the power curve of a wind farm. There can

also be more practical (engineering) reasons to consider that the wind power generation dynamics

smoothly evolve with time, related to the ‘life’ of the wind farm itself. The dynamic behaviour of

each individual turbine does change with time, owing to varying shadowing effects, ageing, failures,

maintenance, non-optimal facing of the wind, potentially decommissioning and recommissioning,

etc. The need for adaptivity of statistical models when considering wind power generation dynamics

has already been clearly motivated by e.g. Sanchez (2006) based on example data. A large number

of recent works on wind power modeling and forecasting follow, motivate and support the idea such

that adaptive estimation is a key feature of statistical models employed, e.g. (Møller et al. 2008;

Pinson and Madsen 2009; Sanchez 2008).
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The main objective of the present paper is to introduce a MSAR model whose coefficients are adap-

tively and recursively estimated, with application to the modelling and forecasting of offshore wind

power fluctuations. The parameterization of the model coefficients employed here is inspired by

those initially proposed in (Collings et al. 1994; Collings and Rydén 1998) and in (Holst et al. 1994).

Adaptivity in time is achieved with exponential forgetting of past observations. In addition, the for-

mulation of the objective function to be minimized at each time-step includes a regularization term

that permits to increase the generalization ability of estimated models, in addition to improving nu-

merical stability of the recursive estimation procedure. The motivation for introducing a recursive

estimation method is to lower computational costs by updating parameter estimates based on newly

available observations only. Note that the meaning of recursive estimation is here different with

that commonly employed in the context of Markov Chain Monte Carlo (MCMC) techniques (Scott

2002), which solely implies the use of computing-efficient algorithms. Recursivity is in the present

paper specifically related to time-adaptivity and potential application to a real-world online en-

vironment. This also motivates the choice for a maximum likelihood type of estimation method,

since it can fairly easily be made time-adaptive and recursive. In parallel, advantage is taken of

the possibility to analytically formulate predictive densities from Markov-switching autoregressive

models for associating one-step ahead point forecasts with prediction intervals. Predictive densi-

ties are given as a mixture of conditional densities in each regime, the quantiles of which can be

obtained by numerical integration methods.

The paper is structured as following. A general formulation of the type of models considered, i.e.

MSAR models, is introduced in Section 2. The specific MSAR model parameterization employed

is also described. Then, Section 3 focuses on the adaptive estimation of model coefficients, by first

introducing the objective function to be minimized at each time-step, and then deriving an appropri-

ate recursive estimation procedure. The issue of forecasting is dealt with in Section 4, by describing

how one-step ahead point forecasts and quantile forecasts can be obtained, from a formulation of

one-step ahead predictive densities. Simulations in Section 5 allow us to illustrate the tracking

properties of the proposed estimation method. MSAR models are then applied for modelling and

forecasting power fluctuations at offshore wind farms in Section 6, the coefficients of which are

adaptively estimated with the method introduced. Data originates from both Nysted and Horns

Rev wind farms, and consists of power averages with a 10-minute temporal resolution. The charac-

teristics of the estimated models are discussed. Our forecast performance evaluation concentrates

on point, interval and density forecasts. Section 7 ends the paper with concluding remarks.
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2 The Markov-switching autoregressive model and the pa-

rameterization of its coefficients

Let {yt}, t = 1, . . . , n, be the time-series of measured power production over a period of n time steps.

The power production value at a given time t is defined as the average power over the preceding

time interval, i.e. between times t − 1 and t. For the modelling of offshore wind power fluctuations,

the temporal resolution of relevant time-series ranges from 1 to 15 minutes. Hereafter, the notation

yt may be used for denoting either the power production random variable at time t or the measured

value.

In parallel, consider {zt} a regime sequence taking a finite number of discrete values, zt ∈ {1, . . . , r}, ∀t.

It is assumed that {yt} is an AutoRegressive (AR) process governed by the regime sequence {zt} in

the following way,

yt = θ(zt)⊤xt + ε
(zt)
t , ∀t (1)

with

θ(z) = [θ
(z)
0 θ

(z)
1 . . . θ(z)

p ]⊤, z = 1, . . . , r (2)

xt = [1 yt−1 yt−2 . . . yt−p]
⊤ (3)

and where p is the order of the AR process, chosen here to be the same in each regime for simplicity.

However, the developed methodology could be extended for having different orders in each regime,

since all model parameters will eventually be gathered in a single vector of coefficients, adaptively

estimated with the method described in Section 3. This vector, denoted by Θ, is described below.

One might also prefer to skip the intercept term of the AR models if not deemed necessary, as it

will be the case for one of the case-studies considered, see Section 6. In parallel, {ε(z)
t } is a white

noise process in regime z, i.e. a sequence of independent random variables such that E[ε(z)] = 0 and

σ(z) < ∞. Let us denote by η(z) the density function of the innovations in regime z, which we will

refer to as conditional density in the following, since being conditional to the regime. For simplicity,

it is assumed that innovations in each regime are distributed Gaussian, ε
(z)
t ∼ N (0, σ(z)), and thus

η(z)(ε;Θ) =
1

σ(z)
√

2π
exp

(

−1

2

( ε

σ(z)

)2
)

, ∀z, t (4)

Note that other types of distributions could be assumed for the innovations in each regime. This

would yield significant differences in the formulas to be derived for estimation of the model coeffi-

cients, even though a methodology similar to that introduced hereafter could be employed.

In addition, it is assumed that the regime sequence {zt} follows a first order Markov chain on the
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finite space {1, . . . , r}: the regime at time k is determined from the regime at time k − 1 only, in a

probabilistic manner,

P [zk = j|zk−1 = i, zk−2, . . . , z0] = P [zk = j|zk−1 = i], ∀i, j, k (5)

thus explaining the name of Markov-Switching AutoRegressive (MSAR) given to the resulting

model.

All the probabilities governing switches from one regime to the others are gathered in the so-called

transition matrix P(Θ) = {pij}i,j=1,...,r, for which the element pij represents the probability of being

in regime j given that the previous regime was i, as formulated in (5). Some constraints need to be

imposed on the transition probabilities. Firstly, by definition all the elements on a given row of the

transition matrix must sum to 1,

r
∑

j=1

pij = 1, ∀i (6)

since the r regimes represent all possible states that can be reached at any time. Secondly, all the

elements of the matrix are chosen to be positive: pij ≥ 0, ∀i, j, in order to ensure ergodicity, which

means that any regime can be reached eventually.

In order for constrainst (6) to be met at any time, the transition probabilities are parameterized

on a unit r-dimensional sphere, as initially proposed in (Collings et al. 1994; Collings and Rydén

1998). Indeed, by having pij =
(

sij
)2

, and for each i, the vector si. = [si1 . . . sir]⊤ describing a

location on a unit r-dimensional sphere, we naturally have

r
∑

j=1

pij = ||si.||22 = 1, ∀i (7)

For recursive estimation of coefficients in Markov-switching autoregression, Holst et al. (1994) ar-

gue that a more stable algorithm can be derived by considering the logarithms of the standard

deviations of the model innovations, i.e.

σ̃(z) = ln
(

σ(z)
)

, ∀z (8)

In a similar manner, it is also proposed here to consider the logit transform s̃ij of the sij coefficients

in order to improve the numerical properties of the information matrix to be used in the recursive

estimation scheme,

s̃ij = ln

(

sij

1 − sij

)

, ∀i, j (9)

which also translates to constraining the sij coefficients to the open interval ]0, 1[.
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Finally, the set of coefficients allowing for full characterization of the MSAR model can be summa-

rized as

Θ =
[

θ(1)⊤ . . . θ(r)⊤ σ̃⊤
s̃
⊤
]⊤

(10)

where

θ(z) =
[

θ
(z)
0 θ

(z)
1 . . . θ(z)

p

]⊤

, ∀z (11)

gives the autoregressive coefficients in regime z, while

σ̃ =
[

σ̃(1) . . . σ̃(r)
]⊤

(12)

corresponds to the natural logarithm of the standard deviations of conditional densities in all

regimes, and finally

s̃ =
[

s̃1.⊤ . . . s̃r.⊤
]⊤

(13)

is the vector of logit spherical coefficients summarizing the transition probabilities.

3 Adaptive estimation of the model coefficients

There is a large number of papers in the literature dealing with recursive estimation in Hidden

Markov Models (HMMs), see e.g. (Collings et al. 1994; Collings and Rydén 1998; Holst et al. 1994;

LeGland and Mevel 1997; Rydén 1997; Stiller and Radons 1999). Most of these estimation methods

can be extended to the case of MSAR models, since HMMs are a specific case of the type of models

introduced above, for which only an intercept term is used in the definition of the model for each

regime. However, it is often considered that the underlying model is stationary and that recursive

estimation is motivated by online application and reduction of computational costs only. In contrast

here, the model coefficients are allowed to be slowly varying owing to the physical characteristics

of the wind power generation process. The time-scales of the regime-switches and of the variations

of the MSAR model parameters are assumed to be clearly separable. This assumption comes from

meteorological and physical expertise on the problem at hand. The time scale for regime-switching

is directly related to the successive passages of meteorological fronts, local rain events, or mesoscale

effects, typically being in the order of a few hours. In contrast, the long-term smooth changes in the

model parameters are related to time-scales in the order of weeks to months, such changes in the

model dynamics being mainly influenced by transitions between various synoptic meteorological

regimes, seasonality, changes in the wind farm physical characteristics, etc. This calls for the

introduction of an adaptive estimation method permitting to track such long-term changes in the
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process characteristics. Since a parametric assumption on these smooth changes would certainly be

too rigid, and a parametric model difficult to propose anyways, it is preferred instead to track the

MSAR model parameters in a nonparametric framework by employing an exponential forgetting

scheme.

Hereafter, it is considered that observations are available up to the current point in time t, and

hence that the size of the dataset grows as time increases. The time-dependent objective function

to be minimized at each time step is introduced in a first stage, followed by the recursive procedure

for updating the set of model coefficients as new observations become available.

3.1 Formulation of the time-dependent objective function

If considering a stationary MSAR model (i.e. for which model coefficients do not change with time),

thus not seeking for adaptivity of model coefficients, their estimation can be performed (based on a

dataset containing observations up to time t) by maximizing the likelihood of the observations given

the model. Equivalently, for a chosen model structure, this translates to minimizing the negative

log-likelihood of the observations given the set of model coefficients Θ,

St(Θ) = − ln (P [y1, y2, . . . , yt | Θ]) (14)

which can be rewritten as

St(Θ) = −
t
∑

k=1

ln (uk(Θ)) (15)

with

uk(Θ) = P [yk | yk−1, . . . , y1;Θ] (16)

In contrast, for the case of maximum-likelihood estimation in MSAR models for which it is as-

sumed that model coefficients can be slowly varying, let us introduce the following time-dependent

objective function to be minimized at time t

St(Θ) = − 1

nλ

(

t
∑

k=1

λt−k ln (uk(Θ))

)

+
ν

2
Θ

⊤
Θ (17)

where λ is the forgetting factor, λ ∈ (0, 1), allowing for exponential forgetting of past observations,

and where

nλ =
1

1 − λ
(18)

the effective number of observations is used for normalizing the negative log-likelihood part of the
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objective function. The value of the forgetting factor is typically slightly below 1. Note that (17)

is a penalized version of what would be a usual maximum-likelihood objective function, with ν

the regularization parameter. ν controls the balance between likelihood maximization and mini-

mization of the norm of the model estimates. Such type of regularization is commonly known as

Tikhonov regularization (Tikhonov and Arsenin 1977), or alternatively as ridge regression in the

statistical literature, following Hoerl (1962). It may allow to increase the generalization ability of

the model when used for prediction. In parallel, it permits to increase the numerical stability of

the derived recursive estimation scheme, by decreasing the condition number of the information

matrix to be inverted at each time step. It is known that this information matrix may be close to

singular (Holst et al. 1994). This will be further discussed when introducing the recursive updating

formulae below. Theoretical and numerical properties of Tikhonov regularization are discussed in

(Johansen 1997).

The estimate Θ̂t of the model coefficients at time t is finally defined as the set of coefficient values

which minimizes (17), i.e.

Θ̂t = argmin
Θ

St(Θ) (19)

Note that to our knowledge, there is no literature on the properties of model coefficient estimates

for MSAR models when the estimation is performed by minimizing (17). However, Douc et al.

(2004) show both consistency and asymptotic normality of the maximum likelihood estimator (thus

without the regularization term in the objective function) for stationary and non-stationary MSAR

models. Those results should then be extended to the case of the penalized likelihood estimator

introduced above. We do not aim to perform the necessary theoretical developments here. Instead,

a simulation study in Section 5 will allow us to illustrate the nice behaviour of the model estimates.

3.2 Recursive estimation

Imagine being at time t, with the model fully specified by the estimate of model coefficients Θ̂t−1,

and a newly available power measure yt. Our aim in the following is to describe the procedure for

updating the model coefficients and thus obtaining Θ̂t.

Given the definition of the conditional probability uk in (16), i.e. as the likelihood of the observation

yk given past observations and given the model coefficients (for a chosen model structure), it is

straightforward to see that at time t, ut(Θ̂t−1) can be rewritten as

ut(Θ̂t−1) = η⊤(εt; Θ̂t−1)P
⊤(Θ̂t−1)ξt−1(Θ̂t−1) (20)

In the above, εt is the vector of residuals in each regime at time t, thus yielding η(εt; Θ̂t−1) the

related values of conditional density functions (cf. (4)), given the model coefficients at time t− 1. In
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addition, ξt−1(Θ̂t−1) is the vector of probabilities of being in such or such regime at time t − 1, i.e.

ξt−1(Θ̂t−1) =
[

ξ
(1)
t−1(Θ̂t−1) ξ

(2)
t−1(Θ̂t−1) . . . ξ

(r)
t−1(Θ̂t−1)

]

(21)

given the observations up to that time, and given the most recent estimate of model coefficients,

that is, Θ̂t−1. In mathematical terms, this writes

ξ
(j)
t−1(Θ̂t−1) = P

[

zt−1 = j | yt−1, yt−2, . . . , y1; Θ̂t−1

]

(22)

then making P
⊤(Θ̂t−1)ξt−1(Θ̂t−1) the forecast issued at time t − 1 of being in such or such regime

at time t.

At this same time t, even if the set of true model coefficients Θt−1 were known, it would not be

possible to readily say what the actual regime is. However, one can use statistical inference for

estimating the probability ξ
(j)
t of being in regime j at time t. This can indeed be achieved by

applying the probabilistic inference filter initially introduced by Hamilton (1989). The sequence of

regime probabilities for each time index up to time t − 1 is known, and the regime probabilities at

time t (given Θt−1) are then given by

ξt(Θ̂t−1) =
η(εt; Θ̂t−1) ⊗ P

⊤(Θ̂t−1)ξt−1(Θ̂t−1)

η⊤(εt; Θ̂t−1)P⊤(Θ̂t−1)ξt−1(Θ̂t−1)
(23)

where ⊗ denotes element-by-element multiplication. ξt will hence be referred to as the vector of

filtered probabilities in the following. Since the parameters of the MSAR models are considered to

be varying in time, but only slowly, it is assumed that the small change in parameter estimates

from Θ̂t−1 to Θ̂t will not affect the vector of filtered probabilities, and thus that ξt(Θ̂t) = ξt(Θ̂t−1).

If not making this assumption, one could simply re-estimate the vector of filtered probabilities ξt

after having obtained Θ̂t. Note that one does not need to re-estimate the whole sequence of filtered

probabilities every time the model coefficients are updated.

In order to derive the recursive estimation procedure, the method employed is based on using a

Newton-Raphson step for obtaining the estimate Θ̂t as a function of the previous estimate Θ̂t−1,

see e.g. (Madsen 2007),

Θ̂t = Θ̂t−1 −
∇ΘSt(Θ̂t−1)

∇2
Θ

St(Θ̂t−1)
(24)

A little algebra yields the gradient of the objective function calculated at Θ̂t−1,

∇ΘSt(Θ̂t−1) = −(1 − λ)∇Θ ln(ut(Θ̂t−1)) (25)

10



as well as its Hessian,

∇2
ΘSt(Θ̂t−1) = λ∇2

ΘSt−1(Θ̂t−1) + (1 − λ)
(

νI −∇2
Θ ln(ut(Θ̂t−1))

)

(26)

where I in (26) is an identity matrix of appropriate dimension.

In parallel, the gradient and Hessian of ln(ut(Θ̂t−1)) in (25) and (26) write

∇Θ ln(ut(Θ̂t−1)) = ht =
∇Θut(Θ̂t−1)

ut(Θ̂t−1)
(27)

and

∇2
Θ ln(ut(Θ̂t−1)) =

∇2
Θ

ut(Θ̂t−1)

ut(Θ̂t−1)
−

∇Θut(Θ̂t−1)
(

∇Θut(Θ̂t−1)
)⊤

u2
t (Θ̂t−1)

(28)

However, by making the assumption such that ut is (almost) linear in Θ in the close vicinity of Θ̂t−1,

which translates to

∇2
Θ

ut(Θ̂t−1)

ut(Θ̂t−1)
≪

∇Θut(Θ̂t−1)
(

∇Θut(Θ̂t−1)
)⊤

u2
t (Θ̂t−1)

(29)

one then obtains the following approximation of the Hessian of ln(ut) evaluated at Θ̂t−1

∇2
Θ ln(ut(Θ̂t−1)) ≃ −

∇Θut(Θ̂t−1)
(

∇Θut(Θ̂t−1)
)⊤

u2
t

= −hth
⊤
t (30)

This assumption is based on the idea that one only makes very small adaptation steps, thus permit-

ting to assume the likelihood function to be locally linear, as if writing a first-order Taylor expansion

of the likelihood function at Θ̂t−1. Note that such assumption is similar to that made when applying

a recursive Expectation-Maximization (EM) algorithm such as that proposed in (Holst et al. 1994).

The necessary steps for obtaining ht are gathered in the Appendix.

Let us now summarize the above developments and derive the recursive updating scheme to be

employed at each time step t. Denote by R̂t the matrix corresponding to the estimated inverse co-

variance matrix of the model coefficients at time t, i.e. R̂t = ∇2
Θ

St(Θ̂t). We here make a classical as-

sumption for deriving recursive estimation methods for stochastic dynamic systems, see (Ljung and Söderström

1983), which is that the objective criterion S is smooth in the close vicinity of Θ̂t, and the adaptation

step small enough, so that

R̂t = ∇2
ΘSt(Θ̂t) ≃ ∇2

ΘSt(Θ̂t−1) (31)

Then, using the result (27) in (25), the approximation of (30) in (26), and plugging the gradient
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and the Hessian of St(Θ̂t−1) into the Newton-Raphson step (24), the 2-step scheme at time t for

updating the set of model coefficients can be summarized as

R̂t = λR̂t−1 + (1 − λ)
(

hth
⊤
t + νI

)

(32)

Θ̂t = πs

{

Θ̂t−1 + (1 − λ)R̂−1
t ht

}

(33)

where I is an identity matrix of appropriate dimensions, and πs a projection operator on the unit

spheres defined by the si. vectors (i = 1, . . . , r). This projection hence concerns transition proba-

bilities only and do not affect autoregressive and standard deviation coefficients. In practice, this

projection can be performed by finding the closest point (to the newly updated si. coefficients) on a

unit sphere (of dimension the number of regimes), thus meeting the constraint defined by (7). Note

that this 2-step scheme is applied after having calculated the vector of filtered probabilities ξt. Such

a scheme looks somewhat similar to the classical scheme for recursive estimation of regressive pa-

rameters, see Madsen (2007).

One observes from (32) and (33) the effects of regularization. It consists of a constant loading on

the diagonal of the inverse covariance matrix R̂t to be inverted in (33), thus permitting to con-

trol its condition number. Then, when ν = 0, (33) simplifies to the classical updating formula for

model coefficients tracked with Recursive Least Squares (RLS) or Recursive Maximum Likelihood

(RML) methods (again, for more details see Madsen (2007)). It is known that the use of such a

type of regularization in recursive estimation schemes may introduce some bias, but globally (if

ν is chosen appropriately) permits to have an optimal trade-off between bias and variance of the

estimates (Johansen 1997). In addition, it allows for increased numerical stability of the recursive

estimation scheme (due to a decrease in the condition number of the matrix R̂t to be inverted at

each time step), and increased generalization ability of the models estimated.

For initializing the recursive procedure without any prior knowledge on the process considered,

one may use equal probabilities of being in the various states, define each AR component as a

simple random walk model, put a large load on the diagonal elements of the transition matrix (i.e.

large probabilities of staying in the same regime), and have sufficiently large standard deviations

of conditional densities in each regime so that conditional density values are not too close to zero

while having poor knowledge of the process dynamics. In parallel, the inverse covariance matrix

R̂0 is initialized with R̂0 = νI, i.e. with a constant load on the diagonal of an identity matrix (of

appropriate dimensions) corresponding to the value chosen for the regularization parameter. Then,

for the first few steps of the recursive estimation procedure, only (32) is used for gaining information

as long as R̂t is not invertible. After that, (33) can be used for updating model coefficient estimates.
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4 Point and density forecasting

Denote by ft the density function of wind power values at time t. Given the chosen model structure

and the set of true model coefficients Θt−1 estimated at time t − 1, the one-step ahead predictive

density of wind generation f̂t|t−1 can be expressed as

f̂t|t−1(y) =

r
∑

j=1

ξ̂
(j)
t|t−1η

(j)
t−1

(

y − θ(j)
t−1

⊤
xt;Θt−1

)

(34)

where ξ̂
(j)
t|t−1 is the one-step ahead forecast probability of being in regime j at time t. The vector

ξ̂t|t−1 containing such forecast for all regimes is given by

ξ̂t|t−1 = P
⊤(Θt−1)ξt−1(Θt−1) (35)

Since the true model coefficients are obviously not available, they are replaced in the above equa-

tions by the estimate Θ̂t−1 available at that point in time.

Define ŷt|t−1 the one-step ahead point prediction of wind power as the conditional expectation of

the random variable yt, given the information set available at time t − 1. ŷt|t−1 can then be derived

from the predictive density definition of (34) as

ŷt|t−1 =

r
∑

j=1

ξ̂
(j)
t|t−1θ̂

(j)

t−1
⊤
xt (36)

since the distributions of innovations in each regime are all centered.

In parallel, following the definition of conditional densities in (4), the one-step ahead predictive

density f̂t|t−1 consists of a mixture of Normal densities. This predictive density can hence be explic-

itly formulated, and quantile forecasts for given proportions calculated with numerical integration

methods. Indeed, if denoting by F̂t|t−1 the cumulative distribution function related to the predictive

density f̂t|t−1, the quantile forecast q̂
(α)
t|t−1 for a given proportion α is

q̂
(α)
t|t−1 = F̂t|t−1

−1(α) (37)

The calculation of quantiles for finite mixtures of Normal densities can be found in Rahman et al.

(2006) for instance. For more details on the question of point and density forecasting with MSAR

models, we refer to Krolzig (1997).

Note that the method proposed here disregards the question of uncertainty in parameter estima-

tion, since it gives the exact formulation of the one-step ahead predictive density f̂t|t−1 given the

true parameters of the MSAR model. Accounting for parameter estimation uncertainty for such

type of model is a difficult task which, to our knowledge, has not been treated in the relevant lit-

erature. The fact that model coefficients are time-varying and the proposed estimation method
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recursive complicates this question even more. However, the use of bootstrap methods may be

envisaged, as initially proposed by Craig and Sendi (2002). And, concerning the recursive esti-

mation issue, one may consider adapting the nonparametric block bootstrap method introduced

by Corradi and Swanson (2007) to the case of the models considered here.

5 Simulations

In this section, simulations are used for illustrating the convergence and tracking abilities of the

proposed adaptive estimation method for MSAR models, for which model coefficients are assumed

to be slowly varying. Simulations are based on time-series of 10.500 time steps. The Markov-

switching autoregressive process simulated follows the definition given above by (1)-(6), with 2

regimes, and an autoregressive process of order p = 1 in each regime. Similar simulations have

been carried out with 3 and 4 regimes as well as autoregressive orders up to 4 lags, thus being

consistent with the application to wind power data described below. For clarity, it is preferred to

show simulations results for this simple case only. In parallel, increasing the number of regimes

and the autoregressive order in each regime is not desirable, since it would multiply the number of

model coefficients, and then make the estimation problem quite difficult.

It is considered that there is the same probability for the switching between regimes 1 and 2 or

between regimes 2 and 1. The MSAR process parameters are linearly varying between values

chosen for certain points in time. Between times t = 1 and t = 500, the set of model parameters is

initialized with

θ
(1)
t=1 = θ

(1)
t=500 = [0.7 − 0.4]⊤, σ

(1)
t=1 = σ

(1)
t=500 = 0.1

θ
(2)
t=1 = θ

(2)
t=500 = [0.2 − 0.1]⊤, σ

(2)
t=1 = σ

(2)
t=500 = 0.2

with a switching probability of 0.15. This first 500 time-step period will be used for initial batch

training of the MSAR models, i.e. by only updating the estimated information matrix R̂t at each

time step, but not the estimates of the model parameters themselves. Then at time t = 4500, the

set of true model parameters is given as

θ
(1)
t=4500 = [0.5 − 0.2]⊤, σ

(1)
t=4500 = 0.15

θ
(2)
t=4500 = [−0.1 0.2]⊤, σ

(2)
t=4500 = 0.2

with a switching probability of 0.2. Finally, from t = 8500 and until the end of the dataset, the
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Markov-switching autoregressive model is defined by

θ
(1)
t=8500 = θ

(1)
t=10500 = [0.45 − 0.05]⊤, σ

(1)
t=8500 = σ

(1)
t=10500 = 0.2

θ
(2)
t=8500 = θ

(2)
t=10500 = [−0.1 0.1]⊤, σ

(2)
t=8500 = σ

(2)
t=10500 = 0.15

while the switching probability is set to 0.18.

The MSAR process defined by the above parameters is clearly nonstationary. The rate of change

in the parameters is fairly significant in comparison with the smooth long-term changes that are

envisaged for the case of the wind power generation dynamics at a temporal resolution of a few

minutes.

In order to follow and evaluate the behaviour of the estimation error through time, we simulate

1000 times the 10500 time-step stochastic process described above, and follow the mean and some

of the quantiles of the distributions of estimated parameters for each of the model coefficients. The

quantiles chosen are those with proportions 0.05 and 0.95, thus only discarding the extreme pa-

rameter estimates from our representation of their distributions. These quantiles will then form

90%-confidence resampling intervals informing on model estimation uncertainty on this finite sam-

ple.

For each of these simulated processes, the model parameterization described in section 2 and the

adaptive estimation method introduced in section 3 are employed. The MSAR model is initialized

with the values of the true parameters at time t = 1, as defined above. This is in order to see how

the recursive estimation method may adapt to changes in the process characteristics from a fairly

good prior knowledge. The first 500 time steps then serve for initial recursive estimation of the

inverse covariance matrix of model parameters. Note that simulations have also been carried out

for the case of an initialization of model parameters far from the true parameter values, and/or with

periodic abrupt changes in those true values, though not presented here. Those simulations showed

a good ability of the adaptive estimation method to converge towards the true model parameters.

The values of both the forgetting factor λ and regularization parameter ν are chosen from our

experience of the range of values that may be obtained from application to real-world data. These

two parameters are set to λ = 0.995 (corresponding to an effective number of observations of 200)

and ν = 0.01. Other values for these 2 parameters have been tried, yielding similar results in a

qualitative sense. Obviously, the value chosen for the forgetting factor has a significant impact

on the ability of the recursive estimation method to adapt to changes in the model parameters.

When considering a real-world modeling and forecasting exercise, λ and ν should be selected and

optimized based on the available data, using e.g. a cross-validation framework.

The evolution of the distributions of estimated model parameters is depicted in Figure 1 for the

autoregressive coefficients, in Figure 2 for the standard deviations of conditional densities in each
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regime, and in Figure 3 for the transition probabilities. For each of these Figures, the first row

shows the evolution of model coefficients in the first regime, while the second row gathers that for

the case of the second regime. Note that due to the property such that transition probabilities on a

given row of Pt sum to 1, the estimation error in p11
t (respectively p21

t ) is the opposite of that in p12
t

(respectively p22
t ).

Over the first 500 time-step period, the estimated model coefficients are not updated, since this

period serves for initial estimation of the inverse covariance matrix R̂t. At t = 500 it is verified that

R̂t is invertible, and from that point in time both R̂t and Θ̂t are recursively updated. Invertibility

of R̂t is facilitated by the regularization scheme employed, since insuring a constant loading on its

diagonal.

Over the following 8000 time steps, the mean of the distributions of estimated model coefficients

follows fairly well the changes in true model coefficients, indicating a general ability of the estima-

tion method introduced to track long-term and smooth changes in MSAR model coefficients. This

comment is valid for AR parameters, standard deviations of conditional densities, as well as transi-

tion probabilities. The variations in the rate of change of the model coefficients introduced at time

step 4500 also does not seem to influence the tracking ability of the method. Even the change of

direction in the evolution of transition probabilities is accommodated (see Figure 3). In a general

manner, one may notice that the model parameter estimates may be slightly lagging behind the

true ones. This comes from the exponential forgetting scheme employed, which still gives some

weight to fairly old observations, thus introducing inertia in the adaptation of estimates of model

coefficients.

Finally for the case of the final period of the dataset, for which the true model coefficients are kept at

the same values for 2000 time steps, the estimated model coefficients stabilizes at values very close

to the true ones. The small bias observed, especially for the case of AR coefficients and for standard

deviations of conditional densities, may originate from the regularization scheme employed. Indeed

as mentioned above, it is known that Tikhonov regularization may introduce some bias, though

it globally provides an optimal trade-off between bias and variance of the model estimates. An

interesting point is that estimates of transition probabilities are close to being unbiased, while it

is known that they are the most difficult coefficients to estimate in MSAR models, see discussion

by Holst et al. (1994). One might argue that the estimation problem is easier here since it only

consists in tracking changes in model coefficients. It has however also been noticed that when

initializing transition probabilities with values far from the true ones, the convergence of model

estimates was still satisfactory.

While the mean of the distributions of model estimates permits to show the general tracking abil-

ity of the estimation method introduced, the resampling 90%-confidence intervals inform us about

the uncertainty in model coefficient estimation. Such uncertainty is fairly high for all model co-

efficients, especially for the transition probabilities. Even though estimates are close to unbiased,
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it still remains difficult to accurately track MSAR model coefficients. Note that the size of the

90%-confidence intervals evolve with time and with the level of the various coefficients, as they all

are inter-related. Globally, the set of simulations performed with various number of regimes and

orders of autoregressive processes (in each regime) has shown a good ability of the proposed estima-

tion model to track model parameters. This thus gives us confidence in the potential applicability of

the proposed models and estimation techniques to real-world wind power data, as it is done below.

6 Results on offshore wind power data

In order to analyze the performance of the proposed MSAR models and related adaptive estimation

method for the modelling and forecasting of offshore wind power fluctuations, they are applied to

real-world case studies. The exercise consists of one-step ahead forecasting of time-series of wind

power production. Firstly, the data for the offshore wind farm is described. Then, the configuration

of the various models and the setup used for estimation purposes are presented. Finally, a collection

of results is shown and commented, related to point, interval and density forecasting.

6.1 Case studies

The two offshore wind farms are located at Horns Rev and Nysted, off the west coast of Jutland

and off the south coast of Zealand in Denmark, respectively. The former has a nominal capacity of

160 MW, while that of the latter reaches 165.5 MW. The annual energy yield for each of these wind

farms is of around 600 GWh. Today, they represent the two largest offshore wind farms worldwide.

For both wind farms, the original power measurement data includes raw one-second measurements

for each wind turbine. Focus is given to the total power output at Horns Rev and Nysted. For each

wind farm, time series of power production are normalized by their rated capacity Pn. Hence, power

values or error measures are all expressed in percentage of Pn. A sampling procedure has been

developed in order to obtain time-series of 10-minute power averages. This averaging rate makes

that the very fast fluctuations related to the turbulent nature of the wind disappear and reveal

slower fluctuations at the minute scale. Because there may be some erroneous or suspicious data in

the raw measurements, the sampling procedure has a threshold parameter τv, which corresponds

to the minimum percentage of data that need to be considered as valid within a given time interval,

so that the related power average is considered as valid too. The threshold chosen is τv = 75%.

At Horns Rev, the available raw data is from 16th February 2005 to 25th January 2006. And, for

Nysted, this data has been gathered for the period ranging from 1st January to 30th September

2005. As a result of this procedure, the wind power production datasets at these two wind farms

consist of 26650 and 27350 valid data points for Nysted and Horns Rev, respectively.
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6.2 Model configuration, estimation setup and benchmarking

In a first stage, it is necessary to define periods that are used for identification (and initial training)

of the statistical models and periods that are used for evaluating what the performance of these

models may be in operational conditions. These two parts of the dataset are referred to as learning

and testing sets. For both wind farms, the first 6000 data points are used as a training set, and

the remainder for out-of-sample evaluation of the 1-step ahead forecast performance of the Markov-

switching autoregressive models. These evaluation sets contain Nn = 20650 and Nh = 21350 data

points for Nysted and Horns Rev, respectively. Over the learning period, a part of the data is used

for one-fold cross validation (the last 2000 points) in order to select optimal values of the forget-

ting factor and regularization parameter, as well as an optimal number of regimes and an optimal

autoregressive order. This is done in a trial-and-error manner, by evaluating the results obtained

from a set of different setups for the model structure and hyper-parameters λ and µ. For more in-

formation on cross validation, we refer to (Stone 1974). The error measure that is to be minimized

over the cross validation set is the Normalized Root Mean Square Error (NRMSE) of 1-step ahead

point forecasts, since it is aimed at having 1-step ahead point forecast that would minimize such

criterion over the evaluation set. The number of regimes is restricted to vary between 2 and 4.

Regarding the autoregressive order, models with up to 4 lags have been checked, with and without

an intercept term. It is considered that the forgetting factor cannot be less than λ = 0.98, since

lower values would correspond to an effective number of observations (cf. (18)) smaller than 50

data points (thus covering the previous 8-9 hours only, reaching time-scales close to those of regime

switches). Such low value of the forgetting factor would then not allow for adaptation with respect

to slow variations in the process characteristics, but would serve more to compensate for model

misspecification. No restriction is imposed on the potential range of values for the regularization

parameter ν.

For the fitting of various MSAR models, the AR coefficients in each regime are initialized such that

the intercept term (if employed) is 0, and with autoregressive patterns that are close to being a

simple random walk model. In practice, this translates to initializing the autoregressive model in

regime j with a parameter θ
(j)
1 for the first lag as

θ
(j)
1 = 1 + ej, ej ∼ N (0, τ) (38)

with τ small (in the order of 10-2), and with the other parameters θ
(j)
k (if relevant) as

θ
(j)
k = ej, ej ∼ N (0, τ), k > 1 (39)

It is verified that the AR models used as initialization in each regime is stationary. For stationarity

conditions of an autoregressive process, see e.g. (Chatfield 2004; Madsen 2007). If not, another

random drawing of potential parameters following the above equations is performed. In parallel,
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matrices of transition probabilities are initialized with 0.9 on the diagonal, corresponding to the

probability of staying in the same regime. The off-diagonal elements are set to (1/(r − 1)), simulat-

ing an equal probability of switching from the current regime to any other one. Finally, the standard

deviation for the Gaussian conditional densities in each regime is set to 0.2. Such a large value per-

mits to have widespread conditional densities at the beginning of the estimation process, limiting

potential numerical issues for the recursive estimation scheme, which in turn would be due to very

low conditional density values used e.g. in the denominator of the probabilistic inference filter (23).

The results from the cross-validation procedure, i.e. the number of regimes and autoregressive lags,

the use of an intercept term or not, as well as values of the forgetting factor λ and regularization

parameter ν, are gathered in Table 1. For both test cases, the forgetting factor takes a value very

close to 1, seemingly indicating that changes in process characteristics are indeed slow. The value

of 0.999 in the Table corresponds to a number of effective observations of 1000, or seen differently

to a period covering the previous 7 days. Sudden and abrupt changes in power fluctuations char-

acteristics are in contrast dealt with thanks to the Markov-switching mechanism. One may then

think that λ is so close to 1 that there is no benefit from time-adaptivity of the model paramater.

An effective number of observations of around 7 days, however, actually translates to fairly rapid

variations in the MSAR model parameters. Values greater than 0.999 have been tried, but for both

case-studies the value of 0.999 has been deemed optimal. In comparison, works of Gneiting et al.

(2006), or Hering and Genton (2009), both focusing on 2-hour ahead forecasting of wind speed,

conclude that an optimal sliding window for estimation of the parameters of their dynamic mod-

els is of around 45 days. Here data with a finer temporal resolution is available, the local wind

climate and time scales involved different, thus potentially yielding different dynamics. This may

explain the faster adaptation of our model parameters. In parallel, optimal regularization param-

eter values are not equal to zero, illustrating the interest of our proposal. The values selected for

ν are those that permitted minimizing the 1-step ahead NRMSE on the cross-validation exercise.

These values could be increased if interested in dampening variations in model estimates, though

this would certainly affect forecasting performance. In contrast, one could also lower the ν values,

which may affect both forecast performance and numerical properties of the recursive estimation

scheme. Regarding the structure of the MSAR models, a similar number of lags is selected for both

cases (with an additional intercept term at Horns Rev), while the number of regimes is larger for

Horns Rev than for Nysted. This may indicate a more complex structure of the power fluctuations

at the former wind farm.

Two benchmarks are considered in order to compare the performance of the MSAR models on the

1-step ahead forecasting exercise performed below. One the one hand, persistence (which is another

name for forecasting based on a random walk model) is a common and serious benchmark for such

short look-ahead times. On the other hand, an obvious other benchmark is the AR model with

adaptive estimation of its parameters, in order to see the benefits of introducing Markov-switching.

In the present case, the adaptive estimation method employed in that described as Recursive Pre-
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diction Error (RPE) method in Madsen (2007). This estimation method is equivalent to Recursive

Maximum Likelihood (RML) estimation if assuming Gaussianity of model residuals. Similarly to

the adaptive estimation method introduced here, adaptivity is based on exponential forgetting of

past observations. The level of forgetting is controlled by a forgetting factor, also denoted λ. For an

optimal choice of the order of the AR model and of the forgetting factor, the same cross-validation

procedure is employed. Models with up to 4 lags (with and without an intercept term) are con-

sidered. They are initialized with parameter values close to that of a random walk model, as it is

done in (38)-(39) in each regime for the case of the AR models of the Markov-switching approach.

The results of the cross validation procedure are collated in Table 2. The structure of AR models

obtained is fairly similar to that for the AR parts in each regime of the MSAR models identified

above. One notices lower values of the optimal forgetting factors obtained, which is certainly due to

the periodic change in the autoregressive dynamics of the process considered.

6.3 Point forecasting results

For evaluation of out-of-sample forecast accuracy, we follow the approach presented in (Madsen et al.

2005) for the evaluation of short-term wind power forecasts. Focus is given to the use of error mea-

sures such as NRMSE, Normalized Mean Absolute Error (NMAE), and Normalized bias (Nbias).

NRMSE is the most relevant error criterion since point forecasts have been defined as conditional

expectations. As already mentioned above, forecasts from the proposed Markov-switching autore-

gressive models are also benchmarked against those obtained from persistence and adaptive AR

models. Even though persistence is the most simple way of generating forecasts — the 1-step

ahead persistence forecast is equal to the last power measurement — this benchmark is actually

difficult to ourperform for look-ahead times such as those considered in the present paper.

The forecast performance assessment over the evaluation set is summarized in Table 3. It has been

observed that forecasts where unbiased for all models. Nbias values are therefore not shown and

discussed here. NMAE and NRMSE criteria have lower values when employing Markov-switching

models. This is satisfactory as it was expected that predictions would be hardly better than those

from persistence. The reduction in NRMSE and NMAE when going from more basic to more ad-

vanced approaches is larger for the Nysted wind farm than for the Horns Rev wind farm. In addi-

tion, the level of prediction error is in general higher for the latter wind farm. This confirms the

findings in (Pinson et al. 2008), where it is shown that for this temporal resolution and whatever

the chosen modelling approach, the level of forecast accuracy is higher at Nysted. The Horns Rev

wind farm is located in the North Sea (while Nysted is in the Baltic sea, south of Zealand in Den-

mark). It may be more exposed to stronger fronts causing fluctuations with larger magnitude, and

that are less predictable. If comparing the various types of models employed, it appears that the

difference in forecast accuracy (either in terms of NMAE or NRMSE) is fairly small. For instance if

focusing on the RMSE criterion for the Nysted wind farm, the decrease observed when going from
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persistence to MSAR model is of 7.5%, while it is of 2.6% when going from AR to MSAR models.

In view of the large size of the datasets used for forecast evaluation, such decrease in the various

criterion can still be seen as a significant increase in forecast accuracy. Point forecasting accuracy

may not be the main benefit from the application of MSAR models to wind power fluctuations data

at temporal resolutions of a few minutes. Benefits coming from the characterization of the regime

sequences or from higher skill of probabilistic forecasts (see below) may be more evident. One

should realize however that improvements in terms of point forecast accuracy indeed exist, while

for such look-ahead times, outperforming persistence or simple autoregressive models may be very

difficult. Since the costs related to power system control and management are very high, even small

improvements in the range of a few percents translate in practice to significant monetary savings.

In parallel to the question of forecast accuracy, an expected major interest of the Markov-switching

approach is that one can better appraise the characteristics of short-term fluctuations of wind gen-

eration offshore by studying the estimated model coefficients, standard deviations of conditional

densities, as well as transition probabilities. Autoregressive coefficients may inform on how the

persistent nature of power generation may evolve depending on the regime, while standard de-

viations of conditional densities may tell on the potential amplitude of wind power fluctuations

depending on the regime. Finally, the transition probabilities may tell if such or such regime is

more dominant, or if some fast transitions may be expected from certain regimes to the others.

The set of model coefficients at the end of the evaluation set for Nysted (i.e. at time t = Nn) can be

summarized by the AR coefficients and standard deviations of related conditional densities in the

two regimes,

θ
(1)
t=Nn

= [1.546 − 0.843 0.291]⊤, σ
(1)
t=Nn

= 0.042

θ
(2)
t=Nn

= [1.478 − 0.549 0.071]⊤, σ
(2)
t=Nn

= 0.008

(40)

while the final matrix of transition probabilities reads

Pt=Nn
=





0.946 0.054

0.026 0.974





In parallel for Horns Rev, the AR coefficients and related standard deviations (in each of the three

regimes) at the end of the dataset (i.e. at t = Nh) are

θ
(1)
t=Nh

= [0.002 1.421 − 0.486 0.061]⊤, σ
(1)
t=Nh

= 0.017

θ
(2)
t=Nh

= [0.039 1.154 − 0.373 0.159]⊤, σ
(2)
t=Nh

= 0.068

θ
(3)
t=Nh

= [0.0 1.316 − 0.377 0.061]⊤, σ
(3)
t=Nh

= 4.10-4
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while the final matrix of transition probabilities is

Pt=Nh
=









0.911 0.064 0.025

0.082 0.913 0.005

0.043 0.003 0.954









The characteristics of the hidden Markov chain can be analysed by determining the corresponding

stationary distributions and expected return times for the various regimes. They are gathered in

Table 4. At Nysted, the last regime may be seen as dominant since having the largest marginal

probability or, equivalently, the shortest expected return time. This last regime is that with the

smallest standard deviation, thus telling us that the most dominant regime at this wind farm is

that with smoother fluctuations around the mean dynamics. This not the case at Horns Rev, since

the dominant regime is instead the first one, the standard deviation of which is significantly larger

than than for the third regime, and respectively smaller that that for the second regime. One also

verifies from the return periods of Table 4 and the optimal forgetting factors that, as mentioned in

Section 3, the time scales for regime-switching and long-term variations in the model parameters

are clearly separable, in the order of few time-steps (ca. 15-40 minutes) for the former one, and of

approximately a week for the latter one.

Let us focus then on the autoregressive dynamics in each regime at both wind farms. Studying the

roots of the transfer operator Φj(B) = 1 +
∑p

i=1 θ
(j)
p Bp related to each AR component composing

the MSAR models estimated (j = 1, . . . , r), permits evaluating the stationarity of each of these

components. The AR model in regime j is stationary if the roots of the related transfer operator

Φj(B) are within the unit circle, see e.g. Madsen (2007, pp. 119-121). In the present cases, some

of the AR components of estimated MSAR models clearly are nonstationary. It is known however

that this does not translate to the resulting MSAR models themselves being nonstationary, since

being weighted combinations of (potentially nonstationary) AR components. This important point

has been introduced, studied from simulations, and thoroughly discussed by Holst et al. (1994).

As we do not aim at employing MSAR models for multi-step ahead forecasting, this issue of the

stationarity of estimated MSAR models is not investigated further here.

For both test cases, either the dynamics in each regime are different, or if the dynamics are fairly

similar (e.g. at Horns Rev for regimes 1 and 3) the standard deviation of the conditional densities

then are significantly different. In a general manner, very large differences in standard deviations

of conditional densities among the regimes can be observed (up to a factor of 170 for the regimes

with larger and smaller standard deviations of conditional densities at Horns Rev). This actually

shows that the interest of the proposed Markov-switching autoregressive models may lie more in

their ability to resolve among various potential magnitude of power fluctuations than in their abil-

ity to capture their autoregressive pattern. A clear benefit will then come from the providing of

prediction intervals along with the point forecasts, as they will inform of the possibility of power
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fluctutations of smaller or larger magnitude to come. This will be highlighted and discussed in the

following Section.

We finally study an arbitrarily chosen episode of power generation at the Nysted wind farm. For

confidentiality reason, the dates defining beginning and end of this period cannot be given. The

episode consists of 500 successive time-steps with power measurements and corresponding one-

step ahead forecasts as obtained from the fitted MSAR model. These 500 time steps represent

a period of 83 hours (3 days approximately). In parallel to the time-series of measurements and

forecasts in Figure 4, Figure 5 depicts the evolution of the filtered probabilities, i.e. the estimated

probabilities of being in such or such regime at each time step.

Remember that the two regimes correspond to very different standard deviations of conditional

densities (by a factor of more than 5). The regimes have then clearly been separated by the Markov-

switching modelling approach. If focusing on the power time-series of Figure 4, one observes suc-

cessive periods with fluctuations of lower and larger magnitude. Then, by comparison with the evo-

lution of filtered probabilities in Figure 5, one sees that periods with smoother behaviour of power

generation are associated with very high probability of being in the second regime. This is valid for

time steps between 220 and 280 or between 360 and 430 for instance. This also shows that regimes

are not obviously related to a certain level of power generation, as it would be the case if using e.g.

Self-Exciting Transition Auto-Regressive (SETAR) or Smooth Transition Auto-Regressive (STAR)

models (Pinson et al. 2008). Such a discrimination between regimes allows us to imagine that the

study of obtained series of filtered probabilities along with the evolution of some meteorological

variables will give useful information for better understanding the meteorological phenomena that

govern such behaviour. This would then permit to develop prediction methods taking advantage of

additional explanatory variables.

6.4 Evaluation of interval and density forecasts

In a second stage, focus is given to the probabilistic information provided by the MSAR models.

Indeed, even if point predictions in the form of conditional expectations are expected to be relevant

for power management purposes, the whole information on fluctuations will actually be given by

prediction intervals giving the potential range of power production in the next time step, with a

given probability i.e. the so-called nominal coverage rate. Ideally, full predictive density would

provide the full information about expected wind power fluctuations. The possibility of associating

point predictions with central prediction intervals is therefore considered here. Central prediction

intervals are intervals that are centred in probability around the median. For instance, a central

prediction interval with a nominal coverage rate of 90% has its bounds consisting of the quantile

forecasts with nominal proportions 0.05 and 0.95. Note that for real-world applications, prediction

intervals with large nominal coverage rates e.g. 90% would be preferred, since covering a large

range of possibilities and discarding the very tails only (which potentially include outliers and
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extreme events). For the present test cases, prediction intervals are generated over the evaluation

set for both Horns Rev and Nysted. The nominal coverage of these intervals range from 10% to 90%,

with a 10% increment. This translates to numerically calculating 18 quantiles of the predictive

densities obtained from (34).

Figures 6 and 7 illustrate the interest of the Markov-switching approach employed for interval fore-

casting on the test case of the Horns Rev wind farm. It depicts time-series of one-step ahead point

and interval forecasts (with 90% nominal coverage) over 100 time-steps (16.7 hours) in Figure 6,

along with the evolution of associated filtered probabilities in Figure 7. The width of the prediction

intervals clearly varies during this 100 time-step period, with their size being directly influenced

by forecasts of filtered probabilities and standard deviations of conditional densities in each regime

(cf. (34)). In this episode, prediction intervals are wider during periods with power fluctuations

of larger magnitude. It is composed by successive periods with main contributions from the first

and second regimes, which for Horns Rev correspond to the regimes with standard deviations of

conditional densities of medium and large magnitude. Even though point predictions may be less

accurate (in a mean squared error sense) during these periods of larger fluctuations, MSAR mod-

els can provide this valuable information about their potential magnitude. In addition, prediction

intervals are not symmetric, as even if conditional densities are assumed to be Gaussian in each

regime, the resulting one-step ahead predictive densities are not.

For the evaluation of the probabilistic forecasts (both interval and density forecasts) generated

with the MSAR models as described in Section 4, we follow the verification framework introduced

by Gneiting et al. (2007). A similar framework developed for the specific case of the wind power

application can be found in (Pinson et al. 2007). Focus is given first to the overall skill of probabilis-

tic forecasts, by employing a proper skill score on density forecasts. Overall skill encompasses both

reliability (i.e. probabilistic correctness) and sharpness of interval and density forecasts. The Con-

tinuous Ranked Probability Score (CRPS) is chosen here. The value of the CRPS at time t, i.e. for a

given forecast density f̂t|t−1(y) with cumulative distribution function F̂t|t−1(y), and corresponding

measurement yt, is calculated as

CRPSt =

∫

y

(

F̂t|t−1(y) − H(y − yt)
)2

dy (41)

where H(.) is the Heaviside step function, taking the value 1 for y ≥ yt and 0 otherwise. The CRPS

value over an entire evaluation set is calculated as the average of CRPSt values, and expressed in

percentage of the nominal capacity Pn of the wind farm considered. CRPS is a negatively rewarding

score: the lower the better.

Since AR models seem to be serious competitors to MSAR models for point forecasting, we also

consider them as a benchmark in this probabilistic forecasting exercise. Interval and density fore-

casts from AR models can be fairly easily generated, since the model residuals are assumed to be

distributed Gaussian, and their variance tracked by the adaptive estimation method employed. A
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1-step ahead density forecast then takes the form of a Gaussian density centered on the 1-step

ahead point forecast, and with variance the current estimate of the variance of the model residuals.

The CRPS values of 1-step ahead density forecasts from AR and MSAR models on the evaluation

set at Horns Rev and Nysted are gathered in Table 5. For both test cases MSAR models have a

significantly higher probabilistic forecast skill, with a decrease in CRPS of 7.14% and 7.62% if com-

pared with AR models. This clearly demonstrates the ability of MSAR models to capture successive

periods with various levels in the magnitude of power fluctuations, since the increased probabilis-

tic forecasting skill only comes from the introduction of the Markov-switching mechanism. It also

confirms a comment made above, such that the main interest of MSAR models may not obviously

be in the switching autoregressive dynamics for the conditional expectation of the process, but in

the switching between different levels of fluctuation around this conditional expectation.

In parallel, an important property of probabilistic forecasts relates to their reliability, which corre-

sponds to their probabilistic correctness. For evaluating such a property, one may employ a frequen-

tist approach and verify the observed coverage of prediction intervals against their nominal ones.

The observed coverage for the various prediction intervals are gathered in Table 6. The agreement

between nominal coverage rates and observed ones is fairly good, even though deviations from per-

fect reliability of up to 6% can be observed for certain nominal coverage rates. There seem to be

in general a trend of having prediction intervals that are too wide for Nysted (except for the 90%

nominal coverage rate) while these intervals are generally too narrow for the Horns Rev case.

Since it was explained above that prediction intervals are defined by two quantile forecasts for

given nominal proportions, it appears relevant to also verify the observed proportions of quantiles

composing the bounds of the prediction intervals. This also allows to see if the interval forecasts are

properly centred. Such an evaluation is performed in Figure 8 by the use of reliability diagrams,

which gives the observed proportions of the quantiles against the nominal ones. The closer to the

diagonal the better. For both wind farms, the reliability curve lies below the diagonal, indicating

that all quantiles are underestimated (in probability). This underestimation is more significant for

the central part of predictive densities, and in general for the Horns Rev test case. It may be that

the Gaussian assumption should be re-thought, in order to have conditional densities that would

be better representative of the process considered. Ideally, using nonparametric density estimation

in each regime may allow to correct for that.

This lack of reliability of MSAR predictive densities is not a crucial problem. It is known that the

reliability of probabilistic forecast can be fairly easily enhanced without affecting their resolution,

i.e. their inherent ability to resolve among situations with different levels of uncertainty (Toth et al.

2003). MSAR probabilistic forecasts could indeed be recalibrated with e.g. conditional parametric

models (Nielsen et al. 2006) or smoothed bootstrap (Hall and Rieck 2001). Here instead of calibra-

tion of probabilistic forecasts, our focus has principally been to generate one-step ahead forecasts

with minimum mean squared error, and to illustrate the possibility of accompanying them with
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prediction intervals. One should note though that the use of a maximum-likelihood estimation

method (as it is the case here) for MSAR models permits to maximize the sharpness of resulting

probabilistic forecasts. If further work should be concentrated on the providing of reliable interval

forecasts (and still having maximum sharpness), one should then directly formulate the estimation

method for MSAR model coefficients in that sense, using an appropriate skill criterion, as done

by Gneiting et al. (2006) for instance.

7 Concluding remarks

An appealing approach to the regime-switching modelling of short-term wind power fluctuations

based on MSAR models has been introduced. Such a modeling approach can be employed for data

analysis and forecasting purposes. The temporal resolution considered is in the order of a few min-

utes. MSAR models have been allowed to have time-varying coefficients, though slowly varying, in

order to follow the long-term variations in the wind generation process characteristics. An appropri-

ate recursive estimation method using penalized maximum likelihood, where penalization consists

of Tikhonov regularization, has been described. The proposal for inclusion of a regularization term

comes from the aim of application to noisy wind power data, for which the use of non-regularized

estimation may result in ill-conditioned numerical problems. The tracking abilities of the method

have been illustrated from simulations on artificial data. MSAR models have then been employed

for modelling and forecasting wind power fluctuations at Horns Rev and Nysted, the two largest off-

shore wind farms worldwide. These models and related estimation method have been evaluated on

a one-step ahead forecasting exercise on time-series with a 10-minute resolution. They have been

favourably compared against persistence and AR-model-based forecasts. MSAR models have the

additional benefit of informing of the characteristics of such fluctuations. Indeed, it has been pos-

sible to identify regimes with different autoregressive dynamic behaviours, and more importantly

with different variances of conditional densities. This shows the ability of the proposed approach

to characterize periods with smaller or larger magnitudes of power fluctuations. In the future, the

series of regime sequences may be compared with the time-series of some meteorological variables

over the same period, in order to reveal if power fluctuations characteristics can indeed be explained

by the dynamics of these meteorological variables.

In addition to generating point predictions of wind generation, it has been shown that the interest

of the approach proposed also and mainly lied in the possibility of associating point forecasts with

prediction intervals or even full predictive densities. Indeed when focusing on power fluctuations,

even if point forecasts give useful information, one is mainly interested in the magnitude of poten-

tial deviations from these point predictions. The prediction intervals derived here have a higher

skill and resolution than those that would be obtained from AR models since resulting from a mix-

ture of conditional densities in each regime. The reliability of prediction intervals obtained from the
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MSAR models has been discussed. Even though this reliability is not perfect, prediction intervals

could then be recalibrated with existing techniques, without altering their resolution. In parallel,

it is known that for the wind generation process, noise distributions are not Gaussian, and that

the shape of these distributions is influenced by the level of some explanatory variables (Pinson

2006). Therefore, in order to better shape predictive densities, the Gaussian assumption employed

for conditional densities in each regime should be relaxed in the future. Nonparametric density es-

timation may be achieved with kernel density estimators, as in e.g. (Dorea and Zhao 2002), though

this may introduce some problems in a recursive maximum likelihood estimation framework e.g.

multimodality of conditional densities. These open questions related to conditional densities and

estimation of more general MSAR models will be the focus of further research.

One-step ahead predictive densities of power generation have been explicitly formulated. Such

densities consist of finite mixtures of conditional densities in each regime. However, it has been

explained that the issue of parameter uncertainty was not considered, and that this may also af-

fect the quality of derived prediction intervals (and probabilistic forecasts in general), especially

in an adaptive estimation framework where the quality of parameter estimation may also vary

with time. Novel approaches accounting for such parameter uncertainty should hence be proposed.

The derivation of analytical formula might be difficult. In contrast, one may think of employing

nonparametric block bootstrap techniques similar to that proposed in (Corradi and Swanson 2007).

Acknowledgments

The work presented has been carried out in the frame of the projects ‘Power Fluctuations in Large

Offshore Wind Farms’ and ‘Mesoscale atmospheric variability and the variation of wind and produc-

tion for offshore wind farms’, sponsored by the Danish Public Service Obligation (PSO) fund (PSO

4104/6506 and PSO 7141), which is hereby greatly acknowledged. The first author has been partly

supported by the Danish Ministry for Science, Technology and Innovation (grant no. FTP-274-08-

0573). DONG Energy Generation A/S and Vattenfall Danmark A/S are acknowledged for providing

the wind power data for the Nysted and Horns Rev offshore wind farms. The authors are grateful

to Tobias Rydén and Tilmann Gneiting for fruitful discussions.

References

Ailliot P, Monbet V, Prevosto M. 2006. An autoregressive model with time-varying coefficients for wind fields.

Environmetrics 17: 107–117.

Akhmatov V. 2007. Influence of wind direction on intense power fluctuations in large offshore windfarms in

the North Sea. Wind Engineering 31: 59–64.

Chatfield C. 2004. The Analysis of Time-Series: An Introduction (6th ed.). Chapman & Hall/CRC: London.

27



Collings IB, Krishnamurthy V, Moore JB. 1994. On-line identification of hidden Markov models via prediction

error techniques. IEEE Transaction on Signal Processing 42: 3535–3539.

Collings IB, Rydén T. 1998. A new maximum likelihood gradient technique algorithm for on-line hidden

Markov model identification. Proc. IEEE International Conference on Acoustics, Speech, Signal Process-

ing, Seattle (USA).

Corradi V, Swanson NR. 2007. Nonparametric bootstrap procedures for predictive inference based on recursive

estimation schemes. International Economic Review 48: 67–109.

Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. 2008. A review on the young history of the

wind power short-term prediction. Renewable and Sustainable Energy Reviews 12: 1725–1744

Craig BA, Sendi PP. 2002. Estimation of the transition matrix of a discrete-time Markov chain. Health Eco-

nomics 11: 33–42.

Dorea CCY, Zhao LC. 2002. Nonparametric density estimation in hidden Markov models. Statistical Inference

for Stochastic Processes 5: 55–64.

Douc R, Moulines E, Rydén T. 2004. Asymptotic properties of the maximum likelihood estimator in autore-

gressive models with Markov regimes. Annals of Statistics 32: 2254–2304.

Ea Energy Analyses. 50% wind power in Denmark by 2025 - English summary. 2007. Technical Report, Ea

Energy Analyses, Copenhagen, Denmark. [Available at: www.windpower.org]

Focken U, Lange M, Monnich M, Waldl H-P, Beyer H-G, Luig A. 2002. Short-term prediction of the aggre-

gated power output of wind farms - A statistical analysis of the reduction of the prediction error by spatial

smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 90: 231–246.

Giebel G, Kariniotakis G, Brownsword R. 2003. The state of the art in short-term prediction of wind power

- A literature overview. Technical report, ANEMOS EU project, deliverable report D1.1. [Available online:

http://www.anemos-project.eu]

Gneiting T, Balabdaoui F, Raftery AE. 2007. Probabilistic forecasts, calibration and sharpness. Journal of the

Royal Statistical Society B 69: 243–268.

Gneiting T, Larson K, Westrick K, Genton MG, Aldrich, E. 2006. Calibrated probabilistic forecasting at the

Stateline wind energy center: The regime-switching space-time method. Journal of the American Statistical

Association 101: 968–979.

Hall P, Rieck A. 2001. Improving coverage accuracy of nonparametric prediction intervals. Journal of the Royal

Statistical Society B 63: 717–725.

Hamilton JD. 1989. A new approach to the economic analysis of nonstationay time-series and business cycles.

Econometrica 57: 357–384.

Hendersen AR, Morgan C, Smith B, Sørensen HC, Barthelmie RJ, Boesmans B. 2003. Offshore wind energy in

Europe - A review of the state-of-the-art. Wind Energy 6: 35–52.

Hering AS, Genton MG. 2009. Powering up with space-time wind forecasting. Journal of the American Statis-

tical Association, forthcoming.

Hoerl AE. 1962. Application of ridge analysis to regression problems. Chemical Engineering Progress 58: 54–

59.

Holst U, Lindgren G, Holst J, Thuvesholmen M. 1994. Recursive estimation in switching autoregressions with

a Markov regime. Journal of Time Series Analysis 15: 489–506.

Johansen TA. 1997. On Tikhonov regularization, bias and variance in nonlinear system identification. Auto-

28



matica 33: 441–446.

Kristoffersen JR, Christiansen P. 2003. Horns Rev offshore wind farm: its main controller and remote control

system. Wind Engineering 27: 351–359.

Krolzig H-M. 1997. Markov-Switching Autoregressions. Modeling, Statistical Inference and Application to Busi-

ness Cycle Analysis. Springer: Berlin (Lecture Notes in Economics and Mathematical Systems, vol. 454).

LeGland F, Mevel L. 1997. Recursive estimation in hidden Markov models. Proc. IEEE Conference on Decision

and Control, San Diego.
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Appendix: Derivatives of relevant variables

The mathematical developments necessary for the application of the recursive estimation procedure

at each time step t are gathered in the Appendix. More precisely, it gathers all necessary derivatives

for obtaining ht as defined in (27). For that purpose, it is necessary to obtain the value of the

gradient ∇Θut at Θ̂t−1. This is achieved by derivation of (20) as

∇Θut(Θ̂t−1) =
(

∇Θη(εt; Θ̂t−1)
)⊤

P
⊤(Θ̂t−1)ξt−1(Θ̂t−1)

+ η⊤(εt; Θ̂t−1)
(

∇ΘP
⊤(Θ̂t−1)

)

ξ⊤t−1(Θ̂t−1)

+ η⊤(εt; Θ̂t−1)P
⊤(Θ̂t−1)

(

∇Θξt−1(Θ̂t−1)
)

(42)

In the above, the gradients of three different quantities need to be calculated: they correspond to

the gradients of the conditional densities, of the transition probability matrix, and finally of the

filtered probabilities. They are given below. Note that these gradients are a function of the true

model parameters, which in practice are replaced by available estimates.

Gradient of the conditional densities η

It is clear that η is independent of the s̃ij coefficients related to transition probabilities, and this

whatever t. Therefore for a given state j, ∇Θη(j)(εt; Θ̂t−1) is composed by the vector of derivatives

of η(j) with respect to the AR coefficients and log-variances of conditional densisties, calculated at

εt, and by a vector of zeros of length r2.
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The derivative of η(j) with respect to θ
(j)
i , calculated at ε

(j)
t given Θ̂t−1, writes

∂
θ
(j)
i

η(j)(ε
(j)
t ; Θ̂t−1) =

xt,j

(σ
(j)
t−1)

2
ε
(j)
t η(j)(ε

(j)
t ; Θ̂t−1)δij (43)

where xt,j is the jth element of xt, and where δij is an indicator variable, i.e. such that

δij =







1, if i = j

0, otherwise
(44)

In parallel, the derivative of η(j) with respect to σ̃(j), and calculated at εt, is similarly given by

∂σ̃(j)η(j)(ε
(j)
t ; Θ̂t−1) =





ε
(j)
t

2

σ
(j)
t−1

2 − 1



 η(j)(ε
(j)
t ; Θ̂t−1)δij (45)

In practice, this means that it is only needed to compute r(p+1) derivatives for building ∇Θη(j)(εt; Θ̂t−1)

at each time step.

Gradient of the transition probability matrix P
⊤

For the case of the transition probability matrix, things are just the other way around. That is,

derivatives of P
⊤(Θ̂t−1) with respect to AR coefficients or to standard deviations of conditional den-

sities are zeros, so that it is only necessary to compute the r2 derivatives related to s̃ij coefficients.

As a starting point, the derivative of P
⊤ with respect to sij in the direction tangent to the constraint

spherical surface defined by (7) is given in (Collings and Rydén 1998) and writes

∂sijP
⊤(Θ̂t−1) = 2sij

t−1

(

ej − si.
t−1

⊤ ⊗ si.
t−1

⊤
)

e
⊤
i (46)

with ej a vector of size r whose elements are zeros except for the jth, which equals 1.

Then, by noticing that

∂s̃ijP
⊤(Θ̂t−1) = ∂sij P

⊤(Θ̂t−1)∂s̃ij sij
t−1 (47)

and that

∂s̃ij sij
t−1 = sij

t−1(1 − sij
t−1) (48)

one finally obtains

∂s̃ijP
⊤(Θ̂t−1) = 2

(

sij
t−1

)2

(1 − sij
t−1)

(

ej − si.
t−1

⊤ ⊗ si.
t−1

⊤
)

e
⊤
i (49)
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Gradient of the filtered probabilities ξ
t−1

The probabilistic inference filter given in (23) permits to recursively estimate the vector of filtered

probabilities. Therefore, by derivation of (23), one obtains a similar filter permitting to recursively

estimate ∇Θξt−1 from ∇Θξt−2, as well as ∇ΘP
⊤ and ∇Θη. First, note that one has

∇Θξt−1(Θ̂t−1) =



































∇
θ(1)ξt−1(Θ̂t−1)

...

∇
θ(j)ξt−1(Θ̂t−1)

...

∇
θ(r)ξt−1(Θ̂t−1)

∇σ̃ξt−1(Θ̂t−1)

∇s̃ξt−1(Θ̂t−1)



































(50)

The various elements composing ∇Θξt−1(Θ̂t−1) are detailed below. Regarding derivatives with

respect to the AR parameters, one has

∂
θ
(j)
i

ξt−1(Θ̂t−1) = τ
(j)
t−1,i −

ξt−1(Θ̂t−1)

ut−1(Θ̂t−1)
|τ (j)

t−1,i| (51)

where

τ
(j)
t−1,i =

1

ut−1(Θ̂t−1)

[ (

∂
θ
(j)
i

η(j)(ε
(j)
t−1; Θ̂t−1)

)

ej ⊗
(

P
⊤(Θ̂t−1)ξt−2(Θt−2)

)

+ η(εt−1; Θ̂t−1) ⊗
(

P
⊤(Θ̂t−1)∂

θ
(j)
i

ξt−2(Θt−2)
) ]

(52)

and |.| denotes the sum of the vector elements. In the above, ej is a unit vector as introduced in (46).

⊗ stands for the element-by-element multiplication.

The derivatives with respect to the standard deviation of conditional densities in each regime are

similar to those for the AR parameters given in (51)-(52), that is,

∂σ̃(j)ξt−1(Θ̂t−1) = χ
(j)
t−1 −

ξt−1(Θ̂t−1)

ut−1(Θ̂t−1)
|χ(j)

t−1| (53)

where

χ
(j)
t−1 =

1

ut−1(Θ̂t−1)

[ (

∂σ̃(j)η(ε
(j)
t−1; Θ̂t−1)

)

ej ⊗
(

P
⊤(Θ̂t−1)ξt−2(Θt−2)

)

+ η(εt−1; Θ̂t−1) ⊗
(

P
⊤(Θ̂t−1)∂σ̃(j)ξt−2(Θt−2)

) ]

(54)
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In a similar manner, one can obtain the derivatives with respect to the s̃ij parameters calculated at

Θ̂t−1. They are given by

∂s̃ijξt−1(Θ̂t−1) = ψ
ij
t−1 −

ξt−1(Θ̂t−1)

ut−1(Θ̂t−1)
|ψij

t−1| (55)

where

ψ
ij
t−1 =

1

ut−1(Θ̂t−1)

[

η(εt; Θ̂t−1)
(

∂
s̃

ij

t−1
P

⊤(Θ̂t−1)
)

ξt−2(Θt−2)

+ η(εt; Θ̂t−1)P
⊤(Θ̂t−1)∂s̃ijξt−2(Θt−2)

]

(56)
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FIGURE 1: Evolution of the autoregressive parameters (top left: θ
(1)
0 , top right: θ

(1)
1 , bottom left: θ

(2)
0 , bottom

right: θ
(2)
1 ). True values are given by dashed lines, the mean estimates are depicted with solid lines, while the

dotted lines indicate the quantiles with proportions 0.05 and 0.95 of the distributions of model estimates over

the 1000 simulations.
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FIGURE 2: Evolution of the standard deviations of conditional densities in each regime (top: σ(1), bottom:

σ(2)).True values are given by dashed lines, the mean estimates are depicted with solid lines, while the dotted

lines indicate the quantiles with proportions 0.05 and 0.95 of the distributions of model estimates over the 1000

simulations. and 0.95.
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FIGURE 3: Evolution of the transition probabilities of the Markov-switching autoregressive model (top left: p11,

top right: p12, bottom left: p21, bottom right: p22 ). True values are given by dashed lines, the mean estimates

are depicted with solid lines, while the dotted lines indicate the quantiles with proportions 0.05 and 0.95 of the

distributions of model estimates over the 1000 simulations.
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FIGURE 4: Time-series of normalized power generation at Nysted (both measurements and one-step ahead

predictions) over an arbitrarily chosen episode.
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FIGURE 5: Evolution of filtered probabilities given by the Markov-switching model over the same period.
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FIGURE 6: Time-series of normalized power generation at Horns Rev (both measurements and one-step ahead

predictions) over an arbitrarily chosen episode, accompanied with prediction intervals with a nominal coverage

rate of 90%.
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FIGURE 7: Evolution of filtered probabilities given by the Markov-switching model over the same period.
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FIGURE 8: Reliability evaluation of quantile forecasts obtained from the Markov-switching autoregressive

models for both Horns Rev and Nysted. Such reliability diagram compare nominal and observed quantile

proportions.
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TABLE 1: Results of the cross validation procedure for MSAR models for the Nysted and Horns Rev wind

farms.

regimes lags intercept λ ν
Nysted 2 3 no 0.999 0.02

Horns Rev 3 3 yes 0.999 0.06

TABLE 2: Results of the cross validation procedure for AR models, for the Nysted and Horns Rev wind farms.

lags intercept λ
Nysted 2 no 0.995

Horns Rev 3 yes 0.997

TABLE 3: One-step ahead forecast performance over the evaluation set for Nysted and Horns Rev. Results are

for persistence, AR and MSAR models. Performance is summarized with NMAE, and NRMSE criteria, given

in percentage of the nominal capacity Pn of the wind farm considered.

persistence AR model MSAR model

NMAE NRMSE NMAE NRMSE NMAE NRMSE

Nysted 2.37 4.11 2.21 3.90 2.18 3.80

Horns Rev 2.52 4.77 2.48 4.62 2.43 4.57
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TABLE 4: Stationary distributions and expected return times for the various regimes, for both Nysted and

Horns Rev test cases. Stationary distributions are given in terms of marginal probabilities of each regime,

while the expected return times are given in number of time-steps.

Nysted Horns Rev

Regime 1 2 1 2 3

Marginal probability 0.32 0.68 0.42 0.32 0.26

Expected return time 3.08 1.48 2.38 3.15 3.81

TABLE 5: One-step ahead skill of density forecasts over the evaluation set for Nysted and Horns Rev. Results

are for AR and MSAR models. Skill is evaluated with a CRPS criterion, given in percentage of the nominal

capacity Pn of the wind farm considered.

AR model MSAR model Improvement [%]

Nysted 1.82 1.69 7.14

Horns Rev 2.10 1.94 7.62

TABLE 6: Empirical coverage of the interval forecasts produced from the Markov-switching autoregressive

models for Horns Rev and Nysted.

nom. cov. [%] obs. cov. Horns Rev [%] obs. cov. Nysted [%]

10 11.32 12.09

20 19.72 23.56

30 28.69 35.98

40 37.75 47.66

50 48.36 57.58

60 57.91 65.61

70 67.46 74.09

80 76.29 81.80

90 84.95 89.66
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