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Abstract

A method of estimating the sound field radiated by a source under non-anechoic conditions has

been examined. The method uses near field acoustic holography based on a combination of

pressure and particle velocity measurements in a plane near the source for separating outgoing

and ingoing wave components. The outgoing part of the sound field is composed of both

radiated and scattered waves. The method compensates for the scattered components of the

outgoing field on the basis of the boundary condition of the problem, exploiting the fact that the

sound field is reconstructed very close to the source. Thus the radiated free-field component

is estimated simultaneously with solving the inverse problem of reconstructing the sound field

near the source. The method is particularly suited to cases in which the overall contribution of

reflected sound in the measurement plane is significant.

Keywords: Near-field Acoustic Holography (NAH), sound field separation, sound radiation.

1 Introduction

In the original formulations of Near-field acoustic Holography (NAH) [1, 2], it is a requirement

that all the sources are confined to one side of the microphone array. This requirement stems

from the fact that it is not possible to determine whether the sound is coming from one or the

other side of the array based on simple measurements of the sound pressure in one single

plane. If the pressure in the measurement plane is contaminated by components coming from

the other side, all the measured acoustic energy would be attributed to the primary source,

leading to an erroneous reconstruction of the field [2–6].

Conventional NAH methods require that the measurement is performed under free-field condi-

tions to avoid reflections from the source-free half space [3]. However, it is not always possible

to perform the measurements under free-field conditions. This paper considers the case in



INTERNOISE 2010 | JUNE 13-16 | LISBON | PORTUGAL

which there is sound reflected from the source-free half space1.

To minimize the influence of sound coming from the source-free half space separation tech-

niques can be used. These techniques separate the outgoing sound field from the source and

the incoming sound field from reflections or other sources. Some of these separation methods

rely on a measurement of the field in two closely spaced parallel planes [7–11]. Other ap-

proaches are based on a combined measurement of the sound pressure and particle velocity

of the field [12, 13]. The so called p-u method has been the subject of several research papers.

It relies on the measurement of the pressure and particle velocity. It is a rather simple method

that makes use of the fact that, unlike the pressure, the particle velocity is a vector that changes

sign if the sound is coming from one or the other side of the array. Thus, by adding or sub-

tracting the pressure and particle velocity based estimates of the sound field, the contribution

of sound coming form each side of the array can be determined [13–16].

These techniques make it possible to estimate the outgoing field from the source, which is

in general a good indicator of its acoustic radiation. However, the outgoing component of

the sound field may be composed of both radiated and scattered waves by the source. The

scattered sound propagates in the same direction as the radiated sound. It is therefore not

trivial to separate the two components. Recently some techniques based on the Helmholtz

integral formulation have been proposed to compensate for the scattered field and determine

the free-field radiation by the source [17, 18].

This paper describes and examines a technique based on Statistically Optimized Near-field

Acoustic Holography (SONAH) [3, 19, 20] and the p-u separation method for estimating the

free field radiation by a source in the presence of reflections. The method compensates for the

scattered component of the outgoing field based on the boundary conditions of the problem,

and thus makes it possible to estimate the source’s free field radiation.

2 Theoretical background

2.1 Statistically Optimized Near-field Acoustic Holography

The method examined in this paper is based on Statistically Optimized Near-field Acoustic

Holography (SONAH). A detailed description of the SONAH method can be found in [20]. In

SONAH, the measured sound field is expressed as a decomposition of plane elementary waves

with different weightings. In matrix form it can be expressed as

p(rh) = Bc, (1)

where p is a column vector with the measured pressures, c is a column vector with the n

coefficients of the elementary functions, and B is a matrix with the elementary wave functions

α(rhm) at the measurement positions,

αn(r) = e−j(kx,nx+ky,ny+kz,n(z−z+)). (2)

The regularized solution to the inversion of equation 1 is

c = (BBH + λI)−1BHp(rh), (3)

1For simplicity, the source-free half space will be also referred as the “wrong” side of the array

2
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where λ is the regularization parameter. Once the coefficients are known, the sound field at

each position of the reconstruction plane can be obtained as p(rs) = α(rs)c:

p(rs) = α(rs)(BBH + λI)−1BHp(rh), (4)

so that the sound pressure in the reconstruction plane can be expressed in terms of the mea-

sured pressure in the hologram plane. The reconstruction of the field can as well be done

based on measurement of the particle velocity,

uz(rs) = α(rs)(BBH + λI)−1BHuz(rh). (5)

The pressure can be estimated from the normal velocity making use of Euler’s equation of

motion,

p(rs) = γ(rs)(BBH + λI)−1BHuz(rh), (6)

where γ(r) = (−jωρ)
∫

α(r)dz:

γ(r) = ρc
k

k z
α(r). (7)

In order to describe the separation method in a simple way it is convenient to introduce a

simplified notation of SONAH, in which the acoustic quantities in the hologram and in the re-

construction plane are related through a transfer matrix that accounts for the propagation of the

elementary waves in which the field is decomposed. This is expressed as

p(rh) = Cppp(rs),

uz(rh) = Cpup(rs).

The matrix Cpp relates the pressure in the measurement plane to the pressure in the reconstruc-

tion plane and Cpu relates the pressure in the reconstruction plane with the particle velocity in

the measurement plane. Based on this notation, the reconstruction equations can be expressed

in a simple way. For instance, the pressure in the reconstruction plane is2 p(rs) = C−1
pp p(rh) or

from the normal velocity p(rs) = C−1
pu u(rh).

2.2 Sound field separation

In the sound field separation technique used in this investigation, it is assumed that the pressure

measured in the hologram plane is due to a superposition of outgoing waves from the primary

source and incoming waves corresponding to the reflected sound from the source-free half

space. In the conventional formulation of SONAH, a single set of elementary wave functions

is used to model the sound field radiated by the source. In this case, two sets of elementary

wave functions must be used. The first set of elementary wave functions (α and γ) models the

outgoing field from the primary source, and an additional set of functions models the incoming

sound field. Let the new set of elementary functions be

ψn(r) = e−j(kx,nx+ky,ny−kz,n(z−z−)), (8)

2Note that the inversion of the transfer matrices needs regularization

3
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ϑ(r) = (−jωρ)

∫

ψ(r)dz. (9)

The ψ(r) wave functions are analogous to α, and they are used for pressure-to-pressure and

velocity-to-velocity predictions. The ϑ(r) are analogous to γ, and they are used for estimating

the sound pressure from the normal component of the particle velocity.

The sound field measured in the hologram plane can be expressed as the contribution from the

outgoing and incoming components as:

p(rh) = Cppopo(rs) + Cppipi(rs), (10)

uz(rh) = Cpuopo(rs)− Cpuipi(rs), (11)

where the subscripts o and i of the transfer matrices indicate whether they refer to the outgoing

or incoming fields, thus requiring the use of different elementary wave functions. The transfer

matrices Cppo, Cpuo, use the outgoing elementary wave functions α and γ respectively, and the

transfer matrices Cppi, Cpui, use the incoming elementary wave functions ψ and ϑ , and po(rs)
and pi(rs) are the outgoing and incoming pressure fields at the reconstruction positions, which

can be calculated from (10) and (11) as:

po(rs) =
(

Cpuo + CpuiC
−1
ppiCppo

)

−1 (

uz(rh) + CpuiC
−1
ppip(rh)

)

, (12)

pi(rs) =
(

Cpui + CpuoC
−1
ppoCppi

)

−1 (

CpuoC
−1
ppop(rh)− uz(rh)

)

. (13)

However, the outgoing field is composed of both radiated and scattered waves,

po(r) = pf (r) + ps(r), (14)

where (pf , uzf ) is the free field sound radiated by the source, and (ps, uzs) is the scattered

sound. If rs is sufficiently close to the boundary of the source, and if the source can be regarded

as rigid, the boundary conditions apply,

ps(rs) = pi(rs), (15)

where ps is the scattered sound pressure and pi is the incident sound pressure. Making use of

eqs. (14) and (15),

pf (rs) = po(rs)− pi(rs). (16)

From equations (12), (13) and (16) the free field radiation by the source can be estimated as:

pf (rs) =
(

Cpuo + CpuiC
−1
ppiCppo

)

−1 (

uz(rh) + CpuiC
−1
ppip(rh)

)

−

(

Cpui + CpuoC
−1
ppoCppi

)

−1 (

CpuoC
−1
ppop(rh)− uz(rh)

)

.

(17)

4
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3 Numerical results

The method has been tested by means of a numerical simulation study. The study consists of a

simply supported baffled plate radiating in the presence of a disturbing monopole. The dimen-

sions of the plate are 0.3 x 0.3 m, it is 3 mm thick, made of aluminum and driven at the center.

The plate is centered at the origin of coordinates and the monopole is placed at (x=0,y=0.1,z=3)

m. The sound from the monopole that is reflected by the baffle is modeled by means of a vir-

tual source, assuming a perfect reflection (R = 1). The measurement aperture is 0.3 x 0.3 m,

with a measurement grid of 11 x 11 positions uniformly spaced. The measurement plane is at

zh = 4 cm, and the reconstruction plane at zs = 1 cm. The measurement noise corresponds to

a signal-to-noise ratio (SNR) of 25 dB. Using the method described in the previous section, the

free field radiation by the primary source (the baffled plate) can be estimated.
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Figure 1 – Pressure field of a baffled plate driven at 850 Hz in the presence of a disturbing monopole

radiating from the opposite side of the array. (a) Pressure in the hologram plane. (b) True free field pres-

sure in the reconstruction plane. (c) Reconstruction with the direct formulation of SONAH. (d) Estimation

of the free field with equation (17)

Figure 1 shows the pressure in the hologram plane, the true pressure in the reconstruction

plane, the reconstruction with eq. (4) where no separation of the sound field is used, and finally

the estimation of the free field pressure produced by the primary source using eq. (17).

Figure 2 shows a comparison between the direct reconstruction of the pressure field based

in the direct SONAH formulation, and the estimated free field radiation based on eq. (17). It

shows the reconstruction for two cases: one in which the influence of the disturbing monopole

is strong (3 dB higher than the source), and another in which the pressure produced by the

monopole in the measurement aperture is about 7 dB less than the one produced by the plate.

It is apparent that the method can estimate the sound pressure successfully even if the the

disturbance is not very strong. It should however be noted that this result is based in simulated

measurements, in which the agreement between the reconstructions based on pressure and

particle velocity is almost perfect.

5
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Figure 2 – Sound pressure level across the diagonal of a baffled plate driven at 850 Hz, radiating in

the presence of a disturbing monopole at the opposite side of the array. True pressure, reconstructed

pressure with eq. (17), and direct reconstruction with eq. (4) without separating the sound field. Left:

the monopole radiation is 3 dB higher than the plate. Right: the monopole radiation is about 6 dB less

than the plate.

4 Experimental results

An experimental study has been conducted to investigate the applicability of technique de-

scribed in this paper. The experimental setup consists of a primary source radiating in the

presence of a large reflecting panel. The primary source is a vibrating plate mounted on a rigid

wooden box. The dimensions of the plate are 45× 45 cm2, it is 3 mm thick, made of aluminum

and driven acoustically by a loudspeaker inside the box. The origin of the coordinate system

is at the bottom left corner of the plate. A large reflecting panel is positioned parallel to the

plate, at 0.6 m distance (x, y, 0.6) m, of dimensions 1.2 × 1.5 m. The pressure and the nor-

mal component of the particle velocity were measured in 10 × 10 positions uniformly spaced 5
cm from each other. The measurement aperture is thus 50 × 50 cm2, at zh = 6 cm, and the

reconstruction plane at zs = 2 cm. The set-up of the experiment is sketched in Figure 3.

reflecting panel
Zh measurement plane

Zs reconstruction plane

sound source

Figure 3 – Set-up of the measurement. The plate (primary source) is at z = 0, the hologram plane is at

zh = 6 cm, the reconstruction plane at zs = 2 cm, and the reflecting panel at z = 60 cm

The pressure and the normal component of the particle velocity fields were measured in the

6
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hologram plane, both in the presence of the reflecting panel and without it. Also the true

acoustic field radiated by the source was measured in the reconstruction plane under free

field conditions, without the influence of the reflecting panel.

Figure 4 shows the measured pressure field in the hologram plane, the true pressure in the

reconstruction plane, the reconstructed pressure without separating the sound field using eq.

(4), and the estimation of the free field pressure produced by the primary source using eq. (17).
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Figure 4 – SPL at 500 Hz of the primary source radiating in the presence of a reflecting panel. (a)

Measured pressure in the hologram plane. (b) Measured free field pressure in the reconstruction plane.

(c) Reconstruction with the direct formulation, equation (4) . (d) Estimation of the free field pressure with

equation (17)

Figure 5 – SPL across the diagonal of the aperture at 500 Hz. The primary source is radiating in the

presence of a reflecting panel at the opposite side of the array. True pressure, reconstructed pressure

with eq. (17), and direct reconstruction with eq. (4) without separating the sound field.

Figure 5 shows the true pressure and the reconstructed pressures across the diagonal of the

7
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aperture at 500 Hz. It seems that it is somewhat more accurate to reconstruct the field using

the free field estimation (eq. (17)), where the outgoing field is estimated and the scattered

components compensated for, than the direct formulation (eq. (4)).

However, it should be remarked that there is a significant error associated with the estimation of

the free field sound radiation using eq. (17). This mis-estimation is illustrated in Figure 6. The

figure shows the reconstruction of the sound field in the case where there is no reflected sound

from the opposite side of the primary source. Thus, the field measured in the hologram plane

is only the one radiated by the source. The figure illustrates the error implicit in the method

due to the fact that the pressure and particle velocity based estimates of the sound field are

in practice not identical. Therefore, if there is just a small disturbance, or no disturbance at

all from the side of the array opposite the primary source, it is consistently more accurate and

straight forward to reconstruct the acoustic field based on the direct formulation.

Figure 6 – True and reconstructed pressure with eq.(17) and eq.(4) when the primary source is radiating

without the disturbance from any source or reflection from the opposite side of the array. SPL across the

aperture diagonal at 400 Hz

5 Discussion

The study indicates that based on eq. (17), the sound pressure field radiated by the primary

source can be estimated satisfactorily, particularly in the presence of extraneous noise from the

opposite side of the array. However, there are limitations to the accuracy of the technique.

The method relies on the assumption that the sound pressure and particle velocity based esti-

mates of the sound field are identical. This assumption is not completely true in practice, and

there is an important source of error associated to it. Therefore, eq. (17) gives a more accurate

reconstruction than eq. (4) provided that the disturbing sound is sufficiently strong. Otherwise,

if the disturbance is not very significant, the latter yields a more accurate and straightforward

reconstruction of the sound field. This result is in agreement with previous studies [14, 15].

This observation explains as well the accurate results obtained in the numerical study, since

simulated measurements do obviously not suffer from the errors and uncertainty encountered

8
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in actual measurements.

It should also be noted that the set of elementary wave functions ψ used to model the incoming

sound field (see eq. (8)) are scaled in the virtual plane z−. This investigation revealed that

the correct modeling of the incoming field depends strongly on the position of this virtual plane.

Throughout the study, the best results were consistently found when the virtual plane was set

at z− = 2zh − z+.

6 Conclusion

A method of estimating the sound field radiated by a source under non-anechoic conditions

has been described in this paper. A numerical and experimental study of the technique reveal

that the technique can reconstruct the sound pressure field radiated by the primary source

satisfactorily, particularly when there is a strong disturbance by sound coming from the wrong

side of the array. If the disturbance is not very significant it is more accurate to reconstruct the

sound field based on the conventional direct formulation.
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