

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 31, 2019

DYSIM - A Modular Simulation System for Continuous Dynamic Processes

Noauthor, Risø; Forskningscenter Risø, Roskilde; Forskningscenter Risø, Roskilde

Publication date:
1986

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, P. L. C., Kofoed, J. E., & Larsen, N. (1986). DYSIM - A Modular Simulation System for Continuous
Dynamic Processes. Roskilde: Risø National Laboratory. Risø-M, No. 2607

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13755473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/dysim--a-modular-simulation-system-for-continuous-dynamic-processes(6bf390b1-1492-4ca7-a5ac-0380e7057949).html

4

«->£.** ©OooH

i DYSIM
- A Modular Simulation System
for Continuous Dynamic Processes
P. la Cour Christensen, Jan E. Kofoed and Niels Larsen

Rise National Laboratory, D&4000 Roskilde, Denmark
September 1986

RISØ-M-2607

DYSIK - A MODULAR SIMULATION SYSTEM

FOR CONTINUOUS DYNAMIC PROCESSES

P. la Cour Christensen, Jan E. Kofoed

and Niels Larsen

Abstract. The report describes a revised version of a simulation

system for continuous processes, DYSIM. In relation to the

previous version, which was developed in 1981, the main changes

are conversion to Fortran 77 and introduction of a modular

structure. The latter feature gives the user a possibility for

decomposing the model in modules corresponding to well delimited

physical units, a feature which gives a better survey of the

model. Furthermore, two new integration routines are included

in addition to the single one used before.

September 1986

Risø National Laboratory, DK-4000 Roskilde, Denmark

ISBN 87-550-1265-5

ISSN 0418-6435

Grafisk Service Risø 1986

- 3

CONTENTS

Page

1. INTRODUCTION 5

2. PROBLEM FORMULATION AND MODEL STRUCTURE 7

3. THE LIST PILE 14

4. THE INPUT PILE 15

5. STEADY STATE CALCULATIONS 23

6. TRANSIENT CALCULATIONS 24

7. PRINT AND PLOT FACILITY 32

8. TIME DELAY SIMULATION 34

9. OTHER FACILITIES 36

10. INDEPENDENT AUXILIARY PROGRAMS 38

10.1. The plotting progran DYS/PLOT 38

10.2. The list file editor DYS/LIST 39

10.3. The local editor EDIT 41

10.4. The input file editor DYS/INPUT 43

10.5. The Jacobian service progran DYS/JACOBI 45

11. A PC-VERSION OP DYS1M 47

REFERENCES 50

4

APPENDICES

A. Program listing of a small module in Portran code 51

*

B. Connecting routine for a system with 6 modules written

in Fortran code 53

C. List file for the same system as used in Appendix B .. 57

D. Input file for the same system as used in Appendix B . 64

E. List of files used by DYSIM 66

F. List of reserved subroutine names, used in DYSIM 68

6. List of system calls available for the user 70

H. Definition of concepts used in DYSIM 71

5

1. INTRODUCTION

Risø's work with simulation of dynamic systems by means of digi­

tal computers was started in 1975 with a simulation program

DYSYS which was bought from Kernforschungszentrum Karlsruhe

(E.G. Schlechtendahl, 1970). In the following five years it was

used for simulation of nuclear power plants. Gradually several

minor modifications in DYSYS were made to adapt the program to

our computer and our special demands, but major modifications

were difficult to introduce in a reliable way due to the pro­

gram structure. So, in 1980 a complete new version was written

with some new features. It was given the name DYSIM and de­

scribed in the report RISØ-M-2271 (CHRISTENSEN, P. la Cour,

1981).

DYS IN was written according to the same conventions as DYSYS,

so old input data files still could be used with minor modifi­

cations. Since then DYSIM has been improved by addition of new

features during the years 1981-1985, and in the end of 1985 a

major change was made. First the code was changed from Fortran

66 to Fortran 77, and then a modular structure for models was

introduced for data specification in the input file.

The modular structure was developed and used in the years 1983-

1985. It makes it possible to split up a system into individual

modules describing separate physical units, to program and

check these modules one by one, and then combine the modules to

a system by a connecting routine which describes the input -

output relations between modules. Furthermore, symbolic names

were introduced for variables and parameters instead of array

numbers in the input file.

DYS IN is in the present version designed to run on a Burroughs

B7800 computer with batch job control and not for interactive

us«. It means that the whole job must be specified in the input

file. This has been a natural solution on the B7800 computer,

- 6 -

where interactive jobs are limited in CPU-time to 60 s and most

simulation jobs take more time. DYSIN reads the input file and a

corresponding list file, with definition of variable names and

parameter names, sets up initial values and parameters for the

job, and controls the job excution with accuracy control of in­

tegration and with output administration.

For easy set-up of modules a new feature using submodules has

been developed. Well defined physical components, such as heat

exchangers, can be preprogrammed and stored in a submodule li­

brary. Such submodules can then be incorporated in a module by

macro calls which specify the connections between the global

variables of the module and the local variables of the sub-

modules. Modules with macro calls mu«t be passed through a

precompiler, called precompiler 1, which converts to Fortran 77

code. Furthermore, the precompiler is used to set-up the head

of the module subroutine under control of commands that specify

the module name and variables.

A subroutine, called a connecting routine, is needed to assemble

modules into a complete system model and establish the connection

to DYSIM. This subroutine can be written manually, but the pro­

cess can be made easier and more reliable by another precom­

piler, called precompiler 2, because the statements in the

connecting routine must follow certain rules strictly. So, they

can easily be given in compact form by commands to precompiler

2. Development of the submodule concept and precompilers is

carried out as part of a Ph.D. degree study and will be de­

scribed in a separate report later.

Finally it should be mentioned that some auxiliary programs are

used in connection with DYSIM for preparation of input and

utilization of output. The list file and input file must be

written according to some conventions. It can be done by a

general editor, but the user can get valuable help from two

programs, a list file editor and an input file editor. The

output from DYSIM is for steady state calculations always in

form of printer listings, but by transient calculations one can

- 7 -

get both tables and/or a data file. This data file can be used

to generate graphic representation on a screen and hard copies

on a plotter using a plotter program. For a steady state situ­

ation DYSIN can be used to calculate the Jacobi matrix for the

system of differential equations and give the result on a data

file; and another auxiliary program can be run afterwards to

interpret the matrix with calculation of eigenvalues and step

size limits for Runge-Kutta integration.

Lately OYSIH has been transferred to a personal computer with

some changes which make it more suitable for the operator to

control the simulation. The present PC-version is described in

section 11.

A diagram in Fig. 1 shows how DYSIN communicates with the input

file and list file in the initial phase and with the model via

the connecting routine during the main phase with steady state

or transient calculations. Some output files are generated

along with the calculations, others in the terminal phase.

2. PROBLEM PORMULATION AND MODEL STRUCTURE

Simulation of a process involves several phases:

- Investigation of the process and formulation of a physical-

mathematical model and data retrieval

- Separation of the system into modules and establishment of

the input-output structure

- Writing the simulation codes for modules consisting of

Fortran 77 and/or macro statements and commands for pre­

compiler 1

Testing of single modules

CO
M
at
»
I—
3
C
M
0*
f t
H-
O
9
0)
<̂
n
rt
m
3

»

I
s»
r f
•*•
O n

List
f i l e

Connecting
routine

r

Input
f i l e

Steady
state
file

DYSIM 86

L DELAY86
Prints :

transients
Bteady state

Jacobi
matrix

i

i

- 9 -

- Creation of the connecting routine possibly with the use of

precompiler 2

- Testing of the whole system including steady state and

transient calculations

- And finally documentation

The first and the last point are very important and the most

time consuming.

A flow diagram of the programming procedure using precompiler 1

and 2 is shown in Fig. 2. Bach source module containing macro

calls and precompiler commands is converted to Fortran 77 mo­

dules. Submodules from the library are inserted by precompiler

2; precompiler 1 only gives lists of submodules called from the

modules. On the B7800 computer all Fortran 77 program units are

compiled in one run. On the PC individual files are compiled

separately and then linked together by the linker program.

Some processes are by nature discrete which means that they can

be described by point models with ordinary differential equa­

tions; others are distributed in space which results in partial

differential equations. The latter type is for DYSIM transferred

into discrete systems by division of the space axis in small

segments and with description of the small nodes by means of

ordinary differential equations. So the resulting mathematical

model is for all modules a mixture of ordinary nonlinear differen­

tial equations and algebraic equations for auxiliary variables.

The programmer must look carefully at the order in which the

equations are written so that auxiliary variables are calcu­

lated before they are used, if possible. It is, however, not

always possible because the state derivatives and auxiliary

variables in principle may be functions of all state variables,

derivatives, auxiliary variables and input variables. So in

some cases old values for auxiliary variables from the last time

step will be used. Therefore, the Fortran SAVE statement must be

used in all program units to save local variables from one call

- 10 -

Connecting
routine

source file

Module
source file

PRECOMPILER 1

Module
F77 file

Library
file

Module
information

file

PRECOMPILER 2
List
file

Connecting
routine

F77 file

X
Submodule
P77 file

DYSIM86

F77 COMPILER

DELAY86

Object
file

Fig. 2. The precompiler system.

- 11 -

to another. Furthermore, the programmer is responsible for al­

gebraic loops which are not allowed to have a loop gain greater

than 1. Otherwise the solution of the system of equations be­

comes unstable. For practical purposes the gain must be some­

what smaller.

Due to the complicated system of equations which often is ob­

tained no automatic sorting of equations has been attempted.

Instead, much attention has been devoted to establishing a mod-

ule/submodule structure to make program development easier and

more reliable.

A module is a program unit that describes a well delimited

physical unit. It is described by a set of differential equations

which by integration gives the state variables. The auxiliary

variables are divided into local variables and algebraic output

variables. The state of the module is determined by a set of

input parameters, normally constant during a calculation, and a

set of input variables, normally connected to other modules or

generated by the connecting routine. So a module is from the

outside characterized by 5 vectors: State variables, deriva­

tives, input variables, parameters, and algebraic variables

stored in one Fortran COMMON block.

Appendix A gives an example of a small module. It shows how such

a subroutine can be built with the COMMON block, CRK, containing

the external variables, some internal data specifications and

the program body which calculates derivatives. No algebraic

variables are used here.

DYSIM integrates all state variables in the whole system at the

same time and works with one long vector for all state vari­

ables, one for derivatives, one for parameters and one for

algebraic variables.

Each vector is stored in one Fortran COMMON block as

COMMON/INTVAR/T,STV(NDE)

COMMON/DERIV/ DIF(NDE)

- 12 -

COMMON/ALGVAR/ ALV(NAE)

COMMON/DATA/ DATBN(NDA)

The index numbers NDB, NAE, NDA are the total number of state

variables, algebraic variables and parameters respectively.

The integration is carried out with one of three possible choices

among integration routines: a fourth order Runge-Kutta routine,

a second order Runge-Kutta routine called HEUN, and a routine

selected from the ODEPACK collection of differential equation

solvers.

The system model consists of the modules combined by the

connecting routine, which is a Fortran subroutine with the

fixed name CON and the parameter NR, where NR is a substep

number for the integration routine. The connecting routine

takes care of input-output connections between modules and

the connection between DYSIM and the model. The connections are

established by transmission of variables between COMMON blocks.

Appendix B gives an example of a connecting routine for a medium

sized system with 6 modules as it looks when it is written by

hand. It shows in detail how variables are transferred between

program units and how the modules are called. Note the four

COMMON blocks for DYSIM each with up to 6 arrays and the six

COMMON blocks for the six modules each with up to five arrays.

Also note that the order of modules in the four DYSIM COMMON

blocks must be the same as used in the input file SYST command

described in section 4. The entry point ALVAR is used to trans­

fer parameters from DYSIM to the modules and algebraic variables

backwards and forwards controlled by the parameter NO. ALVAR is

called from DYSIM when necessary.

Appendix B can be used as a model for setting up connecting rou­

tines. The precompiler 2 makes this much easier. It releases

the user for the troublesome work with conversion of symbolic

names to array indices for the input-output connections. Be­

sides it has commands for definition of the system by modules

- 13 -

and autonatic setting up of COMMON blocks and statenents for

transnission of variables. It uses the infornation contained in

the list file with all synbolic nanes.

By call of the nodule subroutines the integration substep nunber

NR is transferred to the nodules together with the tine as sub­

routine? parameters.

For steady state calculations DYSIM sets the tine to a negative

value and this can be utilized by the programmer for insertion

of special steady state sections in the nodules in order to

speed up the calculations. The substep nunber has the value 0

at the very first call; afterwards it takes values fron 1 to 4

dependent of the integration routine. It can be used to control

calculation of internal parameters in the nodules; e.g. constant

parameters can be calculated for NR « 0 and slowly changing

paraneters for NR » 1.

Initial values are given in the input file for both state vari­

ables and algebraic variables. The reason for using initial

values for the latter type is that they sometimes nust be used as

input to one nodule before they can be calculated in another

one, e.g. when two modules forn a loop of algebraic variables.

The concept with algebraic variables and the way they are used

sometimes introduces snail time delays by input-output connec­

tions when a variable is used in one nodule before it is cal­

culated in another one. It is an inevitable consequence of the

nodule structure. Therefore the user must be careful to specify

the best possible order of module calls.

- 14 -

3. THE LIST PILE

The list file concept is a result of the nodule structure de­

velopment. For the first models which we developed by use of

the module structure it was found necessary to write a list of

variables by hand. Later the list was written on a disk file,

and now the list foraat has been standardized so information

can be extracted by a subroutine. The list is used by DYSIM for

interpretation of the input file and by precompiler 2 for

generation of the connecting routine. It is also used by the

input file editor to set up an input file.

One single list file is used for a system model with a section

for each module that may be included in the model, but not all

modules need to be used. So the same list file can be used for

different system configurations.

Each module has a section with a head that gives the module

name which is limited to 3 characters. Then four groups with

information about variables follow. The four groups are state

variables, algebraic variables, input variables and parameters

in that order. One line for each variable gives the symbolic

name, an index for the COMMON block vectors, a physical dimension

and a text describing the variable. Each variable may be a simple

variable or a onedimentional array. Names may be up to 6 charac­

ters long, and the same local name may be used in different

modules. Simple array elements are referenced by the array name

followed by the index number limited to two digits e.g. TEMPI7

for element TEMP(17). DYSIM uses composite names consisting of

the local name followed by a "." and the module name, it means

that the global name is limited to 12 characters.

Precompiler 2 also uses the list file. It takes the module

names as subroutine names and constructs COMMON block names and

vector names by addition of characters to the module name.

- 15 -

Precompiler 1 does not use the list file because a normal pro­

cedure will be to set up the modules before the list file. Here

the module names and variable names are given in compiler com­

mands , and the precompiler generates names for the subroutines

and COMMON blocks in the same way as precompiler 2.

Appendix C gives as an example the list file for the model,

for which the connecting routine is shown in appendix B. Para­

meters will nearly always be present in the connecting routine

as they are used to initiate transients via input variables to

the modules. Sometimes it can be an advantage to introduce an

integration variable for generation of inputs. For that purpose

the list file structure must give a possibility for definition

of state variables for the connecting routine. Therefore it

was chosen to standardize and describe the connecting routine

exactly as a module.

The format of the list file is rather fixed, only a little

amount of freedom is allowed. Therefore it is recommended to

use the list file editor which will create the list with the

correct format.

4. THE INPUT FILE

The input file is used to specify the system configuration, the

initial state and the job execution in detail. It is read by

the subroutine INPUT which checks the input file for errors and

gives error messages in a clear text. If an error is found

DYSIM tries to continue until the end of the file, but some

errors are prohibitive for continuation. An error will always

stop DYSIM after reading the input file. While it is being read

the corresponding list file must be ready as it is used in

connection with the input file.

- 16 -

The input file consists of records with comments, commands or

data. Comment lines begin with an "6" as the first character

and may be inserted everywhere in the file. Command lines begin

with a "*" as the first character and are always followed by 4

characters; the rest of the record is ignored so it cannot con­

tain information. Some commands stand alone, some must be fol­

lowed by data records, and others can have data records op­

tionally. The B7800 version of DYSIN uses 18 commands and the

PC-version one more. Some commands are obligatory while others

are optional. The order of the commands is not important with a

few exceptions which are mentioned below. A data record consists

of maximum 72 characters, in most cases divided into 6 fields

of 12 characters each. The data are either integers, real

numbers or text strings. The position inside the fields is

unimportant as DYSIH performs a shift of significant characters

to the left or right according to the interpretation as text

strings or numbers. Below the commands will be described one by

one with explanation of the data records following the commands

and the effect in DYSIM during job execution.

»INPT

An obligatory command followed by one record with a text string

with up to 72 characters which is used to identify the job. It

is used as heading in prints and plots.

»INPD

An optional command without data. It specifies input documen­

tation on prints in a more clear form than just printing of the

input file which always is used.

»SYST

An obligatory command used to specify the system. It is followed

by two or more data records. The first must give the system

name, SYN A, with up to 4 characters and the number of modules

including the connecting routine, which by INPUT is treated as

a module. The next and following records give the module names

with 6 per record. The last one must be the connecting routine

with the fixed name CON.

- 17 -

Ater reading the system configuration INPUT reads the list file

SYNA/LIST, where SYUA is the system name. It checKs the list

file according to the module names specified and reads infor­

mation about state and algebraic variables and parameters which

is used for interpretation of data records for following com­

mands.

The order of the module name& gives the order in which state

variables are stored in COMMON INTVAR independent of the order

in the list file. It gives a possibility to change the configur­

ation of the system*s Jacobi matrix, a feature which may be use­

ful for some integration methods.

Remember that the order of module vectors in DYSIM's four COMMON

blocks written in the connecting routine must be the same as

used here.

The SYST command must be one of the first commands; to make it

simple place it just after the INPT and INPD commands.

*INCO

An obligatory command followed by groups of data records, one

for each module. Each group starts with a record with the module

name followed by the number of state variables and algebraic

variables in agreement with the numbers given in the list file.

Then follow two subgroups of numbers which give initial values

for state variables and for algebraic variables, with 6 numbers

per record in the same order as used in the list file. The

number format is free, it is read by Fortran's G12.0 format.

If the connecting routine CON has state or algebraic variables

it must appear as the last module, otherwise it can be omitted.

The sequence of other modules is free, independent of the

sequence of module names in the SYST block.

Specification of initial values for the first computation is a

troublesome work. It is recommended to use the input file edi­

tor. Reasonable values for the state variables should be used,

while the values for algebraic variable in most cases can be

- 18 -

set to zero. After the first successful steady state run DYSIM

gives an output file with new and better values which can be

used to substitute the old ones.

The INCO command must come before the REFV and STIC commands

mentioned later.

*DATA

An obligatory command followed by a number of data records

terminated by the codeword DATA.END. It is used to specify

parameters to the modules. Bach record can contain up to 3

parameters written in two fields with the full name followed by

"«" in the first field and the parameter value in the next

field e.g. as NAME1.M03* 713.5. The character ••• nay be placed

everywhere in the empty positions after the name in the first

field or as the first character in the next field (used when

the full name is 12 characters long. The number format is free

as for the INCO command. It is allowed to use empty fields

(2*12 blank characters) so records need not contain 3 para­

meters for each record. The order of parameters is completely

free and a mixing of parameters from different modules is

allowed. It is not necessary to give values for all parameters;

parameters not specified have the default value 0.

*CHCK

An obligatory command followed by one or two data records. The

first record has 5 or 6 specifications which are

DTMIN: Minimum value of the integration step

DT : Initial - -

DTNAX: Maximum - - - -

BPSI : An integration accuracy control parameter

TMAX : Maximum value of the true transient time

INTE : Name of an integration routine

- 19 -

The following integration routines can be used: RUNGE, HEUN, or

ODBPAK. They are discussed in section 6. If no naae is given

(blank field) RUNGE is used. If ODEPAK is used one record »ore

aay be specified with 6 integers which are discussed also in

section 6.

»TIME

An obligatory coaaand in the B7800 version followed by one

record with one nuaber, TTOT, that gives the aaxiaua value of

processor tiae in seconds. TTOT nay be written in free foraat.

If a transient is stopped by the CPU-tiae a special aessage is

given after the output tables. Por steady state calculations

the computing tiae is given by TTOT. In the PC-ver s ion the

coaaand has no effect and aay be oaitted.

»REPV

An obligatory coaaand when EPSI > 0 in the CHCK coaaand. REFV

is used to give reference values for the integration accuracy

control which is discussed in section 6. The coaaand is followed

by a nuaber of data records terainated by a record with the

codeword REPV.END. The data records aay be oaitted, but the

terainating codeword REPV.END aust always be present. Each

record has two state variable naaes in the first two fields and

a reference value in the third field. The naaes aust be full

naaes and the nuaber foraat is free. The nuaber is inserted as

reference values for all state variables froa the first to the

second naae both included. Note that the order of the systea

state variables are given by the SYST coaaand.

When the REPV coaaand is entered default values are inserted

for all state variables before the data records are read. The

default values are the initial values, therefore the INCO

coaaand aust coae before the REPV coaaand. If an initial value

Is 0 the number 1 is used instead to avoid trouble with the

accuracy control. The reference values given in the data records

substitute the default values. The accuracy control works with

adjustable reference values and the values loaded in the initial

phase aie used both as initial values and as minimum values.

- 20 -

»PRHT

An obligatory command follower! by a number of data records ter­

minated by the codeword PRNT.END. The first record gives 5

numbers that control table printout and/or storage of data in

a plot file. The numbers are

PDTO: Time intervals for printout from time 0 to POT1

POT!

PDT1: - - - - - POT1 to POT2

POT2

PDT2: - - - POT2 and upwards

The same time intervals are used for plot data as for printout.

Table printing can be suppressed by placing the number "1" in

the last field after the five numbers above. This option is

only valid for the B7800 version; the PC-version does not need

that option because printing is directed to a file and printing

on paper must be initiated by the user afterwards.

The following records contain up to 6 variable names (state or

algebraic variables) per record, given by full names; they

specify those variables that are printed and/or stored for

plotting later. Empty fields are accepted and the order of

variables are completely free. The integration step number and

the time are inserted automatically as the first two variables.

*STST

An optional command that specifies a steady state calculation.

One or two data records may follow optionally in free order. One

gives a file name for a steady state file with state and alge­

braic variables written in the same format as used in the INCO

command, so a direct substitution is possible. The default file

name is SYNA/IC where SYNA is the system name. Another record

can be used to specify the number of integration steps between

printout of state variables; the default value is 100. Two

extra numbers may be given optionally in the last mentioned re­

cord for the PC-version as discussed in section 11.

- 21 -

*STIC

An optional coaaand that can be used to ask DYSIN to take a set

of initial values froa a file instead of those given in the

INCO block. A data record with a file naae can follow the

coaaand. The default file naae is SYNA/IC as for *STST. As the

IC-data given by the STIC coaaand are used to substitute those

given by the INCO coaaand *STIC aust coae after *INCO, which

still aust be present with correct format. *STIC aust coae

before *REPV; it is recoaaended to place it just after the INCO

block.

»PLOT

An optional coaaand used to specify storage of data in a file for

plotting later. The tiae intervals and the variables are speci­

fied by the PRNT coaaand. The file naae aay be specified in an

optional record. The default naae is SYNA/OUTPUT where SYNA is

the systea naae. Actually the file is the saae as a file used

for temporary collection of print data during integration.

When PLOT is specified the file becomes permanent and is sup­

plied with information about the stoted data as described in

section 7.

»DBLY

An optional coaaand without data records used to tell DYSIN

that the model contains pure tiae delay variables which are

calculated by the' delay function DELAY. The effect is that

DYSIM during job execution calls the delay routine at every time

step for the purpose of administration. The file containing the

delay routine must be included in the code by the user.

•JACO

An optional command that actuates a numerical calculation of the

Jacob! matrix. The result is written on a data file with the

default name SYNA/JACO, where SYNA is the system name. One data

record may be used optionally, it can contain two numbers in

free format. The first number is an iteration number for calcu­

lation of the derivatives for each pertubation of a state vari­

able; it mutft ha«'e a value between 1 and 25. The second number

- 22 -

specifies the relative pertubation of state variables; only

values bettreen 1.2-3 and 1.E-10 are accepted, else the value

1.B-5 is used. This nuaber »ay be omitted, then the default

value 1.B-5 is used. By the calculation it is assumed that the

•odel is in a steady state.

»POMP

An optional coaaand without data records. It gives a duap at

termination tiae of all variables needed for a later restart.

The disk file SYNA/DUHP is created as a peraanent file in any

case, while the file SYNA/DELAYDUMP is created only when tiae

delays are used.

»REST

An optional coaaand without data records used to restart a cal­

culation after a DUMP and continue froa the duap tiae. The

start conditions are loaded froa the files SYNA/DUMP and

SYNA/DELAYDUHP as needed.

»TEST

An optional coaaand without data records used to run a test of

the input file and list file only.

»REAL

An optional coaaand with one optional data record. It can only

be used for the PC-version. It gives a real tiae siaulation if

possible with a fixed tiae step given by the initial tiae step

in the CHCK block. During the calculation variables in the PRNT

block are transferred to either a disk file or the output port

(RS-232-C) as described in section 11.

The destination is given by a filenaae in the data record. If

the filenaae is C0H1 the destination is the output port, else

the file naaed. The default file naae is C0H1.

»ENDE

An obligatory coaaand without data records indicating the end

of the file.

- 23 -

To ensure a correct syntax by creation of input files it is

recoaaended to use the input file editor.

An exaaple of an input file is given in appendix D for the sane

•odel as the connecting routine in appendix B.

5. STEADY STATE CALCULATIONS

The steady state is calculated by iteration using the inte­

gration routine HBON if it is specified in the CHCK block,

otherwise RUNGE is used if either no specification is given or

if RUNGE or ODBPAK is specified because the latter routine is

not suitable for steady state search. The tiae step is constant

equal to the initial step DT in the CHCK block. No accuracy or

stability check is used; it is the users responsibility to

select a reasonable value for DT.

For the B7800 version the calculation will continue until the

processor tiae reaches the value given in the TIME block. For

the PC-version the calculation is controlled in a different

way. At teraination tiae the state and algebraic variables are

written in the steady state output file (SYNA/IC; grouped in

aodules ready to substitute the data records in the INCO block.

By repeated steady state calculations the values in the steady

state file can be used as initial values for the next calculation

with the STIC coamand. When a satisfactory state is found it is

recoaaended to transfer the steady state file to the INCO block.

A steady state calculation is characterized by a negative tiae

value which can be detected and utilized in the aodules for

acceleration of steady state search in two ways. Soaetimes it

is possible to use direct algebraic calculations of state vari­

ables when the steady state is characterized by given working

conditions, and such calculations are allowed in DYSIM. Another

possibility is to reduce large tiae constants giving a faster

- 24 -

convergence. Both Methods must be used with care as it is

possible to change a stable system to an unstable one in this

way.

During the program run state variables are printed at regular

intervals, which can be given in the STST block. If no value is

given the printing is made for every 100 steps. At the end of

the calculation both state variables, algebraic variables and

derivatives are printed.

6. TRANSIENT CALCULATIONS

By transient calculations three integration methods can be used

as mentioned in the description of the CHCK command: HEUN, RUNGE,

and ODEPAK. The two first are explicit Runge-Kutta methods

while the last one gives a choice between Adam's methods and

backwards difference methods, all of implicit type.

Implicit methods have a much better stability than explicit

methods; therefore implicit methods allow larger steps when the

fast transients have died out in a stiff system, but each step

require much more calculation work. According to our experience

with a limited number of models, but all stiff systems, it is not

possible to save processor time with the implicit methods, and

moreover these methods are more difficult to use because inte­

gration parameters must be chosen very carefully which requires

much experience. So it is recommended in general to use HEUN or

RUNGE. Heun is about 35% faster than RUNGE, but RUNGE is more

precise than HEUN.

The two types of methods are discussed in the following two

subsections.

- 25 -

6.1. HEON and RUNGE

The problem to be solved is given by a set of differential equa­

tions as

y • f(t,y,x,a), Y(0)=yo

where y is the state vector, x is an input vector, a an algebraic

vector and t is the time. In the literature the general notation

is

y - f(t,y)

where the dependence of x and a is embedded in the dependence

of time t.

Both HEUN and RUNGE are Runge-Kutta methods, HEUN of second

order and RUNGE of fourth order. The formulas are

HBUN : yn+1 » yn+(k1+k2)/2

where ki » f(tn,yn)At

k2 - yttn+At^n+k^At

where At is the time step

RUNGE: yn+1 - yn+(k1+2k2+2k3+k4)/6

where \<\ » f(tn,yn)At

k2 - £(tn+At/2,yn+ki/2)at

k3 = f(tn+At/2,yn+k2/2)At

k4 - f(tn+At,yn+k3)At

The accuracy control for HEUN uses the difference between k̂

and k2 and for RUNGE the difference between k2 and k3

HEUN : DEV > ABS(ki-k2)

RUNGE: DEV - ABS(k2-k3)

The difference OEV is compared with a reference deviation

REF - EPSI-RP

- 26 -

where CPSI is given in the CHCK block and RP is a dynamic

reference value for the particular variable. It is calculated

in each step by the formula

RF = MAX((ABS(yn)+99
#RF)/100,REFV)

It means that RF follows the state variable slowly with a lower

limit REFV, which is given by the RBFV block or by the initial

value of the state variable yn as discussed for the REFV command.

The accuracy control routine takes the following actions

DEV>3«REF: The step is cancelled and the time step is
divided by 2.0

3«REF>DEV>REF: The step is accepted but the next time step
is divided by 1.5

DEV>RBF/3: Increase of the time step is prohibited.

These calculations are made for all state variables until the

first criterion is fulfilled or to the end. The first variable

which fulfills the first or second criterion (with priority for

the first one) is marked and a counter for that variable is

incremented by one. If none of the three criteria are fulfilled

for any variable the time step is multiplied by 1.5 and an in­

crementation counter is incremented by one.

By every step change the new step is limited to the range given

by DTMIN and DTMAX in the CHCK block. If the routine tries to

decrease the step below DTMIN when it already is equal to OTMIN

the program is stopped by an announcement of step size control

stop giving the name of the variable that caused the step

decrement.

The deviation used for accuracy control gives a measure of

higher derivatives and seems to be a reasonable quantity. The

procedure developed for DYSIM has an advantage in avoiding

frequent cancellations of steps followed by step increments.

- 27 -

Only large pertubations of the system give rise to step

cancellations when EPSI has a reasonable value (about 10~3).

Host often the step will be decreased by criterion No. 2 in due

time to avoid fulfilling criterion No. 1.

h'c program termination a small list is written below the output

tables giving the number of calls for calculation of derivatives,

the number of step increments and the number of step decrements

for each variable which caused a decrement.

The maximum step length can be found by experiments, but it can

be found more precisely by calculation of the Jacobi matrix and

then by the eigenvalue calculation as discussed in section 10.

The maximum step length is for HEUN

Atmax s 2/xmax

and for RUNGE

Atmax s 2'78Amax

where Xraax is max{lRe(X)I}

When a new simulation is started with a steady state calculation

one must select a step size by experience with similar types of

models, or start with a small value and gradually increase it

until an upper limit is found. Too large steps make the system

unstable, which means that variables diverge outside the number

limits for the computer or for standard functions so that the

simulation breaks down.

Both the HEUN and RUNGE routine has a feature which allows

algebraic calculation of state variables. For every substep it

is checked whether the variable has been changed during calcu­

lation of derivatives. If that is the case the new value is

accepted, no integration step is taken and no accuracy control

is performed for that variable.

- 28 -

6.2. ODEPAK

DYSIM offers the possibility to use the implicit raultistep

algorithms from the Odepack collection of solvers of ordinary

differential equations, developed by Dr. A Hindmarsh and Dr.

L. Petzold at Lawrence Livermore National Laboratory. These

routines are only used for transient calculations.

In all 17 choices of method are available. These choices fall

into three major groups. The first group consists of six versions

of a variable order, variable step size Adams predictor/corrector

method of orders 1-12, suited for nonstiff problems. The second

group contains six versions of a variable order, variable step

size backward differentiation methods (BDF) of order 1-5, suited

for globally stiff problems. The third group is a collection of

5 variable order, variable step size methods. This last group

is a combination of the two former groups with automatic stiff­

ness detection and switching between Adams (non-stiff) and BDF

(stiff) methods.

Methods of the three groups are identified by the METHOD number:

METHOD = 0 : Adams/BDF auto-stiff method

= 1 : Adams method

* 2 : BDF-method

These implicit methods require a method for corrector iteration,

specified by the MITER-number:

MITER * 0 : functional iteration (no Jacobian)

* 1 : user supplied, full Jacobian

- 2 : internally computed, full Jacobian

* 3 : internally computed diagonal approximation to

the Jacobian

* 4 : user supplied, banded Jacobian

* 5 : internally computed, banded Jacobian

If METHOD » 0 (Adams/BDF auto-stiff) is used, MITER - 0 cannot

be used.

- 29 -

If a user supplied Jacobian is to be used, (MITER = 1 or 4) the

source program text must include a subroutine JAC for calcu­

lation of the Jacobian. For further details consult the source

text. Otherwise the Jacobian is generated internally by differ­

ence quotients.

In order to use the Odepack integration routines, the file

DYS/ODEPACK must be included in the compilation by the B7800,

and the integration name ODEPAK must be written in the CHCK

field of the input file. One more record with six integers may

be specified.

The 1st integer is the method flag MF, specifying the inte­

gration and iteration method. MF is determined as

MF = 10'METHOD + NITER

(for example: BDF method with internally generated, banded

Jacobian, set

MF = 10*2+5 = 25.

The 2nd and 3rd integer in the record (ML and MU) give the

lower and upper half-band width of a banded Jacobian, excluding

the main diagonal (used only if MITER - 4 or 5). The band is

defined by the matrix locations (i,j) with

i-ML £ j £ i+MO

where ML and MU must satisfy

0 £ ML,MU £ NDE-1

NDE being the number of differential equations.

The 4th number (MXOROS) specifies the maximal order using BDF-

methods.

The 5th number (IDIF) gives the number of calls to subroutine

CON,calculating derivatives and algebraic variables. These re­

peated calculations are performed in order to stabilize poss­

ible algebraic loops in the model.

30 -

Giving a non-zero value to the 6th number (INFO) in the record

causes OYSIN to generate detailed information about tho progress

of integration when Odepack is used.

If no record is written or zero is specified for individual

numbers in the record, default values will be used. The default

values are: NF-2 (unless ML or KU are written in which case

MF»5); ML=MU=0; MX0RDS=5, IDIF=1, and INFO=0.

Mhen the Odepack routines are used printout is sent only at the

approximate print times, given in the PRNT field. Thus an in­

tegration step will be completed and the integration variable

•ay exceed the printout time by a fraction of the current step

size. This implies that the maximum integration step DTNAX

should not exceed the minimum printout time interval.

At each integration step an estimated local error vector E(I)

in the state variables y(I) is calculated and the error control

is passed if

I E(I) i
£ 1 1=1,NDE

|EWT(I)|

where EWT(I) is a vector of error weights given by

EWT(I) - EPSI»(0.9ABS(y(I))+0.1REFV(I))

where EPSI is given in the CHCK block.

A detailed description of the methods is given by (BYRNE, 6.D.

and HINDSMARSH, A.D. 1975).

It is not easy to give a clear recommendation for the most

suited Odepack solver, neither how to set up the CHCK field

optimally. Many simulation models make up a set of stiff dif­

ferential equations, stiffness arise in models whose components

have a large variety of time constants. The time constants of

the model in the steady state can be investigated using the auxi­

liary program DYS/JACOBI (cf. section 10.5). It is recommended

to use this program before choosing the Odepack set-up. The

- 31 -

program gives a survey of the couplings between state variables

(the structure of the Jacobian) and the time constants of the

model. If the problem is stiff a BDF-method should be used.

Stiffness is detected by initial use of the Adams/BDF autostiff

method or given from the stiffness ratio (>100), calculated by

DYS/JACOBI.

Difficulties also arise for the Odepack routines when discon­

tinuities appear in the derivatives. Substantial computational

effort is required passing the discontinuity because of auto­

matical stepsize reductions, integrating up to the disconti­

nuity.

The Odepack routines to be used in connection with DYSIM are

designed for solving the initial value problem of the form

y » f(t,y); y(0) = y0

whereas simulation models in our context represent differential

equations of the form

y = f(t,y,a(t,y)); y(0) = y0

where a are algebraic or delay calculated variables as functions

of time and state. These variables being functions of time and

state are only updated at each integration step. This causes

problems both for the Newton iteration to the corrector and for

the numerical evaluation of the Jacobian.

If many of the derivatives depend strongly on algebraic variables

a large (2-5) value of IDIP should be used whereas if the depen­

dence is weak IDIF»1 will possibly work thereby saving much com­

puter time.

It is the experience that although the implicit methods use

relatively long step sizes compared to the explicit Runge-Kutta

methods, integration speed is not increased due to extensive

computational efforts calculating Jacobians and inverting ma­

trices. In many cases, though, it is sufficient to generate

- 32 -

a rather narrow banded Jacobian to give a crude approximation

thus saving substantial computer time. This is done specifying

ML and NU and use NITER = 4 or 5. If the Jacobian is banded the

Runge-Kutta and Odepack routines become comparable in speed for

large systems (>2G differential equations). However, for small

systems Odepack is superior in speed.

The performance of the Odepack routines is very sensitive to

the choice of good values of DTMIN, DT, DTMAX, EPSI, ML, NU

and IDIP. Generally DTMIN and DT should be several orders of

magnitude smaller than for Runge-Kutta methods, whereas EPSI

normally should be set one order of magnitude lower. An exten­

sive experimental work must be performed adjusting DTMIN, DT,

DTMAX, EPSI, NL, MU, and IDIP to optimize the step size and

reducing the CPU time for a given Odepack routine. Doing this

it is advised to set INF0=1. At each printing time DYSIM will

report integration time, step number, number of CON calls

(derivative and algebraic variable evaluations), step size last

used, integration method used, order, number of Jacobian evalu­

ations and CPU time consumed.

7. PRINT AND PLOT PACILITY

During transient calculations variables are stored in a temporary

file according to the list and the time intervals given in the

PRNT block. The integration step number and the time are stored

in position number one and two automatically. The maximum num­

ber of variables are 72 at present, time and step numbers in­

cluded.

In order to hit the correct printout times DYSIM adapts the

time step if needed; but the original step is reinserted

afterwards so that loss of processor time by a gradual step

increase is avoided.

- 33 -

In addition to the input actuated printout the user can demand

a printout of variable values taken at the starting time of any

step. This is done with the statement CALL PRINT, which can be

given at any value of the substep number NR. This facility can­

not be used in connection with ODEPAK integration.

The values at time zero are printed as the first set and the

values at terminal time as the last set.

The data collected during the integration are stored in a buffer

720 words long giving space for 10 sets of values between trans­

fer to the output file. When a smaller number of print variables

is specified the buffer will be used in an economic way so that

more sets can be stored between disk transfer.

The collection of data is done in subroutine INTEG which places

all data in the output file in unformatted form with record

length = 720. A set of variables consists of NPRI data, and a

record has 720/NPRI sets (truncated integer). At program termin­

ation the subroutine OUTPUT is called. It reads the file and

arranges the data in pages and columns for the output printer.

The variable names specified in the PRNT block and physical

dimensions from the list file are used as headings.

When the program stops, the file will be deleted unless PLOT is

specified. In that case the file is extended with one record

which contains two integers, two text arrays and one text

string. The first integer is the maximum number of variables in

a set of variables (72),the second integer is the actual number

NPRI. The two arrays contain variable names and dimensions;

each element is 12 characters long. The last text string is 72

characters long and contains the identification text in the INPT

block. This information is used in the plotter program described

in section 10.

DYSIM also gives some messages with information about the

simulation job. Some of these always go to the printer and

are printed on the last page. Others are written on file 6

which for a remote controlled job is the screen and for a

- 34 -

batch job the printer. In the latter case these messages are

written on the first page of the printer output.

The messages give information about the following items:

Errors in the list file and input file.

- Type of job: steady state. Jacobian or transient calculation.

Restart from a dump file.

- Loading of initial condition from an IC-file.

- The integration routine and related statistics about step

size changes.

- An error in the time delay function.

- Program termination by CALL NSTOP or CALL TERN.

- A user message related to the previous item.

- Program stop due to too small integration step.

- Program stop due to CPU time limitation.

- Program stop due to generation of too much table printing.

Dump of the state on a dump file.

- Steady state saved on an IC-file.

8. TIME DELAY SIMULATION

A function DELAY has been developed for simulation of pure time

delays as the one found in a flow through a tube with a uniform

velocity, which may change, but without sign shift. The func­

tion is not part of the file DYS/DYSIM86, so it must be in­

cluded by the user from file DYS/DELAY86 when it is to be used.

The separation is done in order to save core memory when DELAY

is unused, as it has a relatively large data buffer.

Taking the above-mentioned example of a tube given inlet tem­

perature TI(t), velocity v(t) and tube length L, the outlet

temperature TO<t)*TI(t-x) is found in the following way:

- 35 -

- Introduce an extra state variable

X « v; X(0) > 0

- Find the tiae delay T by the stateaeant

TAU*TRMSTII(*TAU',X, X-L) ,

where the first paraaeter is an identifier of the function

cally the second is the new value of the position X, and

the last one is the delayed value of X to look for in a

buffer. The value returned for TAU is net in teras of

seconds, but in units of buffer positions, i.e. tiae steps,

with linear interpolation between buffer values.

- Find the delayed »-.eaperature by the stateaent

TO-DBADTMCTOUT', TI, TAU),

where TOUT is an identifier and TI is the new inlet teapera-

ture. TO is found by linear interpolation between buffer

values.

Using Ti.'J in units of buffer positions aeans that every tiae delay

aust be found by separate call of TRNSTH. If TAU were calculated

in seconds then other delays with fixed relations to TAU could be

calculated by algebraic equations. The aethods used here will

often require soae extra calls of TRNSTN and extra buffer space,

but the calls of both TRNSTM and DEADTM are very fast.

For each function call characterized by an identifier an input

and an output buffer are used, each 360 worJs long. When the in­

put buffers are full they are transferred to the disk file

SYNA/DELAY, where the output routine can find the data when not

present in any of the two buffers. By prograa teraination

SYNA/DELAY will be deleted. SYMA is the systea naae.

The actual insertion of new values in the buffers is aade by a

call froa DYSIM after each accepted tiae step. It aeans that

only the last substep value is stored even if the delay function

is called by every substep number.

- 36 -

Separate actions are taken when the function is called the

first tine at substep number xero. The identifiers are inserted

in a naae buffer for use at later calls. Coinciding identifiers

are not allowed -nd will cause the program to stop with an

error aessage. Use of identifiers not given in the first call

will have the same effect by subsequent calls.

Adaption of buffer length in order to save core space or to get

space for sore function calls is easily done by alteration of

array dimensions as explained in comments in the head of DELAY.

The present version has space for 20 function calls.

9. OTHER FACILITIES

9.1. Dump and restart

Mien an error occurs long into a transient calculation it may

be difficult to find the cause if the calculation has to be

started at time zero for every test run. Therefore a dump and

restart facility has been developed so that the user can run

the problem once to near the point where the error occurs* and

duap the state of the problea for later restart.

Mien the duap is actuated the contents of the COMMON fields

INTVAR, and ALGVAR are stored in the file SYN A/DUMP, which is

aade peraanent. If DELAY is used, the file SYN»'DELAY is trans­

ferred to another file SYNA/DELAYDUNP extended with soae records

in which the content of the delay buffers and relevant poin.ers

are stored, and the file is aade peraanent. An announceaent

with the time for duap is given after the output tables.

Mien a restart is activated the data stored in SYNA/DUMP and

SYNA/DELAYDUMP is used to reestablish the problea state prior

to the duap, and the integration continues fro* there. The two

disk files reaain peraanent so that the restart can be repeated.

They must be reaoved manually when no longer used.

- 37 -

A duap can be activated by the DUMP coaaand or by a statement

CALL DUMP in the user's prograa. When the latter possibility

is used the calculations aay also be stopped by one of the two

calls (TERM or NSTOP) aentioned below. The stateaent CALL DUMP

does not stop the calculations.

9.2. Prograa teraination

The calculation of both transients and steady states can be

terminated by the user at the end of any accepted integration

step by the stateaent CALL TERM(TBXT). For special purposes,

e.g. search for erors, a aore abrupt stop can be aade by the

stateaents CALL NSTOP(TEXT); RETURN. It results in an iaaediate

integration stop regardless of the substep nuaber NR. However,

the calculations in the following aodules called froa the con­

necting routine are carried out until program control is re­

turned to DYSIH. By steady state the iteration is terminated

without storing the state in the IC-file, but printing is

carried out as noraally.

Both TERM and NSTOP aust have a text string as paraaeter; it is

printed by DYSIM after the output tables together with a message

which tells what type of stop call the user has given.

9.3. Repetition of an integration step

The integration step in progress can be interrupted and re­

peated with a smaller tiae step (divided by 2.0) by the state­

ments CALL REPET; RETURN regardless of the value of the substep

NR. The stej> decrease aay be repeated several tines, e.g. in

order to hit a certain value for one of the state variables. At

the first normal step after CALL REPET the original value of

the time step will be reinserted. A permanent step decrease

cannot be called upon by the user. Note that for systems with

several aodules the calculation in the following modules will

continue until prograa control is returned to OYSIM. This

feature is not valid for ODEPAK integration.

- 38 -

9,4. Activation of special user routines

The statement CALL RECALL can oe used to activate a special

user routine, when the integration step in progress has been

accepted; it may be given at any value of the substep number NR.

It results in execution of the statement CALL DYNANS in DYSIN.

DYNAMS must be the name of a user subroutine or an entry point

without parameters. This feature is not valid for OOEPAK inte­

gration.

Just before the program stops DYSIM gives a CALL YOUT. YOUT

must be supplied by the user in all programs as a subroutine or

an entry point without parameters. It can be used, e.g. to give

a more detailed description of the system state at termination

time than obtained by the output tables. Precompiler 2 can be

used to create the entry points YOUT and DYNANS.

10. INDEPENDENT AUXILIARY PROGRAMS

10.1. The plotting program DYS/PLOT

This program is used to show transients as functions of time on

a graphic screen and make hardcopies on a side plotter or a re­

mote plotter in either the control room for the B7800 computer

or a local terminal room. The program is strongly dependent on

the B7800 installation as it is based upon RISØ*s general

graphic display system called RIGS. Another more elaborate

version will be developed later for the PC-version of DYSIM.

When the program starts the user is asked to select plot device

in one or two stages. The first selection is between side

plotter or remote plotter (answer SIDE for side plotter and

REMOTE for remote plotter). If the choice is REMOTE the next

selection is between central or local (answer CENTRAL for the

central Benson plotter and LOCAL for the local line printer).

- 39 -

Then the program asks for the name of the data file, which

previously has been created by DYSIM.

The program now enters a repetitive section and asks for a

variable name, which must be the full name with a ".", and mod­

ule name. The user can get a list of possible names by the

command LIST instead of a variable name. If the name is valid

the program gives the maximum time and the minimum and maximum

values for the variable. Then the user must specify the time

axis defined by the size and number of time intervals between

marks; he must further select between linear and spline inter­

polation and between automatic or manual scaling of the y-axis

for the variable. The scale must be specified by the zero point

and the size and number of intervals between marks. Both scales

are always linear. The picture will now appear on the screen,

and the user can after observation decide to make a plot or

delete the picture as an answer of a new question. After that

the program returns to the beginning of the repetitive section

and asks for a new variable.

When some pictures are generated and stored for plotting the

user can give the command PLOT instead of a variable name which

brings the program to the plot section. It starts to ask if two

picture shall be put together on one A4 page. If the answer is

YES it further asks which variables the user wants to compose,

and finally it sends the necessary data to the central plotting

system on B7800 or to a side plotter. Upon termination the con­

trol goes back to the repetitive section with the picture

buffer cleared. The user can now proceed with a new group of

pictures, select a new data file, or stop the program with the

command STOP. A HELP command can also be used to give a list of

valid commands.

10.2. The list file editor

The list file editor is used to create a new list file from

scratch or compose a new one using modules from old files with

or without modifications, or add new modules to an existing

- 40 -

file. Small corrections in existing files can easier be made

with the computer's general editor if only the user is aware of

the fixed format which clearly appears in a listing of the file.

By program start the user must give the system name (with maxi­

mum 4 characters) upon demand, whereupon the program constructs

the file name as SYNA/LIST. Then, and only then, it is possible

to copy an old version of the list file without changes before

entrance to the main repetitive program section which always

starts with a menu. The possible commands are

MAKE XXX : Make a new module with the name XXX.

GET XXX : Get module XXX.

LOAD XXX : Load module XXX made by precompiler 1.

COPY XXX : Copy module XXX from an old version of the
file.

TAKE XXX FROM YYYY:
Take module XXX from the list file for system
YYYY.

INFO (YYYY): Find and show all module names in the old
file or the list file for system YYYY.
YYYY = *NEW gives the modules saved in the new
list file

OMIT : Remove the new file and keep the old one;
cancel the job and terminate.

TEST : Close the new file, make a formal test and
terminate.

END : Close the new file and terminate.

The MAKE command guides the user through creation of a list for

a new module. It poses questions and checks answers and asks the

user to write information about variables inside frames. The

user must go through the whole procedure writing information

about state variables, algebraic variables, input variables and

parameters.

The LOAD commai.d loads a list file for module XXX belonging to

the system defined at program start. The file is created by pre-

- 41 -

compiler 1, but without dimension and text fields. The user is

asked to fill in these fields inside given frames, and he must

go through all variables as for the HAKE command.

The commands MAKE, LOAD, GET, and TAKE leave a list for one mod­

ule in a buffer with space for 200 lines and give the user a

small menu with only three commands:

SAVE : Save the buffer in the new file and return to the
main menu.

EDIT : Call an editor subroutine which can be used to
correct errors or change the list in the buffer or
just inspect it.

REN : Clear the buffer, regret and return to the main
menu.

Having used and left the editor called by EDIT the program goes

back to the small menu so that the user can save or remove the

list in the buffer. The EDIT routine is described below in

section 10.3.

The list file is created with records 80 characters long and a

record number in columns 73-80. On B7800 the file is of type

SEQ with record number increment equal to 100.

10.3. The local editor EDIT

This editor is of a more general type; it is used to edit a

text field contained in a buffer which is connected to the

subroutine via a parameter in the call. When it is used from

the list file editor or the input file editor the user himself

must take care of the format as mentioned above in connection

with the use of the computer's normal editor.

EDIT works with lines which are 80 characters long and assumes

that columns 73-80 are reserved for line numbers. It starts by

renumbering all lines with consecutive numbers from 1 and upwards

using column 76-78; column 73-75 and 79-80 are filled with

blanks and later used by EDIT to set marks for the corrections

- 42 -

given by the user. By an update command all line numbers are

updated, and when EDIT is terminated a new updating is given

with number increment of 100 using columns 73-80 as in the list

file editor.

EDIT presents a menu for the user when it is called. The menu

can always be called by the H command. EDIT uses a prompt

character ">" to ask for a command from the user. The menu

looks like

L n,m : List m lines from no. n without corrections.

S n,m : show m lines from no. n with corrections if present.

D n,m : Delete m lines from no. n

C n,m : Change m lines from no. n.

R n,n : Renew m lines from no. n, i.e. cancel all correc­
tion marks.

A : Append new lines at the end.

I : Insert new lines before no.

P FROM XX n-m:
Insert lines no. n to m from file XX before line
no.

U : Update, i.e. insert all corrections introduced and
make a new line numbering in columns 76-78.

E : Update if corrections are present, make a new
line numbering in columns 73-80 and exit.

H : Give a menu list.

Command strings with n,m may be written in several forms which
for the L command are:

L

L n

L n,m

L *

L *,m

The "*" gives the present value of a line counter containing

the last used line number +1. When m is absent the command

- 43 -

refers to line no. n only. When both n and m are absent the

whole buffer is referenced.

EDIT works with a correction buffer with space for 100 lines.

The routine checks for violation of buffer limits. If the

correction buffer is full an update command must be given; if

the list buffer runs full due to insertion of lines no further

insertion can be made.

The commands C, I, and A require that the user writes new lines.

EDIT helps the user by presenting lines to be corrected, or

neighbouring lines by insertion and appending; it furthermore

creates a frame inside which the user must write the new line.

If the user writes outside the frame EDIT will repeat presen­

tation of line and frame and expect a new text string. The C,

I, and A mode can be terminated by the character ">" in the

first column as the only character accepted outside the frame.

10.4. The input file editor DYS/INPUT

To assist the user in writing a correct and complete input file

the auxiliary program DYS/INPUT is available. Developing this

program serves several purposes: the user does not have to

worry about the syntax of the input file, the program presents

all obligatory and optional fields/commands thereby ensuring

the user that all necessary fields are present and forcing the

user to select among all optional commands which to be used.

Furthermore, the program gives a short explanation to each field

presented. The program works selfexplaining and interactively

with the user and precautions have been taken against damaging

already existing input files.

In order to create a new input file the list file holding vari­

able names for all modules must be present (i.e. the list file

editor DYS/LIST should be used in advance). The list file is

identified to DYS/INPUT by the user giving the system name SYNA

when required by the program. The list file is supposed to have

the name SYNA/LIST.

- 44 -

The program offers four facilities working with the input file:

a) write new input file

b) edit an existing input file

c) continue writing the input file after a break (i.e. it is
possible to break sessions, save what has been written so
far and continue writing the input file later).

d) replace the entire INCO field in an existing input file by
new steady state values produced previously by DYSIM under
the STST command.

Re a;

Making an input file for a simulation model it is assumed that

the list file holds variable names for all modules making up

the model. However, it is often desirable for test purposes to

run a simulation using only one or more modules from the entire

model. Writing an input file for this application it is possible

to use the list file for the whole model, simply selecting the

modules to be used. Of course the correct connecting system must

be written.

Furthermore it is possible to make an input file for a simu­

lation using the modules in a changed sequence. This may be use­

ful in Jacobian calculations if the couplings between state

variables could be arranged such that the Jacobian turn into a

nearly banded or triangular structure (c.f. section 10.5).

When writing values for the INCO, DATA, REPV, and PRNT blocks

it is possible to copy values from an existing input file,

either for the whole system or for single modules.

Re b:

The editor described in the previous section is used. Of course

also the computer's standard editor could be used. Writing a new

input file the local editor can be called at each completion of

a field or before saving the input file.

- 45 -

10.5 The Jacobian service routine DYS/JACOBI

In order to get a survey of the couplings between state variables

and time constants of the simulation model the auxiliary program

DYS/JACOBI is available.

To use the program the Jacobian of the system of differential

equations must be calculated. This is done by OYSIN when the

JACO command is written in the input file. The Jacobian is

calculated by difference quotients in the system state given by

the INCO field (normally a steady state), and written on the

file SYNA/JACO; SYNA stands for the system name. Running

DYS/JACOBI this file is read together with the input file.

Pour commands can be accomplished:

a) A table of the Jacobian can be printed. This table could be

quite extensive for large systems and should only be used

when values of the matrix elements are required.

b) A compact image of the couplings between state variables

can be printed. This printing, called a non-zero image,

shows all non-vanishing elements of the Jacobian. This

picture holds information about which state variables in­

fluence a given derivative. The modular structure of the

model is easily read from the picture. A possible rearrange­

ment of the order of sequence of the modules might appear

from a study of this picture, thereby changing the struc­

ture of the Jacobian into a banded or nearly triangular

form. The possibility of specifying a banded structure to

the Odepack integration routines saves much computational

effort. The actual half-band width of the Jacobian shown

(MU and ML) are written. However, in most cases the band can

be made more narrow for the Odepack usage.

c) Linear approximations to differentials of the derivatives

can be printed; i.e. when the NDC differential equations of

the model are written as

- 46 -

dyi
-T— • fi(t,yj); yi(0) « y0i» i»j - 1»M

a table is written giving

j»WDE
^ - — 6fi

df£ = \ dyj ; i=1,NDE

6fi
where

6Yj

is printed as the value of the (irj)-aatrix element of the

Jacobian. Only non-vanishing terms of the series are printed.

This gives an insight into the strength of the couplings,

when the magnitudes of the state variables are known.

d) Tables of eigenvalues, eigenvectors, decay time3 and suggest­

ed stepsizes to be used can be printed. The table of the

eigenvectors is extensive for large systems and is only

printed on request. Eigenvalues and eigenvectors are calcu­

lated using the LINPACK library of numerical algorithms. An

analysis of the eigenvalues is performed: A special message

is written for components of the solution having positive

real parts of the eigenvalue as this leads to unstable

systems. For the components having negative real parts

XR and non vanishing imaginary parts \j of the eigen­

values, i.e. exponentially decreasing oscillatory compo­

nents, a suggested time step for use in multistep methods

is written. This maximum time step h is calculated from the

condition

2*
1 8

thus representing the oscillatory solution in at least 8

points in one period. A decay time T(HALP) is written for

all decaying components giving the time for the component

to reach half the initial value.

- 47 -

Suggested time steps for the Runge-Kutta methods are

calculated using

h*max{|XR|} < 2 2. order

h*max{|\R|} < 2.78 4. order

Spectral radius max {IXI } and stiffness ratio

ma»{|\Rl}

min{|XR|}

are calculated. For stiff systems (large stiffness ratios)

the Odepack-BDF methods may be usefull.

Details concerning step size limitations and stiffness

ratio can be found in chapter 8 in (J.D. LAMBERT, 1973).

11. A PC-VERSION OF DYSIN

Recently DYSIM has been transferred to a personal computer in a

preliminary form with the introduction of some new features

mentioned below. The calculations are controlled in a more

interactive way and the user has a possibility to follow the

progress of calculations. In the near future a more elaborate

user interface will be developed based upon graphic represen­

tation.

For the present version some points shall be mentioned.

a) The TIME command is no longer significant as the processor

time is unlimited in principle. The steady state calcu­

lations are controlled '->y the user.

b) A new subroutine by name SERVER is introduced; it is called

both by transient and steady state calculations at intervals

determined by the user. It presenes itself by a message

- 48 -

giving either the tine for transients or the integration

step number by steady state. The prompt character ":" is

given to ask the user for a command which must be one of the

following 4 commands

- VARIABLENAME which gives the actual value of either a

state variable, an algebraic variable or a parameter. If

a parameter is chosen the user gets the opportunity to

give a new value; the old value is retained by a CR.

- T or S gives the time for transients and the step number

for steady state.

- C n results in continuation of calculations n seconds for

transients or n steps for steady state. After that the

program control is passed over to SERVER again.

- E means exit. The calculations are terminated in a normal

way.

The server routine can be called by the user at any tine

during the calculations typing CTRL C at the keyboard. For

that case the continuation command C can be used without

the number n.

c) Steady state calculations can be controlled by one to three

numbers in the STST data record. The first number gives the

number of integration steps between printout as for the

B7800 version, the second one gives the number of steps

between output to the screen, and the third one is the

number of steps between call of SERVER. Default values are

used if not all numbers are specified. If the data record

is skipped the default values are 100, 10, 100. If only the

first number, N1, is given (as for B7800 version input

files) the default values for the two next are N2 * N1/10

and N3 • N1. The output to the screen consists of one line

with the integration step and the first 6 variables in the

PRNT block.

- 49 -

d) Transient calculations run until the terminal time given in

the CHCK block is reached; then program control goes to the

SERVER routine. The user can now continue integration in

time segments as wanted. At present nothing is shown at the

screen during integration. This procedure gives the user

the possibility to prepare an input file set-up with para­

meter values without pertubations and with a small terminal

time (e.q. 1 or 10 s). By the first call of SERVER (or by

sequential calls) the user can introduce a transient distur­

bance and integrate as long as wanted. This means that the

same input file can be used for many transients.

e) An extra command, *REAL, can be used to specify syncroniz-

ation between real time and integration time if the model

is sufficiently small. No accumulation of print or plot data

is made. The integration step is fixed equal to the initial

value DT given in the CHCK block. The two time intervals

given in the PRNT block as PDT1 and PDT2 (number 1 and 3 in

the first data record) are used as time intervals for two

outputs. The first one controlled by PDT1 writes the values

of all print variables (with time included as the first

one) out on the standard port RS-232-C or on a disk file.

The second output controlled by PDT2 goes to the screen

with one line containing the time followed by the first 6

variables in the print list. When a file name is given in

connection with the REAL command the first output goes to

that file unless the file name is C0M1, which is a reserved

name for the port RS-232-C. Without a file name the output

goes to the port. The format for port output is with FoiLran

notation (1P,(X,7E11.4)), which means that each record con­

tains 7 numbers in tne 1PE11.4 format. Por disk file output

a set of variables is written as

((time)

(name var)(name var)(name var)

)

- 50 -

and all sets are enclosed by brackets, "("as the first and

") " as the last character of the file, written in separate

records. The text name is a 12 character long variable name

and var is the numerical value in 1PS11.4 format. The time

is given by the value without a text.

For the near future the intention is to transfer the whole

simulation package with precompilers and auxiliary programs

to the PC and develop graphics for display of results both

during and after the calculation.

Furthermore, it has been discussed to develop some graphic

programs to guide an unexperienced user through the process

of creating models and running simulations. A graphic sys­

tem can possibly also be used to present a model for the

user in a form more clear and easier to use than tables and

diagrams on paper.

REFERENCES

BYRNE, G.D. and HINDMARSH, A.D. (1975). A Polyalgorithm for the

Numerical Solution of Ordinary Differential Equations. ACM

Trans. Math. Software, Vol. 1, 71, 1975.

CHRISTENSEN, P. la Cour (1981). Description of a Simulation

System DYSIM for Continuous Dynamic Processes, Risø-M-2271.
§

LAMBERT, J.D. (1973). Computational Methods in Ordinary Differ­

ential Equations, John Wiley 6 Sons.

SCH: ECHTENDAHL, E.G. (1970). DYSYS - A Dynamic System Simulator

for Continuous and Discrete Changes of State, Institut fur

Reaktorentwiklung, Karlsruhe, KFK 1209.

- 51 -

APPENDIX A

Program listing of a small Module in fortran code

1 SUBROUTINE FC(NR.TID)
2 C * FEEDHATEB COKTROL BY THE AUXILIARY SYSTEM
3 C
4 C COMMON /CFC/ CONTAINS:
5 C S: STATE VARIABLES : 6
A C D: DERIVATIVES : 6
7 C X: INPUT VARIABLES : 6
a C C: INPUT CONSTANTS : 6
9 C A: ALGEBRAIC VARIABLES: 0
10 C
11 COMMON /CFC/
12 S VFE.XHC3>.V42,V23,
13 D WFEP,XHPC3).V42P.V23P,
14 X VLEV,PE,VLR.SS,ASEH,P12,
15 C GL,GH,VFER
16 C
17 REAL YH.6)
18 REAL rV4.rV42,rV23.KHF
19 C
20 DATA VLER0,TC1.TV42,TV23 /4.1. 10., 30., 45./
21 DATA KV4,KV42,CV23,KHF /5.63E-3, S.63E-5, 7.E-4, 8.E-4/
22 DATA A34,B34,C34 /-.101853E-2,.325180E-2.2S.74C0/
23 DATA A12.B12.C12 /-.394141E-2,-647404E-1.76.3186/
24 DATA VLEVS.SST / 0., -1. /
25 C
26 ALIH<X,XHAX,XHIN)=AHAX1<XHIN,AHIN1<X,XMAX))
27 C
28 XF(NR.EO.O) THEN
29 C * INITIALIZATIONS AT START
30 SST=-1.
31 VLEVS=0.
32 END IF
33 C
34 IF(SS.GT.O-) THEN
35 C * CHANCE OF HATER LEVEL SETPOINT BT SCRAH
36 C • SST: EVENT TIME
37 IFiSST.LT.O.) SST»TID
38 VLEVS=-.4
39 IF(TID-SST.GE.600.1 VLEVS*-.4*AHAX1<0.,1.-(TID-SST-600.)/120.)
40 END IF
41 C
42 C • AUXILIARY FEEDHATER FLOV CALCULATION
43 C * THI: LEVEL SIGNAL
44 YHU)*ALIM<(WLEV-2.5)/3.5.I.,0.>
45 C * XH1: VARIABLE IN COMPENSATION CIRCUIT
46 XHP(1=(YH<1)-XH(1)>/TC1
47 C • YH2: COMPENSATED LEVEL SIGNAL
48 YH<2)=ALIHCYH<1)-XHC1),.0S,-.05)*YH<1)
49 C * TH3: LEVEL ERROR SIGNAL
50 *INB! YH3 IS MODIFIED VITH AN EXTRA FEEDBACK SIGNAL CHFE-VLR)
51 * REPRESENTING THE FLOV ERROR
52 • GL IS THE LEVEL ERROR GAIN BEFORE THE CONTROLLER
53 • GV - - FLOV - -
54 YH(3)=GL«((WLER0*VLEVS-2.5)/3.5-YH(2))-GV*(VFE-WLR)/100.
55 C • PI-CONTROLLER. INPUT YH3, OUTPUT YH4
56 XHP(2 -20.*YH(3)/60.
57 IF(XH(2).LE.O..AND.XHP(2).LT.O.) XHP<2)-0.
58 IF(XH(2).GE..72.AND.XHP(2).GT.0.> XHP(2)*0.
59 XH:2)*ALM(XH<2>, .72, .00)
60 YH(4>*ALIH(XH(2)*20.*YH<3),.72,.00)
61 IF(VFER.GT.O.) YH<4) *.'HIM1(VFER/100. , .72)
62 C • CONTROL VALVE SERVO <V4). XH3:VALVE POSITION
63 C • VFE: AUXILIARY FEEDVATER FLOV

http://325180E-2.2S.74C0/
http://-647404E-1.76.3186/

- 52 -

.) V42P=1./TV42

.E-10) V42P=-1./TV42

64 UFES=WFE/100.
65 YH(5)=ALIH(20.*<YH(4)-VFES).1..-1.)
66 XHC3)=ALIM(XH<3),1.,1.E-10)
67 XHP(3)=YH<S)/30.
60 IF(XH(3).LE.1.E-10.AND.XHP<3).LT.O.) XHP(3)=0.
69 IF<XH(3).GT.l. .AND.XHPO) .GT.O.) XHP(3)=0.
70 C * BYPASS VALVE OPENING CV42), ON-OFF CONTROL BY HATER LEVEL
71 V42=ALIH(V42,1.,1.E-10>
72 V42P=0.
73 IFCWLEV.LT.2.9.AND.V42.LT.1
74 IF(WLEV.GT.4.2.AND.V42.GT.l
75 C « CONTAINHENT VALVE <V2,V3) CONTROLLED BY INPUT ASKH
76 V23=ALIH(V23.1..1.E-10)
77 V23P=0.
78 IFCASKH.GT.O..AND.V23.LT.1.) V23P=1./TV23
79 IFCASKK.EO.O..AND.V23.GT.1.E-10) V23P=-1./TV23
80 C • FRICTION COEFF.FOR V4 AND V42 INDIVIDUALLY
81 HV4=KV4/XH<3)**2
82 HV42=KV42/V42**2
83 C * FRICTION COEFF.FOR V4 PARALLEL WITH V42
84 HV442=HV4*HV42/(SORT(HV4)*SORTCHV42))**2
85 C • FRICTION COEFF.FOR V2/V3
86 HV23=KV23/V23«*2
87 C • FLOW CALCULATION WITH PUMPS P3/P4
68 C • AGAINST PE*3 WITH FRICTION COEFF.
89 A=A34*P12*A12-<HV442*HV23*KHF)
90 B=B34*P12*B12
91 C=C34»Pl2*Cl2-PE-3.
92 W=(-B-SQRT(B*B-4.*A»C))/(2.*A)
93 C • CALCULATED FLOW IS FILTERED WITH
94 WFEP=CW-WFE>/.20
95 RETURN
96 END

• P1/P2 PUMPING
HV442,HV23 AND KHF

2 S TINE LAG

- 53 -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
S3
54
55
56
57
58
59
60
61
62

APPENDIX B

Connecting routine for a system with 6 modules written in fortran

code

SUBROUTINE CON(NR)
MAIN PROGRAM FOR BARSEBAECK LOW POWER MODEL
THE MODEL HAS THE FOLLOWING MODULES:

110

120

130

140

150

160

RE
CR
FC
PC
FL
RK

THE REACTOR MODEL
CONTROL ROD ROUTINE
FEEDWATER CONTROL MODEL
PRESSURE CONTROL MODEL
NEUTRON FLUX MONITOR AND LIMIT CONTROLS
RESIDUAL HEAT REMOVAL MODEL

COMMON /INTVAR/ TID,
• SVRE(63),SVCR<3>, SVFC<6), SVPC(9), SVFL<3>, SVRK(4)
COMMON /DERIV/
DERE(63),DECR<3>, DEFCC6), DEPCC9), DEFL<3), DERK<4)
COMMON /ALGVAR/
• AVRE(60),AVCR(30>,AVFL(30)
COMMON /DATA/
* PAREU2),PACRU2),PAFC<6), PAPCC6), PAFL<6), PARK(6)#
t ASKH,XSKD,PER,WREK,DUMP,A314,
1314,WLX,WLXT,P12,DRAIN

COMMON /CRE/ SRE'63),DRE(63),XRE(30),PRE<12),ARE(60)
COMMON /CCR/ SCR(3), DCR(3), XCR(12),PCR<12),ACR(30)
COMMON /CFC/
COMMON /CPC/
COMMON /CFL/
COMMON /CRK/

REAL 1314

SFC(6), DFC(6), XFC<6), PFC(6)
SPC(9), DPC(9), XPC(12>,PPC<6)
SFL(3). DFL<3), XFL<6), PFL<6),
SRK<4), DRK(4), XRK<6>, PRK<6>

AFLOO)

ALIM(X,XMAX.XMIN)=AMAXKXMIN,AMINl(X,XMAX)>

INSERT STATE VARIABLES
DO 110 J=l,63
SRE<J)=SVRE<J)
DO 120 J=l,3
SCR<J)=SVCR(J)
DO 130 J=l,6
SFCCJ)=SVFC(J)
DO 140 J=l,9
SPC<J)=SVPC(J)
DO 150 J=l,3
SFL(J)=SVFL(J)
DO 160 J=l,4
SRK(J)=SVRK(J)

CONTROL RODS :
XCR(1):0N
XCR<1)=ARE(34)
XCR<2):PE
XCR(2)=SRE<56)
XCR<3):WGE
XCR(3)*ARE(37)
XCR(4):SS

XCR(4)=AFL(16)
XCR(5):CRS
XCR(5)=0.
IF(AFr,(17)*AFL(l8),GT.O.) XCR(5)*1,
XCR(6 :DBT
XCR(6)=AFL(24)

- 54 -

63 * XCR<7):RT
64 XCR(7)=SRE<49>
05 CALL CR(PR.TID)
66 *
67 * REACTOR :
68 * XRE(1):WLR
69 XRE(1)=SPC<8)
70 * XRE(2):WFE
71 XRE(2)=SFC(1)
72 * XRE(3):XSKD
73 XRE<3)=XSKD
74 IF(AFL(2).GT.O.) XRE(3)=0.
75 * XRE<4):TREK
76 XRE<4)=SRK(1)
77 * XRE<5):WREK
78 XRE<5)=WREK
79 * XRE(6):WL0S
80 XRE<b)=0.
81 * IF WATER LEVEL > 4.2 AND DRAIN > O DRAIN WATER FROM TANK MANUALLY
82 IF(DRAIN.GT.0..AND.SRE<53).GT.4.2) XRE(6)=5.
83 * XRE(7:30):PCCR(1:24)
84 DO 310 J=l,24
85 310 XRE(J*6)=ACR(J)
86 CALL RE(NR,TID>
87 *
88 * FEEDWATER CONTROL
89 * XFC<1):WLEV
yu XFC<1;=5RE<53)
91 • XFC<2):PE
92 XFC(2)-SRE(56)
93 * XFC(3):WLR
94 XFC<3)*SPC<8)
95 * XFC(4):SS
96 XFCU)=AFL(16)
97 * XFC<5);ASKH
98 XFC(5)=ASKH
99 IF(AFL<2).GT.O.) XFC<5)=0.
100 * XFC(6):P12
101 XFC(6)=P12
102 * START PUMPS 1-2 WHEN P>20 BAR IN CASE 104.
103 IF(PRE(1).EQ.104..AND.SRE(56>.GT.20.) XFC(6>-1.
104 CALL FC(KR,TID)
105 *
106 * PRESSURE CONTROL
107 * XPC(1)-PE
108 XPC(1)=SRE(56)
109 * XPC(2);QN
110 XPC(2)=ARE(34)
111 * XPC<3):PER
112 XPC(3)=PER
113 IF<ACR(27).GE.8.) XPC<3)=ACR<27)
114 * XPC(4):XSKD
115 XPCC4)=XSKD
116 IF(AFL<2).GT.0.) XPC(4)=0.
117 * XPC(5):DUMP
118 XPC(5)=DUMP
119 IF(AFL(6).GT.O.) XPC(5)=0.
120 * XPC(6):A314
121 XPC(6)=A314
122 IF(AFL(2)*AFL(19)*AFL<3)*AFL<6).GT.0.) XPC(6)=1.
123 * XPC(7):I314
124 XPC(7)=I314
125 IF(AFL(2)*AFL(19>*AFL(3)+AFL(6).GT.0.) XPC(7)*1.
126 • XPC(8):WLX
127 XPC(8)=AMIN1(WLX*TID/WLXT,WLX)
128 CALL PC(NR,TID)
129 *

- 55 -

130 * FLUX MONITORS AND LIMIT CONTROLS
131 * XFL(1):FLUX
132 XFL(1>=ARE<44>
133 * XFL(2):WLEV
134 XFL(2)=SRE(S3)
135 * XFL(3):PE
136 XFL(3>=SRE<56>
137 * XFL(4>:DBT
138 XFL<4)=ARE<45>
139 * XFL(S):XXX
140 XFL(5)=1.
141 * XFL(6>:YYY
142 XFL(6)=1.
143 CALL FL(NR,TID>
144 *
145 * RESIDUAL HEAT REMOVAL SYSTEM
146 * XRK(1):TRI
147 XRK(1J=ARE<36)
148 * XRK<2):WREK
149 XRK(2)=HREK
150 CALL RK<NR,TID)
151 *
152 * RETURN STATE VARIABLES AND DERIVATIVES
153 1000 CONTINUE
154 DO 1010 J=l,63
155 SVRE<J)=SRE<J)
156 1010 DERE(J)=DRE(J)
157 DO 1020 J = l,3
158 SVCR<J)=SCR(J)
159 1020 DECR(J)=DCR(J)
160 DO 1030 J = l,6
161 SVFC(J)=SFC(J)
162 1030 DEFC(J)=DFC(J>
163 DO 1040 J=l,9
164 SVPC<J)=SPC<J>
165 1040 DEPCCJ)-DPC(J)
166 DO 1050 J = l,3
167 SVFL(J)=SFL(J>
168 1050 DEFLCJMr.^LCJ)
169 DO 1060 J-1,4
170 SVRK<J)=SRiC<J>
171 1060 DERK(J)=UEK'J)
172 RETURN
173 *
174 •
175 ENTRY ALVAR(NO)
176 IF(NO.EO.O) THEN
177 • INSERT INPUT DATA FOR NR=0
178 DO 10 J*l,12
179 10 PRE(J)=PARE(J)
180 DO 20 J=l,12
181 20 PCR(J)=PACR(J)
182 DO 30 J=l,6
183 30 PFC<J)=PAFC(J)
184 DO 40 J=l,6
185 40 PPC(J)=PAPC<J)
186 DO 50 J = l,6
187 50 PFL<J)=PAFL(J>
188 DO 60 J=l,6
189 60 PRK(J)=PARK(J>
190 END IF
191 *
192 IF<H0.EQ.1> THEN
193 * TAKE ALGEBRAIC VARIABLES FROM COMMON /ALGVAR/
194 DO 1110 J=l,60
195 1110 ARfi(J)=AVR£(J>
196 DO 1120 J*l,30
197 1120 ACF.(J)*AVCR<J)

- 56 -

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

1130

*

1210

1220

1250

*
•

*
*

DO 1130 J=l,30
AFL(J)=AVFL(J)

END IF
IFCN0.E0.2) THEN
RETURN ALGEBRAIC
DO 1210 J=l,60
AVRE(J)=ARE(J)
DO 1220 J=1.30
AVCR(J)=ACR<J)
DO 1250 J=l,30
AVFL(J)=AFL(J)

END IF
RETURN

ENTRY YOUT
CALL YOREAC
CALL YOCROD
RETURN

ENTRY DYNAMS
RETURN
END

VARIABLES TO COMMON /ALGVAR/

- 57 -

APPENDIX C

List file for the same system as used in Appendix B

10 NODULE: RE REACTOR , SUBROUTINE RE
20 ==
30 STATE VARIABLES 63
40
SO NAME SRE DIMENSION TEXT
60 r
70 X0N(3) 1-3 MW DECAY HEAT VARIABLES
80 TC<10) 4-13 C WATER TEMP. IN THE CORE
S3 ALF(IO) 14-23 VOID FRACTION IN THE CORE

100 TU(IO) 24-33 C FUEL TEMP.
110 CNK10) 34-43 CMe-3 CONCENT.OF DELAYED NEUTRON EMITTERS
120 TLP1 44 C TEMPERATURE IN LOWER PLENUM 1
130 TLP2 45 C - - - - 2
140 TBP1 46 C - - CORE BYPASS 1
150 TBP2 47 C - 2
160 TR 48 C - - RISER
170 TT 49 C - - TOP WATER VOLUME
180 TB 50 C - - FEEDWATER CHAMBER
190 TDC 51 C - - DOWNCOMER
200 TPU 52 C - - RC-PUMPS
210 WLEV 53 M WATER LEVEL IN TANK
220 PP 54 BAR/S DP/D7 FILTERED BY TAU-0.2
230 PR 55 BAR RISER PRESSURE
240 PE 56 BAR STEAM DOME PRESSURE
250 ALFR 57 RISER VOID FRACTION
260 WRC 58 KG/S COOLANT FLOW FROM RC-PUMPS
270 YHC1 59 Me3 VARIABEL FOR DELAY SIMULATION
280 YHC2 60 Me3 - -
290 TTW1 61 C TANK WALL TEMP.AT STEAM VOLUME
300 TTW2 62 C - WATER -
310 RTVTF 63 PCM REACTIVITY FILTERED, 1/(1*S)
320
330 ALGEBRAIC VARIABLES 60
340
350 NAME ARE DIMENSION TEXT
360
370 TCA(IO) 1-10 C CANNING TEMPERATURE
380 NPD(IO) 11-20 MW CORE AXIAL POWER WITH RESIDUAL HEAT
390 XEN(IO) 21-30 CMe-3 XENON CONCENTRATION
400 TRCI 31 C TEMP. IN RC-LINE AT TAHK INLET
410 TCS 32 C SATURATION TEMP.IN THE CORE
420 TES 33 C - - - STEAM DOME
430 OND 34 MW NUCLEAR POWER WITHOUT RESIDUAL HEAT
440 MVOID 35 CORE AVERAGE VOID
450 TPUI 36 C INLET TEMP.TO HC-PUMPS
460 WGE 37 KG/S STEAM FLOW TO STEAM DOME
470 WGR 38 KG/S STEAM FLOW IN RISER
480 WFR 39 KG/S WATER FLOW - -
490 WR 40 KG/S MASS FLOW - -
500 WT 41 KG/S WATER FLOW TO TOP VOLUME
510 RTVT 42 PCM REACTIVITY
520 CNSF 43 ITERATION FACTOR FOR POWER
530 FLUX 44 CMe-2 Se-1 MEAN NEUTRON (LUX,CALIBRATED
540 DBT 45 S NEUTRON FLUX DOUBLING TIME
550 REACTI 46 PCM REACTIVITY WITHOUT NEUTRON SOURCE
560 TCM 47 C CORE COOLANT MEAN TEMP.

- 58 -

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
7S0
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

EMPTY
PHK12)

48
49-60 CMe-2 Se-1

NOT USED
AXIAL NEUTRON FLUX

INPUT VARIABLES 30

NAME XRE DIMENSION TEXT

WLR
WFE
XSKD
TREK
WREK
WLOS
PCCR(24)

PARAMETERS

1
2
3
4
5
6
7-3C

12

KG/S
KG/S

C
KG/S
KG/S
X

TOTAL STEAM LOAD
FEEDHATER FLOW
STEAM STOP VALVE OPENING
TEMP.OF SHUTDOWN COOLING WATER
FLOW IN SHUTDOWN COOLER CIRCUIT
SMALL BREAK FLOW OUT FROM RC-LINE
POSITION OF CONTROL RODS <24 GROUPS)

NAME CRE DIMENSION TEXT

STI
OSR
CON
FCAL
SOUR
TAUR
ORES
ORP
TFE
XENON
EMPTY(2)

1
2
3
4
5
6
7
8
9
10
11-12

MW

S
HW

C
X

STEADY STATE INDICATOR
POWER SETPOIWT
ITERATION FACTOR,STI=1

FLUX CALIBRATION FACTOR
NEUTRON SOURCE TERM
REACTIVITY FILTER TIME CONSTANT
CONSTANT RESIDUAL HEAT
RC-PUMP VELOCITY NORMALIZED
FEEDWATER TEMPERATURE
XENON STEADY STATE POWER LEVEL
NOT USED

MODULE: CR

STATE VARIABLES

NAME SCR

CONTROL RODS , SUBROUTINE CR

3

DIMENSION TEXT

XCR
TREF
XQ

1
2
3

X
C
HW

ALGEBRAIC VARIABLES 30

NAME ACR DIMENSION

CONTROL ROD DISPLACEMENT
TEMP.REFERENCE VALUE FOR CASE 104
VARIABLE IN TEMP.CONTROLLER CASE 104

TEXT

PCS(24) 1-24 X
SUMCR 25 X
PREF 26 BAR
PER 27 BAR
EMPTY<3) 28-30

CONTROL ROD POSITIONS, 0UT«100 X
SUMKA CONTROL RODS OUT, 0-10900 X
SATURATION PRESSURE FOR TREF
SETPPOINT FOR PRESSURE CONTROLLER
NOT USED

INPUT VARIABLES 12

- 59 -

1130 NAME XCR DIMENSION TEXT
1140
1150 ON 1 MM NUCLEAR POWER WITHOUT RESIDUAL HEAT
1160 PE 2 EAR REACTOR PRESSURE
1170 WGE 3 KG/S STEAM PRODUCTION IN REACTOR
1180 SS 4 REACTOR SCRAM SIGNAL
1190 CRS 5 ROD WITHDRAW STOP INDICATOR
1200 DBT 6 S DOUBLING TIME
1210 RT 7 C REACTOR TOP TEMP.
1220 EMPTY<5) 8-12 NOT USED
1230
1240 PARAMETERS 12
1250
1260 NAME CCR DIMENSION TEXT
1270
1280 STI 1 STEADY STATE AND TRANSIENT INDICATOR
1290 QSR 2 MW - - POWER SETPOINT
1300 WLSR 3 KG/S - - STEAM LOAD SETPOINT
1310 CQCR 4 - - ITERATION FACTOR,STI=2
1320 CPCR 5 - ,STI»3
1330 NGR 6 TRANSIENT PAR.,NUMBER OF GROUPS
1340 GRP 7 - - ,GROUP NO.
1350 FCR 8 X - ,X CR-WITHDRAWING
1360 VCR 9 X - ,CR-SPEED AS X OF MAX.
1370 TGI 10 C/H TEMP. RATE FOR P<PTG, CASE 104
1380 TG2 11 C/H - P>PTG, CASE 104
1390 PTG 12 BAR PRESSURE LIMIT FOR TEMP.RATE,CASE 104
1400
1410
1420
1430
1440 MODULE: FC FEEDWATES CONTROL SYSTEM , SUBROUTINE FC

1460 STATE VARIABLES 6
1470
1480 NAME SFC DIMENSION TEXT
1490
1500 WFE 1 KG/S FEEDWATER FLOW
1510 XH(3) 2-4 CONTROLLER VARIABLES,XH(3)=VALVE POS.
1520 V42 5 BYPASS VALVE OPENING
1530 V23 6 CONTAINMENT VALVE OPENING
1540
1550 ALGEBRAIC VARIABLES 0
1560
1570
1580 INPUT VARIABLES 6
1590
1600 NAME XFC DIMENSION TEXT
1610 --
1620 WLEV 1 M REACTOR WATER LEVEL
1630 PE 2 BAR - PRESSURE
1640 WLR 3 KG/S - STEAM LOAD
1650 SS 4 REACTOR SCP.AM SIGNAL
1660 ASKH 5 INDICATOR FOR ISOLATION VALVE OPEN
1670 P12 6 - - PUMPS 1-2 RUNNING
1680

- 60 -

1690
1700 PARAMETERS 6
1710
1720 NAME CFC DIMENSION TEXT
1730
1740 6L 1 GAIN IN LEVEL LOOP
17S0 6M 2 - FLOW FEEDBACK LOOP
1760 WFER 3 KG/S FEEDHATER SETPOINT FOR MAN.CONTROL
1770 EMPTY<3) 4-6 NOT USED
1780
1790
1B0O
1810 MODULE: PC PRESSURE CONTROL SYSTEM , SUBROUTINE PC

1830 STATE VARIABLES 9
1840
18S0 NAME SPC DIMENSION TEXT
1860
1870 X6(3) 1-3 COARSE CONTROLLER VARIABLES
1880 XH 4 HYDRAULIC -
1890 XBPV 5 DUMP VALVE OPENING
1900 XBL(2) 6-7 BLOHDCHN CONTROL VAR.,XBL(2)=VALVE POS.
1910 WSL 8 KG/S TOTAL STEAM FLOH
1920 PES 9 BAR PRESSURE CONTROLLER SETPOINT
1930
1940 ALGEBRAIC VARIABLES O
1950
1960
1970 INPUT VARIABLES 12
1980
1990 NAME XPC DIMENSION TEXT
2000
2010 PE 1 BAR REACTOR PRESSURE
2020 ON 2 MW NUCLEAR POHER WITHOUT RESIDUAL HEAT
2030 PER 3 BAR REACTOR PRESSURE SETPOINT
2040 XSKD 4 STEAM I SOL AT 10:! VALVE OPENING
2050 DUMP 5 DUMP CONTROL INDICATOR
2060 A314 6 BLOHDOHN - -
2070 1314 7 START 314 BLOHDOHN SYSTEM FOR I314>0
2080 HLX 8 KG/S STEAM FLOH DISTURBANCE
2090 Ef.PTY(4) 9-12 NOT USED
2100
2110 PARAMETERS 6
2120
2130 NAME CPC DIMENSION TEXT
2140
2150 PRATE 1 BAR/S MAX RATE FOR PRESSURE SETPOINT
2160 EMPTYf5) 2-6 NOT USED
2170
2180
2190
2200 MODULE: FL FLUX MONITORS AND LIMIT CONTROLS, SUBROUTINE FL
2210 ttf:t:iitiii> itttec ittiBi:i::it iti:i:i
2220 STATE VARIABLES 3
2230 -
2240 NAME SFL DIMENSION TEXT

- 61 -

2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2S80
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800

XI
PRHF
DBTR

ALGEBRAIC

NAME

SS4
SSS
SS6
SS7
SS8
SS11
E2
E3
S4
SS
S6
S7
S8
S10
Sll
SS
E
S
PRML
SRH
IRH
PRH
IRHC
DBTF
SRHLG
EMPTY(S)

INPUT

NAME

FLUX
»LEV
PE
DBT
XXX
YYY

1
2
3

VARIABLES

AFL

1
2
3
4
5
6
7

e
9
10
li
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26-30

VARIABLES 6

PARAMETERS

NAME

STI
ARS
TAUD
NOSS
NOS

XFL

1
2
3
4
5
6

6

CFL

1
2
3
4
5

X
1/S

30

DIMENSION

C/S
X
X

S

DIMENSION

CMe-2
M
BAR
S

Se-1

DIMENSION

S

FILTER VARIABLE
PRH-SIGNAL FILTERED
DOUBLING TIME RECIPROCAL FILRERED

TEXT

SS4 INDICATOR
SSS -
SS6 -
SS7 -
SS8 -
SS11 -
E2 INDICATOR
E3 -
S4 INDICATOR
S5 -
S6 -
S7 -
SB -
S10 -
Sll -
SS INDICATOR
E -
S -
INDICATOR FOR PRM > 5 X
SRM SIGNAL
IRM -
PRM -
IRM CHANNEL
DOUBLING TIME AFTER FILTER (1/DBTR)
LOG OF SRM
NOT USED

TEXT

NEUTRON FLUX
REACTOR WATER LEVEL
REACTOR PRESSURE
NEUTRON FLUX DOUBLING TIME
INDICATOR FOR SRM DETECTOR INSERTED

IRM -

TEXT

STEAD'/ STATE INDICATOR
INDICATOR FOR AUTO IRM SCALING
DOUBLING TIME FILTER TIME CONSTANT
INDICATOR FOR SS-BYPASS

S-BYPASS

- 62 -

2810 SSD 6 SS MANUAL DEMAND
2820
2830
2840
28S0
2860 MODULE: RK RESIDUAL HEAT REMOVAL MODEL, SUBROUTINE KT

2880 STATE VARIABLES 4
2890
2900 NAME SRK DIMENSION TEXT
2910
2920 TRO 1 C PRIMARY COOLANT OUTLET TEMP.
2930 THO 2 C SEAWATER OUTLET TEMP.
2940 TMC 3 C INTERMEDIATE COOLANT TEMP.COLD SIDE
2950 TMH 4 C - - HOT -
2960
2970 ALGEBRAIC VARIABLES O
2980
2990
3000 INPUT VARIABLES 6
3010
3020 NAME XRK DIMENSION TEXT
3030
3040 TRI 1 C PRIMARY COOLANT INLET TEMP.
3050 WREK 2 KG/S REACTOR COOLANT FLOW
3060 EMPTYC4) 3-6 NOT USED
3070
3080 PARAMETERS 6
3090
3130 NAME CRK DIMENSION TEXT
3110
3120 THI I C SEAWATER INLET TEMP.
3130 NHEX 2 NUMBER OF ACTIVE LOOPS (0, 1, 2)
3140 EMPTY(4) 3-6 NOT USED
3150
3160
3170
3180 MODULE: CON CONNECTING SYSTEM , SUBROUTINE CONSYS

3200 STATE VARIABLES 0
3210
3220
3230 ALGEBRAIC VARIABLES 0
3240
3250
3260 INPUT VARIABLES 0
3270
3280
3290 PARAMETERS 12
3300 - --
3310 NAME CCON DIMENSION TEXT
3320
3330 ASKH 1 INDICATOR FOR FEEDWATER STOP VALVE
3340 XSKD 2 - STEAM LINE -
3350 PER 3 PRESSURE SETPOINT
3360 WREK 4 RESIDUAL HEAT COOLANT FLOW

3370 DUMP 5
3380 A314 6
3390 1314 7
3400 WLX 8
3410 WLXT 9
3420 P12 10
3430 DRAIN 11
3440 EMPTY 12

63 -

INDICATOR FOR STEAM DUMP CONTROL
BLOWDOWM -

STEAM BLOWDOWN
STEAM LOAD DISTURBANCE

RAMP TIME
INDICATOR FOR FEEDWATER PUMP 1-2
DRAMAIGE FROM REACTOR VESSEL
NOT USED

- 64 -

APPENDIX D

Input file for the same system as used in Appendix B

100 C DATA FOR BARSEBAECK LOV POWER MODEL.
110 -IHPT
120 BS0-M0DEL. CASE 10S. TEST ON PC COMPUTER.
130 »SYST
140 BSO 7
ISO RE CR FC PC FL RK
160 CON
170 *INC0
180 RE 63 60
190 6.SOOOOE*01 6.80000E*01 6.80000E*01 2-77299E*02 2.78057E*02 2.79025E»02
200 2.79889E+02 2.80496E*02 2.80906E*02 2.blOSlE*02 2.81071E*02 2.81062E»02
210 2.81043E*02 1.00000E-20 1.00000E-20 9.39S02E-03 3.66348E-02 7.SS238E-02
220 1.13070E-01 1.50814E-01 1.84858E-01 2.08845E-01 2.22O72E-01 2.89S41E»02
230 3.01692E*02 3.126S8E-02 3.1873SE*02 3.18936E*02 3.14953E*02 3.10099E*02
240 3.06616E*02 3.00167E»02 2.91944E*02 6.86739E-02 1.68632E-01 2.S7664E-01
250 3.16213E-01 3.21243E-01 2.84418E-01 2.38989E-01 2.08568E-01 1.S2880E-01
260 8.40151E-0? 2.76898E+02 2.76898E*02 2.76898E+02 2.77638E»02 2.80798E»02
270 2.80742E*02 2.76S66E+02 2.76822E~02 2.76898E*02 4.10000E*00 0.00000E»00
280 6.51949E*01 6.50000E*Q1 l.yööZ/fc-Oi i.77C56E*C3 O.CCCCOE=CC C.CCCCCE^CC
290 2.74438E+02 2.70631E*02-2.18603E-07
300 2.78719E*02 2.8074SE*02 2.81818E«02 2.8219SE*02 2.82318E*02 2.82296E+02
310 2.82201E*02 2.62112£*02 2.81922E*02 2.61630E»02 3.37802E*00 6.39l65E«00
320 9.45815E*0O 1.12415E*01 1.12667E*01 1.00268E*01 8.54S01E*00 7.49333E-00
330 5.56369E+00 3.13518E*00 4.78510E+13 7.1O908E+13 8.70883E*13 9.37310E*13
340 9.29699E*13 8.75408E+13 8.04268E+13 7.49664E+13 6.37867E*13 4.42604E«13
350 2.76898E*02 2.80940E*02 2.80742E*02 6.80000E+01 1.00121E-01 2.76822E»02
360 2.58896E*01 2.57431E-01 1.74462E*03 1.77036E»03 1.74429E*03 9.63496E-07
370 9.70000E-01 3.30311E*12 1.02508E-05-2.639S2E-05 2.79990E*02 0.00000E-00
380 1.07961E"11 2.69249E«12 S.12668E*12 7.87820E*12 9.82469E*12 1.02081E»13
390 9.24004E*12 7.93852E-12 7.05028E*12 S.24238E*12 2.90393E*12 l.S6943E*ll
400 CR 3 30
410 0.00000E*00 2.80742E*02 6.80000E*01
420 0.00000E*00 0.00OOOE*0O O.OOOOOE*00 O.OOOOOE'OO 0.00000E+00 0.00000E»00
430 0.0OOOOE*00 0.00OOOE*0O 0.O00O0E*00 0.00000£*00 O.OOOOOE+OO O.OOOOOE+OO
440 6.63S92E*01 1.00000£*02 1.00000£*02 3.00000E+01 8.00000E-01 1.00000E*02
450 1.00000E*02 1.00OO0E*02 1.00000E*02 1.00000E*02 0.00000E*00 O.OOOOOE'OO
460 S.50S44E*03 0.00OOOE+0O O.OOOOOE+OO O.0OO00E*00 0.00030E*00 0.000002*00
470 FC 6 0
480 2.5889SE*01 4.57143E-01 2.58G9SE-01 3.46134E-01 1.00000E-10 1.00000E»00
490 PC 9 O
500 6.27284E-02-1.22647E-10 6.27284E-02 6.27284E-02 1.20697E-01 O.OOOOOE-OO
510 0.00000E*00 2.S8896E*01 6.50000E+01
520 FL 3 30
530 3.960S6E*00 3.96056E*00 9.75531E-06
540 0.00000E-00 O.OOOOOE'OO 0.00000E+00 O.OOOOOE'OO 0.00000E*00 0,00O0OE*0O
550 O.OOOOOE+OO 1.00000E*00 0.00000E*00 0.0O00OE*0O 0.00000E+00 0.00000E+00
560 0.00000E«00 0,00O00E*00 O.OOOOOE+OO 0.0O000E*00 O.OOOOOE*00 O.OOOOOE'OO
570 0.00000E*00 1.00000E*06 1.93432E*0l 3.96056£»00 1.10000E*01 1.02508E*05
580 6.00000E*00 O.OOOOOE'OO O.OOOOOE-OO O.OOOOOE'OO 0.00000E-00 0.00000E*00
590 RK 4 0
600 2.00000E«01 2.00000E«01 2.00000E»01 2.0O000E«01
610 »DATA
620 STI.RE» 105. OSR.RE- 0. CON.RE- l.E-3
630 FCAL.RE= ,485 SOUR.RE» 45. TAUR.RE« 1.
640 ORES.RE» 8.5 ORP.RE« .20 TFE.RE* 20.

- 65 -

6 5 0
MO
4 7 0
MO
6 9 0
7 0 0
7 1 0
7 2 0
7 3 0
7 4 0
7 5 0
7 6 0
7 7 0
7 8 0
7 9 0
8 0 0
8 1 0
8 4 0
8 5 0
8 6 0
8 7 0
8 8 0
8 2 0
9 0 0
9 1 0
9 2 0
9 3 0
9 4 0
9 5 0
9 6 0
9 7 0
9 8 0
9 9 0

1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
* 0 4 0
1 0 5 0
1 0 6 0
1 0 7 0
1 0 8 0
1 0 9 0
1 1 0 0
1 1 0 5
1 1 1 0

XENON.RE
STI.CR*
CQCR.CR*
GRP.CR=
TC1.CR*
GL.FC=
PRATE.PC=
STI .FL=
NOSS.FL=
THI.Rr=
ASKH.CON=
VREK.COM=
1314.C0M=
P I 2 . COlis
DATA.END

•CHCK
. 0 0 1

»REFV
XON1.RE
ALF1.RE
CHI1.RE
P P . RE
i r r e o r
YHC1.RE
RTVTF.RE
XCR.CR
TREF.CR
VFE.FC
XH1.FC
XG1.PC
VSL.PC
X I . F L
DBTR.FL
REFV.END

• PRUT
1 . 0
OND.RE
tfGE.RE
TES.RE
IRH.FL
SRHLG.FL
PRNT.END

•DELY
•STST

2 0 0
• ENDE

O.
1 0 5 .
1 .
16
0 .
2 .
- 0 5
1 0 5 .
0
1 7 .
1 .
0 .
0
1 .

. 2 0 0

X0M3.RE
ALF10.RE
CN110.RE
P P . RE
ALFS.BE
TRC2.RE
RTVTF.RE
XCR.CR
XO.CR
WFE-FC
V23 .FC
XBL2.PC
PES.PC
PRHF.FL
DBTR.FL

6 0 .
PR. RE
WFE.FC
HLEV.RE
IRHC.FL
HVOID.RE

OSR.CR=
CPCR.CR«
FCR.CRx
TC2.CR*
CV.FC=

ARS.FL=
NOS.FL*
MHEX.RE*
XSKD.CO«-
DUHP.COM-
WLX.COM=
DRAIN.CON«

. 2 0 0

5 0 .
. 2 5
. 2 0
1 .
. 2 5
1 0 .
2 0 0 .
1 0 .
1 0 0 .
1 0 .
1 .
1 .
1 0 .
2 .
. 1 0

1 .
PE.RE
ALFR.RE
FLUX.RE
PRH.FL
TCH.RE

6 8 . 0
l . E - 2
OO.
O.
1 .

1 .
0
O
1 .
1 .
0 .
0

l . E - 3

1 2 0 .
VRC.RE
TRCI.RE
SUHCR.CR
RTVTF.RE

VLSR.CR*
NGR.CR*
/CR.CRs
PTG.CRs
»FER.FC-

TAUD.FL-
SSD.FL«

PER.COM*
A314.COM*
WLXT.CON=

1 0 .

5 .
WR.RE
TB.RE
DBT.RE
REACTI.RE

0 .
0
0 0 0 .
0 .
0 .

1 .
0

6 5 .
0 .
1 .

MEUN

VSL.PC
TR.RE
SRH.FL
DBTR.FL

http://DUHP.COM-
http://PER.COM*
http://A314.COM*

- 66 -

APPENDIX E

List off tiles used by DYSIH

Program files: Main program unit and subroutines

DYS/DYSIM86

DYS/DELAY86

DYS/ODEPACK

DYS/SYST

DYS/LIST

DYS/INPOT

DYS/EDIT

DYS/JACOBI

DYS/PLOT

DYS/PRE

Main program and subroutine for integration

and input-output

Time delay function

Subroutine for integration by ODEPACK methods

Subroutine for interpretation of a list file

List file editor

Input file editor

Local editor for use in DYS/LIST and DYS/INPUT

The Jacobian service routine

Display and plotting proqram for transient time

functions

Precompiler 1 and 2

DYSIH works with the following files:

2

3

5

6

8

9

10

11

SYHA/JACO : File with the Jacobian matrix

SYNA/INPUT : Input file for the model

Used for user communication

SYNA/DELAY : Buffer file for time delay function

SYNA/DELAYDUMP: Dump file for time delay function

Printer file

: Output buffer for DYSIH and default plot

file

Initial condition output file

input -

Dump file for DYSIH output

- input

List file for the model

SYNA/OUTPUT

12: SYNA/IC

15: -

13: SYNA/DUMP

14: -

16: SYNA/LIST

SYNA stands for the system name. The precompilers also use some

input-output files. No names shall be given here as the work

is incomplete at present and will be described separately.

- 67 -

A system model may consist of files as:

SYNA/CONSYS: Connecting routine

SYNA/N0D1 : Module 1

SYNA/M0D2 : - 2

• • • •

SYNA/HODn : - n

SYNA/INPUT i Input file

SYNA/LIST : List file

If the precompilers are used the module files and the connecting

routine are present in a source (macro) version; in any case they

must occur in a Fortran 77 version.

- 68 -

APPENDIX P

Reserved subroutines and function names

DEADTM

DELAY

DUMP

FILNAM

HBUN

ICCAL

INTEG

INPUT

JACOBI

MANA

NAMES

NSTOP

ODEPAK

OUTENT

OJTPUT

READ3

RECALL

REPET

PRINT

RUNGE

SERVER

SHIL

SHIR

STEPCO

SYST

TERM

TRNSTM

VADR

- 69 -

If Odepack is used the following names are also reserved

CPODE

EWSET

F

INTDY

JAC

LSODA

LSODE

ODBERR

PREPJ

PRJA

RSCMA

RSCOM

SAXPY

S6BFA

SGBSL

SGEFA

SGESL

SOLSY

SSCAL

STODA

STODE

SUCMA

SVCOM

XBRRNV

XSBTF

XSETUN

- 70 -

APPENDIX G

List of system calls available for the user

CALL TBRN(TBX) : Stop calculation at the end of first accepted

integration step.

CALL NSTOP(TBX): Stop calculations at once independent of

substep number

CALL REPET : Cancel the step in progress and make a new one

with half the step size

CALL DUMP : Dump system state at termination time

CALL RECALL : Ask DYSIM to execute the statement CALL DYNAMS

at the end of first accepted step. DYNAMS must

be a user supplied subroutine.

CALL PRINT : Print variable values as they were at the

beginning of this time step

Note: CALL YOUT is executed by DYSIM at the end of any calcu­

lation. The user must supply the subroutine YOUT.

- 71 -

APPENDIX H

Definition of concepts used in DYSIM

System: The whole model simulated by use of DYSIM.

Nodule: A well delimited unit or part of a system described in

an independent subroutine with input-output interface

to the rest of the system.

Submodule: A smaller well delimited unit programmed beforehand

and stored in a library.

Connecting routine:

A subroutine which establishes the input-output con­

nections between the modules and links the whole

system to DYSIM. Perturbation of the system is also

programmed here.

State variables:

Variables given by differential equations.

State derivatives:

Derivatives of state variables.

Algebraic variables:

Auxiliary variables given by algebraic equations and

available for output.

Input variables:

Input variables to the modules either given as output

variables from other modules or calculated in the

connecting routine.

Parameter: Constant parameters for the modules and the connecting

routine given in the input file.

Output variable:

A state variable or an algebraic variable.

- 72 -

Input file: A formatted text file with specifications for the

system and the particular calculation. It also con­

tains initial values for the state and algebraic

variables.

List file: A formatted text file with names and definitions of

all variables and parameters in the system avail­

able for the user. The list is set up in groups,

one group for each module.

Macro call: A statement in the source code which is transferred

to a set of statements in the parent language, here

Fortran 77. The macro statement normally has a

special character as the first one followed by the

macro name and some parameters in one or more

lines.

Source module (file):

A module (file) written with use of macro statements.

It must be passed through a compiler (here precom­

piler 1 or 2) which creates a module (file) in the

parent language.

Rise National Laboratory Rise - M - 2607

Till* M < authorU)

DYSIM - A MODULAR SIMULATION SYSTEM

FOR CONTINUOUS DYNAMIC PROCESSES

P. l a Cour Chris tensen

J . E . Koefoed

N. Larsen

Pagaa 7 2 Tablas Illustrations 2 Rafarancos 4

Data 1 December 1986

Dapartmant or group

Energy Technology

Groups own registration mtmber(s)

Projact/contract no.

ISBN 87-550-1265-5

Abstract (Max. 2§M char.)

The report describes a revised version of a simulation system for
continuous processes , DYSIM. In re lat ion to the previous vers ion,
which was developed in 1981, the main changes are conversion to
Fortran 77 and introduction of a modular structure. The l a t t e r
feature g ive s the user a p o s s i b i l i t y for decomposing the model in
modules corresponding to wel l delimited physical u n i t s , a feature
which g ives a better survey of the model. Furthermore, two new
integrat ion routines are included in addition to the s ing le one
used before.

Dascrfptors - I N I S :

COMPUTERIZED SIMULATION? D CODES? DIFFERENTIAL EQUATIONS? DYNAMICS?

FORTRAN? INDUSTRIAL PLANTS? NUCLEAR POWER PLANTS? STEADY-STATE CON­

DITIONS? TRANSIENTS

MMMI Ml raajMaai Irani M i uararŷ rasa isaaonai iMOomcry, (ma w w i rumumigscanisr maa/r
PjQ. 0M 4t(DIMOOO RaaMMa, OarMHafk.
Tanpucm n ti 12 i i art, a n rmm: arm, Tatatw: 02 n o» ot

HR9SO00OM

