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Discretizations in Isogeometric Analysis of Navier-Stelkdow

Peter Ngrtoft Nielséh’#, Allan Roulund Gersbofy, Jens GravesénNiels Leergaard Pedersen

aDTU Mathematics, Technical University of Denmark, Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark
PDTU Mechanical Engineering, Technical University of Denmark, Nils Koppels All 404, DK-2800 Kgs. Lyngby, Denmark

Abstract

This paper deals with isogeometric analysis of the 2-dinoerad, steady state, incompressible Navier-Stokes equa-
tion subjected to Dirichlet boundary conditions. We présedetailed description of the numerical method used to
solve the boundary value problem. Numerical inf-sup sitghiésts for the simplified Stokes problem confirm the
existence of many stable discretizations of the velocity pressure spaces, and in particular show that stability may
be achieved by means of knot refinement of the velocity spamer convergence studies for the full Navier-Stokes
problem show optimal convergence rates for this type ofrditzations. Finally, a comparison of the results of the
method to data from the literature for the the lid-drivenagucavity for Reynolds numbers up to 10,000 serves as
benchmarking of the discretizations and confirms the rotasst of the method.

Keywords:
isogeometric analysis, fluid mechanics, Navier-Stokes,fiofasup stability, lid-driven square cavity

1. Introduction stability of the element, or discretization, used to ap-
proximate the state variables. The first stable B-spline

Isogeo_metr!c analysis unites th_e power o solve COM- giscretization for the Stokes problem was proposed in
plex engineering problems from finite element analysis [3]. Recently, two more families of stable B-spline dis-

(FEA(;) Vr\]'ith thg abilit); to ijOthly fr?preg,entfcompli- cretizations were identified in [7], thereby further em-
cate s_da%ez In very tew egrzes ot Le,e om from com- phasizing how easily high degrees of continuity may be
puter aided design (CAD) [1, 2]. Within recent years, achieved in isogeometric analysis. Mathematical proofs

isogeometric analysis has been applied to various flow of the stability of a range of discretizations have very
problems and proved its value within the field of fluid recently been made [8, 9]

mechanics. Some of the first studies were on steady- ) ) ) ) )
state incompressible Stokes flow in the benchmarking The aim of this paper is threefold. Firstly, we wish to
lid-driven square cavity [3]. Subsequent analysis of the extend the list of ;table B-spl_me discretizations for the
full time dependent Navier-Stokes equations using the 2D Steady state, incompressible Stokes problem. Sec-
isogeometric method has shown its advantages both in®ndly, we wish apply the method to the non-linear 2D
terms of continuity of state variables [4] and the ability Sté@dy state, incompressible Navier-Stokes problem and
to accurately represent complicated dynamic flow do- €xamine how these discretizations perform in terms of
mains [5]. Benchmarking of the method for the turbu- ©rfor convergence based on a flow problem with an an-

lent Taylor-Couette flow shows very nice performance alytical solution. Finally, the benchmarking lid-driven
of the method [6]. square cavity will be analysed and the results of the dis-

An important issue in the analysis of the mixed for- cretizations compared to data from the literature.

mulation of the governing equations for fluids is the =~ The outline of the paper is as follows. Section 2
presents the equations that govern problems in fluid

*Corresponding author. mechanic_s, a_md section_3 outlings how th_e problem is
Email addresses: p.n.nielsen@mat.dtu.dk (Peter Ngrtoft solved using isogeometric analysis. In section 4 we per-
Nielsen),agersborg. hansen@gmail.com (Allan Roulund form a numerically test of dlierent isogeometric dis-

Gersborg)j . gravesen@mat .dtu.dk (Jens Gravesen), I . .- .
nlpemek. dtu, dk (Niels Leergaard Pedersen) cretizations in terms of stability, and an error conver

lpresent address:Burmeister & Wain Energy /SA  9ence study for these discretizations is presented in sec-
Lundtoftegérdsvej 93A, DK-2800 Kgs. Lyngby, Denmark tion 5. Finally in section 6, a comparison of the dis-
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cretizations against results from the literature is pre-
sented for the benchmarking lid-driven square cavity.

2. Boundary Value Problem

We consider a fluid contained in the doma&rwith
boundaryl' = 9Q, see figure 1. We assume the fluid
to be a viscous, incompressible, isothermal, Newtonian
fluid, and we furthermore assume it to be stationary. The
fluid is then governed by:

inQ
inQ

—puAU +pu-Vu+Vp-pf =0
V-u=0

(1a)
(1b)

3. Isogeometric Method

Equations (1) together comprise thteong form of
the boundary value problem that governs the state of the
fluid. We use NURBS-based isogeometric analysis built
on Galerkin’s method to solve the problem numerically.
This section outlines the procedure. See also [2, 11, 12].

3.1. Geometry Parametrisation

The physical domainQ is parametrised using
NURBS, Non-Uniform Rational B-splines. To make the
text self-contained, we very briefly revise the basic con-
cepts of B-splines and NURBS in the following. For
a more in-depth treatment of this subject, we refer the

Equation (la) is the the steady-state Navier-Stokes réadertoe.g. [13].

equation, expressing conservation of momentum for the
fluid and written in the primitive variablep and u,
wherepis pressure and = (uy, Uy) is the fluid velocity.
The quantitiep, 4 and f denote the density, dynamic
viscosity and additional body forces acting on the fluid,
respectively. Equation (1b) is the incompressibility con-
dition, and it expresses conservation of mass.

We assume the velocity to be prescribed along the
bondanyl", and we take the mean pressure to be zero:

U = Up
ffpdA:O
Q

whereD in equation (1c) stands for Dirichlet. Other

onll (1c)

(1d)

boundary conditions, such as Neumann boundary con-
ditions, could also be considered but have been left out

for simplicity.
Numerical methods for solving Navier-Stokes equa-
tion (1a) can employ dlierent formulations of the equa-

tion. The main results of the present study are based on® = {¢1.-- . fn}

the convective formulation. Comparisons to thekew-
symmetric formulation are also made, while theta-
tional formulation is left out to avoid the introduction of
stabilization [10]. The two formulations flier in their
treatment of the non-linear inertial tenm Vu:

1
=V.-u.

(u-Vju or >

u-Vu+ (2)
Compared to the convective formulation, the skew-
symmetric formulation additionally involves the diver-
gence of the velocity field. Even though these formula-
tions on a continous level are exactly equivalent, due to

the incompressibility condition (1b), this is not the case

on a discrete level, and therefore the numerical solutions

might differ.

To define univariate B-splines we choose a polyno-
mial degreeq € N and a knot vectoE = {&1,...,&m)
with & € R fori = 1,...,m. For simplicity, we as-
sume the parametric domain € [0, 1], and that the
knot vector is open such that the boundary knots have
multiplicity q + 1 with¢; = & = ... = &1 = 0 and
m = ém1 = ... = &mq = 1. The univarite B-splines
/\/iq :[0; 1] — R are defined recursively as

1 if §<é<éin
Nio(f) - { 0 otherwise (3a)
forq=0, and
&-¢i -1 §i+q+1 =& 1
NI = =— N =/ > A 3b
© Eivg—& ! (§)+§i+q+l —&n () (3b)

forg=1,2,...

The bivariate tensor product B-splineg;’|
[0,1]> — R are defined from two polynomial degrees
g andr and two knot vectorE {&1,...,&m} and

7)3’; (é1.62) = A(iq(‘fl)Mrj (é2), (4)
where N is thei™ univariate B-spline with degree
and knot vectoE in the first parametric dimensiaf
as defined in equation (3), ar;t\zl'j is the j univariate
B-spline with degree and knot vectom in the second
parametric dimensiosp.

The bivariate NURBS : [0, 1]* — R are defined
from theNM bivariate B-splines in equation (4) and the
weightsW = {wy1,...,wym} with wij € R for i
1,...,Nandj=1,...,M:

v
wi P

TN M o Ol

k=1 Xi=1 Wk,lpkj

RY (61,62) = (5)



T2

&1

Figure 1: A single patch parametrisation of the fluid dom&wlors
indicate how the boundar of the parameter domaif? is mapped
into the boundary" of the physical domai.

With the basic concepts of B-splines and NURBS de-
fined, we now make a single patch parametrisation of
the fluid domainQ, see figure 1. We take the parame-
ter domainQ as the unit squares{, &) € [0,1]?, and
use the bivariate NURBS defined in equation (5). The
parametrisatior : [0, 1]> — R? reads:

F(é1,62) = ( xa(é1,£2), Xo(é1,82) )

N M
dls]Rﬁ’Jr (517 52)7
1

(6)

i=1 j=

whered, € R? are the control points. By a simple re-
ordering, we can write the above as

9
Nvar

F(é1,é2) = Z KR (€1, £2),

i=1

(7)

whereNY,, = NM is the number of NURBSY; are
the reordered control points, anR? are the reordered
NURBS. The superscrig indicates that the NURBS

functions refer to polynomial degrees, knots vectors and
weights that are specific for the geometry representa-

tion.

3.2. Field Approximations

In a similar fashion as for the geometry representation
in equation (7) above, we seek approximations of the
velocityu : [0;1]> — R? and pressure : [0;1]> - R
as linear combinations of the basis functions defined

ables:
N
Uk(é1,é2) = ngipi“k(gl,gz), (8a)
i=1
Ny
p( 1 52) = ZEIPF@:L 52)’
i=1
wherek = 1,2 in (8a) refers to the two components of
the velocity field,#* denote the B-spline basis func-
tions for thekth component of the velocity field, while
Pip similarly denote the B-spline basis functions for the
pressure field, all suitably reordered compared to the
definition in equation (4). They refer to separate sets of
polynomial degrees and knot vectors that are in general
not the same.N, and N, are the number of veloc-
ity and pressure basis functions, whileandp are the
unknown control variables for the velocity and pressure
that are to be determined.

The velocity and pressure fields in equations (8) are
defined in parameter space, while the governing equa-
tions (1) are formulated in physical space. To evaluate
the fields in physical space, the inverse of the geometry
parametrisatiof is used; the pressuge: Q — R over
the physical domain is computed ps F~1, and the ve-
locity u : Q — R? over the physical domain as> F1.

The Piola mapping could also be used to map the veloc-
ity [7], but since none of the examined discretizations
are exactly divergent free, we take the simpler approach
and map each velocity component as a scalar field. With
abuse of notation, we use the same symbol for the state
variables both in parameter space and in physical space.

. . — T
Gradients in parameter spaég) = [g—g g_gi] , are eas-
ily evaluated using the field approximations in equation

(8) and the definition of B-splines in equation (4). Gra-

o ) T
dients in physical spac&p = |72 72| , are related to

the gradients in parameter space by the formula:

(9)

(8b)

Vp=J"Vp & Vp=J"Vp,

where J is the Jacobian matrix of the geometry
parametrisation:
% X

J ) |i ] ’
061 0&

which again is easily evaluated using the mapping in
equation (7) and the definitions of NURBS in equation

().
3.3. Boundary Conditions

233
0é1

o

i (10)

above. Since NURBS are only needed to represent the For simplicity we impose the Dirichlet boundary con-

geometry, and not the velocity and pressure, we will for
simplicity use B-splines to approximate the state vari-

3

ditions in (1c)strongly as opposed to the weak enforce-
ment suggested in [14, 15]. Hereby we avoid the need



for definition of penalization parameters which is favor-

able if a sequence of analysis withférent geometries

is to performed as in shape optimization problems [16].
In general B-splines have compact support. This

means that only a few of the velocity basis functions

P in equation (8a) have support dh We can sim-

ply arrange the function®% so that the firstN'*  of

dof
these daot have support on the boundary, and the cor-

responding control variables of these are thus “degrees

of freedom”, while the lasN;* = Ny — N3, have sup-
port onT’, and the corresponding control variables are
thus “fixed”:

Uk
Ndof

U1 &) = D UP (En. &) +
i=1

Nk
D uPEE). (1)
i=NGK+1

The strong imposition is done by directly specifying
suitable values for these lalst* velocity control vari-
ablesu,;, so that the sum in equation (8a) approximates
the specified valuelp in (1c). If up lies within the
function space spanned B, the conditions are satis-
fied exactly; otherwise they are only satisified in a least
square sense.

For the pressure, we note that only the presspae
dient appears in the Navier-Stokes equation (1a). The
pressure is thus only determined up to an arbitrary con-
stant, which is dealt with by the specification of the
mean pressure in equation (1d). Using the approxima-
tion in equation (8b), this gives rise to the following
equation:

var

NP2
O:ffpdA:f ZEiPip(Xl’XZ)dxldxz
Q o =1

P
Nvar

PP(61. &) det(d) dérdé, = pMT, (12)

where p is the vector of pressure control variablés,

the vector of integrals of pressure basis functions, and
J is given by (10). Since no pressure control variables
needs to be fixed, we haw , = N andNf, = 0.

fix

3.4. Weak Form of the Governing Equations

The governing equations (1) are cast into thresak,
orvariational, form. For this we use the (image in phys-
ical space of the) B-spline introduced abovenzight
functions for the governing equations. We will use only
the first Nggf velocity basis functions, since these have
no support on the fixed boundary. We multiply tkta
component of the Navier-Stokes equation (1a) by an ar-
bitrary weight function”* among these velocity basis

4

functions, and the incompressibility equation (1b) by an
arbitrary weight functiorPf among the pressure basis
functions, integrate the resulting equations aReand
then simplify using integration by parts. After some ma-
nipulations we find the following weak form of the gov-
erning equations:

O:ff((yVPi”k+p7>i”ku)-Vuk
Q

— (pVP* + pPf) - & ) dx;dx, (13a)

0= ff@f (V - u) dxg dxz (13b)
Q
fork = 1,2,i = 1,...,Ny, andj = 1,...,N} , and

whereeg, is thek!" unit vector.

3.5. Matrix Equation

Finally, we insert the (image in physical space of the)
approximations of the velocity and pressure fields (8)
into the weak form (13) of the governing equations, split
the superpositions afi into parts with support on the
fixed boundary and parts without as in equation (11),
exchange the order of summation and integration, re-
arrange to get the unknown terms on the LHS and the
known terms on the RHS, and pull the integration back
to parameter space using standard transformation rules
for multiple integrals along with equation (9). This
gives:

M)
0
Ko + Cz(L_])
Gy
K} + C;(u)
0
Gy

u
—

H

0 _
K3 + C5(0) ][ u
G;

_GI

K1 + Cy(u)
—G;
0

0
Gy
f1
= f2
0

ll

(14)



or simplyM(U) U = F, with 4. Stability for Stokes Problem:Wall-Driven An-
ullar Cavity

In the following section, we deal with the stability of
the isogeometric method when applied to Stokes flow,
which is the problem that arises when we neglect the
non-linear inertial term in Navier-Stokes equation (1a).
(15a) Some discretizations of the mixed formulation of Stokes

11
Kij :/“‘f (JiTVPiUk) ‘ (JiTVP?k) det(J) dg; déz,
0%

11 problem are stable while others are unstable. Unstable
Cu(w = pff?i“k(u(gl) . (J‘TVPJF"‘)) det(J) d¢; déy, discretizations can leave the system mawixn equa-
00 tion (14) singular or badly scaled, which in turn leads to
(15b) spurious, unphysical oscillations for the pressure field,

11 while the velocity field may still look quite reasonable.
G = ffgoip(‘]ﬁvgoj%*k) g det(d)dé ds,,  (15c€) Figure 3 below shows an example of th.is. Furthermore,
0% it deteriorates the convergence properties of the method

11 and thus prohibits iterative solutions for the full Navier-
fi=p ffpi“k(f .eK) det(J) dé, dé, (15d) Stokes problem. In or_der for a given di_scretization t_o_ be

5% stable, it needs to satisfy the socalled inf-sup condition,
also known as the BB or LBB condition:

Ke=| Ko KE | (o) (15€)
CW=[ W CW | Of=odenio) (150 gflf PV - udA
" U U inf sup—— > 0, 16
gk:[ G G ] (NBy (NG +NE)), (159) p up llpll Ilul B> (16)

where the positive constamit is independent of the
mesh. In equation (16), the norm pfis the L2-norm,
while the norm ofu is theH*-norm.

In this section we study how stable discretizations
i : : ; X may be constructed by usingfi$irent basis functions
often_ called viscosity MatrixGy convective matrix(Gy for the velocity and pressure fields. More specifically,
gradient matrix, andj force vector. we will establish suitable choices of polynomial degrees

The integrals in equation (15) are evaluated using and knot vectors for the velocity and pressure such that
Gaussian quadrature. The necessary number of quadrathe discretizations are stable. This idea follows the ap-
ture pointsNg in each knot span is estimated from the proach in a recent work [7], in which three families of
relationd = 2Ng — 1, whereqis an estimate of the  staple discretizations were presented, but contrasts to
highest polynomial degree of the integrands. Since the the stabilized method in which identical basis functions
integrands are in general rational functions, we simply for the velocity and pressure may be used on the cost
estimateqas the sum of polynomial degrees of the nu-  that stabilizing terms must be added to the Stokes equa-
merator and the denominator. Using polynomial degree tion, see e.g. [3].
2 for the geometry and 4 for the velocity and pressure, e report the stability of the isogeometric discretiza-
we estimate a polynomial degreeqp£"12 for the inte-  tjons listed in table 1. The discretizationsfer in poly-
gl’and OfC, and this dictates that we should use at least nomial degreeS, knot refinements and inner knot mul-
Ng = 7 quadrature points in each knot span. All results tjplicities between the velocity and pressure represen-
in the following are based on 7 quadrature points per tations. We have adobted a heuristic nomenclature for
knot span, which is a conservative choice compared to naming of the individual discretizations. For théZp3t
recent studies on moréfiient quadrature rules [17]. discretization (d), e.g., both velocity components are ap-

We need to solvéN, + N2 + Ngof equations from proximated using quartic B-splines4), and the pres-
(14) supplemented by the equation from the condition sure using cubic B-splines (p3). Superscript indicates
on the mean pressure from (12) ijéf + N(‘,‘gf + Ngof the multiplicity of inner knots, and thus also the degree
unknowns, and we do this in the least square sense.of continuity across knots, since this is just the degree
The problem is non-linear, and an incremental Newton- minus the multiplicity. Subscript indicates the num-
Raphson method is used by gradually increaRegee ber of h-refinements by halfing all knot spans. For the
e.g. [11]. strategies a-g, each of the velocity componenenénd

wherek = 1,2, J is the Jacobian matrix in equation
(10),u(u) is given by the approximation in equation (8),
& is thek™ unit vector,u, = [0,0%'], and all starred
guantities are given by the boundary conditioh&. is



Name Knot Vec- | Knot Vec- | inf- a b
tor 1l tor 2 sug
2 2
1n4l . v | +
a U41p40 # i \/
2041 e e
b U40p40 H H # ] \/ =1 =1
(0] . 1 (0] - 1
c u4ip3 -l 504/
(0] 1. 0 1.
d U4(2)p3é i ol - - A Y o .
e u4ip2 : & | |4/ 0 1 2
1 ¥ X X
2ol 9 FIPY I N
f u4gp2, Y . . . . y
1-nl 0 ¥l 0 1 . Figure 2: Driven annular cavitya: Domain and boundary conditions.
9 u4yp2 FE Bl b: Control net (black dots and blue lines) and image of the adep
h Nédeélec gt | e N tional mesh for velocity and pressure (red and green lines).
i | Raviart-Thomasg #— -~ | #—"~—#"| 4/
Table 1: Discretization names, knot vectors and inf-sapisty. Ve- listed in table A.2 in Appendix Appendix A. For the

locity knot vectors are shown in red and green, while thegunesknot

vector is shown in blue. velocity and pressure representation, tweefine the

parameter mesh for the geometry by halfing the knot
spans, leading to a familiy of parameter meshes ranging
from 2 x 2 to 64x 64 knot spans, one of which is also

up are represented identically, which reduces the com- depicted in figure B. _
putational expenses since equality of the basis functions  Figure 3 shows the computed velocity and pres-
R = R implies equality of the matriceij; = Kij sure fields for two dterent discretizations, namely the
| [ ! . . . .

and in addition all fields are represented identically in U4gP4; discretization (top row) and thed;p4; dis-
both parametric directions. This is not the case for the Cretization (bottom row). Both of these produce a rea-
strategies h and i, which are modified versions of the sonable, rotational flow field. Clear pressure oscilla-
Nédeélec and Raviart-Thomas elements presented in [7]_tions, however, are seen for first discretization, whereas
Compared to the original formulation in [7], the veloc- the latter nicely approximates the pressure singulasitite
ity fields have beeh-refined once. It should be stressed N the inner corners.
that with this enlargement of the velocity space, the ex-

: . ; udtpal
act fulfillment of the divergence-free constraint for the oo
Raviart-Thomas discretization is lost. Thé3p3} dis- :
cretization (d) was originally proposed in [3] and subse-
qguently introduced in [7] as the Taylor-Hood element.

To examine the numerical stability, we consider the
wall-driven annular cavity problem outlined in figure
2a. This is a slight modification of the standard bench-
mark lid-driven square cavity problem, see the treat-
ment of the problem in Section 6, utilizing the capa-
bility of isogeometric analysis to exactly represent cir-
cular arcs. The fluid is contained in an annular cavity.
The inner circular wall moves with constant tangential
speed, while the remaining three walls are at rest. The
velocity field is specified along the boundary of the do-
main, assuming no-slip co_ndltlops. NO body forces act Figure 3: Computed fields far43p43 (top) andud}p4t (bottom) dis-
upon the fluid, and the fluid motion is thus caused—or cretizations. Left: stream function contour lines and witjoarrows.
driven—by the moving wall. We adopt the so-called Right: pressure (note thefiérent vertical scalings).
leaky-lid boundary condition, meaning that the corners
(xy) = (0,1) and & Yy) = (1,0) belong to the mov-
ing wall boundary. We parametrise the domain using  To test the stability of the discretization strategies, we
guadratic NURBS. The control net is shown in figure use the approach described in [18, 19]. For each dis-
2b, and the data for the geometry parametrisation are cretization, we vary the grid size for the velocity and

6




pressure representations, and for each of these meshesons can be established by means of induction. Given
we determine a numerical estimate of the inf-sup “con- a simple discretization for the pressure, i.e. open knot
stant”g in equation (16). If this value does not change vectors, choose the velocity degrees at least equal to the
appreciably with varying grid size, it indicates that the pressure degree and then either take the velocity knot
discretization is stable. On the other hand, if the value vectors as the refinement of the pressure knot vectors,
tends to zero as the grid size changes, it indicates thator use the pressure knot vectors with all inner knots re-
the discretization isnstable. peated. Or conversely, given simple discretizations for
the velocity, i.e. with open knot vectors and single or
04 double inner knots, choose the pressure degree less than
S e I G or equal to the velocity degree, and take the pressure
q G knot vectors as the velocity knot vectors with every 2nd
o L4 jjjj:z inner knot removed. The knot refinement strategy is
€ widtuatt ol used for the cases a, ¢ and e, and the knot repetition
W24 22 poioh strategy for cases b, d and f. The modified Raviart-
o R S e P Thomas (i) also uses the refinement strategy, while the
R A L it e modified Nédélec (h) combines both strategies.
o2 < ] n AR We should emphasize firstly that the presented inf-
¥ o o’ sup method only serves as a numerical test of the sta-
bility of the examined discretizations, and secondly that
Figure 4: Numerically computed inf-sup “constants” foryiag grid the inductive step, going from the stability of the ex-
size using dierent discretizations. The bottom plot shows an enlarge- 5mined discretizations to the stability of a general dis-
ment of the top plot as marked by the dashed lines. .. . . S
cretization strategy, is only motivated by a limited num-
ber of tests. None of these should in no way be mistaken

. o for a rigorous mathematical proof.
The results of these computations are shown in figure

4. From this we are led to conclude, that the discretiza-
tion with identical polynomial degree for velocity and
pressure is stable if either the velocity knot vector is re-
fined (a) or the inner knot multiplicity for the velocity is
increased (b). The same conclusion applies to the dis-  To asses the validity of the isogeometric method for
cretizations for which the polynomial degree of the ve- the full Navier-Stokes problem, we consider a test case
locity is larger than the polynomial degree of the pres- for which an analytical solution exists, and examine
sure by one (c and d) and two (e and f). The stability of how well the discretizations listed in table 1 are able
u43p3; (d) was already known from [7]. Both the mod- o reproduce the exact solution.

ified Nedelec (h) and Raviart-Thomas (i) discretizations  The problem is outlined in figure&d We take
are seen to be stable, whereas the simple discretizationthe physical domaif2 as the elliptic disk{(x¢, x2) €
u4lp2s (g) with a diference in polynomial degree of R? | (x1/@)? + (x2/b)?> < 1} with a = 2 andb = 1.

two but with identical inner knots doemt pass the sta-  Assuming appropriate units are assigned to all quanti-
bility test. The stability of each of the discretizations is ties and focussing only on their numerical values, we

0.2

B

0
0.345

5. Error Convergence: Forced Elliptic Cavity

summarized in the right-most column of table 1. setp = u = 1, take the body forcé = (fi, f2) to be
Several discretizations have been tested in addition 1 13

to those listed in table 1. It was found that increas- f, = —>U? sir? (z7?) x- - T sin(xf) x+ —zU cos(r?) y

. . 47 2

ing the diference between the polynomial degree of the 1

velocity approximation and the degree of the pressure -4n*U sin(nfz) y - anu Sin(ﬂ Fz) Xty

approximation does influence the inf-sup stability, even 1 _ - 7
without inserting or repeating knots. More specifically, f2=-7 u? 5'”2(” Fz) Y-7 sin(x )y - g™y COS(” Fz) X
the value of grid sizeh where the inf-sup “constant” 1, 2y e f w2
B starts decreasing seemed to decrease with increasing  * 16" sin(x72)  + 7 U sin(x ) y* x
polynomial degrees.
Assuming that the examined discretizations are rep- wherer”= f(x,y) = +/(x/2)? + y2, and assume no-slip
resentative, two simple strategies for choosing stable boundary conditionsu = 0 onT'. The following ve-
discretizations for the velocity and pressure approxima- locity and pressure fields solve the governing equations

7



and satisfy the boundary conditions: residual as measures of the error:

€ = f f llu(Xq, X2) — U* (X, Xo)lPdxq dXo,
Q

uf = -Usin(@f?)y,
1 @)y €= f f (X0, %) = P* (X1, %) PdXy ;.
w =ty sin(ri?
2= <) X, o
2
4
p* = = + cosff), €y = f Z IVuk(x1, X2) = VU (X1, X2) P dxad,
n kel
Q

6$p= f f IV p(X1, X2) — VP* (X1, X2)|I2dx1dXo.
Q

whereU is a velocity scale which in the following is as-
sumed to b&J = 200/ V5. These fields are depicted in

figure B-c. UsingL = Va2 + b2 = V5 as length scale, T s -
the Reynolds number for the problenRe = 200 which ; o e "o,

makes the problem weakly nonlinear. We parametrise  »*
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g U0 B S S, Figure 6: Convergence of erroi:2-norm (lefty andH1-seminorm
. : (right) of velocity residual (top) and pressure residuatiam) as
c d function of the total number of variables of the analysisigglifferent
. discretizations.

The results are shown in figure 6. The figure depicts
the velocity error (top) and pressure error (bottom) as
function of the total number of variables of the analy-
Figure 5: 'Forced elliptic cgvit)a: Domairj and boundar)_/ conditions. sis, using both th&2-norm (Ieft) and thed1-seminorm
b: Analytical stream function contour lines and velocitycavs. c: . ) .. . .
Analytical pressure contour lined: Control net (black dots and blue (right). We note that the discretizations a-f which pair-
lines) and image of the coarsest computational mesh fociegland wise have identical polynomial degrees, the knot refine-
pressure (red and green lines). ment strategies (a, ¢, €) have a significantly lower veloc-
ity error than the knot repetion strategies (b, d, f). In ad-
dition, the diference between the two strategies grows
as the number of degrees of fredoom increases, as is
most evident for thed!-seminorm. The dference in
the domain using quadratic NURBS. The control net pressure error between the two strategies varies more,
and the coarsest computational mesh for the velocity but the error of the knot refinement strategy is never
and pressure fields are shown in figude 5 larger than the error of the corresponding knot repetion
strategy. This make the knot refinement strategy favor-
We examine how well the exact velocity and pres- able in a per-degree-of-freedom sense. The knot refine-
sure fields are reproduced by a given discretization as ment strategy, unlike the knot repetition strategy, con-
the computational parameter mesthisefined by knot serves the degree of continuity for the velocity field.
insertion. For each discretization we uniformly vary This therefore confirms the high importance of conti-
the computational mesh for velocity and pressure in nuity alluded to in [4]. However, although the increase
the range from 4< 4 to 64 x 64 knot spans, and for in number of degrees of freedom for a given refinement
each of these meshes we computeltheorm and the is nearly identical for the two strategies, the knot refine-
Hl-seminorm of the velocity residual and the pressure ment strategy is computationally more expensive than
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the knot repetition strategy, since it doubles the number 6. Benchmark: Lid-Driven Square Cavity
of knot spans and thus quadruples the number of func-
tion evaluations needed for the Gaussian quadrature, un- As a final validation of the isogeometric method,

less more gicient quadrature rules are employed [17]. we compare our results for a standard benchmark flow
It is also worth noting that although the pressure error problem, namely the lid-driven square cavity [12, 3],
of the unstable discretizatiam;p2; (g) flattens out quit  against results from other numerical simulations [20,
quickly as the number of degrees of freedom increases, 21, 22]. We consider a fluid contained in a square cav-
the velocity error falls & impressively. Lastly, the mod- ity with the top wall moving with constant speed, and
ified Raviart-Thomas discretization (h) seem to perform tne other walls kept still as outlined in figure.8This
somewhat better than the modified Nédélec discretiza- prescribes the velocity field along the boundary of the
tion (i) for both the velocity and the pressure. domain, assuming no-slip conditions at the walls and
closed-lid conditionsy = 0) at the upper corners. No
body forces act upon the fluid; the fluid is set in mo-
tion from the movement of the lid. We parametrise the
domain using linear NURBS, and construct a stretched
computational mesh with increased resolution around
the corner singularities and boundary regions, see fig-
ure &. For the analysis, a computational grid of6@4
regularly spaced knot spans is employed.

We have in general good experiences with the Taylor-
Hood discretizatiom43p3;, (d), since it discretizes both
velocity components identically, and the knot spans for
the velocity and pressure fields are also the same. We
therefore base the following examination of the influ-
ence of the formulations of the Navier-Stokes equation
on this discretization. We solve the problem outlined
above using both the convective formulation as above
and the skew-symmetric formulation, and we do this for
two different values of the Reynolds number, namely
200 and 2,000, usingt00; 800; 1,000; 1,50(s inter-
mediate values to ensure convergence. Figure 7 com-
pares the convergence of errors for the two formula- °
tions. For the low Reynolds number, both the velocity

* . ey * - N Figure 8: Lid-driven square cavitya: Domain and boundary condi-
. * » tions. b: Control net (black dots and blue lines) and image of re¢ular
» L . spaced isoparametric lines (red and green lines).

Skew Symmetric
Re =200

& i d
Skew Symmetric

10° » A ¥V Re=2000 *

*

Using the isogeometric discretizations listed in ta-
ble 1 we firstly solve the problem for Reynolds number
W Re = 5,000. We gradually increas®e, and the number
of intermediate steps iRe necessary to achieve con-

Fi_gLrJIre 7f: Clon\_/tergen%e c:f frromz-gorm (left) and?jl;fmorm vergence folRe = 5,000 is around five, but is in gen-
(10 of ey st (op) ard presure eSS 55 era diferent for the various discretzations. The total
formulations and Reynolds numbers using the discretizai¢gp3} number of basis functions for the analysis ranges from
(d). 13,604 for the discretization43p25 (g) to 72,865 for

the Nédélec discretization (h), while the remaining dis-

cretizations all have between 38,678 and 39,472 anal-

ysis basis functions. Figure 9 compares the computed
and the pressure errors of the two formulations are prac- horizontalvertical velocity profiles through the verti-
tically identical. For the higher Reynolds number, some calhorizontal center line of the cavity to the data from
differences are seen for the pressure error, while the ve{20]. On the left, the velocity profiles for all nine dis-
locity errors remain similar. It should also be mentioned cretizations are seen to match very well with the data
that in our experience, more non-linear solver iterations in [20]. On the right, the velocity residuals reveal that
are needed for the skew-symmetric formulation to con- all discretizations yield slightly larger fluid speeds away
verge compared to the convective formulation. from the center and towards the boundaries compared

z * b4
) *

10° 10° N 10° 10° 10°
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Figure 9: Comparison of velocity profile curves and residuaves
(velocity minus fit) for the lid-driven square cavity féte = 5,000
using diferent discretizations, plotted with data from [20] and adfit t
the data using a cubic spline. Top: horizontal velocity pesfileft)
and residuals (right) through the vertical center line. t@ot verti-
cal velocity profiles (left) and residuals (right) throudite thorizontal
center line.

to the data. The agreement between the discretizations
however, is very good.

In the following, we once again focus on the dis-
cretizatioru4§p3(1) (d). Figure 10 shows velocity vectors
and stream function contour lines fBe = 5,000. The

NN |
NN N

>~ ONON NS T

~

)
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Figure 10: Four views of velocity vectors and stream funrctiontour
lines in the lid-driven square cavity féte = 5,000 using thm4§p3%
discretization (d).

general pattern of the stream function matches very well
10

with the results of [20], [21] and [22]. The locations
and the extremal values of both the central main eddy
as well as the minor eddies in the bottom right, bottom
left and top left corners are in overall agreement. Small
discrepencies are still seen, e.g. close to the boundary
in the top left corner.

Finally, the problem is solved for fierent values of
Re in the range from 100 to 10,000100; 400; 1,000;
2,000; 3,200; 5,000; 7,500; 10,000}. Figure 1&H/b
shows the computed horizomartical velocity profiles
through the verticghorizontal center line of the cav-
ity along with the data from [20] for the values B&
printed in italic. In general, the velocity profiles from

a

Re Re s Res

5 Re =
Sogp © = 3200 900 00

Figure 11: Velocity profile curves for the lid-driven squaaeity for
seven values oRe (solid lines) using thei43p3} discretization (d)
plotted along with data from [20] (points)k: vertical velocity pro-
file through the horizontal center linda: horizontal velocity profile
through the vertical center line: vertical velocity residuald: hor-
izontal velocity residual. The profile curves have beendiated to
avoid clustering of data. We speculate that three obvioubeos)

marked with rings, stem from misprints in the tabulated dat20].
Cubic splines have been fitted to the remaining data.

the present study match very well with the data in [20].
Once again, however, a closer examination reveals a
small diference: for higheRe, we compute slightly
larger fluid speeds close to the boundaries than is done
in [20], and this dfference increases witRe. There is,
however, a very nice agreement in the location of the



velocity extrema.
Regarding the dierences in flow speeds close to the

Dirichlet boundary conditions. Firstly, a detailed de-
scription of the implementation has been given. Sec-

boundaries, several points deserve mentioning. Firstly, ondly, numerical inf-sup stability tests have been pre-

the results depend critically on the choice of bound-
ary conditions specified for the upper corners. We em-

sented that confirm the existence of many stable dis-
cretizations of the velocity and pressure spaces. In par-

phasize that closed-lid conditions are assumed in theticular it was found that stability may be achieved by
present study. Secondly, the results depend slightly on means of knot refinement of the velocity space. Thirdly,

the formulation of the Navier-Stokes equation (1a) for
Re > 5,000, depending on whether the convective or
the skew-symmetric formulation is used. This is shown
in figure 12, where the computed velocity profiles using
each of the two dferent formulations are compared for

Re = 10,000. The convective and the skew-symmetric

0 02 04 06 08 1 0 02 04 06 08 1
x x

Figure 12: Comparison of velocity profile curves and rediduaves
(velocity minus fit) for the lid-driven square cavity f&e = 10,000
with different formulations of the inertial term using thé2p3} dis-
cretization (d), plotted with data from [20] and a fit to thealasing
a cubic spline. Top: horizontal velocity profiles (left) aresiduals
(right) through the vertical center line. Bottom: vertie@locity pro-
files (left) and residuals (right) through the horizontahtes line.

formulations are found to nearly match each other in the
interior, whereas some ftierences are observed close
to the boundaries, in particular at the moving lid. We

emphasize that the present study is based on the sim- (5]

pler convective formulation of the Navier-Stokes equa-
tion. Thirdly, the data in [20] are relatively sparse at
the boundaries where the variation in velocity is high.
Finally, it should be stressed that the data in [20] stem

error convergence studies compared the performance of
the various discretizations and indicated optimal con-
vergence, in a per-degree-of-freedom sense, of the dis-
cretization with identical polynomial degrees of the ve-
locity and pressure spaces but with the velocity space
enriched by knot refinement. Finally, the method has
been applied to the lid-driven square cavity for bench-
marking purposes, showing that the stable discretiza-
tions produce consistent results that match well with
existing data and thus confirm the robustness of the
method.

Appendix A. Data for Geometry Parametrisations

Table A.2 lists the polynomial degrees, knot vectors
and control points for the geometry of the analysed
problems.
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Wall-Driven Annular Cavity

Degree q=r=2
Knots Z2=0={0,0,0,1,1,1}
Point 1 2 3 4 5 6 7 8 9
X1 0 1 1 0 32 32 0 2 2
X2 1 1 0 32 32 0 2 2 0
w 1 Y2 1 1 U2 1 1 V2 1
Forced Elliptic Cavity
Degree q=r=2
Knots ==0={0,0,01,1,1}
Point 1 2 3 4 5 6 7 8 9
X -2/V2 0 2/ V2 -4/¥2 0 42 -2/vV2 0 2/ V2
X -1/v2  -2/N2 -yv2 o 0 0 V2 2/ V2 V2
w 1 Y2 1 1 YV2 1 1 Y2 1
Lid-Driven Square Cavity
Degree g=r=1
Knots E=0={0,0,1/2,1,1}
Point 1 2 3 4 5 6 7 8 9
X1 0 12 1 0 12 1 0 12 1
Xo 0 0 0 12 12 12 1 1 1
w 1 12 1 12 14 12 1 12 1
Table A.2: Polynomial degrees, knot vectors, control miahd

weights for the geometry of the analysed problems.
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