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Abstract 

Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room 

temperature. A stabilizing effect of different surfactants on the tetragonal phase was observed. 

Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was 

tested by prolonged boiling in water. The samples were analyzed with X-ray photoelectron 

spectroscopy (XPS) and x-ray diffraction (XRD). Changes in the monoclinic volume fraction in 

the samples were calculated. A number of surfactants were screened for their ability to stabilize 

the tetragonal phase upon exposure to humidity. Only silanes and phosphate esters of these were 

able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane 

molecule per nm
2
 are able to stabilize the tetragonal phase in water at room temperature. 

Aminopropyl trimethoxy silane and γ-methacryloxypropyl trimethoxy silane were even capable of 

preventing phase transformation during boiling for 48 hours in water. 

 

Keywords: Metastable tetragonal zirconia, phase stabilization, powder, low 

temperature degradation. 
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Introduction 

Zirconia, especially the tetragonal crystal phase, has gained increasing interest, 

primarily because of it high strength and resistance to fracture, and its ability to 

catalyze organic reactions, such as isomerization of n-butane [1], synthesis of 

derivatives of 1,5-benzodiazepine and diaryl sulfoxides [2], and benzylation of 

toluene [3]. Below 1175°C, the stable phase of zirconia is the monoclinic phase. 

Thus the tetragonal phase can only exist at a room temperature (RT) through 

stabilization. This is normally achieved by adding a dopant such as Y2O3 or by 

modifying the surface with sulfuric or phosphoric acid. It is, however, possible to 

obtain metastable tetragonal ZrO2 at RT, by suitable control of the processing 

parameters and thereby crystal grain size. Zirconia nanocrystals can below a 

certain critical crystal size adopt the metastable tetragonal phase [4].  

 

In resin composites for dental restoration zirconia particles can be added in 

combination with glass particles in order to render the material radiopaque (dense 

materials that prevent the passage of electromagnetic radiation) or to improve the 

mechanical properties and resistance to abrasion. Radiopacity can be useful in 

resin composites since it enables the distinction between composite and tooth with 

x-rays. Since stabilizing the tetragonal phase with yttria, which is less radiopaque 

than zirconia, lowers the overall radiopacity, limitation of the dopant amount is 

preferable [5]. Thus dopant free stabilization of tetragonal zirconia is desirable.  

 

During the last couple of decades the tetragonal→monoclinic (t→m) martensitic 

phase transformation in zirconia has been studied and the exact mechanism is still 

under discussion. Different mechanisms have been proposed. Most of these deal 

with zirconia containing stabilizing oxides such as Y2O3 and CeO2, and many of 

the proposed degradation mechanisms involve reactions with the stabilizing agent. 

Only limited work has been done to study the phase transformation of pure 

tetragonal zirconia at RT. However, some of the mechanisms based on stabilized 

zirconia studies are do not involve reactions with the stabilizing oxide. Sato and 

Shimada [6-8] based a model on reaction between water and Zr-O-Zr bonds on 

the surface resulting in formation of OH-groups which in turn cause the release of 

the strain, which acts to stabilize the tetragonal phase. Murase and Kato [9, 10] 

proposed that water adsorbed on the tetragonal zirconia surface reduces the 

surface energy difference between the tetragonal and the monoclinic phases. This 

reduces the critical size of the tetragonal crystals and lead to phase transformation. 

However, today it is commonly accepted that the existence of metastable 

tetragonal zirconia at RT is due to the stabilizing effect of oxygen vacancies in the 

crystal lattice. Yoshimuru et al [11, 12] proposed that phase transformation is a 

result of adsorption of water on the surface leading to formation of Zr-OH and/or 

Y-OH which creates stressed sites on the surface. This mechanism is based on the 

formation of strain in the surface and lattice, caused by occupation of oxygen 

vacancies by OH
-
 ions, nucleating monoclinic phase in the tetragonal crystallites. 

Kim et al [13] proposed a mechanism based on OH
-
 ions diffusing through 

oxygen vacancies and reacting with these under formation of Zr-OH bonds. This 

reaction leads to a build-up of tensile strain, which will induce the phase 

transformation. Guo [14-16] proposed a mechanism consisting of the following 

steps: 1) water is absorbed on the surface, 2) OH
- 
is formed by reaction of water 

with O
2-

 on the zirconia surface, 3) diffusion of OH
-
, 4) formation of proton 

defects by filling of oxygen vacancies with hydroxyl, and 5) t→m phase 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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transformation when the concentration of oxygen vacancies is reduced to the 

extent that the tetragonal phase is no longer stabilized. 

 

Different types of surface modifying agents such as trimethoxy silanes and 

phosphate esters are used to secure a strong bond between the filler surface and 

the polymer matrix in dentistry. The present study investigates the effect of 

surface modification with different surface modifying agents, especially silanes, 

on the phase stability of metastable tetragonal zirconia crystals in humid 

atmosphere and in water. Furthermore the stability of the surface modified 

tetragonal crystals in boiling water is also investigated.  

Experimental 

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and they 

were all used as received. Highly porous nanocrystalline tetragonal zirconia 

powders were synthesized as previously described [17] by controlled hydrolysis 

of ZrOCl2 followed by careful calcination. The tetragonal zirconia powder is 

extremely porous and has specific surface area of ~150 m
2
/g. The synthesized 

tetragonal zirconia powders were kept in water free environment for further 

treatment.  

 

Surface modification of zirconia powder 

In inert atmosphere in a glovebox, 7 g zirconia powder was stirred with 40 ml 

anhydrous methanol and 7 ml of surfactant overnight. The surface modified 

particles were filtered and washed three times with anhydrous methanol. The 

samples were exposed to air and analyzed with x-ray diffraction (XRD). For each 

sample, parts of the modified zirconia was mixed in the glovebox with a di-

methacrylic monomer mixture consisting of bisphenol-A diglycidyl ether 

dimethacrylate (Bis-GMA), urethane dimethacrylate (UDMA) and triethylene 

glycol dimethacrylate (TEGDMA) in the ratio (36/ 44/ 20 wt%) in combination 

with a photo-polymerization system composed of camphorquinone and ethyl 4-

dimethylamino benzoate both in a content of 0.5 wt-%. A sample was placed 

between two glass plates and cured on each side for 2 min using blue light 

(1100mW/cm
2
) from a Bluephase

® 
light probe (Ivoclar Vivadent). Such samples 

are termed matrix dispersed zirconia. After curing, the resulting composites were 

stored at 37˚C in water for 2-30 days and subsequently subjected to XRD analysis.  

Stability test in air  

1 g zirconia powder was stirred with 10 ml anhydrous methanol and γ-

methacryloxypropyl trimethoxy silane (MPTMS) in amounts ranging from 0 – 

1000 µL in dry air in a glove box. After 2 hours the mixtures were filtered and 

washed twice with anhydrous methanol to remove unreacted silane and dried 

inside the glove box. The stability was tested by exposing the samples for XRD to 

ambient atmosphere prior to the analysis. A reference samples for each sample 

were prepare by mixing the modified samples with resin and cure as described 

above. The matrix dispersed zirconia samples were after curing analyzed with 

XRD. 
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Stability test in water  

For the stability test 1 g zirconia powder was stirred with 10 ml anhydrous 

methanol and aminopropyl trimethoxy silane (APTMS) in amounts ranging from 

0 – 2000 µL in dry air in a glove box. After 2 hours the mixtures were filtered and 

washed twice with anhydrous methanol to remove unreacted silane and dried 

inside the glove box. The stability was tested by adding a few drops of water to 

the samples for XRD analysis. A reference sample for each sample was prepared 

by mixing the modified sample with resin and cure as described above. The 

matrix dispersed zirconia samples were analyzed with XRD after curing. 

Stability in boiling water 

15 g zirconia powder was stirred with 100 ml anhydrous methanol and 10 ml of 

either APTMS or MPTMS for 2 hours in inert atmosphere in a glovebox. The 

mixture was filtered and the zirconia was washed twice with anhydrous methanol, 

150 ml in total. The silanized zirconia samples were dried at RT in the glovebox. 

The silanized samples were then boiled in 400 ml water and samples were 

collected, filtered and dried at RT. After drying, the samples were subjected to 

XRD analysis. Samples were collected after 1, 2, 4, 8, 24 and 48 hours of boiling. 

100 ml water was added after the first 8 h to prevent mixture from drying or burn. 

Characterization 

X-Ray Diffraction (XRD) evaluation 

XRD patterns were scanned in 0.1 steps (2θ), in the 2θ range from 20˚ to 65˚, 

with a fixed counting time (30 sec.). The XRD patterns were analyzed using 

WinX
POW

 software. The tetragonal and monoclinic volume fractions (vt and vm) 

were calculated from the integral intensities of the monoclinic diffraction lines (-1 

1 1) and (1 1 1) and the tetragonal diffraction line (1 0 1), following a procedure 

proposed by Toraya et al [18]. 

X-ray photoelectron spectroscopy (XPS) evaluation 

Surface analyses were performed with a K-alpha monochromated, XPS 

spectrometer from Thermo Fisher Scientific Inc., Waltham, MA United States. 

Surface Area Measurement 

The specific surface area of the zirconia powder analysis was done with N2 

adsorption for BET (Brunauer-Emmett-Teller) determination (Autosorb-AS6, 

Quantachrome, Boynton Beach, FL). A number of pure zirconia samples were 

analyzed the specific surface area was determent to ≈150 m
2
/g.  
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Results  

Surface modification and phase transformation 

None of the analyzed samples phase transformed as a result of exposure to 

humidity in the air. A number of different surfactant classes were tested but only 

silanes and phosphates stabilize the tetragonal phase when exposed to water. All 

the tested surfactants were able to stabilize the tetragonal phase when exposed to 

humidity in the air (Table 1).  

 

Fig. 1 shows the XRD patterns of a silanized and an unmodified zirconia samples, 

respectively, exposed to humidity in air. The silanized zirconia exhibit a trace 

characteristic of the tetragonal phase (curve a) whereas the unmodified zirconia 

trace is dominated by monoclinic reflections (curve b). Thus, unmodified zirconia 

goes through the t→m transition after brief exposure to ambient atmosphere, 

whereas the tetragonal phase in silanized zirconia is stable in humid air. No phase 

transformation is observed even after a week of exposure. The same stability is 

seen with silanized tetragonal zirconia when cured in resin and stored in water at 

37 ˚C for 30 days. Under these conditions the untreated zirconia phase transforms 

in less than 2 days (not shown).  

Stability in air and water 

In order to test how small amounts of silane are sufficient to hinder phase 

transformation of zirconia particles exposed to ambient atmosphere a set of 

zirconia particles with decreasing amount of silanization was prepared through 

treatment of particles with increasingly diluted solution of silanization agent. The 

lowest silane coverages were not detectable in XPS. It is chosen to use the 

theoretical number of silane molecules per nm
2
 (assuming 100% conversion) and 

not the actual number when comparing data. This means the actual number is 

potentially lower as unreacted silanization agent in the reaction mixture is washed 

out during the silanization. The results are plotted inFig. 2. It can be seen that 

even very small amounts of MPTMS are sufficient to achieve stabilization of the 

tetragonal phase. When the theoretical number of silane molecules per nm
2
 gets 

down to 0.35 the volume fraction of monoclinic zirconia starts to increase and at 

coverage degree of ~0.017 the phase transformation reaches a vm of ~0.6. This is 

close to, but not equal to the level of unmodified zirconia, which reaches a vm of 

~0.7 upon exposure to the ambient atmosphere.  

 

The same trend is observed for zirconia silanized with APTMS (Fig. 3) and 

exposed to water at RT. Below a surface coverage of 0.25 silane molecule per nm
2
 

the volume fraction of monoclinic zirconia starts to increase and at the coverage 

of 0.008 silane molecules per nm
2
 the volume fraction reaches 0.63. Even this 

minute surfactant coverage prevent phase transformation to the same extend as the 

unmodified reference sample, which becomes almost entirely monoclinic after 

exposure to water [19]. The curve asymptotically approaches a monoclinic 

volume fraction of ~0.3. This level is as supported by XRD analysis of the 

reference samples due to phase transformation coursed by the silanization. Similar 

to the MPTMS experiments, the theoretical number of silane molecules per nm
2
 is 

used as variable due to limitations in XPS.  
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The XRD patterns (illustrated in Fig. 4 and Fig. 5) of the boiled samples show the 

stability of the tetragonal phase in the silanized samples. 48 h of boiling in water 

is insufficient to induce change in the monoclinic volume fraction in both of the 

samples. A small increase in the monoclinic phase occurs within the first hour. In 

XPS the atom-% of silicon were measured to 2-2.5% for both samples prior to the 

boiling test. No silane was found on unmodified zirconia samples. 
 

Discussion 

The results from the study of the ability of different surfactants to stabilize 

zirconia are summarized in table 1. It is observed that all the tested surfactants are 

able to stabilize the tetragonal phase on exposure to humidity in the air. But only 

silanes and phosphates were able to stabilize the tetragonal phase enough to 

withstand exposure to water, when aged in a di-methacrylate matrix. This is in 

accordance with the fact that silanes are the only tested surfactant forming 

covalent bonds to the surface and phosphate esters are known to bind zirconia 

strongly [20]. This means that the bonds between the zirconia surface and either 

the silane and the phosphate are strong enough to withstand hydrolysis. The 

necessity of testing the water stability of the zirconia crystal phase in a polymer 

matrix is due to the fact that the surface modified powder is hydrophobic to the 

extent that mixing with water is difficult thus hindering the access of water to the 

zirconia surface, whereas in the polymer matrix the water is forced to the surface 

as the polymer absorbs water. The polymer almost works as a surfactant 

facilitating wetting of the zirconia surface. 

 

The powder is very sensitive to water vapor and few seconds of air exposure is 

sufficient to induce the martensitic tm phase transformation [21]. This can be 

observed in Fig. 1, which shows x-ray patterns of pure tetragonal zirconia that is 

exposed to humid air and undergoes martensitic phase transformation resulting in 

monoclinic crystals. The silanization prevents the transformation probably due to 

the produced hydrophobic surface that hinders the access of water molecules to 

the surface. Furthermore surface treated zirconia floats on water where untreated 

zirconia disperses. Alternatively the stabilization of the tetragonal phase can also 

be a result of a change in the surface energy which increases the activation energy 

of the phase transformation. The initial amount of monoclinic zirconia in the 

sample is most likely due to small amounts of water in the methanol used for the 

silanization or other contamination with water. 

 

Samples silanized with APTMS show a lower reactivity than MPTMS silanized 

samples during stability tests in air and water in spite of the fact that the APTMS 

modified samples are tested in water and as such are expected to have a higher 

monoclinic volume fraction. The differences in sensitivity of samples with the two 

different silane modifications are probably caused by a higher reactivity of 

APTMS due to the autocatalytic catalytically effect of the primary amine in the 

silanization reaction [22]. This will give a higher actual coverage of the APTMS 

modified zirconia powder than for the MPTMS modified zirconia powder leading 

to a lower sensitivity towards humidity. 

 

The results of the boiling experiment show that the Si-O-Zr bonds are sufficiently 

stable that the surface bound silanes prevent the tm zirconia phase 
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transformation even after 48 hours in boiling water. The small initial phase 

transformation, observed in both Fig. 4 and Fig. 5, can be due to either a small 

number of unmodified zirconia crystals or crystals with very low silane densities. 

Such crystals will upon water contact rapidly transform into the monoclinic phase. 

The monoclinic volume fraction is stabilized at 0.5 after 2 hours for the APTMS 

modified sample and somewhat slower for the MPTMS modified sample. The 

silanized zirconia is very hydrophobic preventing wetting with water. However, 

boiling the silanized zirconia in water for a short time overcomes this resistance 

and the mixing with water ensues. This takes it little longer for the MPTMS 

modified samples. As expected the MPTMS modified zirconia is powder more 

hydrophobic than the APTMS modified. This difference in hydrophilicity is 

probably the reason for the lower transformation rate in the MPTMS modified 

samples.   

 

The generally accepted models for the stability of metastability of tetragonal 

zirconia and the induction of phase transformation to monoclinic zirconia all 

involve interaction of absorbed water on the surface with oxygen vacancies to 

form proton defects in the crystal structure. In the models, the water absorption is 

followed by formation of OH
-
 that either stays in the surface or diffuses into the 

crystal. Thus from a surface point of view, it is the absorption of water that is the 

critical step. The observed stability of tetragonal zirconia surface modified with 

either silanes or phosphate esters cannot be reconciled with these models. The 

amount of e.g. silanization required to obtain stabilization is far from enough to 

hinder absorption of water since at a silane density of 0.25 molecules per nm
2
 

only 10 % of the possible sites are covered (determined as –OH group by titration 

with LiAlH4). We hypothesize that the surface modification blocks the access of 

water to certain active sites – of presently unknown nature – which are crucial in 

the phase transformation mechanism. It remains a possibility, however, that the 

silanization reduces the surface energy more for the tetragonal phase than for the 

monoclinic phase and thereby shifts the critical crystal size upwards. Our data do 

not permit distinguishing between these two models. 

 

Conclusion 

Within the group of the screened surfactants surface modification with phosphates 

and silanes stabilize tetragonal zirconia in water. Even as small amounts of silane 

as 0.25 silane molecules per nm
2
 are enough to stabilize the tetragonal phase in 

water at room temperature and the stabilizing properties of silanes are even 

sufficient to withstand boiling in water for 48 hours.  
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Tables 

Table 1 Zirconia surface modified with different groups of surfactants tested for its ability to phase 

transform (PT) in air and in water (matrix dispersed zirconia) 

Group of 

surfactants 

Name PT in air PT in water 

(matrix dispersed) 

Carboxylic acids Hexylic acid  no yes 

 2-[2-(2-

Methoxyethoxy)ethoxy]acetic acid 

NA yes 

Sulfonic acid 4-Dodecylbenzenesulfonic acid  no yes 

Phosphate ester Ethylene glycol methacrylate 

phosphate 

no no 

Silanes γ-Methacryloxypropyl trimethoxy 

silane (MPTMS) 

no no 

 Aminopropyl trimethoxy silane 

(APTMS) 

no no 

 Methyl trimethoxy silane no no 

Amines O-(2-aminopropyl)-o´-(2-

methoxyethyl) polypropylenglycole 

500 

NA yes 

 Tetrabutyl ammonium bromide  NA yes 
NA: not analyzed 
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Figure captions 

Fig. 1 XRD patterns for zirconia silanized with MPTMS exposed to air (a) and unmodified 

zirconia exposed to air (b) t=tetragonal reflection, m=monoclinic reflection.  

Fig. 3 Volume fraction of monoclinic zirconia in MPTMS modified samples in ambient 

atmosphere as a function of the theoretical number of silane molecules per nm
2
 

Fig. 4 Volume fraction of monoclinic zirconia in APTMS modified samples exposed to water as a 

function of the theoretical number of silane molecules per nm
2
 

Fig. 5 XRD patterns of APTMS modified zirconia boiled for 0 (dashed black), 1 (solid blue), 2 

(dotted purple) and 48 hours (green dash dot) 

Fig. 6 XRD patterns of MPTMS modified zirconia boiled of 0 (dashed black), 1 (solid blue), 2 

(dotted purple) and 48 hours (green dash dot) 

Figures 

 

Fig. 2 XRD patterns for zirconia silanized with MPTMS exposed to air (a) and unmodified 

zirconia exposed to air (b) t=tetragonal reflection, m=monoclinic reflection.  

 

 

Fig. 3 Volume fraction of monoclinic zirconia in MPTMS modified samples in ambient 

atmosphere as a function of the theoretical number of silane molecules per nm
2 
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Fig. 4 Volume fraction of monoclinic zirconia in APTMS modified samples exposed to water as a 

function of the theoretical number of silane molecules per nm
2 

 

 

Fig. 5 XRD patterns of APTMS modified zirconia boiled for 0 (dashed black), 1 (solid blue), 2 

(dotted purple) and 48 hours (green dash dot) 

 

 

Fig. 6 XRD patterns of MPTMS modified zirconia boiled of 0 (dashed black), 1 (solid blue), 2 

(dotted purple) and 48 hours (green dash dot) 
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