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Abstract This Ph.D. thesis presents a vorticity - streamfunction formu-
lation for turbulent airfoil flows. From the time averaged Navier -Stokes
equation on a cartesian pressure - velocity form a vorticity - streamfunction
formulation is derived in general curvelinear coordinates. A zero equation
model, the Baldwin-Lomax model, is implemented to compute the turbu-
lent viscosity. A second order implicit boundary condition has been applied
for the vorticity at the wall. At a subsequent step the pressure field is com-
puted by solving a transport equation for the stagnation pressure rather
than solving a ”traditional” Poisson equation. For low Reynolds numbers
(laminar flow) the developed code has been evaluated on flows around cylin-
ders and a NACAO0012 airfoil and good agreement with literature is found.
For high Reynolds numbers (attached turbulent flow) the code has been
tested on a NACA0012 and shows good agreement with literature. Tak-
ing into account that the present formulation do not model transition ,
the code predicts well compared to other uncommercial and commercial
Navier-Stokes codes.
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Chapter 1

Introduction

In the recent years an increasing amount of work has been carried out
in order to obtain knowledge of the behaviour of aerodynamics related to
the Horisontal Axis Wind Turbines (HAWT’s). To date knowledge has
been gained from experimental setups of full scale wind turbines in natural
conditions or test of wings/ wing sections in wind tunnels. This knowledge
has been used to correct the empirical relations in the theoretical models.
But basically the theoretical models has, so far, not gone through the same
kind of rapid development, as the experiments on wind turbines has.

1.1 Theoretical models for HAW'T’s operat-
ing below stall.

The aerodynamic behaviour of wings and rotors plays an important role
when designing/ optimizing wind turbines for e.g. power output, structural
loads, life time etc.

When designing a rotor, analysis of performance is one of the first steps
to take. The basic performance analysis focus on the aerodynamic be-
haviour of the steady or time averaged flow.

Today most researchers apply the blade element/ momentum (BEM)
method for performance analysis. The BEM method has proven accu-
rate for a wide variety of rotors and flow conditions [21]. The Blade Ele-
ment/Momentum Method, which in detail is described in e.g. [15] or [18],
consists in basic of the assumption that the rotor can be analyzed as a
number of independent elements. The induced velocity at each element is
found by performing a momentum balance for an annular control volume
containing the blade element and the air bounded by the stream surface

13



14 CHAPTER 1. INTRODUCTION

extended upwind and downwind of the element. Using two-dimensional lift
and drag coefficients! the aerodynamic forces on the element are calculated
at the geometrical angle of attack of the blade element relative to the local
flow velocity?.

The basic BEM technique has a number of limitations which are nor-
mally encountered in wind turbine applications. Many of these limitations
have been overcomed using empirical relations derived from helicopter, pro-
peller and wind turbine experiences [21].

For example for high loading of the rotor the simple momentum balance
is not valid and Glauerts empirical relation for induced velocities for high
disk loading is included. Blade tip and hub losses are generally accounted
for in BEM methods using the Prandtl relationship [18]. Effects of the rotor
wake is modelled by some designers.

Models which account for the location of the rotor/ wind turbine in
a natural environment is also applied. Effects of the natural environment
is for example : Yaw errors caused by the changes in the direction of the
wind. The boundary layer on the ground. The aerodynamic "shadow” of
the tower of the wind turbine. Turbulence of the free wind.

In spite of the assumptions made in BEM theory, this method often
predicts rotor performance with acceptable accuracy. In the cases exam-
ined by Van Grol [20] , the power and annual energy were predicted with
an uncertainty of £+ 8 percent. According to Butterfield [21] the greatest
difficulty in obtaining accurate predictions below stall is determination of
the appropriate airfoil section characteristics.

To remove restrictions with respect to the choice of airfoil sections?, the
designer of rotors need an accurate code to compute airfoil characteristics,
for airfoils, where these are not given apriory.

Today a number of codes are available to predict the characteristic per-
formance of airfoils. Among the most popular commercial codes is the
"Eppler Code” by [16] and XFOIL by [14]. Both codes have facilities for
direct® and inverse® computations.

The "Eppler Code” consists of a Panel® - and Boundary Layer Method,
and XFOIL is a Panel and Integral Method. These methods are numer-
ically cheap and predicts well for unseparated flows. For separated flows

1Two-dimensional lift and drag coefficients may be replaced by three-dimensional
coefficients, when available.

2including induced velocity effects

3In the early days of rotor and wing design, the designer was some how restricted to
apply airfoils where the characteristics were given by wind tunnel measurements

4From a specified geometry the airfoil behaviour is found.

5From a specified behaviour the optimum shape of an airfoil is found.

6See e.g. [11] for results obtained with a panel method.

F Y B B Ty Y Y Y . 4,



1.2. HAWT’S OPERATING IN QUASI-STEADY STALL. 15

predictions by XFOIL [29] shows good agreement with wind tunnel mea-
surements on a designed wind turbine airfoil like the NTUA - airfoil(see
e.g. fig. ( 6.15) and fig. ( 6.16) ). For airfoils with leading edge separation
the agreement with measurements is not so profound [4].

For turbulent airfoil flows with large regions of separation the parabolic
Boundary Layer Methods do not model the highly elliptic separation zone
appropriate. Because of the development of price and speed of todays
computers’ and the development of fast integration schemes, modelling of
the flow around airfoils by applying Navier-Stokes equations is becoming
an appropriate and more accurate alternative to the Boundary Layer Equa-
tions.

As part of a Ph.D. study this thesis presents a vorticity - streamfunction
formulation of the Navier-Stokes equations to predict the flow field and
airfoil section characteristics at high Reynolds numbers.

1.2 HAWT’s operating in quasi-steady stall.

Above stall rotor performance codes applying 2 D airfoil characteristics
predicts poor. For this quasi-steady stall situation these codes predicts
power output considerably lower than measured values.

McCroskey and Yaggy [34] among others made investigations on the
importance of delayed quasi-steady stall related to helicopters in forward
flight. They predicted a spanwise flow generated by centrifugal pumping.
This radial flow results in a Coriolis acceleration, which acts as a favorable
pressure gradient in the chordwise direction ([21]).

Applying a 3 D boundary layer model with viscous - invicid interac-
tion Sgrensen [44] modelled a wing and predicted a 30 % increase in the
maximum lift due to the radial flow and additional Coriolis pressure force.

These predictions initiated a serie of full scale experiments on HAWT
wings in natural conditions.

Among those who have been carrying out full scale experiments on
HAWT wings in natural conditions is e.g. Rasmussen et Al. [38], Butterfield
[6] and Madsen et Al. [30]. )

By measuring power output and blade flap moment Rasmussen was able
to reconstruct characteristics for the wing sections of the blade under test.
The resulting characteristics for the wing sections were quite different from
2 D data (see fig. 1.1).

TThere has been a development in application from Personal Computers to Work
Stations (going from a speed of ~ 0.5 to 15 MFLOPS in 4 years in the wind turbine R
and D environment)
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2.50
2.00 031R
1.50 045R
C
L 0.50 R
1.00
0.50
0.00
30.00

Figure 1.1: Predicted 3 D lift coefficient Cy versus a for 5 radial stations
along a LM 10.5 m wing compared with 2 D wind tunnel data for a NACA

63218 airfoil.
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Segment 2

L

O rpm
D rpm
pr stopp

-5.00 5.00 15.00 25.00
Local angle of attack (Deg.)

Figure 1.2: Normal force versus local angle of attack for the mid blade
segment on a HAWT wing respectively rotating or stopped.

In order to get a more precise picture of the components of the quasi-
steady stall phenomenon Butterfield [6] made a test setup measuring chord-
wise surface pressure at different spanwise stations on a HAWT wing in
natural condition.

A different experimental setup of a HAWT wing in natural conditions
was done by Madsen et Al. [30] equiping 3 blade segments of a blade with
force transducers. Madsen et Al. obtained measurements for the stationary
and rotating wing operating in stall and out of stall separating the flow
components in rotational -, 3 D - and unsteady effects (See fig. 1.2).

The results of Madsen et Al. confirmed the indication of significant
differences in the characteristics for a rotating wings in stall and a 2 D
airfoil. _

One of the conclusions were, that if the mid section of the wing were
respectively operating in stall with a rotating and ‘a non rotating wing (fig.
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1.2), the difference of the characteristics were neglectable, which lead to
the conclusion that the differences between the characteristics of the mid
section and 2 D airfoil , under these conditions seemed not to be caused
by rotational effects but were related to the 3 D shape of the wing and
the unsteady inflow. Recently this conclusion has been supported by wind
tunnel measurements on a stationary wing, Madsen et Al. [33].

1.3 TUnsteady aerodynamics for HAWT’s.

A wind turbine in a natural environment will experience an unsteady aero-
dynamic flow field. When analysing blade loads on HAWT's unsteady
effects are subdivided into dynamic stall and dynamic inflow. Dynamic
stall considers unsteady aerodynamic effects in the immediate vicinity of
the blade. Dynamic inflow refers to lagging in the response of the induced
velocity field of a rotor following rapid changes in the rotor operating state.
For example the mass of the air in the wake of the rotor makes it impossible
for the wake to respond instantaneously to a change in rotor loading which
can be observed after a change in blade pitch angle [21] .

Before 1988 unsteady aerodynamic effects were not included in load and
performance analysis.

1.4 Dynamic stall

In 1988 the existence of dynamic stall and its effects on rotor loads were
quantified by Butterfield [5] by meassuring pressure distribution on a 10
m HAWT. Dynamic stall was shown to occur under a variety of inflow
conditions including turbulence, tower shadow and yawed flow.

Similar experiences were obtained by Madsen et Al. [32] on the test
set up of blade segments on a HAWT wing previous mentioned. A typical
hysteresis loop for a (Cy,a) - curve compared to a curve for quasi-stady
stall can be seen in fig. ( 1.3).

Modelling of dynamic stall can be done by one of at least three models.
The simplest and first proposed is the Gormont [19) model. From the
angle of attack, the time rate change of the angle and 2 constants normally
determined by experiments, the Gormont model determines an effective
angle of attack which is responsable for the (Cr,a)- hysterese. The shape
and the location of the hysterese relative to the quasi-steady stall curve is
governed by the 2 constants. By determining the 2 constants Butterfield
[21] found an adequate representation of the hysteresis observed at the
outboard sections of the wing. For the mid section of the wing operating
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Figure 1.3: Quasi steady data for normal coefficient Cy versus local angle
of attack for the mid blade segment 2 compared with instantaneous values
measured with the rotor in yawed conditions.
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in dynamic stall Madsen and Christensen [31) binned data for hysteresis at
different mean angles of attack. The shapes of the hysteresis loops differs
a lot at the different mean angle of attack. Predictions were made by
the Gormont model, where the 2 model constants were adjusted to fit the
measured hysterese shape at a mean angle of e.g. 17°. Applying the same
constants, the Gormont model were used to predict the hysteresis at lower
mean angles of attack. It was found that the model did not predict adequate
hysterese shapes compared to the measurements. '

1.5 Closure

As described in the previous sections a lot of interesting experimental and
theoretical research has recently been done on airfoils, wings and rotors
related to Horisontal Axis Wind Turbines.

The results from the experimental set up on wings has pointed the
attention towards improvements of the theoretical modelling of 3 D - and
rotational effects on a wing. But despite of the great interest for modelling
the 3 D effects, there are still 2 D effects like the quasi-steady and dynamic
stall, which are not fully understood and can’t be modelled adequately
today.

When it comes to modelling by Computational Fluid Dynamics (CFD)
applying the Navier Stokes equations® obtaining a flow solution on a wing
section (2 D) or a wing (3 D), there is a significant difference in the time
a computer will apply in each case. Seen from a numerical point of view
modelling in 2 D becomes very attractive.

As a consequence this Ph.D. study has been concentrated on the de-
velopment of a two dimensional Navier-Stokes formulation to model the
turbulent flow around airfoils designed for wind turbines.

8it can be argued that when it comes to modelling the strong separated spanwise flow
on a rotationg wing at a Reynolds number of 2 - 3 mill. Viscous - Invicid interaction
techniques, applying Boundary Layer Equations, are not succesfull as models, Cebeci (8]




Chapter 2

The system of governing
flow equations for steady
turbulent flows

The Navier-Stokes equations, which contains conservation of mass, momen-
tum and energy, and can be found derived in e.g. [43] and [17] governs the
motion of isotropic and Newtonian fluids! , to which group air belongs.

If the Navier Stokes equations, as they appear in [17}, are solved to ob-
tain a solution for e.g. a flow around an airfoil at a sufficient high Reynolds
number, where turbulent motion occur, the result is termed a direct solu-
tion. Due to the limitations in todays computer memory and speed it is
not possible to obtain direct solutions for flows at high Reynolds numbers.

On todays computers one can obtain a Direct Solution of the transition
from laminar to turbulent flow on a flat plate at a Reynolds number of 5000
and in a 5123 point cube (~ lem3) [35).

But the direct simulation as well as the Reynolds stress modelling®
(second order models) of turbulence are despite of the fast development in
computer power still not considered engineering turbulence models. For
that reason they have not been considered in this work. This work just
consider 1st order models.

1» A fluid is said to be isotropic, when the relation between the components of stress
and those of the rate of strain is the same in all directions; it is said to be Newtonian,
when this relation is linear”, [43]

2Reynolds stress models model the Reynolds stresses without applying the Boussinesq
assumption. In principle, it is possible to solve the time-dependent equations for the
larger scales and to solve time averaged equations for the smaller scales with suitable
modelling of the small scale structure.

21
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2.1 The incompressible averaged Navier-Stokes
equations on primitive form

In order to model turbulence with its stochastic nature one can apply a
statistical approach, where the flow variables (u) is devided in a mean (%)
and a fluctuating component (u’). E.g. :

u=u+u ,v=0+v ,p=p+p (2.1)

The time-averages are evaluated in a fixed point in space and e.g. given
by :

1 to+t1
: u dt (2.2)

U= —
t1 Ji,

The mean values are taken over a sufficiently long interval of time,
t;, to be completely independent of time, and the time-averaging of the
fluctuations is zero by definition [43].

The time averaging of the Navier-Stokes equations gives, compared to
the Navier-Stokes equation for laminar flows, raise to apparent or Reynolds
stresses for the turbulent flow:

Tij = —pUil; (2.3)

As mensioned elsewhere, this work is concentrated on airflow in relation
to wind turbines, and it is reasonable to assume incompressibility of this
flow.

As a consequence the energy equation is eliminated in the governing
flow equations.

The above mensioned circumstances lead to the following expression
for the incompressible, averaged Navier-Stokes equations on the pressure
- velocity (P-V) form (for simplicity, given here in cartesian coordinates,
where the velocity components V; for i = 1,2 correponds to the coordinate
axis for the coordinates z;. z; = xand 22 = y) :

avi
5 =0 (2.4)
oV;Vi . 10P  _, . 19r;
3z, = pom; + vV + » 9z, (2.5)

p is the density of air, v is the kinematic viscosity and 7;; is the shear
stress tensor.
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In the last decades there has been a development of techniques for nu-
merical integration of the turbulent incompressible Navier-Stokes equations.
The most established, among them, are those formulations based on prim-
itive variables like eq. ( 2.4) and eq. ( 2.5) and those using appropriate
transformations, such as the vorticity- streamfunction one (w — 1), which
is by far the most used [37].

We will briefly discuss some of the advantages and disadvantages of
these two types of formulations in the following section.

2.2 The incompressible averaged Navier-Stokes
equations on the vorticity-streamfunction
form

A method based on the solution of the primitive variables provide a better
insight to the physical conservation laws and their boundary conditions.
One of the great advantages is that two- and three-dimensional flows may
be handled equally with similar algorithms. Turbulence models are straight
forward to implement.

A primitive variable formulation for incompressible flows, however, suf-
fer from the absence of a physically meaningful pressure equation. Often a
Poisson type pressure equation ( 2.40) is used by applying the divergence
operator on the momentum equation. Continuity is weakly satisfied,in this
way, and inaccuracies may appear, especially when extra terms, like those
of turbulence are present in the momentum equation.

A pressure correction technique can be applied [39] in order to assure a
better fullfilment of the continuity equation.

Primitive variable formulations lead to velocity-pressure decoupling prob-
lems which appear when colocative discretization schemes are used. This
odd-even decoupling [47] can be removed by staggering techniques, but the
complexity of programming will be increased and the final solution will be
affected in some extend.

The vorticity-streamfunction formulation is more suitable compared
with primitive variables for representing the kinematic nature of the in-
compressible Navier-Stokes equations. The first advantage is related to
the automatic satisfaction of the continuity due to the use of the stream-
function. The absence of the pressure gradient in the vorticity transport
equation eliminates any problem related to odd- even decoupling and need
for staggering.

Solving for flows including rotational effects (e.g. an ossilating airfoil)
dosn’t ask for additional terms for Coriolis - and Centrifugal forces in the
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transport equation as a primitive formulation do. Rotational effects enter
this solution through initial and boundary conditions [45].

Another advantages is that the closed form in which the equations ap-
pear in the ¢ — w formulation eq. ( 2.13) and eq. ( 2.14) , makes them
suitable for applying fast numerical solvers as will be discussed in chapter
3.

These reasons make the 1 — w formulation very attractive for accurate
and fast solutions for high Reynolds, 2 D and/or axisymmetric Navier-
Stokes equations.

Nevertheless a few drawbacks are still attributed to the ¢ — w formu-
lations. The most important , among them, seems to be the difficulty in
extending the method to 3 D. David et Al. [40] has tried to overcome these
shortcomings and extended a 9 — w method to 3 D. These attempts to
make 1 — w formulations competitive with primitive formulations in 3 D
is to the authors knowledge still in its infancy. Because of this fact this
analysis of high Reynolds flows related to wind turbines is limited to 2 D
steady turbulent flows and unsteady laminar flows in this thesis.

An additional drawback is the necessity to use approximate and iterative
vorticity boundary conditions along solid walls (see e.g. [46]).

2.3 Derivation of the equations in the vorticity-
streamfunction formulation

In the following section we will derive the governing equations for incom-
pressible Navier-Stokes flows on the vorticity - streamfunction formulation.

Obtaining the final equations in the ¢ — w formulation (eq. 2.13 and
eq. 2.14) consists of the following steps :

o 1 Definition of vorticity

o 2 Definition of streamfunction

e 3 Taking the divergence of the definition equation of the streamfunction

e 4 Taking the divergence of the momentum equation 2.5

e 5 Making the equations from e 3 and e 4 dimensionless

e 6 Transformation of the equations from e 5 from a cartesian coordi-
nate system to a general coordinate system

The streamfunction 1 and the vorticity w (both scalars), which are the
variables in the governing equations, have the following definitions on a 2
D cartesian form :
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Definition of vorticity

w=VxVk, (2.6)

where the velocity vector V' = ui +vj, and %, 7 are the unity vectors in
the cartesian coordinate system.
Definition of streamfunction

V = -V x (yk) (2.7)

Iy
= - 2.
v= oo (2.9)
Taking the curl of the streamfunction equation (eq. 2.6) and applying
the assumption of incompressibility of the flow (See eq. ( 2.7) - ( 2.9) leaves

us with a Poisson equation on a cartesian form for the streamfunction :

w= -V (2.10)

Taking the divergence of the momentum equation 2.5

The vorticity transport equation on a cartesian form is obtained by taking
the curl of the momentum equation (velocity transport equation) eq. ( 2.5).
The matematical operations involved in deriving the vorticity equation for
laminar flow is trivial and voluminious and left out here, but can be found
in Appendix 8.1.

An incompressible, turbulent vorticity transport equation is then pre-
sented on the cartesian, 2 D and conservation form. After some rearrange-
ments, as stated by [2] the second order derivatives of v,3

can be isolated , and the following 2 equations is presented:

3y, is the dynamic turbulent viscosity or the turbulent diffusivity. For derivation, see
section 2.4.3
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Ouw + dww _ O%[v + v, |w + v + vrw +p

oz Oy 9x? 9y? (2.11)
where
Qudye _(Qu_0\ Py  0Thy oy
P =5y 8s2 ‘0z 08y 9zdy Oz 0y? '

The second order derivatives of vp are collected in p and may be ne-
glected.

Dimensionless equations

The governing equations , the Poisson equation for the streamfunction 2.10
and the vorticity transport equation (eq. 2.11) are made dimensionless by
introducing the dimensionless variables related to a characteristic length
Lo and a velocity Vp. The introduction of these dimensionless variables,
which can be found in Appendix 8.2, do only alter the syntax of the written
equations by replacing v with Rey and v7 with Rer in eq. (211) . For
convenience we then express from now on the dimensionless variables with
the same syntax, as we earlier used with respect to dimensioned variables.

2.3.1 Transformation from a cartesian to a general curve-
linear coordinate system

In order to obtain proper definitions of the boundaries, which constitutes
the geometrical shapes of bodies (airfoil etc.) and good representations of
the spatial derivatives in the computational domain, the governing equa-
tions given in the cartesian coordinate system is transformed to a general
curvelinear coordinate system.

The different differential operator terms (e.g. Laplacian term and con-
vection term) which enter the governing equations on the cartesian form,
( 2.11) and ( 2.12), is replaced by similar transformed operators as part of
the transformation.

The definition of the contra variant metric tensors g* , the jacobian
J, the covariant velocities v* and the differential operators applied in the
transformation of the equations to a general coordinate u' domain, and
which enter the transformed governing equation eq. ( 2.13) and ( 2.14), is
given in Appendix 8.1.

The final set of equations applied for discretization takes the form :
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£
v
o
BC2

Figure 2.1: The physical domain for the flow around an airfoil with the
corresponding boundary conditions.

190 0P . .
2 (Jgi Xy = = .
7 P (Jg Bui) w, iandj=1,2 (2.13)

6viw 1 o J ij a[(l + %{')W]) —

— e~ —— 2.14
5w TR T ou 0 (2.14)

2.3.2 Initial and boundary conditions for the governing
equations

The governing equations are integrated in a pseudo time domain due to
the applied ADI-scheme (Alternating Direct Implicit) described in chapter
3. This integration needs initial conditions and boundary conditions. The
initial conditions and the boundary conditions for the steady flow around
an airfoil are given below for the 2 governing equations.
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Initial conditions

The initial conditions for the vorticity w is simply given as zero in all of the
domain.

The initial conditions for the streamfunction ¢ is derived from the given
uniform velocity field, with the velocity V' having an angle a to the chord
of the airfoil.

1 is by definition linked to the covariant velocities v and v2 by :

(o) -
- —a; vt (215)
& _
EC- = 1)2 (2.16)

where 1! is the length of the covariant velocity tangential to the first
general coordinate direction g, (u! or ¢) and v? is the lenght of the covari-
ant velocity tangential to the second general coordinate direction g, (u? or
n) and v! is related to the cartesian velocity V :

=V.g, (2.17)

Combining eq. ( 2.15) and eq. ( 2.17) leads to an integral equation for 3
(see e.g. fig. 2.1).

n Oz
P(1) = Y(Nmin) + / [Veosa— 3¢ + Vsma ]dn (2.18)

Y(Mmin) is set to zero at solid walls. At the rest of Nmin Y(Nmin) is :

oz Jy
Y(Mmin) = Veosa—= aC + Vsmaa—c (2.19)

Boundary conditions

The boundary conditions for the streamfunction ¢ at the boundaries BC1
and BC2 is the Dirichlet type. They keep the same values as given under
the initial conditions.
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Figure 2.2: The control volume or cell approach applied to obtain the
discrete equation for the vorticity w at a solid wall.

BC1 - (¢ equation)

Y lwen=0 (2.20)

BC1 - (w equation)

This boundary condition for w is normally the weak spot in a ¢ - w
formulation. In this finite difference formulation on conservation form, this
wall boundary condition for w is given on a finite volume form.

The Poisson equation for the streamfunction is applied as the boundary
equation for the vorticity w on solid walls e.g. a surface of an airfoil.

W watt= V2% |wan (2.21)

Equation 2.21 can due to the finite volume formulation be expressed
(in eq. 2.22 as a balance between the changes in the fluxes through a cell
and the vorticity at the wall 4 :

4where e.g. i+1/2 and i-1/2 refers respectively to the forward and backward edge of
the cell centered in (i,j) (in the (-direction) in the eq. ( 2.22), where it is recalled that

V2=V-V=§%(Jv')=w
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1
wij lwat= == [(J0" )i g = ()i + (J0%)j41 — (J07);_3]  (222)
ij

The 2 first terms in eq. ( 2.22) is zero because that the velocities are
zero at the wall, and due to the continuity :

(Jv*)j43 = (Jo?);_3 (2.23)
which changes 2.22 to the final discrete expression :
252
wij watt= E(Jv )i+i (2.24)
or
2 oY ay
wij |want= E[(Jg21)52 + (ngz)%]j.i.% (2.25)

BC2 - (ip equation)

As stated elsewhere v keeps its initial value at this boundary.
BC?2 - (w equation)

w=0 (2.26)

BC3 - (¢ equation) At the far field boundary BC3 the curvature of the
streamlines is assumed to be zero.

62
a—c’f =0 (2.27)

BCS3 - (w equation)

A similar assumption on curvature are done for the vorticity at BC3.
&%w

50 =0 (2.28)
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2.4 The turbulence model

To close the system of averaged Navier Stokes equations the Reynolds
stresses appearing in these equations has to be modelled. In principal there
exists 2 groups of models : 1st and 2nd order models. This work is concen-
trated on the branch of 1st order models termed zero equation or algebraic
models.

2.4.1 1st order models

The common ground for the different 1st order models is that they take the
same approach as the constitutive laws of an isotropic Newton-Stokes flow
[43], when expressing the turbulent contribution to the stresses. This idea
was first proposed by Boussinesq in 1877.

Because the operational range for the Mach number is assumed to be
< 0.5 for rotating wings and wing sections on windturbines we may apply
the incompressible relation (2] :

av;

5 (2.29)

2 ov;
7 + 50K = PV’I‘(’a_Z; +

, where K is the turbulent kinetic energy and vr is the turbulent diffu-
sivity. The first order closures are based on modelling this diffusivity.

The only difference between eq. ( 2.29) and the constitutive relations is
that the latter links the flow stresses with a physical property of the fluid
(the molecular diffusivity). The turbulent diffusivity is not a fluid property
but a property of the flow.

For wall bounded flows the main velocity changes occurs in regions close
to the wall, where experiments shows that the velocity distribution follows
a universal logaritmic law (See fig. 2.3).

2.4.2 Algebraic turbulence models

The Baldwin-Lomax algebraic turbulence model was applied for several
reasons. In general an algebraic model was chosen in favour of a two equa-
tion model (e.g. k-¢ which are very common in engineering types of flows)
because they are easy to implement, they can be in the order of 3 times as
cheap as 2 equation models for 2 D flows [7] and they model the turbulence
for attached airfoil lows with the same adequate accuracy as the latter for
quite many airfoil types (See e.g. Cebeci and Smith 1974 [9], Baldwin and
Lomax 1978 [3], Coakley 1983 (12], Cebeci et Al. 1986 (8], Lee and Pletcher
1986 [28], Kamiya 1990 {36], Baron 1992 [26]).
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Typical velocity profile, ReL = 5000
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Figure 2.3: A typical velocity profile for the turbulent incompressible flow
along a flat plate at Re ~ 5000 compared with a three layer model for
the boundary layer in the inner and outer region. The Baldwin-Lomax
turbulence model is a 2 layer model, one for the inner zone and one for the
outer.
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Among the algebraic models applied on airfoils the Cebeci-Smith model
[9] has been popular, and predicts well for the attached boundary layer
flows, for which it was originally developed. The drawback for a zero equa-
tion model like the Cebeci Smith (CS)- model is that they predict the
turbulence very poorly for separated flows. The reason for that is believed
to be that the assumption on a local equilibrium between the production
and dissipation of turbulent kinetic energy dosn’t hold for separated flows.
One need to account for history effects like convection and diffusion of tur-
bulence.

But as discussed elsewhere the above mensioned effects, which are ac-
counted for in 2 equation models has to be put into one parameter, the
turbulent diffusivity v represented in the Boussinesq relation, which again
is multiplied by the gradient of the mean flow. This means that even 2
equation models predict the turbulent stresses under high influence of local
parameters, and need not to be superiour to zero equation models.

The succes of the different models for different types of flows is also
tightly connected to the election of the applied empiric coefficients in the
models.

Even though the CS-model performs badly in separated flows, another
algebraic model by Baldwin and Lomax (3] was applied in this work, because
of the great advantage theese models represent with respect to numerical
costs.

The BL-model which is based on the principles of the CS-model, has
the advantage to the latter model, that the thickness of the boundary layer,
which can be hard to find in separated flows or wakes, need not to be known.

As it will be treated in the following section the BL-model makes use
of the vorticity, w, of the flow which makes this turbulence model favorable
for the applied averaged vorticity-streamfunction Navier-Stokes equations
in comparence to a primitive variable approach, where the vorticity has to
be found by extra computation.

2.4.3 The Baldwin-Lomax turbulence model

To suit the non dimensionalized averaged w-1) equations, the equations and
characteristic parameters in the 2 layer Baldwin-Lomax turbulence model
is put on a form applying the same expressions for nondimensionalization
as was applied for the governing equations and which can be found in
Appendix 8.2.

In the original paper from Baldwin and Lomax [3] expressions for the
kinematic turbulent viscosity ur is given. This is suitable for compressible
flows, where the effect of compressibility is entering the turbulence model by
correcting the density p of the flow, which appear explicitly in the equations.
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For the incompressible case, as we consider, applying the dynamic tur-
bulent viscosity or turbulent diffusivity vz eliminates the density in the
expressions and reduce the numerical cost.

The model consists of an inner, vp;, and an outer, vr, value for the
turbulent diffusivity on the airfoil.

The wake region is modelled only by the outer value.

. Uri, Y < Yerossover
vr =
VTo) Yerossover<y

The inner model consists of the Prandtl-Van Driest formulation, where
the quantity in parenthesis in eq. ( 2.31) is the van Driest damping function,
which bridge the gab between the fully turbulent region, wherel = « y and
the viscous sublayer, where 1 — 0.

Some variations on the exponential function have been applied in order
to account for effects of property variations so as pressure gradients, surface
roughness etc. A discussion of modifications to account for several of these
effects can be found in [9]. '

Frequently the van Driest constant A* is modified to account for com-
plicating effects.

The length scale 1 which appear in the formula of the eddy viscosity
coefficient v should be evaluated along 7 - lines normal to the surface. As
is the case in this work the grid generation is not always constructing grids,
that are exactly normal to the surface. as quoted by Kayama [36] :" Those
code and mesh dependencies rather than the physical model differences has
significant effects on the numerical results of the flowfield in the present
state of the art of N-S analysis.”

vri = I2|w|Re (2.30)

where
-yt
= ky[l - eaF) (2.31)

and

yt = Z¥Re, (2.32)

Vy

It appears reasonably clear from comparisons in the literature, that 4

the inner layer model eq. ( 2.31) requires no modification to accurately
predict the variable property flow of gases (e.g. air) with moderate pressure
gradients on smooth surfaces [24].

The expression for the mixing length 1 (eq. 2.31) is responsible for
producing the inner ”Law-of-wall” ( see fig. 2.3 ) region in turbulent flow.

g
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The outer formulation take the form :

vro = KCocpFwakeFkLEB

yMa::FMa.::
Fwake = or ,the smaller

CwikYMazViir

YMaz and Fpr,. is determined from the function
-yt
F(y) = ylw|[1 — e 3% ] (2.34)

—yt
In the wake region e AT is set to zero. Faax is the maximum value of
the F(y) function, and yumq. is the value of y, where it occur.
The Klebanoff intermittency factor® is given by

C
Fien(y) = [1+5.5(=5 2200 (235)

Vpir is the difference between maximum and minimum total velocity
in a profile (at a fixed x-station) and is

VDIF = (V u? + v? Maz — (V u? + 'UZ)Min (236)

the second term in eq. ( 2.36) is zero except for the wake region.

The length scale 1 which appear in the formula of the eddy viscosity
coefficient vr should be evaluated along 7 - lines normal to the surface. As
is the case in this work the grid generation (see Appendix A3) is not always
constructing grids, that are exactly normal to the surface. The evaluation
of 1 has some ambiguity in its definition. It is not rigorously defined and
therefore is dependent on how the numerical describtion, programming and
grid distributions is used by individuel investigators. As quoted by Kamiya
[36] :"Those code and mesh dependencies rather than the physical model
differences has significant effects on the numerical results of the flowfield in
the present state of the art of N-S analysis.”

Kamiya {36] recommend to investigate this matter in a future work,
and in the following section the author made some investigations and gives
recommandations in order to make it easy to construct prober grids for
application with the Baldwin - Lomax turbulence model.

5 At a certain range of Reynolds numbers, around the critical, the flow becomes
intermittent, which means that it alternates in time between being laminar or turbulent.
the intermittency factor, is defined as the fraction of time during which the flow at a
given position remains turbulent”. [43]
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2.4.4 Guidelines for grid construction in relation to
Baldwin-Lomax turbulence modelling

Ranges for y;'

The algebraic turbulence models as Cebeci-Smith and Baldwin-Lomax,
which are modelling the turbulent diffusivity including the laminar sub-
layer, is known to break down if yF (See fig. 2.4) becomes sufficient small
(y¥ <« 1) [10]. On the other hand, experience shows that if y§ is to big a
converged solution cannot be obtained. The author made a serie of tests
for different Reynolds numbers in the range of 1-3 million and incidences
in the range of 0° - 16° for a NACA0012 and a NTUA airfoil. The tests
showed that if 1 < y§ < 5 converged solution were obtained in al cases.
For higher values of y;" few converged solutions were obtained. _

Because y* = y*(u,) and u, is part of the flow solution, construct-
ing a grid for Baldwin-Lomax turbulence modelling is adaptive in some
way. Sofisticated adaptive grid construction models has been proposed
Kallinderis et Al. [26] and applied [23], but the author found that some
hand rules could be extracted from grid construction tests, with a simple
hyperbolic grid generator, for different airfoils, Reynolds numbers and inci-
dences. These hand rules makes it easy to assure that converged solutions
easily can be obtained.

Gradients in v, at the trailing edge

To avoid to high gradients in v, at the trailing edge (and a corresponding
low depth of convergence) the grid cell length on the trailing edge is chosen
to be A{ = 0.01C for all airfoil flow calculations in the Reynolds number
range 1 - 3 million. The grid is constructed by a simpel hyperbolic grid
generator with 230-260 gridpoints in the ¢ — direction (170-200 on the
airfoil) and 51 in the 5 — direction.

Experiences in grid construction, by applying a simple hyperbolic grid
generator, shows that a handrule can be extracted for finding the grid dis-
tance between the airfoil (NACA0012) and the 1st gridpoint in the nor-
mal direction at the trailing edge of a grid applied for attached flows,
Anyz+=commm [e.e. (see e.g. fig. (2.4)).

Aﬂyi’:Constant |‘-¢~~ RC[ (237)

For Re = 10° :

AN _g lt.e2 5.0 107% (2.38)

and for Re = 2-10°
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Figure 2.4: The grid distance An; in the grid at the trailing edge corre-
sponding to y3 .

Ayt g lt.e= 25 107° (2.39)

The distance Any+_; |t... for Re = 10° is also applied by [36] for an
equal flow situation. :

The upwind scheme (see section 5.1) and the grid distribution add nu-
merical diffusivity, which are locally bounded to the grid and in a way can
be seen as a kind of volume forces. This makes it difficult to interpret the
flow situation in a physical way, because e.g. the total set of shear forces
consists of a global component related to the molecular diffusivity, and two
local components, respectively turbulent and numerical diffusivity.

2.5 The Formulation of the pressure equation

The determination of the pressure is done in a subsequent step when the
streamfunction and vorticity field is known. An extra equation has to be
solved.

Normally this equation is obtained by taking the divergence of the mo-
mentum equation 2.5 and becomes :
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- %V2p =V.(V.VV) (2.40)

Often this equation is solved with Neumann boundary conditions along
solid walls (BC1 at fig. ( 2.1) ).

9p
3= 0

and p = 0 at the farfield boundary (BC2 and BC3 at fig. ( 2.1).

The major drawback associated with the previous equation is the fact
that the accuracy with which this equation is solved is directly related to the
accuracy that the right hand side (RHS) is calculated. Local inaccuracies
in calculating the second order derivatives appearing in the RHS term,
may restrict the convergence depth of the equation, due to the integral
constraint, (Greens theorem) which needs to be globally satisfied.

To avoid this problem a new pressure formulation is proposed by P.
Chaviaropoulous et Al. [37] which is based on a stagnation pressure trans-
port equation. The derivation of the following applied equation for the
static pressure, p;, can be found in Appendix A4 :

(2.41)

1 1
V.Vp; — =—Vip = ——pw? 2.42
PV-Vpr — =Vip = — 5 (2.42)

where the static pressure, p;, is related to the total pressure, p, through
the steady Bernoulli equation :

1
p=p-3pV* (2.43)

In equation 2.42 the RHS term is easy to compute accurately, being a
simple function of the vorticity, which is one of the independent variables
in the present 9 — w formulation.

2.5.1 Boundary conditions for the pressure equation

A Neumann boundary condition for the stagnation pressure may be pro-
vided by projecting eq. ( 8.48) on to the direction normal to the boundary.
For solid walls the no-slip condition simplifies the equation and results
in :
op: 1 dw
bl 2.44
on  Re0s (2.44)
where n is the normal direction to the wall and (s) the tangential.
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The Neumann boundary condition for total pressure is, unlike the com-
monly used for static pressure, directly related to the first derivatives of
the independent variable w matching the accuracy of the previous derived
pressure equation.

At the farfield boundary the static pressure is set to zero.
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Chapter 3

Solution of the governing
equations

The governing equation is solved using the following techniques:

¢ 1. Conservative formulation of the governing equations.
¢ 2. Newton linearisation.

¢ 3. Approximated factorization - ADI.

e 4. GMRES.

3.1 The numerical integration scheme

3.1.1 The conservative form

The governing equations, as they are given in eq. ( 2.13) and eq. ( 2.14), are
on a strong conservation or divergence form, which matematically means
that the coefficients are either constants or, if variable, their variables ap-
pear no where in the equations. Seen from a physically point of view this
divergence form is suitable for equations representing conservation of a
physical property like e.g. mass or momentum in respectively eq. ( 2.13)
and eq. ( 2.14).

The advantage of the conservation form of Partial Differential Equations
(PDE) can be illustrated by the continuity equation

V.oV =0 (3.1)
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Let eq. ( 3.1) be approximated by a suitable® finite difference represen-
tation.

For an arbitrary control volume, which include the entire problem do-
main or any fraction of it, conservation of mass for steady flows requires
that the net mass flux be zero (the mass flow rate in equals the mass flow
rate out).

This can be observed formally by applying the divergence theorem to
the governing equations (here represented by the continuity equation)

///RV-deR=//SpV-fidS=O (3.2)

To see if this finite difference representation eq. ( 3.1) has the conser-
vative property, it must be established that the discretized version of the
divergence theorem is satisfied. One can e.g. check this for a control volume
consisting of the entire flow domain.

To do this the integral on the left is evaluated by summing the difference
representation of eq. ( 3.1) at all grid points. If the difference scheme has
the conservative property, all terms will cancel except those which represent
fluxes at the boundaries.

It should be possible to rearrange the remaining terms to obtain identi-
cally a finite difference representation of the integral on the right. For this
example the result of the integration will be a verification, that the mass
flux into the control volume equals the mass flow out.

If the difference scheme used for the PDE is not conservative, the nu-
merical solution may permit the existence of small mass sources or sinks,
this is the case for a non conservative scheme.

Schemes having the conservative property occur in a natural way when
differencing starts with the divergence form of the PDE.

3.1.2 Newton linearization

The numerical integration of the kinematic field eq. ( 2.11) and eq. ( 2.12)
is obtained in a strongly coupled mode using a Newton iterative scheme.
In other words, the variable w appears at the same timestep n in both of
the governing equations, when solved. Let f = (,w)T be the vector of the
independent variables and R the residual vector which, at the nt" iteration,
may be written on a form [37]:

1This finite difference scheme shall be consistent, which means that for Az — 0 the
difference between the solution to the real PDE and the discretized one shall approach
0. This is illustrated best considering a non consistent scheme like the Dufort-Frankel
scheme, which can be found in [24]
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, where the superscript (n) denotes the iteration level. A;y and Ay is
matrix elements and operator equations.

A step of the Newton iteration is formed as :

R"' =R" + (aR)“Af 0 (3.4)

Fr = Af (3.5)

and the Jacobian matrix

(g_ﬁ)n = [ All 1 ]
7 Tl 0 4n

is linearized only with respect to the operator As;, which includes the
convection term V{V()] , while A;; is a pure linear operator.

The linearized system of equations 3.3 is left preconditicned by an
approximate matrix P". The preconditioning will if requested? rearrange
a "near” singular matrix, with a bad distribution of the coefficients in the
matrix, so they are more uniformly distributed, and thereby an iterative
inversion of the matrix will have a significant higher convergence rate, and
the solution will be more accurate.

As shown in the paper by [48] preconditioning is necessary to get an
acceptable computing time.

An obvious choice® of a preconditioning matrix is
R ARl —Af
P~ = 11 1
B

The reason for the approximated relation between the preconditioning
matrix on the left side of eq. ( 3.1.2), P", and the matrix containing

2E.g. for high Reynolds number flows, with high gradients in the grid distribution,
this is likely to be the case for the Jacobian matrix.
3In order to find a matrix product close to a unity matrix.
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inverted elements of the matrix A4 from eq. ( 3.3), on the right hand side,
is that the matrix elements in P, due to the applied ADI scheme, contains
inverted and factorized elements of matrix A.

The ADI scheme and the factorization of the preconditioning matrix P
is described in the following section.

3.1.3 The ADI technique

The diagonal submatrices of the Jacobian matrix are approximately fac-
torized using an ADI (Alternating Direct Implicit) technique in order to
facilitate its inversion.

The preconditioning matrix P™ (See e.g. Appendix 8.6) can be written

-1 _p-l1p-1
P = [ Pbl P;}l Py ] (3.6)
where
Pu= -z - FOM O - 220 2oy 6
¥
and
Pro = — 3 {1+ Bt (0] - 22 ac( Ig" [+ )}
N B L1 R 1) S

Aty is a pseudo time step for the 1- equatlon, and Atw is a pseudo time
step for the w-equation.
The left preconditioning of equation ( 3.3) yields

R'+DAf=0 (3.9
where

R' = (PR)", [P( )]" ~] (3.10)

Because D =~ I eq. ( 3.9) can give the updated values for f using the
approximation Af = -R".

This algorithm constitutes a revised fully implicit 1) ~ w solver on a
factorized ADI basis, that handles the stream-function equation in a fully
implicit mode for both 3 and w variables, taking into account the non-
diagonal term of the Jacobian matrix.
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ADI and periodic boundaries

Finding the solution to the governing flow equations on e.g. an O-grid or a
C-grid introduces a periodic boundary (PB) in the computational domain.
There exists at least 3 techniques with increasing complexity to handle

a PB.

1) The simplest technique is to let the derivatives at the periodic bound-
ary (those perpendicular to the PB), which, on it’s discrete form have vari-
ables that relates to the other side of the PB, be at a previous time step in
the ADI- solver.

An example refering to fig. 3.1 could be e.g. a second order derivative
4,

321/’ n+1__ :1;1 -2 ‘/’ZIH '*"»[’3.2
an* 1 T (An)?

This technique preserves the three-diagonality of the matrices, an thereby
a fast inversion of the matrices and a numerical solution by ADI.

2) There exists a second technique for C-grids where the PB is removed
in relation to the ADI-solver. By putting the 2 smaller tridiagonal matrices
from respec tively the upper an lower side of the PB (when line-solving
perpendicular to the PB) in the wakezone into one big tridiagonal matrice
all points in the computational domain is correctly updated (See fig. 3.2).

The only disadvantages of this technique is the extra numerical cost
related to copying between small and big matrices.

3) A third technique make a correct updating in all points in the com-
putational domain but the PB gives raise to off-diagonal elements in the
ADI factorized tridiagonal matrices. To save the extra numerical expences
related to transfering of variables between the different arrays as in 2),
additional programming must be done in order to change a standard line
solver, to account for these off diagonal elements.

For the laminar and turbulent airfoil flows modelled on a C-grid there
is a coincidence between the physical location of large gradients in vorticity
and streamfunction in the wake region and the location of the periodic
boundary. For the turbulent case, additionally this is also the case for the
turbulent viscosity vr.

In order to quantify how much the convergence rate is affected by re-
spectively applying "update-technique” no. 1 or 2, two codes, one based on
each technique were developed. In fig. 3.3 the convergence rates for the
two techniques are compared. The comparison is done for a flow around a
NACA 0012 at a Reynolds numbers of 1000 and an incidence of 5°.

+ O(An)? (3.11)

4Where i refers to the domain below the PB (low number of i) and ii refers to the



46 CHAPTER 3. SOLUTION OF THE GOVERNING EQUATIONS

Physical domaine

Computational domaine

j = jmax
= s TP~
j=] _ ~
=0 “
=7

Figure 3.1: When evaluating e.g. a second order derivative, on the upper
side of the periodic boundary (j = 1) for a C - grid, the variables (e.g.
1) related to the lower side is given at a previous timestep, for update
technique no. 1. For update technique no. 2 and 3 all variables are given
at the same time step.
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Figure 3.2: One of the techniques to handle the periodic boundary (PB) for
a C-grid is illustrated. The PB is eliminated by transfering the variables
from 2 "small” arrays, representing the grid points in the upper and lower
wake zone, into 1 "big” array, before applying the ADI line solver.
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Figure 3.3: Convergence rate for the maximum residual in the flow domain
for respectively a) the vorticity equation and b) the streamfunction equa-

tion. In each figure the number 1 and number 2 update technique for the
periodic boundary is compared.
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From figur 3.3 it is seen that for this steady laminar flow around a
NACA 0012 airfoil the update technique number 1 has the best convergence
rate. It is recalled that this technique is the numerically cheapest per
iteration, and further it apply the simplest programming technique.

3.1.4 GMRES - Generalized Minimal Residual method

In order to reduce the dependence of convergence on the choice of pseudo
timestep and to increase the convergence rate of the solver, there was in-
troduced a further improvement in the numerical integration scheme. This
improvement was achieved by solving the system of equations ( 3.9) in
it’s original form (by retaining the D matrix) using the restarting linear
GMRES [42] scheme.

The GMRES scheme (see appendix 8.5) works as a relaxation scheme in
the sence that it determines "relaxation” parameters a which are applied
in the iteration proces when the streamfunction ¢ and the vorticity w are
updated. That is, as part of the Newton linearization eq. ( 3.5) is relaxed.

Pl ="+ aAf (3.12)

Additionally the vorticity and streamfunction boundary conditions may
easily be implemented in the restarting GMRES scheme because of their
linear nature. This scheme has proven to be very effective in a variety of
CFD problems {37].

The GMRES method and number of Xrylov subspaces.

To find an optimum for the smallest numerical cost P. Chaviaropoulous et
Al. [37] made a test for a Driven Cavity at different Reynolds numbers,
with different pseudo time steps and applying different numbers of Krylov
Subspaces (KS’s). Because the application of different numbers of KS’s in
itself changes the applied time for running one total iteration cycle, the
reduction in residuals has to be compared with the total employed CPU
time.

One conclusion was that the highest gains in reduction of residuals com-
pared to total employed CPU - time was stepping from 1 to 3'KS’s, but
still 6 KS’s performs a little better. Tests made by P. Chaviaropoulous et
Al. [37] showed that applying 7 or 10 KS’s didn’t make much difference on
the convergence rate, and to limit the applied memory a maximum limit of
10 KS’ can be used in the code.

For all turbulent airfoil computations 7 Krylov Subspaces were used.

domain above the PB.
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Another conclusion was that even though the dependence of the choice
of pseudo time step is reduced, there is still room for improving the efficiency
of this code by finding optimal series of time steps.

A straight forward solution could be to apply the Wachpress time step
optimization routine {49}, which, with succes, has been applied by [22].

But the overall conclusion for e.g. laminar flows around airfoils is that
The Newton linearization with the ADI precondition matrices together with
the GMRES method constitutes an efficient solution method.
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Chapter 4

Solution of the pressure
equation

A simpler numerical integration technique is adopted for the solution of the
transport equation for the stagnation pressure field ( 2.42), once the kine-
matic field is known. The applied scheme is an approximate factorization
iterative one of ADI type which reads :

Ap, = “Pz_lem (4.1)

Pt =p7 + Ap, (4.2)

Where R,, is the stagnation pressure equation residual and P,, the
convection-diffusion operator approximation introduced in equation ( 2.42).

The inversion of Py; and P»; is a straightforward task requiring the
inversion of four tridiagonal matrices for each Newton iteration. The ADI
preconditioner was preferred among others (for example incomplete LU
decomposition) because of its minimum computer storage requirements and
its easy implementation on vector/parallel machines.

51



52 CHAPTER 4. SOLUTION OF THE PRESSURE EQUATION




Chapter 5

The discretized equations

The governing equations on conservation form are discretized in the follow-
ing way, refering to fig. 5.1:

Laplacian operator on - and w- equation

V0 = T Lo (g™ ST s S+ S (U™ G5 20D
&
The outer operators discretized gives :
V0 = 55 Sk I Skt 2= (00" G149 5 i
(52)

8() a() a ()
+ (76 2014 116 2o = (967 90 4 0™ 50 i) (53)
where the inner derivatives are :

8() T lit1/2,i= Oirri — Qi (5.4)

and
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j+1

Jorrz o

Hir2 o e

1

Figure 5.1: The discretization stencil applied for the governing equations
on the conservation form.

g_i)g li+l/2,j= 0.25[()i+1,5+1 + Oi,j+1 = Qit1,5-1 — Oi,j-1] (5.5)

The approximation of the metric-coefficients are governed by the dis-
cretization of the related derivatives, e.g. :

0 a2l g Mlisaag = 0516 er + (T9asll0sr1s = Oig] (5.6

and

1]
[J912]i+1/2[a—15)5]i+1/2,j =0.25[(Jg")it1,541 + (Jg')i 11 (5.7)

= (99")i+1,5-1 = (J9%%)i,5-1]0.25[s41,541 + Qi1 — Qigr,—1 — ()i,j—ll)
(5.8
In a similar manner the other derivatives and metric coefficients are
discretized.
Convective operator on the w- equation

The convective term in the w- equation is on the conservative form.
To secure that the matrices related to the vorticity transport equation are
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diagonal dominant and thereby unconditionally stable, a first order upwind
scheme is applied.

V- (U) = M+ 220 ey = (59)

J( )[6141

1
T[(Jwv Jivr/2,5 — (Jwo' )t—1/211]+ T )[(Jwvz)i,m/z - (Jwv?); j-172]
"7

| (5.10)
Where the first order upwind is introduced as :

(Jwv1)¢+1/2lj = w;,jMAX[(Jvl),-+1/2_J-; 0] - w,-+1,jMAX[(—Jv1),-+1/2,J-; 0]
(5.11)

(JUJ’UI),'_I/Q'J' = w,‘,_xijMAX[(JUI)"_llz,j; O] - w,‘,jMAX[(—JUI),;_I/(z,j; 0])
5.12

(Jwv?); j41/2 = wi; MAX[(JV?);i j41/2;0] — wi.j+lMAX[(_JU2)i.j+1(/2; 0])
5.13

(Jwv?); jo1/2 = wijm1t MAX[(J?); j-1/2;0] — wi.jMAX[(_JU2)i,j—1(/2; 0])
5.14

5.1 2nd order upwind schemes

To obtain a better approximation of the convective term a second order
scheme, - the QUICK (Quadratic Upstream Interpolations for the Convec-
tive Kinematics) scheme proposed by e.g. Leonard 1979 is applied. The
idea of using this scheme is to be more accurate like a Central Difference
(CD) scheme but more stable like a first order scheme.

This method fits the contra variant velocities on the interface of a cell
by a second order polynomial.

‘ . 1, . . .
v, =vp+ 5,85, = §(3v}3 —2vp —vpifU. >0 (5.15)

) ) 1. . ) ;
v = vl + Se; Se = £(30p — 20 ~ vhifU. <0 (5.16)
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: . 1. . . )
Uy =V + Sy S = g(Sv}; - 2vpy - vpywifUe >0 (5.17)

) . 1. . .
vy, = VUp + Sy Sw = g(Sv{,V - 20p = vEifU. <0 (5.18)

The QUICK scheme, depending on the method of implementation may
yield coefficients which becomes negative and leads to convergence prob-
lems. To obtain convergence the scheme must be recast into a diagonally
dominant form, where the source term, due to the QUICK scheme is suf-
ficiently small, and according to [41], will not hinder convergence signifi-
cantly.

For the high Reynolds number (turbulent) flows around airfoils the con-
vergence rate are disimproved so badly, that the QUICK scheme is not
applied here.




Chapter 6

Computational solutions
to the system of governing
flow equations

The numerical scheme previous described has been tested on two types of
flows steady laminar and steady turbulent flow.

6.1 Solutions for steady laminar cases

The steady laminar test cases limits themselves to computations of the flow
around a cylinder at different Reynolds numbers and to computations on
A NACAO0012 airfoil.

6.1.1 Flow around a cylinder at Re = 5, 7, 10, 20 and
40

The numerical scheme is firstly tested by modelling the steady laminar
flow around a cylinder at Reynolds numbers of 5, 7, 10, 20 and 40. The
computations were done on the C - grid shown in fig. 6.1 and the results
were compared to Chang and Dennis [13], who also applied a vorticity -
streamfunction formulation.

The convective terms in the vorticity transport equation were mod-
elled by a second order central scheme, because this scheme, at these low
Reynolds numbers, are numerical stable and more accurate than a first
order upwind scheme, applied for computations at high Reynolds numbers.
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Figure 6.1: C-grid around cylinder.
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Figure 6.2: Streamlines for the flow around a cylinder at Re = 20.

In fig. 6.2 the streamlines and recirculation zone for the flow around
the cylinder, at a Reynolds number of 20, can be seen.

Chang and Dennis [13] made computations of the pressure - and vortic-
ity distribution on the surface of the cylinder and in respectively fig. 6.3
~ and 6.4 similar obtained results are compared. There is a good agreement
between the present results and those given by Chang and Dennis. The
largest differences in the distribution of surface pressure and vorticity oc-
cur behind the cylinder in the recirculation zone and is caused by a bad
grid in this zone. When constructing the C-grid around the cylinder, the
grid cells behind the cylinder becomes the less orthogonal in the whole grid.

Normally an O-grid would be applied for the calculation of the flow
around a cylinder giving a homogeneous quality and orthogonal cells in the
entire grid.

For the different Reynolds numbers present calculations of character-
istic parameters like : the length of the recirculation zone L, the angle of
separation ©,, the total friction coefficient Cr, the total pressure coefficient
Cp and the drag coefficient Cp is compared to Chang and Dennis (13]. The
results are given in fig. 6.5 and the second row in the table represents the
present calculations.

6.1.2 Flow around a NACA 0012 airfoil at o = 5° and
Re = 1.000

In fig. 6.6 the streamlines for the flow around a NACA0012 airfoil, is com-
pared for respectively a solution where the first order upwind scheme and a
second order central scheme has been applied for the convective terms. The
characteristic difference in the size of the recirculation zones is noticed. The
first order upwind scheme introduce numerical diffussion and the effective
Reynolds number is lowered, resulting in the smaller recirculation zone.
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Figure 6.3: Pressure coefficient on surface of cylinder.




SOLUTIONS FOR STEADY LAMINAR ...

6.0

4.0

0.0

* Re=d40
0 Re=20
6 Re=10
Re =7

-+ (&

—— Chang & Dennis

T T T T T
180°  150°  120° 9%0° 60° 30°
0

Figure 6.4: Vorticity on surface of cylinder.
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Re L 0, C, c, | ¢,
- - 1917 2.199 4.116
S - - 1.810 2.060 3.870
0.19 15.9 1.553 1.868 3421
7 - - 1.480 1.770 3.250
0.53 29.6 1.246 1.600 2.846

10 043 24.7 1.190 1.530 2.730
1.88 437 0.812 1.233 2.045
20 1.84 32.7 0.790 1.190 1.980
4.69 53.8 0.524 0.998 1.522

40 4.59 38.1 0.510 0.970 1.480

Figure 6.5: Tabel giving the relation between the Reynolds number, Re,
and the length of the recirculation zone, L, the angle of separation, Q,,
the total friction coefficient, Cr, The total pressure coefficient, Cp and the
drag coefficient Cp for the flow around a cylinder.
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Figure 6.6: Streamlines for flow around a NACA0012 airfoil for Re = 1000
and o = 5°. a) First order upwind scheme. b) Second order central scheme.
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6.2 Solutions for steady turbulent cases

The numerical scheme including the Baldwin - Lomax turbulence model is
firstly testet on a symmetrical NACAQQ12 airfoil. The turbulence model
does not include any transition model, which means that transition at a
point must be set manually. For the calculations presented here for airfoils,
leading edge transition has been applied.

6.2.1 Flow around a NACAO0012 airfoil at o = 0° and
Re = 108

A typical grid used for the calculations of flows around the NACA0012
airfoil is shown in fig. 6.7 having 231 x 51 grid points. As concluded
earlier the applied grids has a big influence on the accuracy of the results
and the depth and the rate of the convergence.

Coakley [12] implemented several zero- and 2 equation models in a code
for the compressible Navier-Stokes equations. The present calculations for
the flow around a NACAQQ12 at a Reynolds number of 1.000.000 and an
incidence of 0° are compared to the other zero -equation model, the Cebeci-
Smith model in ref. [12]. Figure 6.8 shows the pressure (Cj) distribution
on the surface of the airfoil and fig. 6.9 shows the friction coefficient Cy.
As can be seen, there exists a good agreement between solutions obtained
by Coakley and the present results. Compressibility effects plays a minor
role at this Reynolds number.

As discussed in a previous chapter the Baldwin-Lomax and other zero-
equation turbulence models are highly grid dependent.

Three different grids were constructed to be applied for computations
for the flow around a NACAQ012 at a Reynolds number of 1.000.000 and
an incidence of 0°. The symmetrical grid (A) is constructed to have a yg"
at the trailing edge ~ 10. The asymmetrical® grid (B) is constructed to
have y3 at the trailing edge ~ 2, and grid (C) is constructed to have y§ ~
5.

It is noticed that there is no differences between grid (B) and (C) except
of the difference in the scaling of the ( - lines coarsing the differences in y3 .

All grids have sufficient grid points in the boundary layer and the sub-
layer is represented by 1 or 2 points.

As can be seen in figur 6.10 the convergence rate and depth is severly
affected by changing between ,generally speaking, three almost identical
grids.

1The same number of grid points has been applied for the symmetrical and the asym-
metrical grid in both directions. The asymmetrical grid is constructed to have an 7 -
line parallel to the stagnation line for the flow incidence of 8°
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Figure 6.7: Grid around a NACA0012 airfoil applied for computatibns for
Re = 10°
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Figure 6.8: Pressure coefficient on the surface of a NACAQ012 airfoil for
Re = 10% and a = 0°.
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Figure 6.10: Convergence rates and depths for solutions obtained for a
NACAO0012 at Re = 10° and a = 0° applying 3 different grids.

Using the symmetrical grid (A) for this symmetrical flow gives a fast
an accurate solution. For the pressure solution grid (A) and (B) produces
adequate results.

The result on pressure from the computation on grid (C) differ signifi-
cant from those solutions obtained on grid (A) and (B).

6.2.2 Flow around a NACAO0012 airfoil at a = 8° and
Re = 10°

For the incidence of a = 8° and the Reynolds number of 1.000.000 a pres-
sure solution has been compared with results from the previous mensioned
integral code XFOIL. XFOIL has been used for calculations on other types
of airfoils and is known to predict well compared to wind tunnel measure-
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Figure 6.11: Pressure distributions for solutions obtained for a NACA0012
at Re = 10% and o = 0° applying 3 different grids. The total number of
iterations are the same for each solution.
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ments, as will be shown later. Figure 6.12 shows a very good accordance
between the present solution and the XFOIL pressure calculations.

6.2.3 Flow around a NACAO0012 airfoil at a = 0°, 6°,
8%, 16° and Re = 2.889.000

The final results on computations on the NACAOQ012 airfoil is at a Reynolds
number of 2.889.000 and at incidences of 0°, 6°, 8° and 16°. Similar results
can be found in [8], where Cebeci compares to experimental results.

6.2.4 Flow around a NTUA airfoil at o = 8°, a = 12°
and Re = 108

To see if the present code was able to predict pressure distributions on more
irregular shaped airfoils designed with application for wind turbines, a grid
as shown in fig. 6.14 was constructed.

Madsen [30] compared results from computations on the NTUA airfoil
by different codes : XFOIL, FIDAP2 and NS13. Computations were done
for the unseparated flow at a Reynolds number of 1.000.000 and an incidence
of 8. The present calculations were compared to these results.

It is seen that XFOIL, applying free transition, obtains the best predic-
tions compared to the wind tunnel measurements from the University of
Southampton. Here after the present calculations, with leading edge tran-
sition, is closest. Both of the Navier - Stokes codes applying the standard
k - € turbulence models are more off. These codes apply "The law of the
wall” and the first gridline from the airfoil surface starts at y3 > 30.

Similar results were obtained and compared for the separated flow at
the NTUA airfoil at the same Reynolds number but with the incidence
a=12°

Again for the 12° XFOIL seems to predict best compared to experimen-
tal results. Present results comes second on the first 20 percent of the chord.
The NS1 code and the present code do not obtain separated results. It is
noticed that both of the leading edge pressure peaks in the experimental
results are captured most accurate by the present solution.

2FIDAP is a commercial Navier - Stoke code in use at The Test Station for Wind
turbines, Risg National Laboratory

3 A Navier - Stokes code in primitive variables with a standard « - € turbulence model,
developed by Niels N, Sgrensen, The Department for Meteorology and Wind Energy, Risg
National Laboratory
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Figure 6.12: Pressure coefficient on surface of a NACA0012 airfoil for Re
= 10° and a = 8°.
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Figure 6.13: Pressure coefficient on the surface of a NACA0012 airfoil for
Re = 2.889.000 and o = 0°, a = 6° ,& = 8° and o = 16°
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Figure 6.14: Grid around a NTUA profile applied for computations at Re
= 109
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Figure 6.15: Pressure coefficient on surface of NTUA airfoil for Re = 108
and a = 8°.
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Figure 6.16: Pressure coefficient on surface of NTUA airfoil for Re = 108
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Chapter 7

General discussion and
conclusion.

A code on a vorticity - streamfunction formulation has been developed to
model the turbulent flow around airfoils designed for wind turbines.

A second order implicit boundary condition, proposed by [37] has been
applied for the vorticity at the wall. A strong coupling between the vorticity
transport equation and the Poisson equation for the streamfunction has
been applied, resulting in a block iterative solver instead of a point iterative.

Applying a transport equation, proposed by {37] for the stagnation pres-
sure rather than the "traditional” Poisson equation for the static pressure
secure an accurate solution.

For low Reynolds numbers (laminar ~ 5 - 1000) the code has been
evaluated on flows around a cylinder and a NACAOQ012 airfoil. The results
show good agreement with the literature.

For high Reynolds numbers (turbulent ~ 10% - 3. 10%) the code has
been tested on the NACAQ012 airfoil and good agreement with literature
is found.

At a Reynolds number of 10° predictions of the attached turbulent flow
on a speciel designed airfoil to be applied for wind turbines ,the NTUA
airfoil, are made. Taking into account that the present formulation do not
model transition, the code predicts well compared to other uncommercial
and commercial codes.

There has been an evaluation of 3 ways to compute the variables at the
periodic boundary introduced by the applied C - grid. The result is that
the traditional way, which is the easiest to programme, also is the numerical
cheapest. The result is valuable for obtaining steady turbulent flow.

7
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Systematic test of the connexion between generating grids and uptaining
converged solutions on these grids has been made. Secondly adjustments
on grids, where a converged solution is found, is done in a way to get an
optimal rate of convergence, convergence depth and an accuracy of the
solution.

For 3 almost similar grids around a NACA0012 airfoil (Re = 10° and «
= 0°), it was found that the rate of convergence, the convergence depth and
the accuracy of the results was significantly altered, depending on the grid
applied. For this flow situation the symmetrical grid proved to be best.
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Chapter 8

Appendices

8.1 Derivation of the ¥ — w formulation in
cartesian coordinates.

The w-1 formulation in cartesian coordinates is derived as follows:

Definition of vorticity

wk=VxV (8.1)

Definition of streamfunction

V = -V x (k) (8.2)

< Yl
< Je

[k
8
oz

Equation ( 8.1) and eq. ( 8.2) gives the relation between the vorticity
w and the streamfunction 7 :

wk = -V x V x (Yk) (8.3)

Before continuing the derivation of the vorticity transport equation we
wish to make an assumption about 1 in order to reduce eq. ( 8.3).
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For an incompressible flow the divergence of the velocity field and the
divergence of the vorticity field equals 0 :

V.V =0 (8.4)

V(wk) =0 (8.5)

Every vector field can be described by the sum of the rotation of the
streamvector (3D) and the divergence of a potential function :

V = -V x (yk) + Vo (8.6)

In this case V ¢ = 0 per definition.

According to the vector rule eq. ( 8.6) ¥k again can be written as a
term related to rotation and a term related to the divergence of a scalar
field.

vk =-Vx A+ VB (8.7)
If we chose a vector function ¥*k so that ¢¥*k = ¢k - V B, we get :
Pk=-VxA (8.8)
According to vector rule!* we obtain :
V-(yk)=0 (8.9)

By applying vector rule?* and keeping in mind eq.( 8.9), Equation ( 8.3)
then reduces to a Poisson equation for the streamfunction :

Cw=-V% (8.10)

_ a2 8
——2%+3%l

Yy

Deriviation of the vorticity transport equation

The vorticity transport equation is deriviated from the velocity transport
equation

1+ g (Vx A)=0
269 x (V x A) = V-(V.A) - V2A
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(V-V)V = - %prvzv (8.11)
term2 N’ termd

term3

by taking the curl of this equation. Applying the curl operator to each
of the terms in eq. ( 8.11) we obtain :

term2:
vV x [(V-V)V]* (8.12)
=V[(V-V)V]x V +(VI)(V x V)
= VV(V x V) + (VV)(wk)
= ~[(wk) V]V + [V V](wk) |
term3:
v x [—%Vp] = 0f° (8.13)
termf:
V x vViV] = vVi(V x V) = vV?(wk) (8.14)

Which gives the vorticity transport equation

[V VI(wk) = [((wk) V]V + vV (wk) (8.15)

349 x (U-A) = V-(VU) x A+ U(V x A)
44V x (VU) =0
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8.1.1 Introduction of dimensionless variables.

The system of equation is made dimensionless by introducing the dimen-
sionless variables related to a characteristic length Lo and velocity V :

=g V=g

u*t = yr vt =g

d)*:V‘l;L wt=%g_ (8‘16)
_ LoV 0

Re, = L

8.2 Transformation of the governing equations
from a cartesian coordinate system to a
general curvelinear coordinate system

To present the governing equations on a form which is satisfactory with
respect to the numerical solution of the equations, they have to be trans-
formed from a cartesian coordinate system (physical domain) to a general
curvelinear coordinate system (computational domain).

The relations needed for this transformation is based on concepts from
differential geometry and tensor analysis, and an extensive collection of
concepts from the two fields can be found in [50]. Here we only present the
definitions of relations needed to understand the basic transformation, on
the form given in [25].

Vector bases

Transformation

(z},2%,2°) = (ul,u?,u®) (8.17)
=zl =y2l=2 (8.18)
u=(ul =’ =¢ (8.19)

r=zi+yj+zk (8.20)
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Covariant
g;= ﬁiz = 112a3

== oz 6y
out’ Bu‘

Contravariant

Relations between co-and contra variant vector bases
91-1—92
g.lg'

1

gigi = §;

Covariant metric tensor

gi; = 9:9;

89

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)
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Contravarient metric tensor

g7 =g'g’

Relations between co- and contra variant metric tensor

ik _ sk
gijgJ "6_7'

Jacobian 2D

J =| 91292 |= T¢yn — Tn¥c

Distances 2D

o .
| ds 2= ldu'a T i = g,g;duidu?,i=1,2
Cartesian velocities
V =g
V =g'y

|V IP=VV =g ‘uig; R —v.v’6~ =07

Transformation of operators related to the governing equations

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)
(8.34)

(8.35)
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The governing equations ( 8.36) and ( 8.37) , represented in a carte-
sian coordinate system need to be transformed to a general curvelinear
coordinate system to be on a form satisfactory to the numerical solution.
The divergence and laplacian operators is applied on a conservation form,
to remove stability restrictions related to the inversion of the factorised
matrices

Vip4+w=0 (8.36)
1 2 Rel
V(Vwk) - R_e[v [(1+ R_eg)wk] =0 (8.37)

In the following the different operators in the governing equations is
transformed :

gradient

v() = g‘g% (8.38)
transport term
VIV(] = vigis 20 = 5] 20 (8.39)
Divergence on conservation form
V.V = %a E;u’:i) (8.40)

Laplacian on conservation form
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10, .09
V-V =55509755)

(8.41)

8.3 Derivation of the transport equation for

static pressure.

The transport equation for the static pressure is derived from the velocity

trans port equation :

1
V.V)V = - =Vp+uyV?V
( ) 5 VPt )

terml T N~ term3
term2

(8.42)

The term2 is rewritten and the total pressure p is replaced by the static

pressure p;.

term?2 :

1o se _ L 1 6x
SV = “Vpit 5 VIVVIT =

%th + V.YV +V xwk

term3 :

VAV =V (V.V)8 -V x (Vx V)=

—v(V x wk)
Equation ( 8.42) then takes the form :

p(V x wk) = Vp; — u(V x wk)

S*p = pe — 3pV?

82V(A-B) = (B-V)A+ (A-V)B+ B x (V x A) + A(V x B)
Tey x (V x A) = V-(V-4) - V24

8+y.vV=0

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)
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Which on dimensionless form (applying the previous mensioned dimen-
sionless parameters given in Appendix 8.2) is :

p(V x wk) = Vp, — é(v x wk) (8.48)

Equation ( 8.48) is multiplied by V :

Vp(V x wk)®* = VVp, - -Rl—é(VV X wk) (8.49)

leading to the equation :

VVp - kl—e(vv X wk) =0 (8.50)

In order to obtain a transport equation for p; the divergence is taken of
eq. (8.48):

V[o(V x wk)]°* = V[Vp, - Rie(v x wk)] (851)

which gives :
pwk-wk — pV(V x wk) = Vip, — I—;EV(V x wk)1* (8.52)
giving

pw? — pV(V x wk) = V3p, (8.53)

Combining eq. ( 8.50) and ( 8.53) gives :

1 2 - 1 2
PV-Vpr — - Vip, = — T (8.54)

V.V xwk) =0
10+9(A x B) = B(V x A) — A-(V x B)
Heg(U x A) =0
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8.4 ADI - Incomplete factorization

In order to uptain an iterative solution to the system of the unlinear gov-
erning equations and related boundary conditions the Newton linearized
governing equation is put on a form ideal to the solution by an ADI (Al-
ternating Direction Implicit) scheme.

The system of each of the governing equations in the computational
domain can be put on the following principal form, which constitutes the
basic form of the equations solved by an ADI scheme :

I
(5 +4+Bz=b (8.55)

where At is a pseudo time step related to the solution by iteration in
the pseudo time domain. At is different for the Poisson equation and the
transport equation, respectively Aty and At,. [ is a unity matrix and
A and B is matrices consisting of matrix elements containing differential
operators that works respectively with respect to the (-direction and the
n-direction. x is the solution vector containing the unknown variables (A
or Aw) for the flow domain.

Equation ( 8.55) represents respectively the elements A;; and Az in the
Jacobian matrix arriving from the Newton linearisation of the governing
equations.

Written out Aj; becomes :

_ I il 11 a

128 212_)+Jg

P
gt a["g ac *

()]
(8 56)
Due to an optimal representatlon of A;; with respect to the Newton
scheme the mixed derivatives are left out. A;; then becomes :

_ L 19 ua
A“*A JBC[

Similar As2 is written out and becomes :

501+ nwg”%m (8.57)

I 3] 7] 0
Az = aC[ ( ] ReJ ac[ gll ()]+ 2( ]—ma_n ngz(_g—ns(g)i

The form of eq. ( 8.55) or eq. ( 8.57) or eq. ( 8.58) will for a 2nd
order discretized scheme represent a pentadiagonal matrix. This matrix is
normally factorized into 2 tridiagonal matrices.




8.5. COMPONENTS OF THE GMRES METHOD 95

The ADI scheme applied make use of an approximated factorization of
eq. ( 8.55). This approximation leaves out 2nd order terms with respect to
time :

(L+ AtA + AtB) = (I + AtA)(I + AtB) + At*AB ~ (8.59)

(L+ AtA)(L+ AtB) (8.60)

The similar approximated factorized representation of A;; and A2 gives
the inverted elements of the preconditioning matrix P :

P = [ Pgl 1_321_:}-111)2-21 ] (8.61)
and
Pu= 5= SROM FOW - IS0} @
and
Pa=—g AT+ Am(;%[()v‘] - T U0 L+ O]
U+ 8007 - T U5 IO} (363

8.5 Components of the GMRES method
8.5.1 Subspace methods

The basic concepts of a subspace method is described here in order to
understand the nature of the GMRES-method.
The system of equation :

Az* = b, k=0,1,2.. (8.64)

giving the initial vector x¢ have the residual vector :

ro=b-— Axg (8.65)

can be expressed as :
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Azx® — xo =70, (8.66)

This formulation of the problem is the most convenient one for the
purpose of introducing subspace methods.

Let Vi and W; be k-dimensional subspaces of R™ . Let v1, v2,....,Vk
and wy, W, ....,ws be basis vectors of Vi and Wy, that is respectively they
are linearly independent.

Let

V = [v1,v2,.00e , Vk)

and

_VK:[wl,wz, ...... ,'wk] i

(V. and W are (n x k) matrices. We seek an approximation to z* of the
form :

xf = To + C1v1 + C2Vz + . CkVE = To + Ve (8.67)
Already at this point a similarity can be seen between zx and Vc as

a relation between a vector and its eigenvector. Later on it will be shown
that ¢, V. and W will not be arbitrary chosen.

Unless by chance «* — xo € Vk, there is no vector T that satisfies eq.
8.66 .

On the other hand, we can usually determine a vector Zx of form like
( 8.67) by requiring that :

'w;rA(a:k —xp) = w;-rro i=1,2,...k (8.68)

or more compact

WTAV)e=WTro i=1,2,..k (8.69)

The subspace method based on Vi and Wy, is thus defined as follows :

(WTAV)c* = WTrg (solve for ") (8.70)

T = Tp + Ve (871)

I

Where it can be shown that wTr, =0 for all w € W,
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8.5.2 TIterative formulation of subspace methods

An iterative formulation of subspace methods, where the assumption

w] Av; =0, i#] (8.72)
w Av; # 0, i=j (8.73)
gives ¢; :
T
w: To N
et = . 74
ci @l 4vy)’ 1=1,2,..,k (8.74)
can be formed as :
«T
—Ww; (A’Uk) .
a; = W, 1= 1,2,..,k—1 (8.75)
vl = a v} +avl + .0k V5 + U+ Ve (8.76)
Zr = @121 + @222 + .0k—121_; (Avk) (8.77)
T
—wk z, .
g = ) =12,.,k-1 8.78
wy = bw] + bwj + ...bpqwi_y +wk (8.79)
ek = wilre/(wiT zs), i1=12,.,k (8.80)
Ty = Tg—1 + CrVUE k=1,23,... (8.81)

8.5.3 Krylov subspaces

Of special interest to the GMRES-method is the Krylov subspace, where
Vk =K k and :

Ki = SPAN2[rq, Aro, ....., A*ro, ..., A" I1g], k=1,2,3

12 A1] set of linear combinations is called the SPAN of
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8.5.4 Eigen value problems

Given a linear relation :

Az =b (8.83)

Does there exist a real vector = # 0 for which the corresponding vector
b is real and has the same direction and sence as = 7 This is the same as
saying that we want to find a vector x such that :

Az =)z =b (8.84)

Clearly such a vector exists if and only if A has a real an positive
eigenvalue.  is then an eigenvector corresponding to that eigenvalue.
Equation ( 8.84) put on another form gives :

[A- Mz =0 (8.85)

Stated by Cramer’s theorem in [27] this homogeneous system of linear
equations has a nontrivial solution if and only if the corresponding deter-
minant of the coefficients is zero :

D()\) =det[A-A]=0 (8.86)
By developing D()\) we obtain a polynomial of n’th degree in A

8.5.5 Preconditioning

When a subspace method is used to solve a linear system

Az =0b (8.87)

with Vi = K (the Krylov subspace) then as given in [1] the optimal ac-
curacy depends on how the eigenvalues of A are distributed in the complex
plane. In particular, when the eigenvalues are real and positive.

O<M <AL <A (8.88)
then [1] establish that the parameter
k=21 (8.89)
A1

is important. The smaller the value of &, the better the solution x can
be approximated in the set zo + Ki. Clustering of eigenvalues tends to
increase accuracy (also when the eigenvalues are not real and positive).
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If a splitting of A is given :

a preconditioning of 8.87 could be :

M7Az=M""b (8.91)

A legitimate question to ask is how should the preconditioning matrix
be found in order to get it optimal with respect to solving the original
equation ( 8.84) ?

Two criterias can be mensioned :

1) The spectral radius'® p(G), (G = M~'N) should be small.

2) It is efficient to solve a system of equations having M as a coefficient
matrix. since these are the same properties that characterize a good split-
ting, (e.g. A= M — N or A is factorized in some way) for a stationary
iterative method, such methods provide candidates for the preconditioning
matrix M.

8.5.6 Convergence and error definition
Error definition

When an iterative method is épplied to a nonsingular linear system og
equations like :

Ax =10 (8.92)

It produces a vector sequence zg , 1 , 3 ... that (hopefully) converges
to =. To get an estimation of how close we are to a converged solution
different error definitions can be applied :

er =Tk — T, k=0,1,2.. (8.93)

ey is usually the error we want to know, but since the solution « in
general applications is unknown, this error cannot be found. It is of interest
though when comparing different iterative methods, where a seeked solution
can be known.

A corresponding average reduction factor per iteration -y, is defined to-
gether with the average rate of convergence Ry :

e =[llexll/lleo )t (8.94)

13The spectral radius of any square finite matrix A is defined as the magnitude of the
eigenvalue of A of largest magnitude p(A) = maz | A;(4) |
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More general applied error factors are :

Ty = b — Az, k=0,1,2.. (8.95)

dy, = Tk — Tk-1, k=1,2,3.. (8.96)

, where 7 is naturally applied here for the Newton iterative GMRES-
solver.

Convergence

To monitor the progress of convergence of an iterative solution method,
to compare different ones and to estimate when to stop the iteration one
defines respectively an average rate of convergence Ry and a stop criteria §
ore:

Ry = —In() (8.97)

For ideal tests where @ is known the stop criteria is :

l ex li< o (8.98)
but for general applications :

I 7x < & (8.99)
and

| di |I< €2 (8.100)

8.5.7 The GMRES-algorithm
The algorithm has the following form :

1. Start : Choose xo and compute ro = f — Azg and vy =70/ || 7o |-

2. Iterate : For j = 1, 2, ..k,.. until satisfied do :

hi; = (Avj,v;5),i=1,2,..., ],

i1 = Avj=3, hijvi, where hipyj =l 941 |l and v = D501 /hjvn
3. Form the approzimate solution :

Tk = T + VY, wherey, minimizes :
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J(y) =|| Bex — Hiy ||, where

e; is the first column of the (k+1)x(k+1) identity matrix and H, is a
matrix whose only nonzero elements are those elements h; ; generated by
the method.




