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Effect of fluid-solid friction on the stiffness of chalk. 
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Department of Civil Engineering, Technical University of Denmark. 
 
 
Summary 
Chalks behave weaker at water saturated condition. We 
studied this softening effect as a function of Biot’s 
frequency ratio, which is a ratio between measured 
ultrasonic wave frequency and Biot critical frequency, fc. 
Kinematic viscosity of fluid and permeability of rock 
determines fc. We observed that rocks saturated with higher 
kinematic viscosity fluid are stiffer. 
 
Introduction 
Pore space stiffness is an important parameter for reservoir 
simulation to model stability of reservoir under altered 
condition of pore fluid, overburden stress and pore 
pressure. Decrease in stiffness causes porosity reduction, 
reservoir compaction, subsidence at the seafloor as well as 
increased pressure at the pore space which acts as 
compaction drive for increased oil production. Decreased 
pore stiffness and subsequent compaction and subsidence 
are common phenomena in North Sea oil reservoir in chalk 
after waterflooding.(Ruddy et al., 1989; Hermansson and 
Gudmundsson, 1990; Pattillo et al., 1998; Kristiansen et al., 
2005; Tjetland et al., 2007). 

 
North Sea chalks are composed of nanometer to a few 
micrometer sized fossils (coccolith fragments or aggregates 
of coccolith platelets) (Figure 1). Due to small particle size, 
chalk has a homogeneous structure with high specific 
surface area. A high specific surface of particles means that 
the solid has large exposure to the fluid. Thus chalk has 
inferior fluid flow property with permeability in the range 
of 0.01 to 10 mD. For the same reason chalk is vulnerable 
to any effect caused by the pore fluid. 
 
Several authors proposed chemical effects between pore 
fluid and calcite particles as a reason for weakening of 
chalk (Newman 1983; Schroeder et al., 1998; Risnes et al. 
2003; Madland et al., 2006; Korsnes et al., 2008). Capillary 
effects (e.g. Taibi et al., 2009), reduction of surface energy 
(e.g. Rutter 1972; Tutuncu et al., 1995) etc. are also 
reasoned for weakening of chalk.  

 
Friction between fluid and solid is a possible mechanism 
which could be used for defining stiffness of chalk. Critical 
frequency of elastic wave propagation in porous media as 
introduced by Biot (1956a, b) could be used as a tool for 
defining stiffness of fluid saturated porous media.  
Gutierrez et al. (2000) found higher friction for oil-
saturated chalk than water-saturated chalk. Fabricius et al. 
(2010) found the amount of water softening of elastic 
modulus to be correlated with the reference frequency. 
Andreassen and Fabricius (2010) found that the effective 
yield stress and also the effective stress of failure in tension 
as well as in compression are related to the critical 
frequency. The fluid effect on the stiffness of rocks can be 
characterized by Biot’s (1956a, b) critical frequency: 
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which is calculated from porosity, , liquid permeability, k, 
fluid density, fl and viscosity, . The higher the critical 
frequency the stiffer is the rock (Andreassen and Fabricius, 
2010). The effect is probably prominent in low 
permeability rocks as chalk, as fluid flow is highly 
controlled by the specific surface due to smaller effective 
pore radius (Fabricius et al., 2010). 
 
Biot’s (1956a, b) theory assumes that the motion of the 
pore fluid, relative to the solid, follows Poiseuille flow. For 
poiseuille flow in a porous medium the characterizing 
boundary layer is known as the viscous skin depth: 
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where ω is the angular frequency. The frequency above 
which the assumption of Poiseuille law fails is known as 
the critical frequency.  
 
We used the critical frequency as a measure of stiffness and 
studied the change in modulus due to saturation with fluid 
different viscosity.  
 
Data 
We used North Sea chalk and Stevns outcrop chalk from 
Denmark for this study. Eighteen, one and half in plugs 
were saturated with 10 different fluids including air (Table 
1) and compressional and shear wave velocity were 
measured.  
 
In addition, we used chalk data from Røgen et al. (2005), 
Fabricius et al. (2008) and Alam (2011) for calculating 
viscous skin depth, critical frequency and modulus. 
 

 
Figure 1:  Scanning Electron Microscopic (SEM) image of chalk 
from Stevns (outcrop Denmark) showing pore spaces in between 
calcareous skeletons and skeleton fragments (Hjuler et al., 2007). 
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Table 1: Properties of the studied fluids. 
Fluid Density 

(g/cm3) 
Viscosity 
(mPa.s) 

Kinematic 
Viscosity 
(10−6m2/s) 

Ionic 
strength 
(mol/m3)

Skin 
depth 
(nm) 

Eq. water 0.998 1.002 1.004 2.7 5.9

Brine 1 1.016 1.050 1.033 516 0.42

Brine 2 1.057 1.190 1.126 1542 0.24

Brine 3 1.018 1.170 1.149 255 0.60

Brine 4 1.029 1.20 1.166 844 0.33

Brine 5 1.066 1.29 1.21 1871 0.22

Isopar L 0.760 1.25 1.64 - -

Dead oil 1.110 8.84 7.96 - -

Air 0.00124 0.0183 15.33 
E. glycol 0.840 16.49 19.63 - -

 
Methods and theory 
Compressional modulus, M, shear modulus, G and bulk 
modulus, K was calculated from compressional wave 
velocity Vp, shear wave velocity Vs and density, ρ: 
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Gassmann fluid substitution was used to calculate saturated 
bulk modulus from Ksat from dry bulk modulus, Kdry: 
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where K0 is the mineral bulk modulus,  is the porosity and 
Kfl is the modulus of the saturating fluid. 
 
For simplicity, we choose to use the Debye length directly 
as a measure of the skin depth (Andreassen and Fabricius, 

2010). Accordance to the Debye- Hückel theory, the 
screening length κ-1

 for an electrolyte is quantified as: 
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where ε0 is the permittivity of vacuum, εr is the relative 
dielectric permittivity, kB is Boltzmann’s constant, T is the 
absolute temperature, NA  is Avogadro’s number, e is the 
elementary charge, and I is the ionic strength of the 
electrolyte. 
  
The reduction in porosity open to flow due to this layer is 
calculated as:  
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where, effective specific surface of the grains:  
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was calculated from porosity, , permeability, k, and 
porosity dependent Kozeny (1926) constant, c: 
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Permeability was recalculated by using Kozeny’s (1927) 
equation for reduced porosity assuming specific surface of 
the grains remain constant: 
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Figure 2:  Porosity and permeability of the sudied samples (a) without considering skin depth, (b) considering viscous skin depth. Used fluds are 
indicatd by colors. A decrease in porosity and permeability is observed when viscous layer is taken into consideration. 
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Figure 3:  Frequency ratio (f/fc) as a function of (a) porosty, (b) reduced porosity, considering viscous skin depth. Datapoints are colored 
accociring to kinematic viscosity. A rock behaves stiffer when it is saturated with high kinematic viscosity flud (Table 1). 
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Figure 4: (a), (b) and (c) respectively are bulk modulus, compressional modulus and shear modulus of the studied sample. Different fluids are 
indicated in legend. Air saturated moduli are indicated by the pink crosses. Influence of frequency ratio (f/fc) on the (d) and (g) dispersion of 
bulk modulus,  (e) and (h) dispersion of compressional modulus and  (f) and (i) dispersion of shear modulus. (d), (e) and (f) are calculated by 
using measured porosty. (g), (h) and (i) are calculated by using reduced porosity with considering viscous skin depth. 
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Results and discussion 
Viscous skin depth decreases with the increase of ionic 
strength (Table 1). Porosity reduces 2-5% due to this layer. 
Fluid of this layer does not flow therefore it decrease the 
permeability (Figure 2) 
 
It is evident that a rock saturated with higher kinematic 
viscosity fluid behaves stiffer (Figure 3). Among our 
studied fluids, only ethylene glycol has higher kinematic 
viscosity than the air. Therefore, samples saturated with 
equilibrated water, brine, isopar-L oil and dead oil should 
behave softer, as indicated by the lower frequency ratio. 
Stiffness of a fluid saturated rock can be underestimated if 
viscous skin depth is not considered. By considering skin 
depth a lower frequency ratio is achieved, which indicates a 
stiffer rock.  
 
Gassmann’s equation predicts higher moduli when the 
sample is saturated with fluid of lower kinematic viscosity 
than air (Figure 4). As ethylene glycol has higher kinematic 
viscosity than air Gassmann’s equation is expected to 
predict lower moduli than calculated moduli. We can 
accordingly see a trend towards positive dispersion for the 
ethylene glycol saturated samples. However, in order to 
establish this trend more samples saturated higher 
kinematic viscosity fluid need to be measured. 
 
Conclusions 
Viscous skin depth of fluid plays a significant role in flow 
and stiffness in porous media. A rock behaves stiffer when 
saturated with higher kinematic viscosity fluid. Gassmann’s 
fluid substitution could result in wrong prediction of rock 
stiffness if stiffness of air is not considered. 
 
Acknowledgments 
DONG Energy is thanked for providing samples. Morten 
Hjuler is thanked for providing SEM image.  
 
References 

Alam, M. M., 2011, Rock physical aspects of CO2 injection in 
chalk: Ph.D. thesis, Tech. U. of Denmark. 

Andreassen, K. A. and Fabricius, I. L., 2010, Biot critical 
frequency applied to description of failure and yield of highly 
porous chalk with different pore fluids: Geophysics, 75, E205-
E213. 

Biot, M. A., 1956a, Theory of propagation of elastic waves in a 
fluid-saturated porous solid. I. Low-frequency range: The Journal 
of the Acoustical Society of America, 28, no. 2, 168–178. 

Biot, M. A., 1956b, Theory of propagation of elastic waves in a 
fluid-saturated porous solid. II. Higher frequency range: The 
Journal of the Acoustical Society of America, 28, no. 2, 179–191. 

Fabricius, I. L., Baechle, G. T., and Eberli, G. P., 2010, Elastic 
moduli of dry and water-saturated carbonates: Effect of 
depositional texture, porosity, and permeability: Geophysics, 75, 
N65-N78. 

Fabricius, I. L., Gommesen, L., Krogsbøll, A., and Olsen, D., 
2008, Chalk porosity and sonic velocity versus burial depth: 
Influence of fluid pressure, hydrocarbons, and mineralogy: AAPG 
Bulletin, 92, 201-223. 

Gassmann, F., 1951, Elastic waves through a packing of spheres: 
Geophysics, 16, 673. 

 
 
 
Gutierrez, M., L. E. Øino, and K. Høeg, 2000, The effect of fluid 

content on the mechanical behavior of fractures in chalk: Rock 
Mechanics and Rock Engineering, 33, 93–117, 

Hermansson, L. and Gudmundsson, J. S., 1990, I in European 
Petroleum Conference, 21-24 October 1990, The Hague, 
Netherlands. 

Hjuler, M. L., 2007, Diagenesis of upper cretaceous onshore and 
offshore chalk from the North Sea area: Ph.D. thesis, Technical 
University of Denmark. 

Korsnes, R. I., M. V. Madland, T. Austad, S. Haver, and G. 
Røsland, 2008, The effects of temperature on the water weakening 
of chalk by seawater: Journal of Petroleum Science Engineering, 
60, no. 3–4, 183–193 

Kozeny, J., 1927, Ueber kapillare Leitung des Wassers im 
Boden: Sitzungsberichte der Akademie der Wissenschaften in 
Wien, 136, 271-306. 

Kristiansen, T., Barkved, O., Buer, K., and Bakke, R., 2005, 
Production-Induced Deformations Outside the Reservoir and Their 
Impact on 4D Seisimic in International Petroleum Technology 
Conference, 21-23 November 2005, Doha, Qatar. 

Madland, M. V., A. Finsnes, A. Alkafadgi, R. Risnes, and T. 
Austad, 2006, The influence of CO2 gas and carbonate water on 
the mechanical stability of chalk: Journal of Petroleum Science 
Engineering, 51, no. 3–4, 149–168. 

Newman, G. H., 1983, The effect of water chemistry on the 
laboratory compression and permeability characteristics of some 
North-Sea chalks: Journal of Petroleum Technology, 35, no. 5, 
976–980. 

Pattillo, P. D., Kristiansen, T. G., Sund, G. V., and Kjelstadli, R. 
M., 1998, Reservoir compaction and seafloor subsidence at 
Valhall: SPE/ISRM Rock Mechanics in Petroleum Engineering. 

Risnes, R., H. Haghighi, R. I. Korsnes, and O. Natvik, 2003, 
Chalk-fluid interactions with glycol and brines: Tectonophysics, 
370, no. 1–4, 213–226. 

Røgen, B., Fabricius, I. L., Japsen, P., Høier, C., Mavko, G., and 
Pedersen, J. M., 2005, Ultrasonic velocities of North Sea chalk 
samples: influence of porosity, fluid content and texture: 
Geophysical Prospecting, 53, 481-496. 

Ruddy, I., Andersen, M., Pattillo, P. D., Bishlawi, M., and 
Foged, N., 1989, Rock compressibility, compaction, and 
subsidence in a high-porosity chalk reservoir: A case study of 
Valhall field: Journal of Petroleum Technology, 41, 741-746. 

Rutter, E. H., 1972, The influence of interstitial water on the 
rheological behaviour of calcite rocks: Tectonophysics, 14, no. 1, 
13–33, 

Schroeder, Ch., A. P. Bois, V. Maury, and G. Hallé, 1998, 
Water/chalk or collapsible soil interaction: Part II. Results of tests 
performed in laboratory on Lixhe chalk to calibrate water/chalk 
models: SPE Paper 47587. 

Taibi, S., A. Duperret, and J.-M. Fleureau, 2009, The effect of 
suction on the hydro-mechanical behavior of chalk rocks: 
Engineering Geology, 106, no. 1–2, 40–50 

Tjetland, G., Kristiansen, T., and Buer, K., 2007, Reservoir 
Management Aspects of Early Waterflood Response after 25 Years 
of Depletion in the Valhall Field in International Petroleum 
Technology Conference, Dubai, U.A.E., 4-6 December 2007. 

Tutuncu, A. N., M. M. Sharma, and A. L. Podio, 1995, An 
experimental investigation of the role of pore fluids on the 
nonlinear hysteretic behavior of Berea Sandstone: 65thAnnual 
International Meeting, SEG, Expanded Abstracts, 886–889. 
 
 
 
 
 


