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Geostatistical inference using crosshole ground-penetrating radar

Majken C. Looms', Thomas M. Hansen?, Knud S. Cordua?, Lars Nielsen', Karsten H. Jensen’,

and Andrew Binley®

ABSTRACT

High-resolution tomographic images obtained from crosshole
geophysical measurements have the potential to provide valu-
able information about the geostatistical properties of unsaturat-
ed-zone hydrologic-state variables such as moisture content. Un-
der drained or quasi-steady-state conditions, the moisture con-
tent will reflect the variation of the physical properties of the sub-
surface, which determine the flow patterns in the unsaturated
zone. Deterministic least-squares inversion of crosshole ground-
penetrating-radar (GPR) traveltimes result in smooth, minimum-
variance estimates of the subsurface radar wave velocity struc-
ture, which may diminish the utility of these images for geostatis-
tical inference. We have used a linearized stochastic inversion
technique to infer the geostatistical properties of the subsurface
radar wave velocity distribution using crosshole GPR travel-
times directly. Expanding on a previous study, we have deter-
mined that it is possible to obtain estimates of global variance and

mean velocity values of the subsurface as well as the correlation
lengths describing the subsurface velocity structures. Accurate
estimation of the global variance is crucial if stochastic realiza-
tions of the subsurface are used to evaluate the uncertainty of the
inversion estimate. We have explored the full potential of the
geostatistical inference method using several synthetic models of
varying correlation structures and have tested the influence of
different assumptions concerning the choice of covariance func-
tion and data noise level. In addition, we have tested the method-
ology on traveltime data collected at a field site in Denmark.
There, inferred correlation structures indicate that structural dif-
ferences exist between two areas located approximately 10 m
apart, an observation confirmed by a GPR reflection profile. Fur-
thermore, the inferred values of the subsurface global variance
and the mean velocity have been corroborated with moisture-
content measurements, obtained gravimetrically from samples
collected at the field site.

INTRODUCTION

Crosshole ground-penetrating-radar (GPR) tomography has the
potential to produce high-spatial-resolution images of the electro-
magnetic (EM) wave velocity distribution of the subsurface (e.g.,
Hubbard et al., 1997; Eppstein and Dougherty, 1998; Binley et al.,
2001; Alumbaugh et al., 2002). The EM wave velocity is directly re-
lated to the relative permittivity of a material; in the unsaturated
zone, the relative permittivity is strongly influenced by the moisture
content of the porous media (Topp et al., 1980). Crosshole GPR
therefore enables an indirect estimate of the subsurface moisture
content. As a result, crosshole GPR methods have been used exten-
sively for hydrologic applications (Annan, 2005).

The high-resolution 2D tomographic images obtained from cross-

hole GPR data provide information regarding the spatial correlation
structures of the subsurface that could otherwise be obtained only
through extensive invasive sampling. Under drained or quasi-
steady-state conditions where the hydrologic-state variables can be
expected to represent the physical properties of the subsurface, the
geostatistical information (i.e., correlation lengths and variability)
may serve as input to stochastic hydrologic models that provide
more reliable predictions of water flow and therefore also contami-
nant transport (Hubbard et al., 1999; Binley et al., 2004). However,
the quantitative estimation of 2D moisture-content images from
crosshole GPR traveltimes is still subject to uncertainties, mainly as-
sociated with the assumed petrophysical relationships (used to com-
pute moisture content from relative permittivity), data uncertainty,
and assumptions inherent in the applied inversion algorithms. Sim-
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plifying the forward problem (ray theory, straight-ray approxima-
tion), measurement errors, and choosing regularization method, ac-
quisition geometry, and an a priori model influence wave-velocity
distribution properties (Menke, 1989; Peterson, 2001; Kowalsky et
al., 2005; Linde et al., 2006; Cordua et al., 2008; Hansen et al.,
2008). Deterministic least-squares inversion algorithms (e.g., Epp-
stein and Dougherty, 1998; Alumbaugh et al., 2002) produce smooth
minimum-variance estimates of the model parameters with varying
resolution throughout the interborehole region and inversion arti-
facts, particularly in areas with limited ray coverage (Day-Lewis et
al., 2005). As a consequence and based on the analysis of five syn-
thetic models, Day-Lewis and Lane (2004) conclude that GPR-de-
rived tomograms may have little utility for inferring subsurface geo-
statistical properties. To improve the inverse estimate, stochastic in-
version approaches (e.g., Hansen et al., 2006; Gloaguen et al., 2007,
Dafflon et al., 2009) or full-waveform inversion algorithms (Ernst et
al., 2007) can be adopted.

Work by Hansen et al. (2008) introduces and explores a novel
methodology to infer the parameters of the covariance model direct-
ly from crosshole GPR tomography traveltime data making use of
linearized stochastic inversion. In our work, we refer to this method-
ology as data-driven ergodic inference. For a specific choice of a pri-
or covariance model, Hansen et al. (2008) evaluate whether realiza-
tions of the posterior Gaussian probability density function (PDF)
are likely realizations of the prior Gaussian PDF. A likelihood distri-
bution for a range of different prior covariance models is thus esti-
mated. In Hansen et al. (2008), data-driven ergodic inference is test-
ed by inferring correlation lengths for one synthetic model and a real
data example using simplified assumptions regarding the forward
problem and an assumed known global mean and variance of the ve-
locity distribution. These initial applications have shown promising
results.

The objective of our study is to further evaluate and expand the
methodology described in Hansen et al. (2008). To mimic a realistic
sensitivity of the EM radar signal, we use full-waveform forward
modeling of the EM wave propagation to calculate the synthetic data
using the finite-difference time-domain algorithm of Irving and
Knight (2006) instead of the simplified ray approximation in Hansen
etal. (2008). Furthermore, we infer the global variance and mean ve-
locity of the subsurface along with the correlation structure, en-
abling a full geostatistical inference using crosshole GPR data alone.
In Hansen et al. (2008), the global variance and mean velocity of the
subsurface are assumed to be known prior to the inference. The sen-
sitivity of the inferred geostatistical properties toward various corre-
lation structures, the expected noise level of the GPR data, and the
choice of covariance function are also evaluated. Finally, we apply
the approach to four cross sections collected in the unsaturated zone
at a field site in Denmark and compare the obtained results to inde-
pendent information achieved from core samples and a GPR reflec-
tion survey.

METHODS
‘We consider the following linear problem:
d=Gm, (1)

where d is a vector containing all data values, m contains the subsur-
face model parameters, and G is a linear mapping matrix relating the
data to the model parameters. This way of defining the forward prob-

lem is classical and has been used in a range of studies (e.g., Taran-
tola, 1987; Menke, 1989).

Traditionally, in the case of crosshole GPR velocity tomography
based on traveltimes, d are the first-arrival traveltimes picked from
the recorded GPR waveforms, m are the slowness (inverse velocity)
values of a grid of cells describing the subsurface between two bore-
holes, and G contains the distances that the different rays have trav-
eled in the individual cells. Here, however, we choose to parameter-
ize the linear inverse problem such that m are velocities, d are the av-
erage velocities based on the observed traveltimes and raypath
lengths, and G is amodification of the sensitivity kernel for the slow-
ness parameterization such that the rows of G sum to one. This al-
lows us to directly infer Gaussian statistics on the distribution of ve-
locities rather than slownesses.

The generalized solution to linear inverse Gaussian problems,
where the prior information of the model-parameter distribution is
described by a Gaussian PDF and where measurement errors are as-
sumed to be Gaussian, is given by (Tarantola and Valette, 1982)

m® = (m) + C,,G’[GC,G” + C,]~'[d — G(m)] (2)

and
c,M=(@'c,/'6+c, H, (3)

where (m) and C,, are the prior mean and covariance of the subsur-
face Gaussian PDF, C, is the data covariance, and m*t and C,,** are
the mean and covariance of the Gaussian posterior PDF. In determin-
istic least-squares inversion, m*! is chosen as the solution to the in-
verse problem. Although this estimate is the model with maximum
posteriori likelihood, it is also the minimum variance estimate,
which means that it is the model from the posterior distribution with
least spatial variability, having a lower variability than assumed a
priori through C,,. However, the solution to the inverse problem is
the entire posterior PDF given in equations 2 and 3, ie.,
N(me,C,*), and not just m*.,

Choosing the appropriate prior model and data covariance matri-
ces is a nontrivial task that will significantly affect the a posteriori
PDF. In this paper, we assume uncorrelated Gaussian measurement
errors in the synthetic tests. Correlated data errors are likely to be
present at our field site, as investigated by Cordua et al. (2008, 2009),
and will therefore be accounted for in the analyses of the real data.
However, the main focus will be kept on the a priori model covari-
ance matrix, which contains information describing the assumed
spatial correlation structures of the subsurface. Traditionally in de-
terministic least-squares inversion, C,, is designed to stabilize an
otherwise underdetermined problem by damping (Marquardt, 1970)
and/or smoothing (Constable et al., 1987) the model parameters.
However, C,, can also be used to add a priori knowledge of the sub-
surface geostatistical properties to constrain the inversion (Tarantola
and Valette, 1982).

The effect on the inverse estimate of varying C,, is illustrated in
Figure 1, where a synthetic data set calculated for a synthetic subsur-
face is inverted under different assumptions of correlation length,
global variance, and covariance function. The synthetic subsurface
is a sequential simulation of a spherical covariance function with
vertical and horizontal correlation lengths (H i, Hmax) = (2 m,4 m)
and global mean and variance of 0.13 m/ns and 0.0002 (m/ns)?, re-
spectively. The choice of C,, has little influence on the deterministic
least-squares estimate (see row I), even when the a priori assump-
tions are varied over an order of magnitude. However, varying C,,
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greatly influences the realizations drawn from the posterior PDF,
i.e., N(m*,C, ) (row II). These results emphasize the importance
of using the correct geostatistical information concerning the sub-
surface if stochastic realizations are used to evaluate the subsurface
structures and variability (as suggested by Dafflon et al., 2009).

The importance of inferring the geostatistical properties of the
subsurface is therefore twofold:

1)  To produce reliable inversion results. This, in particular, is es-
sential when producing multiple realizations from the posterior
PDF, illustrated clearly in Figure 1.

2) To describe representative subsurface properties, also in un-
probed areas, used in stochastic hydrologic models to predict
subsurface flow and transport.

Data-driven ergodic inference

To avoid choosing a potentially erroneous covariance model for
the inversion, Hansen et al. (2008) suggest a method to infer the pa-
rameters of the covariance model directly from crosshole GPR trav-
eltime data, making use of linearized stochastic inversion. The in-
version routine in their work solves linear and linearizable inverse
Gaussian problems using a stochastic approach and combines the
fields of inverse theory and geostatistics (combining least-squares
inversion and sequential simulation) to create realizations of the sub-
surface that honor the a priori covariance model as well as the ob-
served data. Traveltime data (described as volume average data) and

I

Reference model

point data (e.g., neutron probe estimates of moisture content) can be
used to condition the simulations.

In Hansen et al. (2008), the ergodic behavior of multiple realiza-
tions is used to evaluate whether the assumed a priori covariance
model is consistent with the collected data and hence to infer the co-
variance model properties of the sampled subsurface. The methodol-
ogy, i.e., data-driven ergodic inference, is presented in Figure 2. The
semivariogram is often considered instead of the covariance model
in geostatistics. From this point on, we refer to the semivariogram in-
terchangeably with the covariance model and the sill value inter-
changeably with the global variance velocity. For second-order sta-
tionary random functions, the semivariogram vy (%) and the covari-
ance C(h) are related through y(h) = C(0) — C(h), where h is the
distance or lag (Journel and Huijbregts, 1978).

Initially, an assumed covariance model (Figure 2a) is used as in-
put in a sequential simulator to generate, in this case, 100 uncondi-
tional realizations of the subsurface. Because of the finite size of the
model grid, ergodic fluctuations of the semivariogram (Figure 2b)
will occur and can be described by a Gaussian distribution centered
on the model semivariogram (Figure 2c). The linearized stochastic
inversion produces a posterior PDF (Figure 2d) from which 100 con-
ditioned realizations can be drawn (Figure 2¢). A likelihood value
can be computed (Figure 2f) for each of the realizations in Figure 2e
to determine whether they are likely samples of the distribution in
Figure 2c. Finally, the average likelihood of the 100 realizations is
found, representing the probability that the prior covariance model is
consistent with the data collected. The range of probable correlation
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Figure 1. The importance of the chosen a priori covariance matrix C,, on the inversion estimate. The true subsurface velocity structure is
shown to the left. The top row (I) is the least-squares inversion estimates, and the lower row (I1) is selected realizations drawn from the posterior
PDF, shown for six assumptions regarding the model C,,: (a) true values — spherical C,, with H,;,, Hpox = (2m, 4m) and o> = 0.0002 (m/ns)?;
(b) low correlation length — spherical C,, with H i, Hypa = (0.5m, 0.5m) and o2 = 0.0002 (m/ns)?; (c) high correlation length — spherical
C,, with H,, Hpa = (10m, 10m) and o?=0.0002 (m/ns)? (d) low variance — spherical C,, with H,;,, Hpy = (2m, 4m) and o
= 0.00002 (m/ns)?; (e) high variance — spherical C,, with H i, Hypa = (2m, 4m) and o2 = 0.001 (m/ns)?; (f) exponential C,, with Hy,,
H o = (2m, 4m) and o> = 0.0002 (m/ns)?; and (g) Gaussian C,, with H,,, e = (2m, 4m) and o2 = 0.0002 (m/ns)>.
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lengths, describing the spatial structures of the subsurface, can there-
by be inferred indirectly by exploring a parameter space of covari-
ance models.

For a more in-depth description of how the prior covariance prop-
erties are inferred and the mathematical description of the inversion
routine, we refer to Hansen et al. (2006), Hansen and Mosegaard
(2008), and Hansen et al. (2008). In our current study, the forward
calculation of traveltimes is based on the finite-difference solution to
the eikonal equation described by Zelt and Barton (1998).

Figure 3 illustrates the principle behind data-driven ergodic infer-
ence for the results presented in Figure 1. In Figure 3, the experimen-
tal semivariograms of 100 posterior realizations (gray) are com-
pared to the 95% confidence intervals of 100 a priori realizations
(red) for the seven different choices of covariance models presented
in Figure 1. If we have made appropriate a priori assumptions con-
cerning the covariance model, the 100 posterior realizations should
fall within the range of the a priori realizations, resulting in a high
likelihood value. This is the case when the spherical (true reference
model), exponential, and Gaussian covariance functions are used as
prior information (Figure 3a, f, and g, respectively). The proposed
methodology therefore appears to provide limited information on
the covariance model type. However, assuming an erroneous corre-
lation structure results in posterior semivariograms that differ sub-
stantially from the a priori semivariograms (Figure 3b and c), and as-
suming a too low global a priori variance produces posterior realiza-
tions with substantially higher sill values (Figure 3d), and vice versa
(Figure 3e). We therefore expect to be able to estimate the correct
global variance and correlation structure using data-driven ergodic
inference.
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Figure 2. Schematic of the geostatistical inference using the pro-
posed methodology, i.e., data-driven ergodic inference. See text for
detailed description. (a) The a priori model; (b) 100 unconditioned
realizations; (c) likelihood distribution; (d) a posteriori model; (e)
100 conditioned realizations; (f) likelihood value.

SYNTHETIC TESTS

Synthetic case studies, with varying covariance models, are ex-
amined to explore the limitations and advantages of using data-driv-
en ergodic inference. Twenty unconditioned realizations of four co-
variance models (referred to as models I, II, III, and IV) — 80 in all
— with vertical and horizontal correlation lengths (H i, Himax)
= (1 m,2 m), (2 m4 m), (4 m,8 m), and (5 m,1.5 m) are used as
synthetic representations of the subsurface. The four covariance
models chosen are, in the following, referred to as the reference co-
variance models. We distinguish between the covariance models of
the reference models and the covariance models of 80 realizations
because the covariance models of the individual realizations are not
always identical to the reference covariance models as a result of er-
godic fluctuations (illustrated in Figures 5 and 6).

The synthetic tests are set up to closely resemble the case study
examined later with a model domain extending 5 m horizontally and
12 m vertically. A Gaussian velocity distribution is used with a mean
velocity and variance set to 0.13 m/ns and 0.0002 m?/ns?, respec-
tively. Spherical covariance models, with a higher correlation in the
horizontal direction, were chosen because they are believed to cap-
ture the heterogeneous characteristics of the sedimentary deposits at
the field study area (Hansen et al., 2008). However, model IV, which
has a higher vertical correlation, is also included to test the limita-
tions of the methodology. This model is not considered to be a likely
representation of the geologic environment at the study area.

Synthetic EM waveforms are calculated for the 744 antenna posi-
tions, described in the data acquisition section of the case study, us-
ing a full-waveform finite-difference time-domain modeling algo-
rithm (Irving and Knight, 2006). A Blackman-Harris pulse with a
central frequency of 100 MHz is used, and the antennas are approxi-
mated with vertical, infinitesimal dipoles. The EM wave velocities
of the chosen realization are transformed into dielectric permittivity
using a high-frequency approximation (e.g., Ernst et al., 2006), and
the electric conductivity is set to 2 mS/m for all model cells repre-
senting the average conductivity at the case study field site at Ar-
renas, Denmark (cf. Looms et al., 2008). The relative magnetic per-
meability is set to one, given that near-surface geologic materials are
generally nonmagnetic (e.g., Davis and Annan, 1989). The first-ar-
rival traveltime data are found with a semiautomatic picking routine
used also for the field data. White random noise with a standard devi-
ation of 0.4 ns is added to the traveltime data. Unless otherwise stat-
ed, the noisy synthetic data set is used as input in the inversion, as-
suming the correct noise level with a standard deviation of 0.4 ns.

Inference of global variance and mean velocity

If a 2D setup is considered, six parameters that describe the a pri-
ori choice of a Gaussian PDF can be varied: type of covariance mod-
el, Hyin, Hpax dip, global variance, and mean velocity. As many of
the unknown parameters as possible should be estimated prior to the
inversion using other independent information. In our study, such in-
formation is assumed to be unavailable; therefore, we attempt to es-
timate the global variance and mean using only the traveltime data
collected.

The synthetic traveltime data from the 80 realizations detailed
above are converted to velocity data, assuming that the EM wave has
traveled the shortest geometric distance between the transmitter and
the receiver. The mean and variance of the traveltime velocity data
are subsequently compared with the true mean and variance velocity
values. Conversion factors between true and estimated values (e.g.,
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02 e/ 0°.) are determined and tabulated in Table 1. The average ve-
locity estimates, computed from the synthetic traveltimes, are a
good measure to determine the true mean velocity of the subsurface,
varying only up to 3% from the true average velocity. However, the
variance estimates cannot be converted to the true variance values of
the subsurface in the same straightforward manner. This can be as-
cribed to averaging the velocity as the wave passes through the sub-
surface due to the sensitivity of the EM waves. The conversion fac-
tors for the variance estimates in Table 1 depend highly on the refer-
ence covariance model and the selected realization, varying from
1.12 to 26.04 with an average of 6.13. The covariance model with
largest horizontal correlation lengths (model III) generally results in
a better estimate of the subsurface variance because the velocity
structures are larger and therefore better captured by the passing
rays. Contrary to this, small-scale variability (model I) and variabili-
ty in the vertical direction (model IV) become difficult to resolve us-
ing crosshole GPR because of the physical extent of the sensitivity
kernel of the considered GPR frequency (i.e., 100 MHz) and the
dominating horizontal nature of the measurement scheme, respec-
tively.

Next, we estimate the global variance using data-driven ergodic
inference by varying the assumed global variance and determining
the corresponding likelihood values. Conversion factors assuming

J33

known (i.e., H;, and H,,, are set equal to the reference covariance
models) and unknown (i.e., Hy;, and H,,, vary from 0.01 to 10 m)
subsurface correlation structures in the inversion are tabulated in Ta-
ble 2. Four examples of estimating the global variance, representing
the four different correlations structures, are presented in Figure 4.

From Figure 4, it is apparent that the global variance can be esti-
mated with a high accuracy because the likelihood values of testing
different levels of a priori variances have a well-defined peak near
the correct variance value. This is also seen in Table 2, where the
conversion factors show that the global variance of the subsurface
can be recovered with = 50% accuracy if the subsurface correlation
structures are known and within a factor of two if the subsurface
structures are unknown.

Inference of correlation structure

Next, we want to estimate the subsurface correlation structures.
First, we assume that the global variance of the subsurface is known.
The correlation lengths are sampled with H,, from 0.01 to 10 m
and H,,,, from 0.02 to 10 m. For each covariance model, a likeli-
hood value is estimated following the schematic approach shown in
Figure 2. Likelihood distribution plots of five models representing
each reference covariance model are presented in Figure 5.
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Figure 3. The importance of the chosen a priori covariance matrix C,, on the experimental semivariograms. Semivariograms in the (top row) hor-
izontal H,;, and (bottom row) vertical H.,, directions for six assumptions regarding model C,,: (a) true values — spherical C,, with H i, H oy
= (2m, 4m) and o> = 0.0002 (m/ns)?; (b) low correlation length — spherical C,, with H iy, Hpax = (0.5m, 0.5m) and o> = 0.0002 (m/ns)?;
(c) high correlation length — spherical C,, with Hyn, Hpox = (10m, 10m) and o> = 0.0002 (m/ns)?; (d) low variance — spherical C,, with H ;,,
H o = (2m, 4m) and o> = 0.00002 (m/ns)?; (e) high variance — spherical C,, with H i, Hyox = (2m, 4m) and o2 = 0.001 (m/ns)?; (f) expo-
nential C,, with H,, Hpox = (2m, 4m) and o> = 0.0002 (m/ns)?; and (g) Gaussian C,, with H,, Hypx = (2m, 4m) and o> = 0.0002 (m/ns)>.
The red lines show the average and 95% confidence interval of experimental semivariograms computed for the 100 unconditioned realizations;
the gray lines are the experimental semivariograms of the 100 conditioned realizations with the average shown in black. The y-axis range of (e)

differs from the rest.

Table 1. Mean velocity and variance conversion factors using traveltime data.

Velocity Variance
Model Mean Minimum Maximum Mean Minimum Maximum
1 0.98 0.97 1.00 7.13 3.92 11.31
1I 0.99 0.97 1.02 4.13 1.76 7.76
11 1.00 0.97 1.03 3.34 1.12 8.53
v 1.01 0.98 1.03 9.93 2.49 26.04
Mean 0.99 0.97 1.02 6.13 2.32 13.41
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As expected in Figure 5, the prior covariance models having the
highest likelihood (yellow circles) are not identical to the reference
prior covariance models used to create the images (red circles). The
observed discrepancies are caused in part by the ergodic fluctuations
since the covariance model inferred from the chosen realization
(green circles) also varies from the reference model. This tendency is
most pronounced as the correlation lengths tend toward and exceed
the model size (Hansen et al., 2008). The ergodic variations also in-
crease the uncertainty bounds of the most likely prior covariance
model. This characteristic is very clear for models III and IV
[(HpinsHmax) = (4 m,8 m) and (5 m,1.5 m), respectively], where
the ranges of correlation lengths with high likelihood (dark gray ar-
eas) increase considerably more than those of model I, i.e.,
(Hmin’Hmax) = (1 ma2 Hl)

Figure 6¢ summarizes the result of estimating the most likely cor-
relation length for the 80 tested models, assuming the global vari-
ance is known. For comparison, three other results are included in
the figure. Figure 6a presents the correlation structures obtained
through a least-squares fit of the experimental semivariogram when
the subsurface is known (the green dots in Figure 5). This estimate is
comparable to a standard geostatistical inference using e.g., Gstat
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Variance (m?/ns?) x 107° Variance (m?/ns?) x 10°
Figure 4. Estimate of the global variance using data-driven ergodic
inference. The likelihoods of a range of prior global variances are
shown with blue; the global variance with the highest likelihood and
the true global variance are indicated with yellow and red, respec-
tively. Examples are shown for (a) model I, (b) model II, (c) model
111, and (d) model I'V. For each model, the inference of the first syn-
thetic representations of the subsurface is shown.

(Pebesma and Wesseling, 1998). In Figure 6b, the subsurface is also
assumed to be known, but the geostatistical inference is obtained us-
ing data drive ergodic inference. In this particular case, we use the
experimental semivariogram in Figure 6a and estimate the most
likely covariance model that describes this semivariogram. Note that
the results in Figure 6a and b represent the ideal case where the sub-
surface model is known, and thus no inversion is needed. Finally, in
Figure 6d, we include the result of estimating the most likely correla-
tion lengths within the data-driven ergodic inference framework us-
ing the global variance estimated above, assuming that the correla-
tion lengths were unknown (see Table 2). This last result corre-
sponds to a situation where no prior knowledge concerning the sub-
surface structures is known, perhaps the most common scenario.

As mentioned, Figure 6a illustrates how ergodic fluctuations
cause the covariance models of the individual realizations to differ
from the reference covariance models. The geostatistical inference
of the correlation structures becomes increasingly challenging when
the structures exceed the model bounds in which case the experi-
mental semivariograms do not reach their sill value. Here, we have
even aided the inference by assuming the sill value is known. Using
data-driven ergodic inference to estimate the most likely covariance
model in Figure 6b improves the recoverability of the reference
model, i.e., the variability of the estimated 4 X 20 covariance models
are narrower compared to Figure 6a. It may be somewhat surprising
that of the methods considered here, the best inference is obtained
using data-driven ergodic inference. However, most traditional
methods used for spatial inference based on regression analysis
(e.g., Pebesma and Wesseling, 1998) do not account for the ergodic
nature of the semivariogram, where the variability of the semivari-
ance will be larger for larger offset than smaller offset and where the
variability increases as the ranges increase as we have discussed. For
point-based data, maximum-likelihood estimation is an alternative
that by nature considers ergodic variability (Pardo-Iglizquiza,
1998).

Figure 6b represents the best obtainable inference results possible
using data-driven ergodic inference and could only be achieved if
the collected GPR data set were error free, with a perfect resolution
of the subsurface (i.e., a well-determined problem) and correct as-
sumptions concerning the inverse problem. For this ideal case, we
still observe that the variability from the reference model increases
for larger correlation structures.

An overall good estimation of the geostatistical properties is ob-
served in Figure 6¢ and d. In fact, the data-driven ergodic inference
using only crosshole GPR data almost recovers the true geostatisti-
cal properties of the subsurface as well as direct inference using con-
ventional methods when the subsurface structure is known (Figure

Table 2. Variance conversion factors using data-driven ergodic inference.

Known correlation structures

Unknown correlation structures

Model Mean Minimum Maximum Mean Minimum Maximum
1 0.89 0.70 1.15 0.80 0.49 1.15
1I 1.00 0.60 1.25 1.07 0.72 1.49
I 1.15 0.70 1.50 1.30 0.78 2.31
v 1.05 0.60 1.40 0.74 0.41 1.11
Mean 1.02 0.65 1.33 0.98 0.60 1.52
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6a). The vertical correlation lengths H,, are particularly well deter-
mined. This is partly the result of the measurement scheme using
mainly horizontal or quasi-horizontal rays. A good vertical resolu-
tion is thus achieved, although the horizontal changes are more diffi-
cult to capture. The correlation lengths in the vertical direction are,
in models I-1II, also smaller than the model bounds, enabling a bet-
ter inference in this direction. The horizontal correlation lengths are,
for most realizations, also inferred reasonably well — even for mod-
el ITI, where the horizontal correlation length (H,,,, = 8 m) exceeds
the model domain of 5 m. Note that the uncertainty of the inference
of model I (Figure 6¢ and d) is not as small as in Figure 6b. We as-
sume that the EM waves can be described by bended rays in the in-
version procedure, and therefore the true physical sensitivity of the
synthetic data obtained using a full-waveform forward solver cannot
be accounted for. This effect is most pronounced in models with
small correlation structures.

J35

Effect of noise

In the above analyses, the noise added to the synthetic data had a
standard deviation of 0.4 ns and we assumed the correct noise level
in the inversion. Figure 7 illustrates the effect of adding six different
noise levels (0.1, 0.2,0.4, 0.6, 0.8, and 1.2 ns) to the traveltime data
of model Ia (Figure 5). The increased noise level is also accounted
for in the inversion by increasing the expectation to the data-error
variance along the diagonal in the data covariance matrix (equations
2 and 3).

The estimated likelihood plots in Figure 7 clearly show an effect
of the noise added. Note that the altered data noise is accounted for in
the inversion. The range of prior covariance models with high likeli-
hood increases as the noise increases. In other words, the confidence
bounds of the most likely prior model are increased. Furthermore,
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Figure 5. Contour plots showing the likelihood as a function of H,;, and H,,,, for models I-IV obtained using data-driven ergodic inference.
(a-e). Likelihood plots for the five first synthetic representations of the four models with varying subsurface structure. The reference and most
likely prior covariance models are marked with a red and yellow dots, respectively, whereas the geostatistical inference, obtained through a
least-squares fit of the experimental semivariogram, is marked with a green dot.
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Figure 6. The geostatistical inference of the 80 synthetic representa-
tions of the subsurface. Results for models I-IV are shown with
green, red, blue, and black colors, respectively. The circles illustrate
the respective ranges of a 2D Gaussian fit to the 20 estimated
H.in/ Hox values. (a) Geostatistical inference, obtained through a
least-squares fit of the experimental semivariogram when the sub-
surface is known. (b) Data-driven ergodic inference when the sub-
surface is known. (c) Data-driven ergodic inference for crosshole
GPR data, assuming a known global variance. (d) Data-driven er-
godic inference for crosshole GPR data using the global variance es-
timated within the methodology.

the most likely H,,.x value increases at a high noise level, from be-
tween 2.13 and 2.70 m at0.1-0.8 ns to 6.01 m at 1.2 ns. However,
the H;, values with maximum likelihood are largely unaffected,
varying from 0.88 to 1.36 m. These results imply that the data-driv-
en ergodic inference suffers greatly at very large noise levels. Low
noise contamination of the data, around 0.4 ns and below 0.8 ns,
should therefore be maintained.

Effect of different covariance functions

The result of inferring the correlation structures of model ITa (Fig-
ure 5), assuming spherical, exponential, and Gaussian covariance
functions, is shown in Figure 8. The inferred most likely correlation
lengths vary according to the different covariance functions, which
is expected because the correlation lengths or ranges do not repre-
sent the same subsurface variability (Goovaerts, 1997). Nonethe-
less, we obtain quite similar least-squares estimates and realizations
when we use the inferred most likely correlation structures obtained
in Figure 8 in an inversion (see Figure 9a and b, respectively). The
exponential and spherical realizations are almost identical, but the
Gaussian realization differs slightly, most probably the effect of the
substantially different shape of the Gaussian semivariogram at short
lags. One could argue that the proposed methodology infers correla-
tion structures that honor the collected traveltime data independent
of the chosen covariance function. As a result, a priori knowledge of
the covariance function is less crucial, as one would expect, given
that the inversion results (i.e., m** and the stochastic realizations) do
not suffer adversely. This is especially true for the exponential and
spherical covariance models.

The likelihood values and data misfit value obtained using the
most likely covariance models are presented in Table 3. For the data
set examined, there appears to be a slight indication that the spherical

covariance function (on which the reference
model is based) results in the most likely fit for the

chosen data, represented by the highest likeli-
hood value and the lowest data misfit. However, it
is not yet certain whether this difference is suffi-
cient to make a unique estimation.

CASE STUDY

s 10 Field site

A field site was established in Arrenas, Den-
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Figure 7. The effect of adding six different noise levels to the GPR traveltime data. The
contour plots show the likelihood as a function of H,;, and H,,,, obtained using data-driv-
en ergodic inference. Model Ia (Figure 5) is shown as an example. Added noise levels are
(a) 0.1 ns, (b) 0.2 ns, (c) 0.4 ns, (d) 0.6 ns, (e) 0.8 ns, and (f) 1.6 ns. The reference and
most likely prior covariance models are marked with a red and yellow dot, respectively;
the geostatistical inference, obtained through a least-squares fit of the experimental semi-

variogram, is marked with a green dot.

mark, on a 20—30-m deposit of unsaturated allu-
vial sand sediments. A schematic of the field-site
setup is illustrated in Figure 10. The experimental
setup consists of eight boreholes drilled to a depth
of 12 m, with PVC access tubes for GPR anten-
nas installed. The eight boreholes are divided into
two separate groups, each group having four
boreholes forming a cross consisting of two
5-m-long lines. The two groups are approximate-
ly 10 m apart along a north—south transect.
Grain-size analyses of sediment samples taken
in a 14.5-m-deep cored borehole within area B
(blue circle, Figure 10) indicate that the top 1 m
(approximately) consists of loam and clay. Below
this topsoil, fine and coarse sand is found, with
thin intercalations of silt (approximately 8-m
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depth) and clay (approximately 10-m depth) layers. Gravimetric
measurements of moisture content were obtained in up to
25-cm-thick sediment samples throughout the depth of the cored
borehole. The mean and variance of the moisture content measure-
ments from 1 to 12 m were 0.058 and 0.0012, respectively. These
values correspond to mean and variance EM wave velocities of
0.1488 m/ns and 0.00025 m?/ns? using the modified Topp’s equa-
tion (Ferré etal., 1996).

Data acquisition

The crosshole GPR measurements were conducted using a Sen-
sors & Software PulseEKKO PE100 system equipped with 100-
MHz borehole antennas.

J37

Four multiple-offset gathers (MOGs) were collected during ap-
proximately 8 hours, sampling the subsurface below the dotted lines
in Figure 10, i.e., borehole pairs GPRA1-3, GPRA2-4, GPRB1-3,
and GPRB2-4. The measurements were collected by fixing an anten-
na at a specified depth in one borehole and lowering the other anten-
na in 0.25-m increments throughout the depth range of the second
borehole. The fixed antenna was then moved to a new position 1 m
deeper where the procedure was repeated, resulting in 24 fixed an-
tenna positions for the two boreholes. Some of the data collected
were later discarded. In particular, the measurements collected near
the surface and traces having an acquisition angle larger than 45°
were not used in the further analyses. Attenuation of the signal as
well as waveguiding along the antennas are known to deteriorate the
quality of high-angle traces (Peterson, 2001; Alumbaugh et al.,

2002; Irving and Knight, 2005).
Furthermore, the first-arriving EM signal near the

a)10 b)1o0. ¢) 10 surface is refracted waves traveling at the air-soil in-
8l 8 s terface, not the direct wave passing through the sub-
_ surface. Because of interference effects between the
E 6 6| 6 refracted wave and the direct wave, it is difficult to
£ 4 4 — 4 distinguish between the different waveforms, mak-
? ; ing estimation of the moisture content at shallow

2, 2| (2= 2 R o
| = @ depths problematic. Finally, the relationship be-
> 4 6 8 10 o 4 6 8 10 > 6 8 10 tweeq tl_le permittivitvy and moisture content for the
Hinax (M) Hunax (M) Hinax (M) topsoil is likely to differ from that for the sand se-

Figure 8. The effect of assuming different covariance model types on the data-driven er-
godic inference result. Contour plots show the likelihood as a function of H ;, and H .
Model ITa (Figure 5) is shown as an example. (a) Spherical model, (b) exponential model,
and (c) Gaussian covariance model. The most likely prior covariance model is marked

with a yellow dot.
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quence below, particularly because of the observed
clay content. Data from the uppermost 1 m of the
boreholes are therefore omitted from the subsequent
tomographic analyses. The resulting data set used
for tomographic inversion consisted of 744 traces.
The first-arrival times of the EM waves were
picked manually. The velocity distribution was

\:emlj)nc:)y thereafter determined through 2D tomographic

0.16 inversion to account for all crossing rays passing

through each portion of the subsurface. The un-

= 0.15 correlated error level was estimated to be 0.4 ns

from reciprocal measurements (i.e., swapped po-
10.14 sition of transmitter and receiver antennas), and
the correlated error level was set to 2 ns on trans-
mitter and receiver positions according to a study
by Cordua et al. (2009). It was necessary to ac-
count for correlated data errors to avoid undesired
artifacts close to the borehole walls.

0.16 Results

The mean velocity of the subsurface was deter-

015 mined from the traveltime data, and the global

014 variance and the correlation structure were in-

' ferred using data-driven ergodic inference. The

1013 results are presented in Table 4, and the likelihood
distributions are shown in Figure 11.

012 In Table 4, the estimated mean velocities vary

little between the four cross sections and are

0.11 slightly lower than the mean EM wave velocities

estimated from the gravimetric measurements of
moisture content. Apart from GPRA2-4 (Table

Figure 9. Inversion results assuming different covariance model types — spherical, expo-
nential, and Gaussian — and the corresponding inferred most likely properties obtained
in Figure 8. The true subsurface velocity structure is shown to the left. (a) Least-squares
inversion estimate. (b) Selected realization drawn from the posterior PDF.

4), the global variances are also fairly similar and
concur well with the gravimetrical estimated val-
ue of 0.00025 m?/ns? collected in area B. The
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global variance in GPRA2-4 is approximately twice that of the other
estimates, a difference also observed in the variance obtained using
the collected traveltime data directly.

The inferred correlation lengths range from 1.6 to 6.9 m in the
vertical direction and 0.6 to 6.9 m in the horizontal direction, being
slightly lower in area B. The likelihood plot of GPRBI1-3 (Figure
11b) has many spots with increased likelihood. This could arise if the
probed area does not have uniform and stationary geostatistical
properties as assumed but instead consists of multiple zones with
different spatial characteristics.

A 100-MHz GPR reflection profile conducted during the same
week as the crosshole surveys also suggests the presence of structur-
al differences between the two field areas (see Figure 12). The sub-

Table 3. Most likely correlation lengths and corresponding
likelihood and data misfit for three assumptions regarding
covariance model types.

Hmax Hmin
Model type (m) (m) Likelihood Data misfit
Spherical 3.64 1.81 0.0104 471104
Exponential 433 2.87 0.0043 473X 10~*
Gaussian 1.31 1.07 0.0032 6.54 <10~
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Figure 10. Schematic of the field site setup at Arrenas, Denmark.

surface, sampled in the two field areas, is highlighted with red. The
presented GPR reflection profile, running through both field areas,
suggests a greater depth penetration (~ 15 m) of the EM wave ener-
gy toward the south compared with the north (8 —10 m) and a greater
density of reflections toward the southern end of the profile. In par-
ticular, the reflections in area A appear longer and more continuous,
consistent with the longer horizontal correlation lengths at this field
area inferred using data-driven ergodic inference. A few reflections
appear to be longer than the horizontal correlation length estimated
by the inference method. See in particular the reflection around 6 and
8 mdepthin areas A and B, respectively, which is continuous for ap-
proximately 40 m. As noted, the applied inference method assumes
uniform and stationary geostatistical properties, and the inferred
properties are therefore representative of the overall correlation
structures of the probed subsurface.

Figure 13 shows the inversion results of the four real data sets us-
ing the inferred geostatistical properties. The depth of the reflections
in Figure 12 cannot be compared directly to the structures observed
in Figure 13 because a constant uniform EM velocity of 0.13 m/nsis
assumed for the depth conversion in Figure 12. It is apparent from
Figure 13 that this assumption is invalid. Nonetheless, at area A, a
clear interface in the tomograms is observed at 8 m depth, and two
slightly more indistinct interfaces are found at4 m and (albeit weak-
er) 6 m depth, matching reflection observations fairly well. In arca B
(in particular in GPRB2-4), clear interfaces in the tomograms at 8
and 10 m depth match reflections observed in Figure 12 with a great-
er precision. In GPRB1-3, these interfaces are not horizontally con-
nected. This results from the inferred horizontal correlation length of
just 0.55 m. If a higher value had been used in the inversion, corre-
sponding to another area of high likelihood in Figure 11, the ob-
served features in Figure 13 would be more layered.

In the previous analyses, we assumed a zero dip of the subsurface.
It is, however, apparent in Figure 12 that the subsurface structures
dip slightly toward the north. To improve the estimates of the geo-
statistical properties, the dip could be determined within the pro-
posed framework (Hansen et al., 2008) or included as a priori knowl-
edge from, e.g., GPR reflection profiles. The two GPR cross sections
collected at each field area could also be combined in a 3D analysis
to better constrain the correlation lengths and the dip. However, in a
3D setup, the number of unknown parameters increases to nine (one
extra correlation length and two extra rotational angles), making
unique identification of all parameters more challenging.

DISCUSSION

Our work illustrates the utility of crosshole GPR velocity data to
estimate valuable geostatistical information concerning subsurface

Table 4. Data-driven ergodic inference results for four real data sets.

Inferred from traveltime data

Data-driven ergodic inference

Mean Variance Variance Hoin H.ox
Data set (m/ns) (10~* m?/ns?) (10~* m?/ns?) (m) (m)
GPRAI-3 0.1431 0.89 2.15 6.85 6.32
GPRA2-4 0.1459 1.65 5.31 5.79 6.85
GPRBI-3 0.1317 0.68 3.33 1.59 0.55
GPRB2-4 0.1358 0.74 3.65 3.69 6.85
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structures. Compared with findings of Hansen et al. (2008), our pro-
posed methodology provides a complete geostatistical inference,
i.e., an estimation of mean velocity, global variance velocity, and the
correlation structures. Because the methodology uses GPR travel-
time data indirectly, the geostatistical inference is not affected by
smoothing and/or regularization (a limitation stated by Day-Lewis
and Lane, 2004).

Synthetic tests show that the mean velocity is determined within a
few percent, whereas the global variance velocity can be estimated
within a factor of two of the true value. Inference of the studied cor-
relation structures is comparable with results obtained using con-
ventional methods to infer geostatistical properties (e.g., Gstat;
Pebesma and Wesseling [1998]). A lower uncertainty of the inferred
correlation structures is obtained when subsurface structures are
contained within the tomographic image, and the problem of infer-
ring the vertical correlation lengths is better posed because the col-
lected GPR data mainly consist of horizontal traveltime measure-
ments.
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Figure 11. Contour plots showing the likelihood as a function of H,;,
and H,,,, obtained using data-driven ergodic inference for four real
data sets: (a) GPRA1-3, (b) GPRBI1-3, (c) GPRA2-4, and (d)
GPRB2-4. The most likely prior covariance models are marked with
ayellow dot.
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Figure 12. GPR reflection profile collected at Arrens intersecting
both field areas along a north—south transect. The two red boxes indi-
cate the approximate locations of the two field areas shown in Figure
10. Vertical depth axis is calculated for a velocity of 0.13 m/ns.
Modified from Hansen et al. (2008).

Irving et al. (2009) have investigated the use of reflection GPR
data to infer geostatistical information of the subsurface. The au-
thors expand on findings by Knight et al. (1997) and Rea and Knight
(1998) but incorporate the collected GPR data indirectly using an ap-
proach somewhat similar to one presented by Hansen et al. (2008).
Irving et al. (2009) find that the horizontal correlation lengths are es-
timated with a high degree of accuracy when the vertical correlation
lengths are known. This apparent high sensitivity of reflection GPR
data toward the horizontal correlation lengths could, if combined
with crosshole GPR data, potentially improve the accuracy of the
geostatistical inference method used in our study.

Asli et al. (2000) suggest an alternative method for inferring the
covariance model, relying on the comparison of an experimental
data covariance model obtained from data observations and a theo-
retical data covariance calculated from a prior choice of model cova-
riance. This method is used by Gloaguen et al. (2005, 2007) and im-
plemented by Giroux et al. (2007). Shamsipour et al. (2010) also ap-
ply this method to infer a prior covariance model and describe how
applying the method relies on manual intervention such as visual in-
spection and trial-and-error. Shamsipour et al. (2010) test the meth-
odology on a synthetic test case consisting of data of point support
and not volume average data, as considered in our work.

Traveltime data containing a high degree of added noise
(>0.8 ns) adversely affect the geostatistical inference. However,
noise levels below 0.8 ns are certainly feasible, especially if the data
setis preprocessed to eliminate errors occurring from incorrect bore-
hole geometry knowledge, positioning errors, and other static errors
(as suggested by Squires et al. [1992] and Peterson [2001]). Alterna-
tively, strongly correlated errors could be accounted for during in-
version using an approach similar to the one used by Cordua et al.
(2009).

In our work investigating whether our proposed framework could
be used to identify which covariance function provides the best de-
scription of the subsurface variability, the correct covariance func-
tion (in the investigated case, a spherical model) had a slightly higher
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Figure 13. Inversion results using data-driven ergodic inference for
four real data sets: GPRA1-3, GPRA2-4, GPRB1-3, and GPRB2-4.
(a) The least-squares inversion estimate. (b) A selected realization
drawn from the posterior PDF.
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likelihood than the other two investigated covariance functions
(Gaussian and exponential). But the question as to whether this dif-
ference is significant enough to provide unique estimations has not
been addressed. Instead, we have shown that assuming an erroneous
covariance model type does not necessarily affect the obtained in-
version results. In such a case, representative correlation lengths
were estimated and the least-squares estimate and realizations of the
posterior PDF therefore were not affected adversely.

Although our emphasis has been the application of ergodic infer-
ence to crosshole GPR tomography, we stress that ergodic inference,
as presented here, is applicable to any least-squares-based inversion
problem relying on a Gaussian a priori model, such as described by
Tarantola and Valette (1982).

CONCLUSION

We have evaluated and expanded on a methodology (i.e., data-
driven ergodic inference) to infer geostatistical properties of the un-
saturated zone using crosshole GPR data alone. Based on these new
results, we conclude that the properties are inferred without using
the inversion images directly. Excessive smoothing/damping often
observed in previous literature therefore do not affect the result.

The inferred geostatistical properties have two main applications:

1) Anaccurate C,, improves the reliability of the inversion results.
We illustrated the large effect that the choice of prior covari-
ance model has on the results of stochastic inversion. A proper
selection of the prior covariance model is therefore paramount
to ensure the validity of the realizations drawn from the posteri-
or PDF.

2)  Geostatistical properties describe the entire subsurface also the
unprobed area and can therefore be used as input in stochastic
hydrologic models.

The geostatistical properties inferred using data-driven ergodic
inference will in every case improve the inversion results (applica-
tion 1) because the inferred properties honor the collected traveltime
data by having the highest likelihood. Caution should, however, be
taken for application 2. Our proposed method worked satisfactorily
for correlation lengths contained within or slightly exceeding the
model domain, but the inferred geostatistical properties should not
be expected to represent the true subsurface structures when the cor-
relation structures are predominantly larger than the area of mea-
surement (i.e., interborehole area).

Finally, we must stress that our methodology is not restricted to
crosshole GPR data collected in the unsaturated zone but could be
used for a wide range of data types and other purposes. Crosshole
GPR data collected in the saturated zone could be used to infer the
geostatistical properties of the porosity distribution of a given po-
rous media, a physical property that, in some cases, may be correlat-
ed to the hydraulic conductivity and storage capacities of the media.
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