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Discretizations in Isogeometric Analysis of Navier-Stokes Flow
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Abstract

This paper deals with isogeometric analysis of the 2-dimensional, steady state, incompressible Navier-Stokes equa-
tion subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to
solve the boundary value problem. Numerical inf-sup stability tests for the simplified Stokes problem confirm the
existence of many stable discretizations of the velocity and pressure spaces, and in particular show that stability may
be achieved by means of knot refinement of the velocity space.Error convergence studies for the full Navier-Stokes
problem show optimal convergence rates for this type of discretizations. Finally, a comparison of the results of the
method to data from the literature for the the lid-driven square cavity for Reynolds numbers up to 10,000 serves as
benchmarking of the discretizations and confirms the robustness of the method.

Keywords:
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1. Introduction

Isogeometric analysis unites the power to solve com-
plex engineering problems from finite element analysis
(FEA) with the ability to smoothly represent compli-
cated shapes in very few degrees of freedom from com-
puter aided design (CAD) [1, 2]. Within recent years,
isogeometric analysis has been applied to various flow
problems and proved its value within the field of fluid
mechanics. Some of the first studies were on steady-
state incompressible Stokes flow in the benchmarking
lid-driven square cavity [3]. Subsequent analysis of the
full time dependent Navier-Stokes equations using the
isogeometric method has shown its advantages both in
terms of continuity of state variables [4] and the ability
to accurately represent complicated dynamic flow do-
mains [5]. Benchmarking of the method for the turbu-
lent Taylor-Couette flow shows very nice performance
of the method [6].

An important issue in the analysis of the mixed for-
mulation of the governing equations for fluids is the
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stability of the element, or discretization, used to ap-
proximate the state variables. The first stable B-spline
discretization for the Stokes problem was proposed in
[3]. Recently, two more families of stable B-spline dis-
cretizations were identified in [7], thereby further em-
phasizing how easily high degrees of continuity may be
achieved in isogeometric analysis. Mathematical proofs
of the stability of a range of discretizations have very
recently been made [8, 9].

The aim of this paper is threefold. Firstly, we wish to
extend the list of stable B-spline discretizations for the
2D steady state, incompressible Stokes problem. Sec-
ondly, we wish apply the method to the non-linear 2D
steady state, incompressible Navier-Stokes problem and
examine how these discretizations perform in terms of
error convergence based on a flow problem with an an-
alytical solution. Finally, the benchmarking lid-driven
square cavity will be analysed and the results of the dis-
cretizations compared to data from the literature.

The outline of the paper is as follows. Section 2
presents the equations that govern problems in fluid
mechanics, and section 3 outlines how the problem is
solved using isogeometric analysis. In section 4 we per-
form a numerically test of different isogeometric dis-
cretizations in terms of stability, and an error conver-
gence study for these discretizations is presented in sec-
tion 5. Finally in section 6, a comparison of the dis-
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cretizations against results from the literature is pre-
sented for the benchmarking lid-driven square cavity.

2. Boundary Value Problem

We consider a fluid contained in the domainΩ with
boundaryΓ ≡ ∂Ω, see figure 1. We assume the fluid
to be a viscous, incompressible, isothermal, Newtonian
fluid, and we furthermore assume it to be stationary. The
fluid is then governed by:

−µ∆u + ρu · ∇u + ∇p − ρ f = 0 inΩ (1a)

∇ · u = 0 inΩ (1b)

Equation (1a) is the the steady-state Navier-Stokes
equation, expressing conservation of momentum for the
fluid and written in the primitive variablesp and u,
wherep is pressure andu = (u1, u2) is the fluid velocity.
The quantitiesρ, µ and f denote the density, dynamic
viscosity and additional body forces acting on the fluid,
respectively. Equation (1b) is the incompressibility con-
dition, and it expresses conservation of mass.

We assume the velocityu to be prescribed along the
bondaryΓ, and we take the mean pressure to be zero:

u = uD onΓ (1c)
∫∫

Ω

p dA = 0 (1d)

whereD in equation (1c) stands for Dirichlet. Other
boundary conditions, such as Neumann boundary con-
ditions, could also be considered but have been left out
for simplicity.

Numerical methods for solving Navier-Stokes equa-
tion (1a) can employ different formulations of the equa-
tion. The main results of the present study are based on
the convective formulation. Comparisons to theskew-
symmetric formulation are also made, while therota-
tional formulation is left out to avoid the introduction of
stabilization [10]. The two formulations differ in their
treatment of the non-linear inertial termu · ∇u:

(u · ∇)u or (u · ∇)u +
1
2
∇ · u. (2)

Compared to the convective formulation, the skew-
symmetric formulation additionally involves the diver-
gence of the velocity field. Even though these formula-
tions on a continous level are exactly equivalent, due to
the incompressibility condition (1b), this is not the case
on a discrete level, and therefore the numerical solutions
might differ.

3. Isogeometric Method

Equations (1) together comprise thestrong form of
the boundary value problem that governs the state of the
fluid. We use NURBS-based isogeometric analysis built
on Galerkin’s method to solve the problem numerically.
This section outlines the procedure. See also [2, 11, 12].

3.1. Geometry Parametrisation

The physical domainΩ is parametrised using
NURBS, Non-Uniform Rational B-splines. To make the
text self-contained, we very briefly revise the basic con-
cepts of B-splines and NURBS in the following. For
a more in-depth treatment of this subject, we refer the
reader to e.g. [13].

To define univariate B-splines we choose a polyno-
mial degreeq ∈ N and a knot vectorΞ = {ξ1, . . . , ξm}
with ξi ∈ R for i = 1, . . . ,m. For simplicity, we as-
sume the parametric domainξ ∈ [0, 1], and that the
knot vector is open such that the boundary knots have
multiplicity q + 1 with ξ1 = ξ2 = . . . = ξq+1 = 0 and
ξm = ξm−1 = . . . = ξm−q = 1. The univarite B-splines
Nq

i : [0; 1]→ R are defined recursively as

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(3a)

for q = 0, and

Nq
i (ξ) =

ξ − ξi
ξi+q − ξi

Nq−1
i (ξ)+

ξi+q+1 − ξ
ξi+q+1 − ξi+1

Nq−1
i+1 (ξ) (3b)

for q = 1, 2, . . ..
The bivariate tensor product B-splinesPq,r

i, j :

[0, 1]2 → R are defined from two polynomial degrees
q and r and two knot vectorsΞ = {ξ1, . . . , ξm} and
Φ = {φ1, . . . , φn}:

Pq,r
i, j (ξ1, ξ2) = Nq

i (ξ1)Mr
j(ξ2), (4)

whereNq
i is the ith univariate B-spline with degreeq

and knot vectorΞ in the first parametric dimensionξ1
as defined in equation (3), andMr

j is the jth univariate
B-spline with degreer and knot vectorΦ in the second
parametric dimensionξ2.

The bivariate NURBSRq,r
i, j : [0, 1]2 → R are defined

from theNM bivariate B-splines in equation (4) and the
weightsW = {w1,1, . . . ,wN,M} with wi, j ∈ R for i =
1, . . . ,N and j = 1, . . . ,M:

Rq,r
i, j (ξ1, ξ2) =

wi, jPq,r
i, j∑N

k=1
∑M

l=1 wk,lPq,r
k,l

(5)
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Figure 1: A single patch parametrisation of the fluid domain.Colors
indicate how the boundarŷΓ of the parameter domain̂Ω is mapped
into the boundaryΓ of the physical domainΩ.

With the basic concepts of B-splines and NURBS de-
fined, we now make a single patch parametrisation of
the fluid domainΩ, see figure 1. We take the parame-
ter domainΩ̂ as the unit square (ξ1, ξ2) ∈ [0, 1]2, and
use the bivariate NURBS defined in equation (5). The
parametrisationF : [0, 1]2→ R

2 reads:

F(ξ1, ξ2) =
(

x1(ξ1, ξ2), x2(ξ1, ξ2)
)

=

N∑

i=1

M∑

j=1

di, jRq,r
i, j (ξ1, ξ2), (6)

wheredk ∈ R
2 are the control points. By a simple re-

ordering, we can write the above as

F(ξ1, ξ2) =
Ng

var∑

i=1

x̄iRg
i (ξ1, ξ2), (7)

where Ng
var = NM is the number of NURBS,̄xi are

the reordered control points, andRg
i are the reordered

NURBS. The superscriptg indicates that the NURBS
functions refer to polynomial degrees, knots vectors and
weights that are specific for the geometry representa-
tion.

3.2. Field Approximations

In a similar fashion as for the geometry representation
in equation (7) above, we seek approximations of the
velocity u : [0; 1]2 → R

2 and pressurep : [0; 1]2 → R

as linear combinations of the basis functions defined
above. Since NURBS are only needed to represent the
geometry, and not the velocity and pressure, we will for
simplicity use B-splines to approximate the state vari-

ables:

uk(ξ1, ξ2) =
N

uk
var∑

i=1

ukiP
uk
i (ξ1, ξ2), (8a)

p(ξ1, ξ2) =
N p

var∑

i=1

p
i
Pp

i (ξ1, ξ2), (8b)

wherek = 1, 2 in (8a) refers to the two components of
the velocity field,Puk

i denote the B-spline basis func-
tions for thekth component of the velocity field, while
Pp

i similarly denote the B-spline basis functions for the
pressure field, all suitably reordered compared to the
definition in equation (4). They refer to separate sets of
polynomial degrees and knot vectors that are in general
not the same.Nuk

var and Np
var are the number of veloc-

ity and pressure basis functions, whileuk andp are the
unknown control variables for the velocity and pressure
that are to be determined.

The velocity and pressure fields in equations (8) are
defined in parameter space, while the governing equa-
tions (1) are formulated in physical space. To evaluate
the fields in physical space, the inverse of the geometry
parametrisationF is used; the pressurep : Ω→ R over
the physical domain is computed asp ◦ F−1, and the ve-
locity u : Ω→ R

2 over the physical domain asu◦F−1.
The Piola mapping could also be used to map the veloc-
ity [7], but since none of the examined discretizations
are exactly divergent free, we take the simpler approach
and map each velocity component as a scalar field. With
abuse of notation, we use the same symbol for the state
variables both in parameter space and in physical space.

Gradients in parameter space,∇̂p =
[
∂p
∂ξ1

∂p
∂ξ2

]T
, are eas-

ily evaluated using the field approximations in equation
(8) and the definition of B-splines in equation (4). Gra-

dients in physical space,∇p =
[
∂p
∂x1

∂p
∂x2

]T
, are related to

the gradients in parameter space by the formula:

∇̂p = JT∇p ⇐⇒ ∇p = J−T ∇̂p, (9)

where J is the Jacobian matrix of the geometry
parametrisation:

J =


∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

 , (10)

which again is easily evaluated using the mapping in
equation (7) and the definitions of NURBS in equation
(5).

3.3. Boundary Conditions
For simplicity we impose the Dirichlet boundary con-

ditions in (1c)strongly as opposed to the weak enforce-
ment suggested in [14, 15]. Hereby we avoid the need
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for definition of penalization parameters which is favor-
able if a sequence of analysis with different geometries
is to performed as in shape optimization problems [16].

In general B-splines have compact support. This
means that only a few of the velocity basis functions
Puk

i in equation (8a) have support onΓ. We can sim-
ply arrange the functionsPuk so that the firstNuk

dof of
these donot have support on the boundary, and the cor-
responding control variables of these are thus “degrees
of freedom”, while the lastNuk

fix = Nuk
var − Nuk

dof have sup-
port onΓ, and the corresponding control variables are
thus “fixed”:

uk(ξ1, ξ2) =

N
uk
dof∑

i=1

ukiP
uk
i (ξ1, ξ2) +

N
uk
var∑

i=N
uk
dof+1

ukiP
uk
i (ξ1, ξ2). (11)

The strong imposition is done by directly specifying
suitable values for these lastNuk

fix velocity control vari-
ablesuki, so that the sum in equation (8a) approximates
the specified valueuD in (1c). If uD lies within the
function space spanned byPuk

i , the conditions are satis-
fied exactly; otherwise they are only satisified in a least
square sense.

For the pressure, we note that only the pressuregra-
dient appears in the Navier-Stokes equation (1a). The
pressure is thus only determined up to an arbitrary con-
stant, which is dealt with by the specification of the
mean pressure in equation (1d). Using the approxima-
tion in equation (8b), this gives rise to the following
equation:

0 =
∫∫

Ω

p dA =
∫∫

Ω

N p
var∑

i=1

p
i
Pp

i (x1, x2) dx1 dx2

=

N p
var∑

i=1

p
i

1 1∫∫

0 0

Pp
i (ξ1, ξ2) det

(
J
)
dξ1 dξ2 = pMT , (12)

wherep is the vector of pressure control variables,M
the vector of integrals of pressure basis functions, and
J is given by (10). Since no pressure control variables
needs to be fixed, we haveNp

dof = Np
var andNp

fix = 0.

3.4. Weak Form of the Governing Equations

The governing equations (1) are cast into theirweak,
or variational, form. For this we use the (image in phys-
ical space of the) B-spline introduced above asweight
functions for the governing equations. We will use only
the firstNuk

dof velocity basis functions, since these have
no support on the fixed boundary. We multiply thekth
component of the Navier-Stokes equation (1a) by an ar-
bitrary weight functionPuk

i among these velocity basis

functions, and the incompressibility equation (1b) by an
arbitrary weight functionPp

j among the pressure basis
functions, integrate the resulting equations overΩ, and
then simplify using integration by parts. After some ma-
nipulations we find the following weak form of the gov-
erning equations:

0 =
∫∫

Ω

(
( µ∇Puk

i + ρP
uk
i u) · ∇uk

− ( p∇Puk
i + ρP

uk
i f ) · ek

)
dx1 dx2 (13a)

0 =
∫∫

Ω

Pp
j (∇ · u) dx1 dx2 (13b)

for k = 1, 2, i = 1, . . . ,Nuk

dof and j = 1, . . . ,Np
dof, and

whereek is thekth unit vector.

3.5. Matrix Equation

Finally, we insert the (image in physical space of the)
approximations of the velocity and pressure fields (8)
into the weak form (13) of the governing equations, split
the superpositions ofu into parts with support on the
fixed boundary and parts without as in equation (11),
exchange the order of summation and integration, re-
arrange to get the unknown terms on the LHS and the
known terms on the RHS, and pull the integration back
to parameter space using standard transformation rules
for multiple integrals along with equation (9). This
gives:

M(U)︷                                          ︸︸                                          ︷
K1 + C1(ū) 0 −GT

1
0 K2 + C2(ū) −GT

2
G1 G2 0



U︷ ︸︸ ︷
ū1

ū2

p̄



=


f1

f2

0

 −


K⋆1 + C⋆1 (ū) 0

0 K⋆2 + C⋆2 (ū)
G⋆1 G⋆2



[
ū⋆1
ū⋆2

]

︸                                                         ︷︷                                                         ︸
F

,

(14)
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or simply M(U) U = F, with

K i jk = µ

1 1∫∫

0 0

(
J−T∇Puk

i

)
·
(
J−T∇Puk

j

)
det
(
J
)
dξ1 dξ2,

(15a)

C i jk(u) = ρ

1 1∫∫

0 0

Puk
i

(
u(ul) ·

(
J−T∇Puk

j

))
det
(
J
)
dξ1 dξ2,

(15b)

Gi jk =

1 1∫∫

0 0

Pp
i

(
J−T∇Puk

j

)
· ek det

(
J
)
dξ1 dξ2, (15c)

fik = ρ

1 1∫∫

0 0

Puk
i

(
f · ek

)
det
(
J
)
dξ1 dξ2, (15d)

Kk =
[

Kk K⋆k
] (

N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (15e)

Ck(u) =
[

Ck(u) C⋆k (u)
] (

N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (15f)

Gk =
[

Gk G⋆k
] (

N p
dof ×(N

uk
dof+N

uk
fix )
)
, (15g)

wherek = 1, 2, J is the Jacobian matrix in equation
(10),u(u) is given by the approximation in equation (8),
ek is thekth unit vector,u

T

k = [ū
T

k ū⋆
T

k ], and all starred
quantities are given by the boundary conditions.Kk is
often called viscosity matrix,Ck convective matrix,Gk

gradient matrix, andfk force vector.

The integrals in equation (15) are evaluated using
Gaussian quadrature. The necessary number of quadra-
ture pointsNG in each knot span is estimated from the
relation q̃ = 2NG − 1, where ˜q is an estimate of the
highest polynomial degree of the integrands. Since the
integrands are in general rational functions, we simply
estimate ˜q as the sum of polynomial degrees of the nu-
merator and the denominator. Using polynomial degree
2 for the geometry and 4 for the velocity and pressure,
we estimate a polynomial degree of ˜q = 12 for the inte-
grand ofC, and this dictates that we should use at least
NG = 7 quadrature points in each knot span. All results
in the following are based on 7 quadrature points per
knot span, which is a conservative choice compared to
recent studies on more efficient quadrature rules [17].

We need to solveNu1

dof + Nu2

dof + Np
dof equations from

(14) supplemented by the equation from the condition
on the mean pressure from (12) inNu1

dof + Nu2

dof + Np
dof

unknowns, and we do this in the least square sense.
The problem is non-linear, and an incremental Newton-
Raphson method is used by gradually increasingRe, see
e.g. [11].

4. Stability for Stokes Problem:Wall-Driven An-
ullar Cavity

In the following section, we deal with the stability of
the isogeometric method when applied to Stokes flow,
which is the problem that arises when we neglect the
non-linear inertial term in Navier-Stokes equation (1a).
Some discretizations of the mixed formulation of Stokes
problem are stable while others are unstable. Unstable
discretizations can leave the system matrixM in equa-
tion (14) singular or badly scaled, which in turn leads to
spurious, unphysical oscillations for the pressure field,
while the velocity field may still look quite reasonable.
Figure 3 below shows an example of this. Furthermore,
it deteriorates the convergence properties of the method
and thus prohibits iterative solutions for the full Navier-
Stokes problem. In order for a given discretization to be
stable, it needs to satisfy the socalled inf-sup condition,
also known as the BB or LBB condition:

inf
p

sup
u

∫∫

Ω

p∇ · u dA

‖p‖ ‖u‖ ≥ β > 0, (16)

where the positive constantβ is independent of the
mesh. In equation (16), the norm ofp is theL2-norm,
while the norm ofu is theH1-norm.

In this section we study how stable discretizations
may be constructed by using different basis functions
for the velocity and pressure fields. More specifically,
we will establish suitable choices of polynomial degrees
and knot vectors for the velocity and pressure such that
the discretizations are stable. This idea follows the ap-
proach in a recent work [7], in which three families of
stable discretizations were presented, but contrasts to
the stabilized method in which identical basis functions
for the velocity and pressure may be used on the cost
that stabilizing terms must be added to the Stokes equa-
tion, see e.g. [3].

We report the stability of the isogeometric discretiza-
tions listed in table 1. The discretizations differ in poly-
nomial degrees, knot refinements and inner knot mul-
tiplicities between the velocity and pressure represen-
tations. We have adobted a heuristic nomenclature for
naming of the individual discretizations. For theu42

0p31
0

discretization (d), e.g., both velocity components are ap-
proximated using quartic B-splines (u4), and the pres-
sure using cubic B-splines (p3). Superscript indicates
the multiplicity of inner knots, and thus also the degree
of continuity across knots, since this is just the degree
minus the multiplicity. Subscript indicates the num-
ber of h-refinements by halfing all knot spans. For the
strategies a-g, each of the velocity componenentsu1 and

5



Name Knot Vec-
tor 1

Knot Vec-
tor 2

inf-
sup

a u41
1p41

0
-ppp ξ0 1

p p p pp p p pp p p pp pp p

p p
p p
p p
p p

p p
p p
p p
p p

p p
p p
p p
p p

-ppp ξ0 1
p p p pp p p pp p p pp pp p

p p
p p
p p
p p

p p
p p
p p
p p

p p
p p
p p
p p

√

b u42
0p41

0
-ppp ξ0 1

p p p pp p p pp p p p
p pp pp p

p p
p p
p p

p p
p p
p p
p p

p p
p p
p p
p p

-ppp ξ0 1
p p p pp p p pp p p p

p pp pp p
p p
p p
p p

p p
p p
p p
p p

p p
p p
p p
p p

√

c u41
1p31

0
-ppp ξ0 1

p p p pp p p pp p p pp pp p
p p
p p

p p
p p

p p
p p

p p
p p

p p
p p

p p

-ppp ξ0 1
p p p pp p p pp p p pp pp p
p p
p p

p p
p p

p p
p p

p p
p p

p p
p p

p p

√

d u42
0p31

0
-ppp ξ0 1

p p p pp p p pp p p p
p pp pp p

p p
p p
p p

p p
p p
p p
p p

p p
p p
p p

-ppp ξ0 1
p p p pp p p pp p p p

p pp pp p
p p
p p
p p

p p
p p
p p
p p

p p
p p
p p

√

e u41
1p21

0
-ppp ξ0 1

p p p pp p p pp p p pp pp p
p p
p p

p p
p p

p p
p p

p p
p p

p p
p p

-ppp ξ0 1
p p p pp p p pp p p pp pp p
p p
p p

p p
p p

p p
p p

p p
p p

p p
p p

√

f u42
0p21

0
-ppp ξ0 1

p p p pp p p pp p p p
p pp pp p

p p
p p
p p

p p
p p
p p
p p

p p
p p

-ppp ξ0 1
p p p pp p p pp p p p

p pp pp p
p p
p p
p p

p p
p p
p p
p p

p p
p p

√

g u41
0p21

0
-ppp ξ0 1

p p p pp p p pp p p p
p p
p p
p p
p p

p p
p p
p p
p p

p p
p p

-ppp ξ0 1
p p p pp p p pp p p p
p p
p p
p p
p p

p p
p p
p p
p p

p p
p p ÷
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p p
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p pp p -ppp ξ0 1
p p p pp p p pp p p p
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p p
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p p
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p p
p p
p p

p pp p

√

Table 1: Discretization names, knot vectors and inf-sup-stability. Ve-
locity knot vectors are shown in red and green, while the pressure knot
vector is shown in blue.

u2 are represented identically, which reduces the com-
putational expenses since equality of the basis functions
Ru1

i = R
u2
i implies equality of the matricesKi j1 = Ki j2,

and in addition all fields are represented identically in
both parametric directions. This is not the case for the
strategies h and i, which are modified versions of the
Nédélec and Raviart-Thomas elements presented in [7].
Compared to the original formulation in [7], the veloc-
ity fields have beenh-refined once. It should be stressed
that with this enlargement of the velocity space, the ex-
act fulfillment of the divergence-free constraint for the
Raviart-Thomas discretization is lost. Theu42

0p31
0 dis-

cretization (d) was originally proposed in [3] and subse-
quently introduced in [7] as the Taylor-Hood element.

To examine the numerical stability, we consider the
wall-driven annular cavity problem outlined in figure
2a. This is a slight modification of the standard bench-
mark lid-driven square cavity problem, see the treat-
ment of the problem in Section 6, utilizing the capa-
bility of isogeometric analysis to exactly represent cir-
cular arcs. The fluid is contained in an annular cavity.
The inner circular wall moves with constant tangential
speed, while the remaining three walls are at rest. The
velocity field is specified along the boundary of the do-
main, assuming no-slip conditions. No body forces act
upon the fluid, and the fluid motion is thus caused—or
driven—by the moving wall. We adopt the so-called
leaky-lid boundary condition, meaning that the corners
(x, y) = (0, 1) and (x, y) = (1, 0) belong to the mov-
ing wall boundary. We parametrise the domain using
quadratic NURBS. The control net is shown in figure
2b, and the data for the geometry parametrisation are

a b

0 1 2
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1

2

x

y

u = 0

u
=

0 u
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0

ut =
1

ur
=

0

f = 0

0 1 2

0

1

2

x

y

Figure 2: Driven annular cavity.a: Domain and boundary conditions.
b: Control net (black dots and blue lines) and image of the computa-
tional mesh for velocity and pressure (red and green lines).

listed in table A.2 in Appendix Appendix A. For the
velocity and pressure representation, weh-refine the
parameter mesh for the geometry by halfing the knot
spans, leading to a familiy of parameter meshes ranging
from 2× 2 to 64× 64 knot spans, one of which is also
depicted in figure 2b.

Figure 3 shows the computed velocity and pres-
sure fields for two different discretizations, namely the
u41

0p41
0 discretization (top row) and theu41

1p41
0 dis-

cretization (bottom row). Both of these produce a rea-
sonable, rotational flow field. Clear pressure oscilla-
tions, however, are seen for first discretization, whereas
the latter nicely approximates the pressure singularitites
in the inner corners.
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xy
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Figure 3: Computed fields foru41
0p41

0 (top) andu41
1p41

0 (bottom) dis-
cretizations. Left: stream function contour lines and velocity arrows.
Right: pressure (note the different vertical scalings).

To test the stability of the discretization strategies, we
use the approach described in [18, 19]. For each dis-
cretization, we vary the grid size for the velocity and
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pressure representations, and for each of these meshes
we determine a numerical estimate of the inf-sup “con-
stant”β in equation (16). If this value does not change
appreciably with varying grid size, it indicates that the
discretization is stable. On the other hand, if the value
tends to zero as the grid size changes, it indicates that
the discretization isunstable.
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Figure 4: Numerically computed inf-sup “constants” for varying grid
size using different discretizations. The bottom plot shows an enlarge-
ment of the top plot as marked by the dashed lines.

The results of these computations are shown in figure
4. From this we are led to conclude, that the discretiza-
tion with identical polynomial degree for velocity and
pressure is stable if either the velocity knot vector is re-
fined (a) or the inner knot multiplicity for the velocity is
increased (b). The same conclusion applies to the dis-
cretizations for which the polynomial degree of the ve-
locity is larger than the polynomial degree of the pres-
sure by one (c and d) and two (e and f). The stability of
u42

0p31
0 (d) was already known from [7]. Both the mod-

ified Nédélec (h) and Raviart-Thomas (i) discretizations
are seen to be stable, whereas the simple discretization
u41

0p21
0 (g) with a difference in polynomial degree of

two but with identical inner knots doesnot pass the sta-
bility test. The stability of each of the discretizations is
summarized in the right-most column of table 1.

Several discretizations have been tested in addition
to those listed in table 1. It was found that increas-
ing the difference between the polynomial degree of the
velocity approximation and the degree of the pressure
approximation does influence the inf-sup stability, even
without inserting or repeating knots. More specifically,
the value of grid sizeh where the inf-sup “constant”
β starts decreasing seemed to decrease with increasing
polynomial degrees.

Assuming that the examined discretizations are rep-
resentative, two simple strategies for choosing stable
discretizations for the velocity and pressure approxima-

tions can be established by means of induction. Given
a simple discretization for the pressure, i.e. open knot
vectors, choose the velocity degrees at least equal to the
pressure degree and then either take the velocity knot
vectors as the refinement of the pressure knot vectors,
or use the pressure knot vectors with all inner knots re-
peated. Or conversely, given simple discretizations for
the velocity, i.e. with open knot vectors and single or
double inner knots, choose the pressure degree less than
or equal to the velocity degree, and take the pressure
knot vectors as the velocity knot vectors with every 2nd
inner knot removed. The knot refinement strategy is
used for the cases a, c and e, and the knot repetition
strategy for cases b, d and f. The modified Raviart-
Thomas (i) also uses the refinement strategy, while the
modified Nédélec (h) combines both strategies.

We should emphasize firstly that the presented inf-
sup method only serves as a numerical test of the sta-
bility of the examined discretizations, and secondly that
the inductive step, going from the stability of the ex-
amined discretizations to the stability of a general dis-
cretization strategy, is only motivated by a limited num-
ber of tests. None of these should in no way be mistaken
for a rigorous mathematical proof.

5. Error Convergence: Forced Elliptic Cavity

To asses the validity of the isogeometric method for
the full Navier-Stokes problem, we consider a test case
for which an analytical solution exists, and examine
how well the discretizations listed in table 1 are able
to reproduce the exact solution.

The problem is outlined in figure 5a. We take
the physical domainΩ as the elliptic disk{(x1, x2) ∈
R

2 | (x1/a)2 + (x2/b)2 ≤ 1} with a = 2 andb = 1.
Assuming appropriate units are assigned to all quanti-
ties and focussing only on their numerical values, we
setρ = µ = 1, take the body forcef = ( f1, f2) to be

f1 = −
1
4

U2 sin2
(
π r̃2
)

x − 1
4
π

r̃
sin(π r̃) x +

13
2
πU cos

(
π r̃2
)

y

− 4π2 U sin
(
π r̃2
)

y3 − 1
4
π2 U sin

(
π r̃2
)

x2 y

f2 = −
1
4

U2 sin2
(
π r̃2
)

y − π
r̃

sin(π r̃) y − 7
8
πU cos

(
π r̃2
)

x

+
1
16
π2 U sin

(
π r̃2
)

x3 + π2 U sin
(
π r̃2
)

y2 x,

where ˜r = r̃(x, y) =
√

(x/2)2 + y2, and assume no-slip
boundary conditions:u = 0 on Γ. The following ve-
locity and pressure fields solve the governing equations
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and satisfy the boundary conditions:

u⋆1 = −U sin(πr̃2) y,

u⋆2 =
1
4

U sin(πr̃2) x,

p⋆ =
4
π2
+ cos(πr̃),

whereU is a velocity scale which in the following is as-
sumed to beU = 200/

√
5. These fields are depicted in

figure 5b-c. UsingL =
√

a2 + b2 =
√

5 as length scale,
the Reynolds number for the problem isRe = 200 which
makes the problem weakly nonlinear. We parametrise
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Figure 5: Forced elliptic cavity.a: Domain and boundary conditions.
b: Analytical stream function contour lines and velocity arrows. c:
Analytical pressure contour lines.d: Control net (black dots and blue
lines) and image of the coarsest computational mesh for velocity and
pressure (red and green lines).

the domain using quadratic NURBS. The control net
and the coarsest computational mesh for the velocity
and pressure fields are shown in figure 5d.

We examine how well the exact velocity and pres-
sure fields are reproduced by a given discretization as
the computational parameter mesh ish-refined by knot
insertion. For each discretization we uniformly vary
the computational mesh for velocity and pressure in
the range from 4× 4 to 64× 64 knot spans, and for
each of these meshes we compute theL2-norm and the
H1-seminorm of the velocity residual and the pressure

residual as measures of the error:

ǫ2u =

∫∫

Ω

‖u(x1, x2) − u⋆(x1, x2)‖2dx1dx2,

ǫ2p =

∫∫

Ω

|p(x1, x2) − p⋆(x1, x2)|2dx1dx2,

ǫ2∇u =

∫∫

Ω

2∑

k=1

‖∇uk(x1, x2) − ∇u⋆k (x1, x2)‖2dx1dx2,

ǫ2∇p =

∫∫

Ω

‖∇p(x1, x2) − ∇p⋆(x1, x2)‖2dx1dx2.
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Figure 6: Convergence of error:L2-norm (left) andH1-seminorm
(right) of velocity residual (top) and pressure residual (bottom) as
function of the total number of variables of the analysis using different
discretizations.

The results are shown in figure 6. The figure depicts
the velocity error (top) and pressure error (bottom) as
function of the total number of variables of the analy-
sis, using both theL2-norm (left) and theH1-seminorm
(right). We note that the discretizations a-f which pair-
wise have identical polynomial degrees, the knot refine-
ment strategies (a, c, e) have a significantly lower veloc-
ity error than the knot repetion strategies (b, d, f). In ad-
dition, the difference between the two strategies grows
as the number of degrees of fredoom increases, as is
most evident for theH1-seminorm. The difference in
pressure error between the two strategies varies more,
but the error of the knot refinement strategy is never
larger than the error of the corresponding knot repetion
strategy. This make the knot refinement strategy favor-
able in a per-degree-of-freedom sense. The knot refine-
ment strategy, unlike the knot repetition strategy, con-
serves the degree of continuity for the velocity field.
This therefore confirms the high importance of conti-
nuity alluded to in [4]. However, although the increase
in number of degrees of freedom for a given refinement
is nearly identical for the two strategies, the knot refine-
ment strategy is computationally more expensive than
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the knot repetition strategy, since it doubles the number
of knot spans and thus quadruples the number of func-
tion evaluations needed for the Gaussian quadrature, un-
less more efficient quadrature rules are employed [17].
It is also worth noting that although the pressure error
of the unstable discretizationu41

0p21
0 (g) flattens out quit

quickly as the number of degrees of freedom increases,
the velocity error falls off impressively. Lastly, the mod-
ified Raviart-Thomas discretization (h) seem to perform
somewhat better than the modified Nédélec discretiza-
tion (i) for both the velocity and the pressure.

We have in general good experiences with the Taylor-
Hood discretizationu42

0p31
0 (d), since it discretizes both

velocity components identically, and the knot spans for
the velocity and pressure fields are also the same. We
therefore base the following examination of the influ-
ence of the formulations of the Navier-Stokes equation
on this discretization. We solve the problem outlined
above using both the convective formulation as above
and the skew-symmetric formulation, and we do this for
two different values of the Reynolds number, namely
200 and 2,000, using{400; 800; 1,000; 1,500} as inter-
mediate values to ensure convergence. Figure 7 com-
pares the convergence of errors for the two formula-
tions. For the low Reynolds number, both the velocity
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Figure 7: Convergence of error:L2-norm (left) andH1-seminorm
(right) of velocity residual (top) and pressure residual (bottom) as
function of the total number of variables of the analysis fordifferent
formulations and Reynolds numbers using the discretization u42

0p31
0

(d).

and the pressure errors of the two formulations are prac-
tically identical. For the higher Reynolds number, some
differences are seen for the pressure error, while the ve-
locity errors remain similar. It should also be mentioned
that in our experience, more non-linear solver iterations
are needed for the skew-symmetric formulation to con-
verge compared to the convective formulation.

6. Benchmark: Lid-Driven Square Cavity

As a final validation of the isogeometric method,
we compare our results for a standard benchmark flow
problem, namely the lid-driven square cavity [12, 3],
against results from other numerical simulations [20,
21, 22]. We consider a fluid contained in a square cav-
ity with the top wall moving with constant speed, and
the other walls kept still as outlined in figure 8a. This
prescribes the velocity field along the boundary of the
domain, assuming no-slip conditions at the walls and
closed-lid conditions (u = 0) at the upper corners. No
body forces act upon the fluid; the fluid is set in mo-
tion from the movement of the lid. We parametrise the
domain using linear NURBS, and construct a stretched
computational mesh with increased resolution around
the corner singularities and boundary regions, see fig-
ure 8b. For the analysis, a computational grid of 64×64
regularly spaced knot spans is employed.
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Figure 8: Lid-driven square cavity.a: Domain and boundary condi-
tions.b: Control net (black dots and blue lines) and image of regularly
spaced isoparametric lines (red and green lines).

Using the isogeometric discretizations listed in ta-
ble 1 we firstly solve the problem for Reynolds number
Re = 5,000. We gradually increaseRe, and the number
of intermediate steps inRe necessary to achieve con-
vergence forRe = 5,000 is around five, but is in gen-
eral different for the various discretizations. The total
number of basis functions for the analysis ranges from
13,604 for the discretizationu41

0p21
0 (g) to 72,865 for

the Nédélec discretization (h), while the remaining dis-
cretizations all have between 38,678 and 39,472 anal-
ysis basis functions. Figure 9 compares the computed
horizontal/vertical velocity profiles through the verti-
cal/horizontal center line of the cavity to the data from
[20]. On the left, the velocity profiles for all nine dis-
cretizations are seen to match very well with the data
in [20]. On the right, the velocity residuals reveal that
all discretizations yield slightly larger fluid speeds away
from the center and towards the boundaries compared
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Figure 9: Comparison of velocity profile curves and residualcurves
(velocity minus fit) for the lid-driven square cavity forRe = 5,000
using different discretizations, plotted with data from [20] and a fit to
the data using a cubic spline. Top: horizontal velocity profiles (left)
and residuals (right) through the vertical center line. Bottom: verti-
cal velocity profiles (left) and residuals (right) through the horizontal
center line.

to the data. The agreement between the discretizations,
however, is very good.

In the following, we once again focus on the dis-
cretizationu42

0p31
0 (d). Figure 10 shows velocity vectors

and stream function contour lines forRe = 5,000. The
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Figure 10: Four views of velocity vectors and stream function contour
lines in the lid-driven square cavity forRe = 5,000 using theu42

0p31
0

discretization (d).

general pattern of the stream function matches very well

with the results of [20], [21] and [22]. The locations
and the extremal values of both the central main eddy
as well as the minor eddies in the bottom right, bottom
left and top left corners are in overall agreement. Small
discrepencies are still seen, e.g. close to the boundary
in the top left corner.

Finally, the problem is solved for different values of
Re in the range from 100 to 10,000:{100; 400; 1,000;
2,000; 3,200; 5,000; 7,500; 10,000}. Figure 11a/b
shows the computed horizontal/vertical velocity profiles
through the vertical/horizontal center line of the cav-
ity along with the data from [20] for the values ofRe
printed in italic. In general, the velocity profiles from
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Figure 11: Velocity profile curves for the lid-driven squarecavity for
seven values ofRe (solid lines) using theu42

0p31
0 discretization (d)

plotted along with data from [20] (points).a: vertical velocity pro-
file through the horizontal center line.b: horizontal velocity profile
through the vertical center line.c: vertical velocity residual.d: hor-
izontal velocity residual. The profile curves have been translated to
avoid clustering of data. We speculate that three obvious outliers,
marked with rings, stem from misprints in the tabulated datain [20].
Cubic splines have been fitted to the remaining data.

the present study match very well with the data in [20].
Once again, however, a closer examination reveals a
small difference: for higherRe, we compute slightly
larger fluid speeds close to the boundaries than is done
in [20], and this difference increases withRe. There is,
however, a very nice agreement in the location of the
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velocity extrema.
Regarding the differences in flow speeds close to the

boundaries, several points deserve mentioning. Firstly,
the results depend critically on the choice of bound-
ary conditions specified for the upper corners. We em-
phasize that closed-lid conditions are assumed in the
present study. Secondly, the results depend slightly on
the formulation of the Navier-Stokes equation (1a) for
Re & 5,000, depending on whether the convective or
the skew-symmetric formulation is used. This is shown
in figure 12, where the computed velocity profiles using
each of the two different formulations are compared for
Re = 10,000. The convective and the skew-symmetric
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Figure 12: Comparison of velocity profile curves and residual curves
(velocity minus fit) for the lid-driven square cavity forRe = 10,000
with different formulations of the inertial term using theu42

0p31
0 dis-

cretization (d), plotted with data from [20] and a fit to the data using
a cubic spline. Top: horizontal velocity profiles (left) andresiduals
(right) through the vertical center line. Bottom: verticalvelocity pro-
files (left) and residuals (right) through the horizontal center line.

formulations are found to nearly match each other in the
interior, whereas some differences are observed close
to the boundaries, in particular at the moving lid. We
emphasize that the present study is based on the sim-
pler convective formulation of the Navier-Stokes equa-
tion. Thirdly, the data in [20] are relatively sparse at
the boundaries where the variation in velocity is high.
Finally, it should be stressed that the data in [20] stem
from another numerical study, and an exact correspon-
dence between that and the present study should not be
expected.

7. Conclusions

This paper has examined various discretizations in
isogeometric analysis of 2-dimensional, steady state,
incompressible Navier-Stokes equation subjected to

Dirichlet boundary conditions. Firstly, a detailed de-
scription of the implementation has been given. Sec-
ondly, numerical inf-sup stability tests have been pre-
sented that confirm the existence of many stable dis-
cretizations of the velocity and pressure spaces. In par-
ticular it was found that stability may be achieved by
means of knot refinement of the velocity space. Thirdly,
error convergence studies compared the performance of
the various discretizations and indicated optimal con-
vergence, in a per-degree-of-freedom sense, of the dis-
cretization with identical polynomial degrees of the ve-
locity and pressure spaces but with the velocity space
enriched by knot refinement. Finally, the method has
been applied to the lid-driven square cavity for bench-
marking purposes, showing that the stable discretiza-
tions produce consistent results that match well with
existing data and thus confirm the robustness of the
method.

Appendix A. Data for Geometry Parametrisations

Table A.2 lists the polynomial degrees, knot vectors
and control points for the geometry of the analysed
problems.
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Wall-Driven Annular Cavity

Degree q = r = 2
Knots Ξ = Φ = {0,0, 0,1, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 0 1 1 0 3/2 3/2 0 2 2
x̄2 1 1 0 3/2 3/2 0 2 2 0
w 1 1/

√
2 1 1 1/

√
2 1 1 1/

√
2 1

Forced Elliptic Cavity

Degree q = r = 2
Knots Ξ = Φ = {0,0, 0,1, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 −2/

√
2 0 2/

√
2 −4/

√
2 0 4/

√
2 −2/

√
2 0 2/

√
2

x̄2 −1/
√

2 −2/
√

2 −1/
√

2 0 0 0 1/
√

2 2/
√

2 1/
√

2
w 1 1/

√
2 1 1 1/

√
2 1 1 1/

√
2 1

Lid-Driven Square Cavity

Degree q = r = 1
Knots Ξ = Φ = {0,0, 1/2, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 0 1/2 1 0 1/2 1 0 1/2 1
x̄2 0 0 0 1/2 1/2 1/2 1 1 1
w 1 1/2 1 1/2 1/4 1/2 1 1/2 1

Table A.2: Polynomial degrees, knot vectors, control points and
weights for the geometry of the analysed problems.
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