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ABSTRACT 

In most power electronics converters, the overall volume is mainly determined by the number of parts and 

the size of passive components. Integrated magnetics and planar magnetics techniques therefore have been an 

excellent option in order to reduce the counts and the size of magnetic components, hereby increasing the power 

density of converters. In this paper, a new planar integrated magnetics (PIM) module for a phase-shift plus duty 

cycle controlled hybrid bi-directional dc-dc converter is proposed, which assembles one boost inductor and two 

transformers into an E-I-E core geometry, reducing the number of parts, the total volume of converter, as well as 

the total core loss of the magnetic components. AC losses in the windings and leakage inductance of the 

transformers are kept low by interleaving the primary and secondary turns of the transformers. To verify the 

validity of the design approach and theoretical analysis, a lab prototype employing the PIM module is 

implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. Detailed results 

from the experimental comparisons demonstrate that the PIM module is fully functional and electromagnetically 

equivalent to the discrete magnetics and a significant reduction of size can be achieved by using the PIM module. 

 

Index Terms-- planar integrated magnetics, transformer, inductor, interleaving, hybrid, dc-dc converter 

and fuel cell. 
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I. INTRODUCTION 

In order to satisfy the requirements of modern power electronics application, magnetics integration 

with planar core has proven to be an effective means of reducing the converter size, the cost and 

increasing the converter efficiency [1]-[9]. Planar magnetics have unique advantages in terms of 

increased power density, better cooling capability, modularity and manufacturing simplicity as well as 

easy implementation of interleaved windings, which make them attractive for high current dc-dc power 

converter applications [10]-[12].  

In recent years, most efforts in integrated magnetics (IM) focus on the current-doubler rectifier due 

to its suitability for low-output-voltage and high-output-current applications. Unlike conventional 

magnetic integration focusing only on core integration, both core and winding integration can be 

realized in the current-doubler rectifier design, causing lower conduction loss and core loss. As a result, 

lower overall cost, size as well as higher efficiency can be obtained by the IM design for the current-

doubler circuit [1]-[5]. A 1 kW with 300~400 V input voltage and 48 V output voltage asymmetrical 

half-bridge PWM converter (AHBC) employing an integrated L–L–C–T module is constructed in [6]. 

Detailed suggestions are given of how one generic, integrated LCT component could be used to 

implement various resonant converter topologies by merely reconfiguring the external terminals of the 

integrated components [7]-[8]. An integrated transformer consisted of four step-down transformers 

wound on a single magnetic core for an interleaved four-phase forward converter has been proposed 

[13]. Coupled inductors can greatly reduce the steady-state inductor current ripples without 

compromising the transient response [14]-[18]. 

A new planar integrated magnetics (PIM) module for a phase-shift plus duty cycle controlled 

hybrid bi-directional dc-dc converter is proposed in this paper. One boost inductor and two transformers 

are integrated into an E-I-E core geometry. The modeling of the PIM structure is presented in Section 

III.  The flux generated from each magnetic component assembled into the PIM module can be partially 

cancelled, resulting in a lower core loss. Integrated transformers in this geometry have higher 

magnetizing inductance compared to separated transformers in term of the same winding arrangements 

at the outer legs, reducing current stress. AC losses in the windings and leakage inductance of the 
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transformers are kept low by interleaving the primary and secondary turns of the transformers. The 

design considerations for the PIM module are presented in depth in Section IV. Finally, in order to 

verify the validity of the design approach and theoretical analysis, a lab prototype employing the PIM 

module is implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. 

Detailed results from the experimental comparisons demonstrate the PIM module is fully functional and 

electromagnetically equivalent to the discrete magnetics and a significant reduction of the size can be 

achieved by using the PIM module. 

II. OPERATION PRINCIPLES OF THE HYBRID BI-DIRECTIONAL DC-DC CONVERTER 

Nowadays, the hybrid system based on fuel cells (FCs) and super-capacitors as an environmentally 

renewable energy system has been applied in many fields, such as hybrid electric vehicle, 

uninterruptible power supply and so on [19], [20]. Boost derived topologies are preferred in fuel cell 

applications due to their low input current ripple [21]. Fig.1 shows a novel phase-shift plus duty cycle 

controlled hybrid bi-directional dc-dc converter, which is originally proposed in [22]. The converter 

utilizes a boost-type input structure to limit the current ripple drawn from the FCs. For better 

understanding, Fig.2 shows equivalent circuits of the converter. Two transformers T1 and T2 are 

employed to associate with a half-bridge circuit (see Fig.2-b) and a full-bridge circuit (see Fig.2-a) 

respectively. Phase-shift technique is used in the converter since it can realize zero voltage switching 

(ZVS) for all switches without auxiliary switches. However, if the amplitude of input voltage is not 

matched with that of output voltage, the voltage on the phase-shift inductor L2 consisting of the leakage 

inductance of the transformers on the secondary side and an auxiliary inductor becomes high, resulting 

in a higher current stress on all components. In order to operate in a wide input range, duty cycle control 

for S3 and S4 therefore can be used to reduce the current stress and conduction losses [23]-[27].  

As shown in Fig. 1, a boost type half-bridge structure associated with the switches S1 and S2 

operating at 50% duty cycle is located on the primary side of the transformer T1. The super-capacitor 

bank crossing on the two series-connected capacitors, CSC1 and CSC2, is connected on a variable low 

voltage DC bus as an auxiliary energy source. Bi-directional operation can be realized between the 
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super-capacitor bank and the output load. S3 and S4 are controlled by the duty cycle D to reduce the 

current stress when the input voltage VFC is variable over a wide range. The two transformers, T1 and T2, 

with independent primary windings as well as series-connected secondary windings are utilized to 

realize galvanic isolation and boost a low input voltage to the high voltage secondary side. To avoid dc 

bias current of the transformer T2 caused by asymmetrical operation in the full-bridge circuit (flux-

walking problem), a dc blocking capacitor C2 is added in series with the primary winding of T2. Voltage 

doubler circuit is used in the secondary side to further improve the voltage conversion ratio. The phase-

shift inductor L2 in the secondary side is utilized as power delivering interface element from low voltage 

input side to high voltage side. The delivered power is controlled by the phase-shift angle δ between S1 

and S5, and can be expressed as (1) if the duty cycle D is 0.5 [24]. 

2

)(
L

VVP MOCO

⋅⋅
−⋅⋅⋅

=
πω

δπδ
                                                     (1) 

where VMO is the voltage on the secondary side of the transformers and VCO is the high side voltage as 

shown in Fig.1. To facilitate the explanation of the operation of the circuit in Fig. 1, Fig. 3 shows key 

   
Fig. 1.  Hybrid bidirectional dc-dc converter topology. 

                         
Fig. 2.  Equivalent circuits of the converter. (a) full-bridge structure and (b) half-bridge structure.  
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waveforms of the converter under duty cycle control. A simplified stage analysis during a half 

switching period is presented as follows, 

1) Stage 1 (t0-t1): S1, S4 and S6 are conducting. The voltage on L2 is VT1s+VT2s+VCO, so the iL2 will 

increase linearly.  IL1 goes though the body-diode DS1 of switch S1;  

2) Stage 2 (t1-t2): At t1, S6 is turned off. The inductor L2 begins to resonate with the stray capacitors 

CS5 and CS6 of switches S5 and S6. When the voltage on CS5 reduces to zero, the body-diode of S5 starts 

to conduct, and the voltage VCO changes the direction. Hereby VL2 equals to VT1s+VT2s-VCO;  

3) Stage 3 (t2-t3): At t2, S5 is turned on under ZVS. The current paths are the same as those in the 

stage 2;  

4) Stage 4 (t3-t4): At t3, S4 is turned off. The inductor L2 begins to resonate with the stray capacitors 

CS3 and CS4 of switches S3 and S4. When the voltage cross S3 reduces to zero, DS3 is therefore forward 

biased. The voltage crossing the primary winding of T2 is clamped to zero. So VL2 equals to VT2s-VCO;  

5) Stage 5 (t4-t5): At t4, S1 is turned off. The inductor L2 begins to resonate with the stray capacitors 

CS1 and CS2 of switches S1 and S2. CS2 is discharged from 2VFC. The rate of change depends on the 

magnitude IT1p+IT2p-ILdc. At t5, VCS2 attempts to overshoot the negative rail. DS2 is forward biased. 

During this period, S2 can be turned on under ZVS.  

After t5, the same operational principles are repeated in the second half cycle. Detailed stage 

analysis and the characteristics of the converter can be referred in [22]. 

 
Fig. 3.  Key waveforms of the converter under duty cycle control. 
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III. NEW PIM MODULE STRUCTURE  

The conventional IM design currently uses soft-ferrite E-I or E-E core. In this work, a new PIM 

structure is proposed to integrate two transformers, T1 and T2, and boost inductor L1 with a combined E-

I-E core geometry. The PIM module is shown in Fig.4. The windings of each transformer are 

symmetrically distributed into the outer legs of E-cores. The inductor, L1, is constructed by two series-

connected inductors wound in each center leg of E-cores respectively with certain air gaps. The middle 

I-core provides a low reluctance return path where flux cancellation can be achieved. Due to a high 

reluctance in the center legs, most alternating flux Φ1 and Φ2 generated from the transformer windings 

flows out of the center leg of E-core as shown in Fig.4-(b). The flux Φ3 generated from the inductor 

windings flows in the center legs of E-cores, and then distributes equally into the two outer legs. None 

of the flux Φ3 exists in the shared I-core. Half of Φ3 increases the total flux in the right side together 

with Φ1 and Φ2 and the other half of Φ3 decreases them in the left side at a certain instantaneous time. 

As a result, although the flux Φ3 couples with Φ1 and Φ2 on the two outer legs, the transformers’ 

behavior will not be affected. Since partial ac flux cancellations are achieved in the core as well as 

smaller total ferrite volume, lower core loss might be obtained compared with discrete magnetics. 

However, notice that partial saturation may occur due to the flux overlapping on the right side leg, 

which limits the nominal power of the converter. 

In term of this new geometry, many advantages can be concluded as below,  

 
Fig. 4. Proposed E-I-E integrated magnetic structure (a) and its instantaneous flux distribution (b). 
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(1)   Air gaps located in the center legs cause a lower fringing effect as well as EMI problem compared 

with the case that air gaps located in the outer leg [1], [3]. Mechanically stabilization is also counted as 

an advantage.  

(2)   Magnetizing inductance will not be affected by the air gaps this is due to the fact that the flux Φ1 

and Φ2 only circulate in the outer legs rather than the center legs with air gaps. Certainly, the 

magnetizing inductance in the PIM is much lower than the case where the same windings are wound on 

the center leg due to the equivalent cross section of the outer leg is only half of the center leg. However, 

magnetizing inductance can be improved by using the integrated approach compared to the separated 

transformers in term of the same winding locations. This is because the flux cancellation occurring in 

the shared I-core effectively reduces the length of the transformer flux path [28], [29]. It is 

mathematically proved in section IV and the measurement results in section V also demonstrate the 

same conclusion. 

(3)   Since partial ac flux cancellations are achieved in the core as well as smaller total ferrite volume, 

lower core loss might be obtained compared with discrete magnetics.  

(4)  Less number of cores is used, causing a lower cost for the converter. 

(5)  The integrated approach provides a low volume for the converter, which increases the power 

density required by space restrictions in automotive and integrated application. 

(6)  Flexibility. The integrated approach can be extended into many other topologies such as primary-

parallel isolated boost converter [30], multi-transformers converters and so on. 

IV. MAGNETICS DESIGN CONSIDERATION 

A. Primary Turns Factor 

        If the duty cycle D of S3 and S4 is smaller than 50% (duty-cycle control), it is impossible to obtain 

a complete flux cancellation in the shared I-core. A proper primary turns factor, K=N1/N2, should be 

chosen in order to minimize the core loss as well as maximize the delivered power capability. N1 and N2 

are the number of turns on the primary side of T1 and T2 respectively. Fig.5 reflects the ac flux of the 

transformers, Φ1 and Φ2, and variation of flux in the shared I-core, ΔΦ, with different primary turns 
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factors. Applying a piecewise linear model (PWL) to the non-sinusoidal waveform and combining this 

with the improved generalized Steinmetz equation (IGSE) [31] shows that the converter working under 

duty cycle control (D<50%) has a lower core loss in the shared I-core when the primary turns factor is 

K=0.5; furthermore zero core loss (ideally) can be obtained in the shared I-core if the duty cycle D is 

50% (non-duty-cycle control). 

B. Magnetic Reluctance Model 

      Fig.6 shows an equivalent magnetic model of the PIM module where R1 is the reluctance of the 

outer leg of E-core, R2 is the reluctance of I-core and RC represents the reluctance of the center leg of E-

core. RC is much bigger than R1 and R2 due to the air gaps in the center legs. Since the transformers and 

the inductor do not affect each other, the equivalent magnetic model can be divided into two parts as 

shown in the bottom of Fig.6. The left part represents the magnetic model associated with T1 and T2. 

The flux Φ1 and Φ2 will not flow in the center legs of E-core. The flux Φ1 and Φ2 in the shared I-core 

might be either partially or fully cancelled depending on the duty cycle D. The right part represents the 

magnetic model of the inductor L1.  

With assumption that leakage flux through the air is negligible, (2) ~ (4) can be obtained according 

to the magnetic model, 

22121111 )()2( RRRiN m ⋅−++⋅=⋅ φφφ                                                        (2) 

  21221222 )()2( RRRiN m ⋅−++⋅=⋅ φφφ                                                         (3) 
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Fig. 5. Excitation voltages of the transformers and their ac flux waveforms when the primary turns factor is K=0.5 under duty cycle control (a); when the 
primary turns factor is K=1 under duty cycle control (b); when the primary turns factor is K=0.5 under non-duty-cycle control (c). 
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)2(5.02 2133 RRRiN cLL +⋅⋅+⋅=⋅ φφ                                                              (4) 

As seen in Fig.5, the rate of change on Φ1 and Φ2 are different over an entire period when the duty cycle 

control is used. Accordingly, the following two cases with four intervals are analyzed (D<0.5, T is the 

period),   

 

[1]  Case 1 [ 0 ~ D·T ] and [ 0.5·T ~ (0.5+D)·T ]: the rate of change on Φ1 and Φ2 are the same. Based 

on Faraday’s law, magnetizing inductances can be obtained, 

 

21

2
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1 2 RR
NL m +

= ;            
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[2]  Case 2 [ D·T ~ 0.5·T ] and [ (0.5+D)·T ~ T ] : the rate of change on Φ2 is zero. Without excitation 

current on T2 in this period, there is no sense in calculating the magnetizing inductance of T2. 

+_
+ _

+_

+_
0.5·NL·iL

+_

+_

+_

+_

0.5·N1·im1

0.5·N2·im2

0.5·N1·im1

0.5·N2·im2

N2·im2

N1·im1

Rc R1>>
Rc >> R2

T1 and T2 L1

0.5·NL·iL

NL·iL

Φ1

Φ1

+
_

Φ3

Φ2
R2

Φ2

R2+2R1

R2+2R1

2Rc

R2+2R1 R2+2R1

0.5·R2 0.5·R2

0.5·R2 0.5·R2

0.5·R2 0.5·R2
R1 R1

R1 R1

Rc

Rc

Φ3

Φ3

Φ2 Φ2

Φ1 Φ1

 
Fig. 6. Equivalent magnetic reluctance model of the PIM module. 
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For a single separated transformer with the same winding arrangement at the outer leg, the magnetizing 

inductance is equal to, Lm=N2/2(R1+R2). As can be seen, such integrated transformers have higher 

magnetizing inductances than the single case when both T1 and T2 have excitation (case 1). This is 

because of the fact that the flux cancellation occurring in the shared I-core effectively reduces the length 

of the transformer flux path. Whereas, there is no improvement on magnetizing inductances if any one 

of the transformers has no excitation (case 2). 

C. Saturation Consideration 

         It has been mentioned in the previous section that a saturation problem may appear due to the half 

of Φ3 (including dc component) and their overlapping flux together with Φ1 or Φ2 in the right part. 

According to Faraday’s law and Ampere’s law, the peak flux densities for each magnetic component in 

the PIM module can be derived, 

e
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where f is the switching frequency and Ae is the cross-section of the outer leg of E-core. lg is the total 

length of air gaps in the center legs of E-core. In order to avoid flux saturation in the PIM module, the 

following equations are required if Bpk_T2 is smaller than Bpk_T1, 

sat
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Therefore, one of the drawbacks for the PIM module is a limited power capability. The power capability 

of the PIM module can be increased by minimizing the peak flux density of T1, Bpk_T1, which can be 

implemented by increasing either the switching frequency or the number of turns. Although both 

methods might achieve lower core loss, increased switching frequency contributes to a higher eddy 
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current effect in the conductors as well as higher switching loss, and also an increased number of turns 

will cause a higher winding loss. 

The maximum allowed flux density ripple ΔBL is given by the maximum peak flux density for the 

inductor Bpk_L and the ratio of allowed peak-to-peak ripple current (ΔI) to the peak current (Ipk). 

pk
LpkL I

IBB Δ
Δ ⋅= _                                                                    (9) 

The flux density ripple shall be less than or equal to the maximum allowed value given by (9). 

Accordingly the required number of turns is  

I
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TVN pk

Lpke

FC

Δ
⋅

⋅
⋅

≥
_4

                                                            (10) 

High ripple current increases the core loss for the inductor L1, and power loss in the MOSFETs. But low 

ripple current requires a high number of inductor turns, which results in high winding loss. Experience 

has shown that a good trade-off in high current application is a current ripple factor (Ipk/ΔI) of 2 to 3. 

D. Winding Arrangement 

Winding losses in transformers increase dramatically with high frequency due to eddy current 

effects. Eddy current losses, including skin effect and proximity effect losses seriously impair the 

performance of transformers in high-frequency power conversion applications. Both the skin effect and 

the proximity effect cause the current density to be non-uniformly distributed in the cross-section of the 

conductor, and thus cause a higher winding resistance at higher frequency. The proximity effect loss, in 

a multilayer winding, may strongly dominate over the skin effect loss depending on the winding 

arrangement. Interleaving transformer windings can reduce the proximity loss significantly when the 

primary and secondary currents are in phase [32]-[34]. Fig.7 shows the winding arrangements and 

magneto motive force (MMF) distributions along a vertical direction for a half winding of T1 and T2 

wound in one of the outer legs respectively. The value of m [35] in each layer is equal to 1 which 

contributes to lower ac resistances. 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Not only ac resistance can be reduced, but also leakage inductance can be significantly decreased 

by interleaving winding technique [36]. However, the reduced leakage inductance is not needed because 

the converter is working under phase-shift control, where a high leakage inductance is desirable. 

Considering a high current application, ac resistance is more important because it significantly affects 

the efficiency of the converter. Therefore the interleaving technique is still adopted in order to reduce ac 

resistance. An auxiliary inductor is added in series with the secondary windings to establish a desired 

phase-shift inductor L2. Notice that interwinding capacitance in this kind of interleaving arrangement is 

much better than that in a full interleaving arrangement without compromising any other performances 

including leakage inductance and ac resistance because of fewer intersections between the primary and 

the secondary, contributing to a relative lower EMI problem [35]. 

V.        SIMULATION AND EXPERIMENTAL RESULTS 

The specification of the hybrid dc-dc converter is shown in Table I. The converter works with 

variable input voltage of 20~40 V, and 400 V output voltage. The duty cycles of S1 and S2 is 50% to 

double input voltage to the DC bus of super-capacitor bank. The duty cycle control is used to reduce the 

peak currents. Switching frequency is 100 kHz. A series dc blocking capacitor C2 accommodates any 

volt-second mismatching and flux walking problem in the full bridge circuit. The resonant circuit 

 
Fig. 7. Winding arrangements and magneto motive force (MMF) distributions for a half winding of T1 wound in one of the outer legs (a) and for a half
winding of T2 in one of the outer legs (b). 
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consisting of C2 and the primary leakage inductance of T2 is designed to have a resonant frequency 

much lower than the switching frequency. A 40 μH auxiliary inductor plus the leakage inductance 

obtained on the secondary side of transformers are utilized as the phase-shift inductor L2, which 

determines the power as expressed in (1). A good choice for the value of the boost inductor L1 is, as 

aforementioned to use a current ripple factor between 2 and 3. 

To verify the validity of design approach, a 2D FEA simulation model linked with external 

simulation circuit has been built. The simulation parameters fully coincide with the specifications 

shown in Table I. Fig.8 shows an instantaneous distribution of the flux density, B, in the core. 

Table І 
Specifications of the hybrid dc-dc converter 

Parameters Values 

Input voltage VFC (V) 20-40 

Output voltage Vo (V) 400 

Duty cycle of S1,S2 and S5,S6 0.5 

Duty cycle of S3 and S4 0.2-0.5 

Switching frequency fs (kHz) 100 

DC  blocking capacitance C2 (μF) 10 

Auxiliary inductor L2 (μH) 40 

Boost inductor L1 (μH) 12 

Turns ratio of T1 1:4 

Turns ratio of T2 1:2 
 

LdcT1 (1:4)

T2 (1:2)
 

Fig. 8.  Instantaneous flux density distribution in the core using 2D FEA simulation. 
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Apparently, the right part with a heavy color stress illustrates that half of Φ3 increases the total flux in 

the right side together with Φ1 and Φ2. Reversely, the other half of Φ3 decreases the flux in the left part. 

A partial flux cancellation on Φ1 and Φ2 occurs in the shared I-core and none of flux Φ3 goes through it. 

The proposed PIM module is further validated by two experimental designs. Fig.9 shows pictures 

of lab prototypes with discrete magnetic components (a) and its integrated converter employing the PIM 

module (b) respectively. Accordingly, almost half size is achieved in the integrated converter. Primary 

switching MOSFETs S1~S4 are implemented by IRFP4568 and high voltage side MOSFETs S5 and S6 

are realized by Vishay SIHG20N50C. In order to make a relative fair comparison, all switching devices, 

gate drivers, capacitors and auxiliary inductor are kept the same. In the integrated converter, the PIM 

module have 4 turns on the primary side of transformer T1 and 8 turns on the primary side of T2. The 

winding arrangements are shown in Fig.7.  Two ELP-64 cores and one ILP-64 core all with N87 core 

material are used in the PIM module. The inductor L1 has 4 turns and 0.5 mm air gap in both center legs 

of E-cores to form a 10 μH inductance. All of windings are structured by a PCB with 4 oz copper 

thickness. In the discrete converter, all magnetic components are independent. The inductor L1 is 

designed with a Kool-Mµ-40μ core (distributed air gap core). 11 turns with 0.2 mm copper foil are 

wound in the 00K4020E core type to obtain the same inductance as the PIM module. Both T1 and T2 in 

the discrete converter use EILP-64 core types as well. Without the problem of limited power capability 

and flux cancellation, 4 turns therefore are used on the primary side of T2. Interleaving technique is still 

S1-S4

Gate 
Drivers

C2

Csc2

L1

T1

T2

L2

Csc1

C3

C4

S5-S6

Gate 
Driver

S1-S4

Csc1

Csc2

C2

Gate 
Drivers

PIM 
Module

L2

C4

C3 S5-S6Gate 
Driver

 
Fig. 9.  (a) hybrid dc-dc converter with discrete magnetic components (b) hybrid dc-dc converter with proposed PIM module. 
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used to reduce ac resistance. Notice that the transformer windings for the discrete converter are wound 

on the center legs of E-cores.   

The measurement results on the magnetic components for both converters are shown in Table II 

and Table III respectively, obtained by an impedance analyzer PSM1735. As seen from the results, the 

Table ІІ 
Measurement results for the discrete magnetics 

Parameters for the discrete magnetics Values 

Leakage inductance of T1 (ref. to pri.) 101 (nH) 

Magnetizing inductance of T1 (ref. to pri.) 236.6 (uH) 

AC resistance of T1 at 100 kHz (ref. to pri.) 22.1 (mΩ) 

Leakage inductance of T2 (ref. to pri.) 109.3 (nH) 

Magnetizing inductance of T2 (ref. to pri.) 190.8 (uH) 

AC resistance of T2 at 100 kHz (ref. to pri.) 30.8 (mΩ) 

Inductance of L1  13.1 (uH) 

AC resistance of L1 at 100 kHz 34.6 (mΩ) 

DC resistance of L1 3.7 (mΩ) 

Leakage inductance when the secondaries of the 
two transformers are in series (ref. to sec.) 1.9 (uH) 

Magnetizing inductance when the secondaries of 
the two transformers are in series (ref. to sec.) 4.6 (mH) 

AC resistance at 100 kHz when the secondaries of 
the two transformers are in series (ref. to sec.) 476.2 (mΩ) 

 

Table ІІI 
Measurement results of the PIM module 

Parameters for the PIM module Values 

Inductance of L1 in the PIM Module 11.9 (uH) 

AC resistance of L1 in the PIM Module at 
100 kHz 45.6 (mΩ) 

DC resistance of L1 in the PIM Module  12.6 (mΩ) 

Leakage inductance of the PIM Module 
(ref. to sec.) 5.6 (uH) 

Magnetizing inductance of the PIM 
Module (ref. to sec.) 2.7 (mH) 

AC resistance at 100 kHz of the PIM 
Module (ref. to sec.) 535 (mΩ) 
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PIM module has a higher leakage inductance which is due to the fact that the separated windings cause 

an imperfect coupling. Furthermore, the higher number of turns on T2 also can be used to explain the 

higher leakage inductance [12]. With half cross-section of the center leg, magnetizing inductance in the 

PIM module is obviously smaller than that in the discrete magnetics. However, it is worth to notice that 

magnetizing inductance in the PIM module is higher than half of the one in the discrete magnetics, 

which coincides with the previous analysis in section III. 2.7 mH magnetizing inductance referred to the 

secondary side is enough to be used in this application where only 0.44 A magnetizing current ripple is 

induced when the converter works in the nominal operation. With regard to ac resistance of the 

transformers, a longer winding length, higher number of turns on T2 as well as a few fringing flux 

effects may cause a higher value in the PIM module. This contributes almost 1 W more of transformer 

winding loss than that in the discrete converter as shown in Table IV.  

To facilitate a comparison of the efficiency of the two designs, the losses of major magnetic 

components are estimated. The results are tabulated in Table IV for the case when the input voltage is 

30 V and the output power is 600 W. Although L1 in the discrete converter has a higher number of turns 

which causes a higher ratio of ac resistance to dc resistance due to the proximity effect, the winding loss 

of inductor L1 in the discrete converter is much lower than that in the PIM integrated converter as 

indicated in the breakdown analysis. This is because a very low dc resistance can be obtained for L1 in 

the discrete magnetics due to a thick and wide copper foil, and the dc loss dominates the winding losses 

of the inductor. The core loss is evaluated by calculating with the combination of the piecewise linear 

Table ІV 
Loss evaluation breakdown on the magnetic components  

for two different prototypes under 30 V input, 600 W output 

Loss 
Discrete Magnetics PIM Module 

T1 T2 L1 T1& T2 L1 

Winding loss  
4.33 W 1.51 W 2.16 W 6.55 W 6.49 W 

Total winding loss: 8 W Total winding loss: 13.04 W 

Core loss  
0.36 W 0.91 W 2.70 W 

Total core loss: 1.73 W 
Total core loss: 3.97 W 

Total loss  11.97 W 14.77 W 
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model (PWL) and the improved generalized Steinmetz equation (IGSE). The total core loss of the 

discrete magnetics is much higher than that of the PIM module. One reason is the distributed air gap 

core contributes a relative higher core loss in the discrete magnetics. The other reason is that the flux 

cancellation leads to a lower core loss. The authors would like to point out that the size, the winding 

loss, the core loss .etc are always in contradiction.  A low core loss probably can also be realized in the 

discrete magnetics but the size and the winding loss might be compromised. In fact, a real fair 

comparison should be built on top of optimized magnetics design. In the present case, the comparison 

may not be real fair but it still shows that the PIM module has an advantage on core loss and has an 

impressive size deduction. 

Fig.10, Fig.11 and Fig.12 show the measured waveforms in both the discrete converter (a) and the 

integrated converter (b) under duty cycle control at 30 V input voltage and 600 W output power. Fig.10 

Fig. 11. Waveforms of the discrete converter (a) and the PIM converter (b), both are working under the duty cycle control at 30 V input voltage, 600 W
output power.  CH1: VCO (250 V/div); CH2: VMO (200 V/div); CH3: iL1 (10 A/div); CH4: iL2 (5 A/div). 

Fig. 10. Waveforms of the discrete converter (a) and the PIM converter (b), both are working under the duty cycle control at 30 V input voltage, 600 W
output power. CH1: VAN (50 V/div); CH2: VAB (50 V/div); CH3: iT1 (10 A/div); CH4: iT2 (10 A/div). 
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shows the plots of the primary voltages (CH1: VAN and CH2: VAB) and currents (CH3: iT1 and CH4: iT2) 

for T1 and T2 respectively. As can be seen, the peak currents of the transformers have been dropped 

during the period of duty cycle control. Fig.11 shows the waveforms of the voltages (CH1: VCO and CH2: 

VMO) on the secondary side and currents of the boost inductor (CH3: iL1) and the auxiliary inductor (CH4: 

iL2). Zero-voltage turn on for the MOSFETs can be seen from Fig.12. For simplification, only S4 and S6 

are chosen to demonstrate the ZVS waveforms. In fact, zero-voltage turn on for all of MOSFETs in the 

circuit can be achieved at this operating point. The waveforms illustrate that the PIM module is fully 

functional and electromagnetically equivalent to the discrete magnetics.  

        High stability (< 10 ppm) 0.1 % shunt resistors and Agilent 34410A high precision multimeters are 

used for all efficiency measurements. Current sense signals are shielded and fitted with common mode 

filters. The comparison of efficiency curves between the discrete converter and the integrated converter 

Fig. 12. ZVS waveforms of S4 and S6 for the discrete converter (a) and the PIM converter (b), both are working under the duty cycle control at 30 V input
voltage, 600 W output power. CH1: VDS4 (50 V/div); CH2: VDS6 (200 V/div); CH3: VGS4 (10 V/div); CH4: VGS6 (10 V/div). 
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Fig. 13. Efficiency comparison between the discrete converter and the integrated converter under duty cycle control (35%) at 30V input voltage and 400V
output voltage. 
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is shown in Fig.13. The integrated converter has higher efficiency at light load than the discrete 

converter. This is due to the fact that the core loss dominates in the total power loss at light load. 

Oppositely, the winding loss dominates in the total power loss at heavy load. Therefore a higher 

efficiency in the discrete converter can be seen. The results coincide with the aforementioned analysis 

and the table breakdown.   

VI.    CONCLUSION 

A new integrated magnetics approach has been proposed in this work. Two transformers and one 

inductor are integrated into E-I-E core geometry to reduce the total volume of the converter, core loss 

and cost without compromising any electrical performance. The principle of the flux distribution in the 

core has been analyzed. Many advantages and disadvantages of the PIM module are included in the 

paper. Detail magnetics design consideration of the PIM module including primary turns factor, 

magnetic reluctance model, saturation problem and winding arrangement has been investigated in depth. 

Two converters with discrete magnetics and integrated magnetics (PIM module) have been built to 

demonstrate that the PIM module is fully functional and electromagnetically equivalent. The loss 

evaluation has illustrated that there is a core loss reduction in the PIM design. Furthermore, almost half 

the size of the discrete converter can be achieved in the integrated converter with the PIM module.  
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