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1 Introduction

It seems that great shifts in how human beings use technology often create a
push for changes to the way we divide work between human beings and technol-
ogy. Chemical film has all but disappeared and almost everybody takes digital
photos which they proceed to put online for easy sharing with friends and fam-
ily. Together with a number of other trends which have contributed to the vast
amount of online and locally stored digital photos, this has made automatic
recognition of people in images an important research topic - in spite of the
fact that recognition is one of the tasks generally left to human beings, since
we excel at recognition. We believe that recognition of the style of a 3D object
is something that is also likely to be increasingly useful in the foreseeable fu-
ture. Optical scanning methodologies make the generation of 3D content more
feasible than previously, and it is easy to envision digital artists wanting to com-
pile content for a 3D scene or composite object being in need of a method for
searching for an object not just of a specific function but also a specific style.
The scope broadens further if we look beyond man made objects. It seems
clear that, say, the various limbs of a specific human being have some common-
ality that separate them from those of another person. Thus, one could argue
that an individual represents a style. Style in the context of biological varia-
tion is something that we explore in the work presented here. Specifically, we
investigate whether we can define a style class for the teeth of a person.
Unfortunately, style is subtle and we do not hope to be able to automatically
extract a description of style from 3D objects. Furthermore, we avoid using
explicit ways of describing style. Recognizing the style of an object based on
some textual or otherwise encoded information might be a feasible approach in
some cases such as, for instance, recognizing to which order a given classical



greek column belongs. But, relying on explicit information about a given style
would require us either to solve the above problem of automatically extracting
style information from shapes or to rely on human beings to encode style - a
task that we believe would be both tedious and difficult.

Instead, we rely on examples in the work presented here. This requires that
we have example (training) objects for each style. It also requires that we have
an orthogonal class of functions, since, as we discuss below, the function of the
object (what it is) clearly also has a profound impact on shape. Thus, our work
can be summed up as example based classification of digital 3D shapes in both
style and function categories.

1.1 Understanding style

Human beings excel at the task of recognizing objects, and, in fact, we are
also very good at detecting the style of an object. However, an operational
description of style that would allow a computer to detect the style of an object
seems to be elusive, at least in general. On the other hand, it is encouraging
that humans seem to be able to intuitively recognize the style of an object, and
this is why we believe that it is feasible to attack the problem using statistical
methods. Our hypothesis is that by using statistics of shape descriptors, we can
compute properties of shapes and then train a classifier to discriminate between
styles based on these descriptors.

But, there are two significant obstacles that need to be recognized and dealt
with before proceeding.

1. Style is not a purely local or global effect. If only we could say to which
parts of an object’s geometry style has an influence, designing descriptors
would be much easier. Unfortunately, that does not seem to be possible.
If we think of style as being akin to a gene, the effect on the object’s
phenotype (metaphorically speaking) could be to the proportions of its
parts, whether its edges and corners are sharp or rounded, whether smooth
parts are curved or flat, whether it is embellished or not, or whether
the surface is smooth or rough. Thus, we cannot simply use local shape
descriptors and assume that these capture all the style information.

2. Perhaps a bigger problem is the fact that style is by no means the only
thing that determines the shape of an object. Conversely, the function of
the object would normally be the biggest contributing factor. By func-
tion we understand what the object is recognized as, i.e. the noun one
would generally associate with the object, e.g. car, table, chair, tooth.
Using a signal processing metaphor, the style is a, sometimes faint, signal
superimposed on the stronger function signal.

From the first obstacle, we conclude that we need to use a broad range of
descriptors in most cases and that we need to use descriptors which describe both
local and global properties of shapes. From the second obstacle, we conclude
that we cannot hope, in general, to achieve style discrimination if we do not
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Figure 1: A matrix of exemplar distances between the shapes. Objects with the
same function are much closer than the ones sharing the same style

take function into account. On a very abstract level, our approach is to first
gain the ability to compute distances between pairs of objects in "descriptor
space". This is a more general approach than always requiring that we have
shape descriptors as, say, a multidimensional vector because we can sometimes
compute a meaningful distance between two shapes directly (e.g. warping one to
the other) but not easily fix a set of coordinates for the two shapes in descriptor
space. Given a set of objects where some objects share style and others function,
a matrix of such distances might look as illustrated in Figure 1.

In this example style is indeed a fainter signal than function, and if we naively
assume that the object with minimal distance to the knobby circle is another
knobby object we are disappointed. As we see in Figure 2 it is the plain circle
that is closest and then the knobby cube.

S0 S1 S0 S1

style
distance

0.2 2.2 24 3.8

Figure 2: Style classification with a naive approach if we forget totally about
the function and take into account only style. The shape would be classified to
S0, as those shapes seem to be closer than shapes having other styles.

Of course, this example is completely contrived and the distances made up.
However, it corresponds well with our experience as our results will show, and
if we do take function into account, we fare much better. Say, we have a query
object of a given function and say we exclude objects of the same function,
then for a group of objects that all share a common function (different from the
function of the query object) the object(s) in that group which has the same
style as the query object are likely to be closer to the query object than the
objects which have a different style — in addition to having a different function.



At least this is our hypothesis which is illustrated in Figure 3.

RN
style S1 So
distance 2.2 2.4

' l f2
style S1 S0
distance 3.8 4.3

Figure 3: Because we grouped shapes to have the same function the difference in
the distances is mostly caused by the style effect so the query shape is classified
correctly as having the style s;.

In summary, our hypothetical model is that
Shape = Function + Style + Noise (1)

where addition should be construed as a more abstract composition operator. In
the formula above, we readily admit that function probably has the greater in-
fluence. Taking that into account, we believe that we can approach the daunting
task of creating a statistical model for style.

1.2 Related Work

Style and function separation in the context of man made three dimensional
shapes was recently mentioned by Xu et al. [19], where the style of an object
is defined by the proportions (anisotropic scaling) of its parts. It seems to be a
very intuitive and reasonable approach but this does not exhaust the subject.

In many shape processing articles, even if the problem of style is not ad-
dressed in an explicit way there are situations where the space of given shapes
is broken down into two different independent classification systems. In the
deformation transfer [14] different kinds of animals can take similar poses, in
which case it is quite easy to localize them, as the type of animal is described by
an intrinsic metric of the shape surface, and the pose is its embedding in three
dimensional space. The idea of geometric texture [1] fits within this framework
as it aims to separate overall shape from its geometric details. Application of ex-
ample based priors for surface reconstruction [4,13] can also be seen as imposing
style to the object.

In the image processing field, Hertzmann et al. [7] presented a method that,
when given three images: one with style A and function 1, one with style B
and function 1, and another one with style A and function 2, creates an image
with style B and function 2. The same concept has also been explored by this
group in the field of curve styles [8]. Other related problems can be found when



dealing with images of fonts, separating lighting conditions from the scene and
distinguishing between a spoken language and the accent. All those three cases
were examined through bilinear models by Tenenbaum et al. [17].

Tenenbaum’s framework requires establishing one to one correspondences
both for the style and for the function - for example fonts are compared through
corresponding pixels of their bitmaps. In general, for different types of shapes
obtaining such correspondences can be difficult. Similar corespondances need
to be established across the styles for Hertzman’s work. Our approach does
not require any correspondence finding, which is usually costly and sometimes
outright impossible, like in the problem of registering a table to a chair [5].

In general, if the feature space is available, many well established statisti-
cal methods can be used for metric learning. For example Linear Discriminant
Analysis [9], which modifies the feature space such that, for a given training set
containing objects from different classes, the inter class variance is maximized
and intra class variance minimized. A similar approach was also used by [18]
which makes it possible to define similarity and dissimilarity relationships be-
tween selected pairs of objects. In a similar manner, Giorgi et al. [5] customize
a way of combining a set of distances between shapes so that user defined sim-
ilarity is captured. In this work the metric is modified in order to reflect the
user defined constraints of nearby or far away shapes. The final metric is taken
as a maximum distance from distances given by all of the metrics, however, the
particular metrics are scaled according to a similarity feedback provided by the
user.

For the task of finding the replacement of an object from the one of the
most similar style, a similarity measure needs to be established. As an input to
the algorithm we have many hypothetic distance measures, but we do not know
which one is the most suitable - having such information is indeed equivalent to
solving the initial problem. We asses the relevance of a specific shape descriptor
indirectly as a consistency requirement: dissimilarity or similarity between the
styles should be reflected in a similar way for different functions. A similar
methodology, based on indirect consistency, can be found in [20]. The aim is
to remove incorrect mappings between different views of a scene. The quality
of these mappings is assessed by analyzing the mapping loops which they form.
An inconsistent loop indicates that at least one of the mappings that belong to
it is wrong, while a consistent loop means that all mappings are likely correct.
Having evaluated the correctness of many loops the bad mappings are spotted
through loopy belief propagation. A similar approach is performed by [11] in
the space of shape maps.

1.3 Contributions

We introduce a framework for dealing with style by validating how given de-
scriptors relate to style within the context of a given dataset (section 3). As far
as we know there was no general framework for such problem, especially when
no parameter space is available. We also show how we can deal with style clas-
sification, even if we cannot find the descriptors which are purely responsible



for the style, by using additional function information (section 2).

We propose a statistical model for style which takes both function and style
into account. Using this model, we can sort objects according to both style and
function provided we have example objects for each style and each function.
Operationally, this allows us to achieve some tasks. For instance, automatic
sorting of chess pieces according to the type of chess and according to the set of
pieces to which it belongs. We also solve the task of finding a tooth model which
can be used for the design of a prosthesis to replace a missing tooth — even if
we do not have a very similar tooth model in the patient’s mouth (section 5.3).

The general methods are introduced in sections 2 and 3. In section 4 we
present the descriptors used for our experiments and in section 5 we show the
experiments performed on tooth and chess datasets and analyze the obtained
results.

2 Style and Function Classification

labeled pieces q . labeled query shape
query issimilarity

DWHALA e D e g A

" 2 A

input labeled pieces with at least one set of all functions and one function
of all styles, shape of unknown function and style, distance measure

task find the most likely style and function of a query shape.

Figure 4: Diagram shows the task of classifying a shape according to style and
function. Note that in this framework we need example shapes which serve as
definitions of styles and functions and a way to measure the distances between
the shapes.

In this section we will show how information about style and function hidden
in the same metric can be decoupled. The problem is illustrated in figure 4. We
assume here that we have a dissimilarity measure that was produced by some
kind of shape descriptor and contains both functional and stylistic information.
One example of such a measure was given in the introduction section (see figure
1). Based on this information we want to be able to detect the most likely style
and the most likely function of a query shape. Because we do not have explicit
descriptions of the style or of the function, we assume they are given by the
examples through the training set T



2.1 Likelihoods Computation

In this section we introduce the likelihood of some shape being of given style
and function, which is based on the distances of the unknown shape to shapes
from a training dataset. We want to formulate it in a way that the function
effect is eliminated when assessing the style and the style effect is eliminated
when assessing the function.

We denote the shape of style s and function f as S} and the set of shapes

of a function f and style different than s as S;°.

Our main observation here is that if we have in the training set shapes which
share the same function but have different style, then it is possible that we may
factor the function out as it was shown in figure 3.

For example if the distance to a S} is smaller than a distance to a S2, we
may say that the unknown shape is more likely to be of a style 1 than to be
something else.

shape S? St S3 S3
j 0 1 2 3
d(S3,57%) 2.4 2.7 2.1 2.7

1777(S3) -0.2 -0.9 0.8 -0.9

Figure 5: Likelihoods calculated within a training set of circles for a query object
S3. The biggest value is reached when the distance is the smallest

The partial likelihood lf:j (z : k) of unknown shape x to be of style j, when
we have two example shapes of the same function i of which one S7 is of a style
j and another one S¥ is of a style k other than j, is equal to:

lf:j(gc ck) = d(%SZk) - d(;me).

In our training dataset T', for a given function ¢, we may have more than
just one shape not being of a function j so we take the mean plus the minimum
of all of the partial likelihoods:

17 (z) = ke{rilje])»?;ie:rl;ﬁ (x:k)+ ke{—I?}i:%;eT 77 (2 k).

Note that minimum is equal to the distance to the closest of the known
shapes from function ¢ and style other than j, minus the distance to S; If the
style j is the closest of the shapes from that style, then the minimum will be
positive, otherwise it will be negative. The mean value stabilizes the results by
taking into account distance measures of all of the shapes of this function but
different style. So the first term is an average distance of the unknown shape to
a shape from the training dataset having a function ¢ and not being the style j
minus the distance to Sj.



The use of differences of the distances instead of the direct use of distances is
caused by the additive model expressed in the equation 1. Because the distance
of two shapes is caused both by functional and stylistic differences, we want to
remove the impact of the function by using the difference of distances to shapes
having the same function but different styles.

. d(SZ -
-~

v d(s?,sk)
d(sj,sk

)

Figure 6: Graphical representation of the diagonal property. The distance on
the diagonal should be greater than the vertical and horizontal distances. In
this way even when the inter-style (vertical) distances are much smaller then

the inter-function (horizontal) distances we are still able to capture the stylistic
difference, when we know function labels.

Such an approach is based on the assumption that the distance to a shape
having different both style and function properties should be greater than the
distance to a shape being different just with respect to style (or function).
Graphically speaking, if we put two shapes of the same style in the same row
and two shapes of the same function in the same column of a table, it means
that the distances computed across the diagonals would always be greater than
the ones between shapes displaced only vertically or horizontally (see fig. 6).

Definition 1. The metric d has a diagonal property on the set of shapes S =
{87 : feFseS}, if forany j,k € S and a,b € I we have

d(S2,SF) > d(S%, S})
(87, SF) > d(S7, S*)

Lemma 1. _Ifc_i on S has a diagonal property, then for S,Z €S forall k € —j
we have 17 (S7) > 157F(S))

Proof. Let’s denote the mean part of the 15~/ (z) as ™ (#)mean and the mini-
mum part as the I 7 (2)min. So we have IJ~7(z) = 177 (2)mean + I; * (Z)min-



For the mean part:

Zme—j d(I7 SZWL)

lf:j<x)mean = |Z|T 1 - d(l‘, Sf)
_ Zme—k d(xv Szn) + d(LE, Sf) - d(l’, Sz]) _ d(a:, Sg)
il — 1
s= i j
— (@) mean + m'T'i (d(z,55) — d(z, 5)))

Where [i|7 denotes the number of shapes in the training dataset that have
a function 4. By putting z = S7, and having d(S7, SF) —d(S7,S?) > 0 from the
diagonal property, we get:

lfzj (S}]-L)mcan Z ls:k(si)mcan (2)

1577 () min = min_ d(z, ST) — d(z, S?)

v me—]

= min (d(m,Sf), min  d(z, SZ")) —d(z,87)

me—jn—k

analogically

157k () pin = min <d(x,Sf), min d(w,SE”)) —d(x,SF)
me—jn—k
Applying a diagonal property d(Si,Sf) > d(SZ, Sf) and using the fact that
a > b implies min(a, ¢) > min(b, ¢) for any ¢ we have:

B (S min = 575 (S7)min (3)
And from inequalities 3 and 2 we have also: lf:j(Si)min > lf:k(Si)min O

In order to gather information from all of the training functions, we take
the mean value plus the maximum of all the styles for which in the training set
there is a style j and some shapes not being of style j.

s=J _ 5=7 =]

FRe) = g T @ mean 17 (@),
Here, by taking the maximum, we are favoring the function for which the style
j is most likely. The mean is again added to get the distance information from
all known styles.

There might be cases when we do not have enough information in the training
set for establishing likelihoods. This happens when there is no set which has
a training representative for the style j and for some shape which is not of a
function —j. In such a case we set the likelihood to zero.

The whole problem might be inverted and the likelihood computation of "x
being the function i" is done in an analogous manner. Then for a given x the cost
of assigning to it style j and function i is equal to: 137} (x) = ly=i(z) + 1" (2).



2.2 Exploiting Uniqueness

unique
labeled pieces query shapes labeled query shapes
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input labeled pieces with at least one set of all functions and one function
of all styles, set of missing shapes of unknown function and style,
distance measure

task find the best configuration of the query set, according to labeled set.

Figure 7: Diagram shows the task of sorting the query shapes. Each shape can
be assigned only to one label. This constraint makes the task much easier than
when treating all query shapes separately.

If the dissimilarity measure on the given dataset has the diagonal property
then the likelihood will never fail to show the style and function of an unknown
object. In many applications this is not the case: for at least some percentage of
style and function pairs the property will be violated. So the correct style or the
correct function will not get the largest likelihood score. If we however address
the problem not in separate queries but assume that we need to assess the style
and function for a bunch of shapes (figure 7) of which we know that there are
no repeating shapes in our query then our results can be much improved.

This approach follows a general concept that a uniqueness constraint makes
the problem much easier. We use the likelihoods as negative costs and solve
the minimum linear assignment problem [2]| for the unknown labels and loose
shapes.

2.2.1 Multiple Step Assignment

An assignment problem with the costs defined above does not make use of the
information about all of the distances between the shapes. Only information
about the distances to the training shapes is taken into account. It might be
an advantage when we do not want to compute the distances between all of the
shapes, but if we already have computed all of the distances we may want to
include them to make our algorithm better.

If we are able to locate the shapes for which we can expect that the initial
matching went correctly we can add those into the training dataset with the
labels obtained by the initial assignment. We do not have an oracle which

10



tells which pieces were assigned correctly and which were not. If we had such
an oracle it would also automatically solve our assignment problem. However
with some additional measures we can assume that there are pieces which were
labeled more reliably than the other ones.

In order to estimate the labeling reliability, we calculate the diagonal cost
of the assignment which we define as the average sum of similarities between all
the shapes having the same style or function labels.

Definition 2. Let A(S)Z denotes the shape S which has a function label i and
style label j obtained by an assignment A. Then a diagonal cost of such assign-
ment 1s:

) = A (S agsyie-m ACAS)E ASH) + X agsyn, dAS)T, ABS)M)

ZAww<zhwﬂ“ml+§lﬂ®mﬂl)

i€

For a hypothetical unknown shape we might add it for a moment to the
training set with the labels that we got as the solutions of the initial problem.
Then as the labeling reliability we could calculate what is the diagonal cost
when assignment is solved with the use of this piece. However, we discovered
that instead of calculating diagonal costs directly it is better do the inverse
assignment, which is performed by swapping the unknown data with the known,
solving the inverse problem and then calculating the diagonal cost.

direct
ii %gi‘;% 1. subinverse 2. subinverse
é inverse ABANLY ABANLY
o & B &) Sy & B &) Sty
REHSW RENRW
AAmana ARALWY TAEL BARD
éaﬁv@&gﬁz & B &) Sty 2WHhd L¥udhd
- § g @ @ '%] \L assign \L \L aSSign \L
ABHLW WdHh s W v T
DABALY wparg | ZiEALW ,
N RE NN A, 7 - 7,
S GARHQUW| |GARHQU
SR ELHQW

Figure 8: The inverse problem is made from a solution of a direct problem by
exchanging the known information with the unknown. Because the solution
of the inverse problem is not always unique, we instead solve the subproblems
and then calculate their diagonal cost, which then is used to calculate the final
inverse diagonal cost.

It might happen, for example if we know all the shapes of two styles, which
become fully unknown in the inverse problem (fig. 8), that we are not able
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to find the inverse solution. In such case we take small subsets of data, by
excluding from the problem all but one of the shapes of the style (function),
which for the inverse problem have the style (function) cost undetermined. We
solve inverse subproblems and take the sum of the diagonal costs for all of the
given subtasks, divided by the number of all elements sharing the style and
the function. The smaller the inverse diagonal cost, the more reliable is the
hypothetical assignment of the unsorted shape to its label.

We also added other sanity checks of the shapes and consider the following
properties:

swapping minimum : swap the hypothetical shape label with all other shape
labels in an initial assignment. If the diagonal cost of some of the swapped
assignments is smaller then the initial one, this piece is unreliably assigned.

perturbation persistence : solve two assignment problems as initial but in-
stead of original cost use

lj“zjim(x) =10 lj—i(x) + 17 (2)
ljfjoj () = ly—i(x) + 10 * [5=7 (z).

Then if the chess piece is not assigned to the same label as the initial
problem assignment of this piece is unreliable.

In order to minimize bad choices we always take the piece having minimum
inverse diagonal cost and which is reliable according to the above reliability
criteria. We add it to the training dataset and repeat the assignment and
addition of the most reliable pieces until there is no reliable piece to be added.
Then we use the assignment from the last step as the final assignment.

3 Consistency Learning

In this chapter we want to solve a problem which can be seen as a reverse to
the one solved in the previous section. We have an incomplete set of shapes of
some style and we want to find the missing one. Our task is to search in the
database of available shapes for the one which is most likely to be of a given
style (figure 10).

We assume here that the function is known or can be easily detected. In
many contexts function can be given explicitly: for example the type of a tooth
is usually associated with its position in the mouth. Also, this is a sound
approach when function is much more distinctive and we can determine it easily
by using standard shape retrieval methods, as for example it is not so difficult
to distinguish between a table and a chair.

We treat the ‘style space’ in a continuous way. We expect some styles to be
very close to other styles, such that a shape of a given function can be replaced
with a similar style quite well. This approach is especially suitable in a domain
of shapes with some kind of biological variation.

12
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task construct the consistent dissimilarity measure according to consis-
tency measures

Figure 9: The training phase of the replacement finding task. The consistency
dissimilarity measure is constructed based on consistency performance of differ-
ent descriptors within the context of the training database.

wanted ranked
dstﬁyled wanted labeled database T candi-
eme function %@ E 8 @ y dates

by -+ label -+ ereafu_re — E
example abe @&’ ﬂ ﬁ @ g 1.
o Dy E & 9 = =

A

input example shapes with wanted style, label of missing function, labeled
shape database with many styles, distance measure obtained in the
training phase

task find in the shapes of missing function having the most similar style
to a one given by example shapes

Figure 10: The second step of the replacement finding task. User comes with
exapmles of a style and asks for a shape of that style and a function that was not
present in the example shapes. The candidates are selected from the database
and ranked according to estimated similarity to the queried style.

In the previous section we took a good dissimilarity measure for granted.
In general, we might not know it advance. Instead, we have many proposals of
dissimilarity measures d;(,) which can be obtained through different kinds of
shape descriptors D;.

The task is to choose such a measure d; or a combination of measures with

13
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Figure 11: Distances between shapes of the same function and different styles.
5 functions are displayed (columns) and two different descriptors (rows). The
top descriptor has consistency 19.35 and the bottom one has consistency 69.27.
Note that the smaller the consistency measure, the more similar should the plots
of different functions be. Data was taken from calculation for three dimensional
descriptors of the chess pieces.

which we can distinguish between different styles. This task is related to metric
learning approaches like LDA [9]. But the aim of LDA would be to have objects
of the same style close and those of different style far away. We also require
that the dissimilarity measures should be consistent across different functions.

We can illustrate the problem with the tooth shapes. Suppose a patient has
one tooth destroyed. In order to be able to reproduce its shape, we want to find
in a database a tooth which is mostly similar to the existing tooth he has. We
have a molar missing but because a premolar is still in the patient’s mouth, we
wish to search in our database for a mouth which has the most similar premolar
to the patient’s. From that mouth we take a molar as a template for our new
tooth. This approach assumes that similarity for premolars induces a similarity
between molars.

The tooth replacement example shows that the consistency requirement is
necessary as it aids in many concrete tasks — like searching for the best replace-
ment for some missing data. Here we do not know directly what ‘close’ means,
as we have many metrics but don’t know which one is a correct. Usually a
correct metric combination in such a case can be found by giving example pairs
of shapes which are similar and pairs which are dissimilar [5]. In our case we
do not have such information. Instead we can impose the metric consistency
requirement: the distances between shapes having different styles and function
A should be close to the distances of the shapes of the same styles and function
B.

3.1 Consistency

In this section we introduce consistency factors which measure the similarities of
distances between styles across different functions. We also create a final dissim-
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ilarity measure from different descriptors with the weights assigned according
to the descriptors’ consistency. ,

Assume we have a set of training shapes S7, where ¢ = 1..n; indicates the
function and j = 1..n; the style. We also have k,, potential dissimilarity mea-
sures dg(,)

Let us take all distances dk(S’;}I:l_.nJ , ;’;:1..% jvi.) Detween different shapes
of the function i1. In order to be comparable those distances need to be normal-
ized, which we do by dividing them by the median of obtained distances. This
results in a (”2J ) dimensional vector of k-distances between all possible pairs of
shapes with different styles and the function 4;, which we will denote v(dg, fi,).

For each pair iy # iy of two different functions we can establish the consis-
tency score cszllk’l2 with respect to a distance k and function ¢; and i5 as the

norm of difference of distance vectors:

s = | (u(d, i) — v(dg, fin)1)? )

=1.(3)

In order to calculate the total consistency factor (T'C'Fy) for a dissimilarity
measure k, we take the sum of the differences for all function pairs. Note that
the smaller TC'F}, is, the more consistent dj is with respect to style.

We construct the final measure by summing the dissimilarities obtained
through different shape descriptors with weights that promote consistency.

_o_TCh _ydp(x,y)
D, x, = 6( 2mean(TCF))7’ 5
(2, y) Ek o (5)

where o4, is the median distance from distances dj(, ) between all training
shapes.

3.2 Query Based on Consistency Learning

In the training phase, given the database labeled with styles and functions, we
compute the consistency measures from different descriptors and construct a
final metric according to equation 5.

In the user phase, when asking for a specific function ¢ we also provide sam-
ples of the style with shapes labeled by functions: @1, ..Q,. For each such shape,
we measure the distances between (); and all the shapes from the database
sharing this function. The distances reflect the similarity of the queried style to
known styles and they might be slightly different if the consistency of the final
metric is not perfect. The measure of similarity of the queried style with styles
in the database is obtained by summing D¢ for different functions.

Ds=34,Q) =Y Ds(S!, Qi)

We take from the database the closest style as the one with the smallest
D(s = j,Q), and take the shape S} as a replacement of the unknown shape Q,.

15



We can also go a step further and not take all Dy with the same weights.
Having the final dissimilarity measure we compute consistency scores csg’fi2
between different functions. These consistency measures can be used in order
to asses what pairs of functions are better correlated. For example two neighbor
upper molars can be more correlated than a molar and incisor. So if a molar
is missing and we have the neighbor molar and incisor, we should give higher
weight for query of the closest mouth with respect to a molar than with respect
to an incisor. We could either use only the distances with respect to a function
most correlated with the query function, or use the weights according to the
consistency scores:

csq’i(Df) )
—2— 1 .
Dw(s — ],Q) — Ze< mean;(cs®?(Dy)) Df(SZJsz)
i

Both in the training and user phase we need a dataset, with labeled functions
and styles. This can be the same dataset. The queried style needs to excluded
from the training phase as we do not know what kind of data will be provided
by the user.

4 Computing Distances Between Shapes

The methods presented in the previous sections are quite general and are inde-
pendent of the descriptors we use. On the other hand the performance of the
method relies on their choice, as if we use descriptors that are totally unable to
capture similarities then the results we obtain will also be of poor quality. For
example using only global descriptors for a dataset with the style being mostly
expressed in local details would not be a good idea.

Note that in this paper we do not require for the dissimilarity measure
produced by our descriptors to have properties of a metric space.

4.1 Curves Comparison with Dynamic Time Warping

In this section we explain how distances between oriented curves can be obtained
through Dynamic Time Warping. This is a good example that there are cases
when we have a way of establishing the dissimilarities between shapes without
a general feature space. On the other hand there is always a way to go from a
feature space with coordinates to a dissimilarity measure, by using one of many
available vector norms. So the use of similarity is more general than the use of
the feature space (see also Giorgi et al. [5]).

The curve X is represented as a polygonal chain xj;—g. .. The standard
dynamic time warping problem for two curves A and B is to find a sequence
of correspondences between their vertices aj—g..n, bi=o0..m, denoted as C = c¢;,
where i € {0..n} and jx € {0..m} and satisfying the conditions of:

monotonicity if c; j,,cyj € C and ix < i then jix <j
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Figure 12: A manifold V (A, B) when comparing two similar curves. Geodesic
between the vgg and vy, is marked with black. Although the embedding of
this manifold is complicated it has a simple square topology

continuity for incident correspondences ¢, j, and ciy_ ,j,, wWe have:
ipr —ik <1 and jiepr —je <1

Classical DTW searches for the correspondence with minimal sum of lengths
of vectors vi; = a; — b; whose endpoints are defined as vertices indicated by the
correspondence.

dprw(A,B) = CI(TE%) Z [ Viuc
ci i, EC(A,B)

The translation invariant version of Dynamic Time Warping, instead of min-
imizing the sum of lengths of vi;, minimizes the sum of lengths of the difference
of vectors vy; for two incident correspondences:

dTIW(Aa B) = min Z ”Vikjk ~ Vi _1jk-1 ”

C(A.B
( )CikjkEC(AvB)7k>0

The discrete version of DTW depends heavily on how the vertices are posi-
tioned on the curve, since for a given vertex the corresponding point must be
chosen from the vertices of the second curve.

We use the method of Efrat et al. [3] and transform the translation invariant
DTW into a continuous setting. In such a case we want to represent as a; any
point on a polygonal chain A and for this purpose we extended linearly the
index i € {0...n} to a domain of real numbers 0 <i<mn. This is done using
the interpolation of values known at vertices: a; = (A — 1)af) + Aa|;; where

A= (:_}H T As a result vectors vi; = a; — bj are also extended to a two dimen-
sional surface defined as the combinatorial manifold V(A,B) = A & —B. After
this modification the translation invariant problem can be defined as finding the
shortest monotonous path P(A,B) on this manifold which connects the end-
points vgg and vyy,. The minimized function doriw is the length of this path
and this value is used to establish the dissimilarity between the curves.

4.2 Three Dimensional Descriptors

Recently there has been a lot of work within the content based shape retrieval
field and a huge amount of different shape descriptors exist [15] and many new
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methods are proposed each year. The performance of such methods is measured
through the ability to retrieve objects of the same class as the query shape, across
some given benchmark of shapes (SHREC retrieval contest). As mentioned by
Godil et al. [6] in the field of general shape retrieval, usually hybrid methods,
which combine many shape descriptors, perform better as they can capture
many local and global characteristics.

Our main contribution was not to introduce any kind of a new descriptor
which will perform well within our style-function problem. Instead we propose
a method to asses the usability of existing descriptors, to combine and use them
so that our style function discrimination tasks can be achieved.

Besides our general approach, we briefly present the descriptors which we
have used as input for our methods. We have chosen to use local shape descrip-
tors which rely on neighborhood at some distance from a given position. This
way, by changing the neighborhood size both local and global features can be
captured. We used three types of such descriptors:

curvatures : minimum and maximum curvature obtained by fitting primitives
through points sampled from the neighborhood area [16] (2x4 descriptors),

covariance : eigenvalues of the covariance matrix of points sampled from the
neighborhood area (3x4 descriptors),

slippage coefficient which are 6 eigenvalues of the slippage covariance ma-
trix [10] of points sampled within the neighborhood area; we have also in-
cluded six values being a translational contribution to eigenvectors (12x3
descriptors).

We uniformly sampled the surface of the shapes and computed local descrip-
tors out of those samples. As neighborhood size we have taken 0.01, 0.04, 0.16
and 0.64 of the radius of a bounding sphere of a tooth. For slippage we used
0.01, 0.04 and 0.16.

For each shape we gathered local information coming from any descriptor
into a soft histogram, which means that the values are convolved with a Gaus-
sian kernel of a fixed width before being discretized in a histogram. A smooth
histogram has the advantage that it induces the smoothness property of a de-
scriptor: if a shape varies smoothly under continuous deformations, the descrip-
tor will also vary continuously [12].

In order to reduce sampling bias we took 2 samplings of 1000 points each,
and computed a soft histogram for each of them. Histograms from the two
independent samplings were compared. The mean across all training shapes of
their difference was taken in order to estimate the measure error coming from
the different samplings. Then the mean of the 2 histograms is taken. However
in order to compare two histograms for shapes .S; and .S; the distance between
two bins is reduced by the previously computed measure error. Then the sum
of those values is taken across all bins as our distance di(S;, S;).

Note that besides those descriptors any descriptors which can compute pair-
wise distances between shapes can be used here.
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Figure 13: Descriptors we use require two levels of sampling. The first level is
to take points uniformly sampled on the whole surface (left). Local descriptors
computed at those points are collected in the form of a histogram. The second
sampling occurs at the level of computing local shape descriptors, when new
sample points are taken within a required distance from the base point (right),
those points are used to establish measures of that surface, such as curvature
which is estimated by fitting primitives into the sampled points.

5 Results and Applications

5.1 Chess Piece Classification

In order to obtain the first dataset we scanned 9 different chess sets. The type
of the chess set is the style and the function is a chess type. In a standard chess
set we have 6 different functions, however we excluded the knight as this piece
was not rotationally symmetric. This resulted in 5 different functions. Since
there is clear rotational symmetry in the chess pieces, their three dimensional
representation was reduced to the space of plane curves by taking the outline
curve obtained through rotating the chess piece by its rotational symmetry axis
(figure 2). In order to eliminate the scaling factor each piece was rescaled to
the same height. Continuous Translation Invariant Dynamic Time Warping was
used in order to establish a similarity metric d(.,.) between the curves (figure
14).

In the first experiment we have taken one style and one function as training
shapes (refer to section 2.2). For the rest of the chess pieces the assignment
problem was solved. Table 3 contains the result of such assignment where for
each style and function we have three values: the first indicates how many test
shapes had wrong label, the second how many shapes had wrong function label
and third how many had wrong style label. We have also calculated the average
performance for all styles and functions. The results depend a lot on the type
of the set and function imposed as an example shape. Some of the sets contain
a lot of function information but some others do not. The sets 024 and 008
perform the worst. Also the results for the rooks are always worse than for
other functions. Note that if we provide a given style as the training set it is
used as a definition for the functions and if we give some function it is used
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Table 1: The chess piece dataset. Our dataset has 45 chess pieces, which are
the scans taken from 9 existing chess sets. The function is the type of the chess
piece (pawn, rook, bishop, king, queen) and the style is the set the chess piece
belongs to.
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Table 2: Outline curves of the chess pieces generated from the three dimensional
chess pieces displayed in table 1.

as a definition of style. Sometimes we also had a situation when introducing
a difficult set into the training data improved the results, because then the
labeling of such style was not interfering with the labeling of other styles. So by
putting into the training data a set which has a difficult to distinguish style but
a clear function or putting a difficult to distinguish function but a clear style
distinction usually improved the results.

It is also interesting to see how the mismatches looked like. For that reason
we have displayed the sorting results for two cases. In table 5 we have a situation
that swaps were done within style 008 within pawns and one 3-cycle within
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Figure 14: Similarities between the curves. Each block has the same function
or style, the diagonals of blocks are darker which reflects the smaller distance
when the function or the style is the same.

rooks, however in the table 6 a more complicated long cycle running through
many styles and functions is present. Note also that some swaps might have a
very logical explanation - for example very often something else of a style 008
is labeled as a king instead of the K008. This is because 008 pieces have a kind
of collared shape at the top, which might be confused with the upper collared
shape of the training king. Note also that bishop 008 as a training shape has
attracted shapes P024 and K042, this might be due to the fact that all those
three shapes have a rounded barrel shape.

For the multiple step assignment (results: table 4, method: refer to section
2.2.1) we observe an average improvement of the assignment tasks by approxi-
mately 3 chess pieces. Usually if the initial guess is quite good but not perfect
then correctness of the matching may be improved quite well. If there are too
many mismatches the improvement does not occur: as then we also take as reli-
able the matchings which are not correct. Usually it does not make the solution
worse but keeps it at a similar level as it was with the initial problem.

5.2 3D Tooth Consistency

A dataset we use for this problems contains teeth shapes (table 7) from 6 dif-
ferent mouths. We treat the type of mouth as style and the tooth type as a
function. In order to make the number of styles larger, we assume that the left
side of a mouth will be treated separately from the right side. This assumption
is correct as long as we don’t use any descriptors related to symmetry orienta-
tion. Thus we have 12 styles which we will label as A, B,C, D, E, F,a,b,c,d, e, f,
where big letter means one left part of a mouth and small the other one. We
have taken 10 tooth types: 2 upper molars, lower molar, 2 upper premolars,
lower premolar, upper canine, upper incisor, 2 down incisors. They are labeled
and placed in the following order: 7TM,6M,6m,5P,4P,4p,3C, 11, 1i,2i, where
upper case means the upper tooth.
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P R B Q K mean

007 15 23 8 10 21 15.4
f 8 12 6 7 12 9

S 14 15 4 6 16 11
008 22 24 19 16 24 21

f 18 21 15 10 17 16.2
S 14 18 9 7 11 11.8
013 14 24 6 6 19 13.8
f 7 11 2 2 8 6

S 8 15 4 4 13 8.8
014 20 20 10 9 14 14.6
f 6 11 2 2 6 5.4
S 17 13 8 7 10 11
024 28 27 19 25 28 254
f 20 22 15 20 22 19.8
s 16 12 8 12 14 12.4
042 20 24 21 14 18 19.4
f 14 14 13 9 10 12

s 11 16 9 7 12 11
048 16 17 11 10 17 14.2
f 7 6 4 2 8 5.4
S 14 12 8 8 12 10.8
107 17 20 16 12 17 16.4
f 13 12 10 5 9 9.8
S 12 15 11 7 10 11
123 9 24 12 17 18 18

f 13 11 5 9 10 9.6
S 13 21 9 10 10 12.6
mean | 19 22.6 136 13.2 196 | 17.6
f 11.8 133 8 7.3 113 | 104
S 132 152 78 7.6 12 11.2

Table 3: Mismatches of the single assignment problem with one style and one
function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. The per-
formance depends on the choice of shapes that were used for the definition of
the style and the function.

The descriptors from the section 4.2 were used for which the total consistency
factors were computed as mentioned in section 3.1 and the final dissimilarity
measure is created from the measures.

In the first experiment we analyze the metric obtained through the consis-
tency learning process. Because of the size of our dataset we included all of
the teeth data. Figure 15 contains the resulting dissimilarity measure. What
is worth noting is that the similarity between corresponding styles coming from
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P R B Q K mean

007 17 25 6 8 11 13.4
f 8 9 2 2 6 5.4
s 13 19 4 6 5 9.4
008 22 28 23 9 8 18

f 18 22 14 4 7 13

s 13 25 14 6 5 12.6
013 15 21 0 0 19 11

f 8 11 0 0 11 6

s 9 14 0 0 12 7
014 14 12 5 4 17 10.4
f 8 8 0 0 9 )

s 9 9 5 4 11 7.6
024 24 25 18 26 27 24

f 20 18 14 20 20 18.4
s 14 18 7 12 11 12.4
042 22 21 15 17 23 19.6
f 13 14 10 15 13 13

s 14 15 7 2 16 10.8
048 19 19 2 4 12 11.2
f 11 9 2 0 5 5.4
s 14 14 0 4 9 8.2
107 15 14 10 5 11 11

f 6 7 6 0 5 4.8
s 13 13 5 5 8 8.8
123 19 23 9 7 15 14.6
f 11 11 4 2 9 7.4
s 10 18 5 5 10 9.6
mean | 18.6 20.9 9.8 89 159 | 14.8
f 114 121 58 48 94 |87
s 121 16.1 52 49 9.7 |96

Table 4: Mismatches of the multiple assignment problem with one style and
one function given. The table contains the general number of pieces with the
mismatched total label, mismatched function and mismatched style. The im-
provement occurs usually for tasks where the single assignment solution didn’t
have too many mismatches, otherwise the performance stays similar to the per-
formance in the case of the one step assignment.

23



dissimilarity measures for all shapes consistency scores hetween functions

MDS plot of avy. dissimilarity measures betwen styles
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Figure 15: Dissimilarity measures obtained with the consistency weights. Note
similarities between styles coming from the left and right sides of the mouths
(second upper left plot) and low consistency scores (upper right plot) calculated
between similar teeth: for example upper neighbors: 6M,5P 4P or upper and
lower first premolar (4P and 4p) or the incisors (1I and 2i).
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dissimilarity measures for all shapes

average dissimilarity measures between styles
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Figure 16: Dissimilarity measure obtained with the equal weights. The average
structure of differences between styles seem to be similar to the consistency
customized measure, besides the tendency of styles e, E to become even more
distant than the rest of the shapes. Note however that the consistency scores
are very different than the previous example. Also there are higher differences
between the lower plots when compared to figure 15
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Table 5: Example where queens define the styles and 013 define functions. We
have one 3 cycle within rooks, a swap between pawns and between pieces from
008 style.
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Table 6: Example where bishops define the styles and 048 define functions. Note
that mismatched assignments can be explained by geometric similarities to the
training shapes.
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Table 7: Tooth dataset

{
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symmetric teeth was clear. During our tests we have discovered that the styles
d,D and f, F are very similar and they probably came from the same mouth but
are differently meshed. In order to compare the obtained dissimilarity measure
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with the situation without consistency information, we created the other mea-
sure as the average of all available measures (figure 16). From the first glance,
just when looking at the average distances between styles, the results look very
similar no matter if we use the consistency weights or not. However if we look
closer and analyze the dissimilarities between the classes functionwise we can see
the difference (lower plots of figure 15 and figure 16). Dissimilarities with con-
sistency weights are more coherent than the average dissimilarities. Also note
that the consistency matrix of the average looks more random (upper right plot
of 15 and 16), while the one with the weights has more intuitive information:
we can see that the molars are more consistent with each others than incisors,
consistency also grows if we have neighbor teeth.

5.3 Replacing a Missing Tooth

In this section we show an application of the consistency based query method
described in section 3.2 to a tooth dataset in the tooth replacing scenario.

We start by choosing a training dataset which has several exemplar styles
where each style is complete, which means it contains all functions. Then we
use the training dataset in all phases of computation when training is needed:
to compute the measure error for histogram based descriptors, to compute the
total consistency factors TCF}, for given descriptors and finally as a supply to
select the best replacement for a missing shape.

We take some style which was not in the training set, and assume that one
shape of a function ¢ is missing. In order to replace it we choose from the training
database a shape being of function 7, which we estimate to be the closest to the
missing one. Because we don’t have the missing shapes we cannot measure
the distances directly. Instead we make an estimation based on the distances
D(S7, Q) between the shape of the query style and the functions k that we
have and the shapes from the database sharing this function.

In our results we used three strategies of combining D¢ (S}, Qr):

average D%(s = j, Q) distances summed with equal weights (see section 3.2),

weighted D" (s = j,Q) distances summed with weights according to consis-
tency factors (see section 3.2),

best direct use of Df(S,z,Qk) for function k having the smallest consistency
ki

factor cs D; with the function ¢ of a query object.

Note that the ‘dissimilarity measure’ Dy is used in all cases. As previously
mentioned Dy is computed as consistency weighted according to the TCF score
of a given descriptor. What is different here is how we combine the distance if
we have more than one function to be checked. The weighted scheme takes dis-
tances from all functions with weight according to consistency factors evaluated
between the function of an unknown object and the function for which we are
computing the weight.

We have also added ’true’ which is the distance to the shape we assumed is
unknown to the shapes of the same function from the training database. It can
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be seen as a ground truth. Note however that the distance Dy we use here was
obtained by consistency learning as we don’t have a ground truth distance.

method | missing | 1 2 3 4 5 6

weighted > ‘) j D j fj U
average ) ‘) j D j D U
best (1i) ) j & D \) ") D

true ) N) W 7 U f‘ ) )

Table 8: Replacing missing 11 b shape. For this case the difference between the
candidates chosen by our methods is hard to spot visually. This illustrates that
even if we get styles with different labels than the ground truth, this does not
mean that the alternative choice is bad. The other candidate can also be a good
replacement for the missing object.

method missing | 1 2 3 4 5 6
weighted S » & >4 > = =
average S H 4 > j < 5
best (5P) S = H» & & < P
- S o e @ & & 8

Table 9: Replacing missing 6M b. Visual inspection indicates that weights and
average strategy seem to choose the most similar tooth - this tooth was also
chosen by the ground truth distance.

The results for different queries are shown in the form of labeled plots of
distances. We included results obtained with a training dataset cdf AC'D, and
with queries made for all of the functions of styles a, b, F and F (figures 17, 18,
19 and 20 respectively).

From those examples we can see that for our dataset we have some queries
which are very easy as for example a (figure 17) and always result in finding
the symmetric counterpart. When searching for F' (figure 20) there is label
shuffling at the top of the rankings, but all pieces which are assessed to be the
closest come from the very similar styles f,d, D: either from differently meshed
teeth or symmetric counterparts. Thus even though there is a change in the

28



arm agh

weighted © el - 1 F kD) | €C A
averager Fe €€ 1 F * 4 € A
hestéi R € €04 € 1 r A fd @ < b
true?M i) ®EF b ol k3 L I
afm aspP
weighted £ fd) e 1r ® LR b
average - 0 € 1r % faeC b
hestdp - € £ €« fd< 1% g € T
truebm | h o) € o < 1rc b2} fd © < 1
adP adp
weighted 0 © 4 " o < < A
average - @ §dD 4 M «F 0 A
hestlip 4 0 f = 1 ¥ o « o < 1
truedpP | © R f < 14 ¥ bl 04 < 1
adc all
weighted #d < € 1 F € L5 ] G A
Average - £ Ol € < 1 F © f @ << A
hestdp R L3 €« fd < 1 « 0 f @< A
truedC i) < fesl 2 I B ) hi] LI f I
ali azi
weighted £ £ it €« 1r © EE] < b
average - @ €< 1r € o © < T
hest4r |- © o « fC < 9 r © «Cf T
truelife 40 f < 1r Rl € COf 4 7
Figure 17: Replacing object of a style a, we assume we have all the functions of

style a except one. Training dataset contains cdf AC'D styles. This is an easy
case as the winner (the shape of the smallest distance), comes from a symmetric
counterpart of the missing style.
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Figure 18: Replacing b, we assume we have all the functions of style a except
one. Training dataset contains cdf ACD styles. The average replacement style
is C but some exceptions occur especially within the domain of incisors.
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Figure 19: Replacing F, we assume we have all the functions of style a except
one. Training dataset contains cdf AC'D styles. As in the previous case we have
styles C' at the top of most rankings with minor exceptions for incisors and
function 5p.
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Figure 20: Replacing F', we assume we have all the functions of style a ex-
cept one. Training dataset contains cdf AC'D styles. Although there are some
differences at the top of the replacement rankings we can see that all the top
candidates come from styles very similar to the query style being f,d or D.
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ranking, any of those candidates will do a good job as a replacement. More
ambiguous are the queries for which we do not have a symmetric counterpart.
As our dataset is not so big this corresponds to the case when we don’t have a
very close replacement. For such cases we see a tendency that for most of the
functions there is a clear solution which is the average replacement that works
- as the style C, but for some of the tooth types other candidates appear as
top on the list: for example A or f when asking for b (figure 18) and A or D
when asking for F (figure 19). Usually the ambiguous cases are among incisors
- this might be a good hint to treat the front teeth separately from molars
and premolars in order to reach better performance. For the ambiguous cases
sometimes the 'best’ strategy of replacement is a correct one, but it might also
cause overfitting for other cases. The ’average’ and 'weighted’ strategies have a
very similar results. We do not know however if the swaps are a method failure
or if this is also the case when one shape might be as good as the other one. This
can be left to subjective judgment of the user. To illustrate such case, we have
picked two example queries from the figure 18: first molar of style (6M) and
first incisor (1I) of style to be shown with the images of the ranked replacement
candidates (table 9 and 8). For better insight we have added the front view
of incisors. We have also reflected symmetric counterparts of the second part
of the mouth (see dataset description in section 5.2) for easier spotting of the
differences.

We also tested how the consistency properties of the dissimilarity measure
change when different subsets of styles were used as the training dataset. We
generated a dissimilarity measure from the training data and evaluated the
results on all of the data. Usually removing only a small number of mouths
does not increase or even slightly decreases the consistency scores. Only when
using 3 or 4 mouths, the results seemed to be different. This might come from
the fact that there was always some symmetric tooth left in the set which was
able to set the consistency scores in a correct way. The increase was mostly
noticeable when styles which are close to each other are used as the training set
(table 10).

training ‘ TCS H training ‘ TCS H training ‘ TCS H
all | 97.94 EFb | 102.088 cEF | 98.17
none | 117.22 ABd | 99.138 ADEFe | 97.35
ABCDFaf | 95.929 Eef | 117.107 | cdf ACD | 99.25

AFade | 98.494 DdFf | 111.007 | deADEF | 115.04

Table 10: Total consistency factors when using different mouth subsets as train-
ing data. First the descriptors were trained by using training data, than all the
data was used in order to evaluate TCF. One can see the impact of the choice
of training shapes on the quality of the resulting measure. For example using
data from very similar styles results in a measure which does not have good
consistency for other styles.

33



5.4 Chess Pieces Consistency with Comparison To The
Warping Distance

As we have 3D representation of chess pieces at our disposal we have applied 3d
descriptor computation and the consistency framework, to see the performance
of the consistency methods on the chess dataset. We compared the obtained
results with the warping distance obtained when using the outline curves (figures
21 and 22). Some differences occur, however this might be due to the fact that
when taking an outline curve a lot of information was lost, so the curve dataset
and the style dataset are not totally equivalent. For example the set 008 was
very distinguishable in the curve set. However this is not so true for the 3d
set, which might be due to the fact that local details at the base are very
similar to the details at the base of 007 and 107. Also the upper part has
all function characteristic details while when having a curve representation the
most dominant was the Christmas-tree-like middle part.

5.5 Empirical Connection Between Consistency Measure
and Dissimilarities Between Styles

As it is much easier to make visual judgments for the dissimilarities between
different chess sets than for teeth, we used the chess set example to show the
experimentally based connection between the consistency score and dissimilarity
measure between different styles. From the 3d images presented in Table 1 we
assume that some sets can be seen as having standard shapes: 013, 014, 048,
123, 107, while 007 and 042 have the middle part missing and the upper part
magnified, 008 is unusual but has a base similar to 007 and 024 - the ’babushka
set’ can be treated as an outlier.

From all of our descriptors we have chosen to plot dissimilarity measures
for those descriptors which have the best (Figure 23), and the worst (Figure
24) consistency. We can see that the most consistent descriptor was much
better in capturing our judgments, with having standard sets nearby and the
non standard ’christmass tree’ and 'babushka’ as outliers. The least consistent
descriptor does not preserve the structure of standard chess pieces being close.
For example it treats the set 123 as the most unusual one.

It is worth noting that the TCF value when we used all descriptors combined
was 15.19 while the TCF of the best descriptor was 19.35, and of the worst it
was 69.27. We can clearly see that combining many descriptors (with weights
according to TCF) is better than using just the most consistent descriptor.

5.6 Chess Sorting Based on Consistency Measures

In this experiment we sorted the chess pieces with the metric obtained from 3d
descriptors from section 5.4. Tables 11 and 12 contain the results for both single
and multistep assignment. The results are comparable with the sorting based
on consistency measure.
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Figure 21: Chess piece dissimilarity measure from the 3d descriptors by using
consistency weights. The styles are ordered 007,008,013,014,024,042,048,107,123
and the functions are ordered p,r,b,q,k. Note that 008 is not so distinctive as it
was for the DTW curve measure. The main source of inconsistency comes from
the style 042 which is more similar to the outlier set 024 for pawn, rook and
bishop but has more standard shapes for king and queen.
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Figure 22: Curve warping distance displayed in the same form as consistency
based distances. The structure of dissimilarities between styles is similar (with
some exceptions like the style 008) to the structure of the dissimilarity coming
from consistency weighted 3d descriptors but the general dissimilarity looks

slightly different.
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P R B Q K mean
007 24 17 12 9 20 16.4
f 16 10 4 6 8 8.8
S 23 15 12 8 18 15.2
008 21 23 20 15 24 20.6
f 9 7 10 8 7 8.2
S 21 23 19 15 23 20.2
013 19 16 16 3 16 14
f 12 7 6 2 8 7
S 18 16 16 3 14 13.4
014 11 13 12 5 10 10.2
f 5 7 2 4 6 4.8
S 11 13 12 5 10 10.2
024 25 22 17 12 20 19.2
f 10 11 9 6 10 9.2
S 25 21 16 12 19 18.6
042 22 23 10 9 17 16.2
f 14 13 4 2 6 7.8
S 21 22 10 9 16 15.6
048 13 17 16 14 17 15.4
f 9 9 7 8 7 8
S 12 17 16 14 16 15
107 16 13 12 9 15 13
f 11 10 7 7 4 7.8
S 15 13 12 9 15 12.8
123 26 17 19 19 19 20
f 15 11 3 11 6 9.2
S 25 16 19 19 19 19.6
mean | 19.67 17.89 14.89 10.56 17.56 | 16.11
f 11.22 944 578 6 6.89 | 7.87
S 19 17.33 14.67 10.44 16.67 | 15.62

Table 11: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. Results
are comparable with the DTW sorting results presented in table 3.

37



P R B Q K mean
007 25 19 0 0 26 14
f 15 12 0 0 15 8.4
S 25 17 0 0 25 13.4
008 10 17 14 4 26 14.2
f 4 9 8 4 12 7.4
S 10 16 14 3 26 13.8
013 16 13 0 5 12 9.2
f 8 2 0 ) 4 3.8
S 16 13 0 5 12 9.2
014 15 15 0 5 13 9.6
f 6 5 0 5 3 3.8
S 15 15 0 5 13 9.6
024 22 22 0 5 24 14.6
f 14 11 0 5 11 8.2
S 22 20 0 4 22 13.6
042 21 19 0 0 14 10.8
f 12 13 0 0 5 6
s 19 18 0 0 14 10.2
048 17 15 5 3 18 11.6
f 10 7 2 3 9 6.2
S 16 14 5 2 17 10.8
107 17 23 0 6 13 11.8
f 10 16 0 5 6 7.4
S 16 22 0 6 13 114
123 18 21 6 2 20 13.4
f 10 9 2 2 11 6.8
S 18 19 6 2 17 12.4
mean | 17.89 18.22 2.78 3.33 1844 | 12.13
f 9.89 933 133 322 844 | 6.44
s 1744 17.11 2.78 3 17.67 | 11.6

Table 12: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. The results
are by approximately 2 pieces better than the DTW distance results presented
in table 4.
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Figure 23: Average distances between styles for the descriptor with the best
consistency: TCS = 19.35. This descriptor is the histogram of the second
eigenvalue of the slippage matrix at scale 0.16.
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Figure 24: Average distances between styles for the descriptor with the worst
consistency: TCS=69.27. This descriptor is the histogram of the translational
impact of the last eigenvalue of the slippage matrix at scale 0.01

Note that in order to obtain the consistency measures we trained the dataset
with all labels known, then we forgot the labels and remembered only the con-
sistency scores. With dissimilarities computed according to the consistency we
try to solve the reverse problem - finding the labels back. The sorting and con-
sistency are two different problems, for the consistency we optimize something
else - so one does not have a guarantee how well the sorting task will work with
the dissimilarity measure obtained by using consistency scores. However, trying
to retrieve the labels is an interesting test which measures if consistency based
dissimilarity measures are able to store the style and function information that
was provided in the training labels. From the sorting results we can see that
at least we are not worse than curve matching distance and that the multilevel
step outperformed the DTW based distance.
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5.7 Descriptors
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Figure 25: Consistency weights used to create the style and function consistent
descriptors for tooth and chess datasets. Note that there is larger difference
of weights between the datasets than between styles and functions within one
dataset.

The consistency measure process can be see as a black box where we throw
the data with a bunch of descriptors and we obtain the consistency customized
measure as an output. However it is very interesting to look closer and study
the consistency weights in order to see which descriptors had higher impact.
For this reason we displayed the style consistency weights for chess and tooth
datasets. For both datasets we also exchanged the style and function labels and
obtained function consistency weights. All those weights are displayed in figure
25. From this plot we see that different descriptors are distinctive for different
datasets. Note that for the tooth dataset we have higher weights for smaller
scale, for the medium scale the weights get smaller and for bigger scale they grow
slightly again. This might be due to the fact that we have organic shapes where
their local roughness has importance, but also in the higher scale the general
shape counts especially when it comes to determine a function. For the chess
pieces the global properties seem to be the more important than the local ones,
as for man made objects the global structure of the shape has much importance
(such as the existence of big flat or rounded regions or the proportions of such
regions).

We can also observe that within one dataset if a descriptor has a high impact
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on style (or function) consistency it very often has higher impact on function (or
style) of that dataset. This indicates that in such cases we can find descriptors
which are appropriate for style and function classification for a given dataset
but those descriptors are not purely responsible for style or function but are
distinctive for both.

6 Discussions

In this paper we presented a general framework, which avoids defining style
related features explicitly. Instead we introduced a method of finding valuable
style related descriptors by applying consistency criteria to the example dataset.
We have also shown that even without pointing out the descriptors containing
pure style related properties, some practical tasks can be achieved by factoring
out the main property of an object, its function. Therefore we do not claim to
have discovered a single descriptor or a set of descriptors which are responsible
for style or for function. But we claim that if we have descriptors which at
least contain some of the style information, and possibly other stuff, we can still
perform well in at least some of the tasks related to the object that have both
style and the function. We also confirm the need for treating shapes in broader
context than just one shape [11,12] and its geometric descriptors, by analyzing
whole sets of shapes from the specific domain.
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