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Improvements of methods intended for calculation of 

reliability of structures and systems 

Kurt E. Petersen 

Abstract. Risk and reliability analysis is increasingly being 

used in evaluations of plant safety and plant reliability. The 

analysis can be performed either during the design process or 

during the operation time, with the purpose to improve the 

safety or the reliability. 

Due to plant complexity and safety and availability require­

ments, sophisticated tools, which are flexible and efficient, 

are needed. Such tools have been developed in the last 20 

years and they have to be continuously refined to meet the 

growing requirements. 

Two different areas of application were analysed. In structural 

reliability probabilistic approaches have been introduced in 

some cases for the calculation of the reliability of structures 

or components. A new computer program has been developed based 

upon numerical integration in several variables. 

In systems reliability Monte Carlo simulation programs are used 

especially in analysis of very complex systems. In order to 

increase the applicability of the programs variance reduction 

techniques can be applied to speed up the calculation process. 

Variance reduction techniques have been studied and procedures 

for implementation of importance sampling are suggested. 
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1. INTRODUCTION 

During this century the industrial world has developed rapidly 

and a large number of new technologies have been employed. The 

plants are large and centralized which calls for a high degree 

of availability leading to complex systems supported by control 

and regulation systems. This also lead to a higher degree of 

automation. 

In the recent years society are getting more concerned about 

safety aspects of industrial plants. The society demand that 

industrial plants are built and operated to a high level of 

safety, diminishing the consequences of any major accident. 

The requirements and the public debate on this subject imply 

the necessity of the availability of analysis methods and tools 

to be used in assessing the risks inherent in the industrial 

plant. Such assessments are called risk analyses. 

Similarly, the plants, which are complex and large, require 

large investments which again call upon a high level of avail­

ability. This means that also in cases where events will not 

lead to major accidents, it is important to limit the conse­

quences in order to minimize the shut down time and save mo­

ney. In such cases analysis methods and tools suited for assess­

ment of the reliability or the availability of the plant are 

needed. 

It is obvious that a large number of methods and tools are com­

mon to the two types of assessments described above. Several me­

thods have been developed during the last 20 years within these 

areas. The aim of this study is to make a re *iew of available 

methods in two specific areas in order to develop alternative 

methods or to propose improvements of existing methods. 

Chapter 3 deals with the development of a new method to be used 

in structural reliability - or more specificly in probabilistic 

fracture mechanics, where the probability of failure of a struc-
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ture or component is considered. In chapter 4 a review of avail­

able variance reduction techniques to be used in Monte Carlo 

simulation for systems reliability is presented. Chapter 5 

summarizes the results and discuss their applicabilities and 

limitations. 
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2. RISK AND RELIABILITY ANALYSIS 

To meet the requirements with respect to plant availability and 

plant safety reliability and risk analysis tools have been 

developed. The tools can be applied in an analysis of any com­

plex system, for instance in nuclear power industry, air trans­

port, space research, chemical industry, off-shore industry, 

and traffic systems. The risk analysis does not replace other 

safety investigations, but it is a supplement to safety codes 

and standards, quality control and quality assurance, etc. 

The following sections will describe the concept of risk and 

the definitions used in risk and reliability analysis of com­

ponents and systems. 

2.1. Definitions and Descriptions 

Risk i o a concept used with a variety of meanings and several 

definitions are given in the literature. In this study the fol-

owing definition will be used: 

The concept of risk includes both a hazard and its corre­

sponding probability. 

A hazard is defined as a situation or a chemical that is 

potentially harmful to humans or property. 

This means that the risk includes an evaluation of unwanted 

events, their consequences and their probabilities of occurrence: 

Risk = F(A,C(A),P(A)) 

where 

A = unwanted events 

C(A) * consequences related to the events 

P(A) * probabilities of the events 

P * some unknown function. 
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As an example the function F can be defined in the following 

way: 

N 
Risk » I Cj * Pi 

i = 1 

where 

N = The total number of accidents or situations taken 

into consideration 

Cj = The consequences related to the accident or situa­

tion number i 

Pi = The probability of occurrence of the accident or 

situation number i 

This is a very simple definition of the function F, and its 

limitations and areas of applications have been heavily debated. 

The definition of reliability is the following: 

The reliability of a system (device) or component is the pro­

bability that it is performing its purpose adequately for a 

specified period of time, under the operating conditions 

encountered. 

As it is seen fro« the definitions of risk and reliability, the 

analysis of the reliability of a system can be regarded as a 

part of a risk analysis of the same system. The evaluation of 

the probability of adequate performance is common to the two 

types of analysis, whereas the evaluation of the consequences 

to humans or property is unique in risk (or safety) analysis. 

A risk analysis can be described as a set of systematic methods 

to identify hazards and to quantify their probabilities of oc­

currence and their consequences. Risk analysis can be used in 

a broad spectrum of applications with varying purposes, which 

are shown on the next page. The structure of a risk analysis 

is also shown. 
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RISK ANALYSIS 

approval by authorities 

evaluation of safety measures 

emergency planning 

selection between alternatives 

reduction of consequences of events 

reduction of probabilities of events 

RELIABILITY ANALYSIS 

improvement of availability 

planning of operating procedures 

planning of test and maintenance 

Purposes of risk and reliability analyses. 

Specification of the 

system and its operating 

conditions 

i 
Hazard identification 

± 
Fault identiflcat?on 

Model of fault combinations 

± 
Quantification -

Probability of occurrence 

Reliability 

Analysis 

\ Quantifications -

Consequences of accidents 

I 
Risk estimation -

Result evaluation 
~l 

Risk 

Analysis 

Ihe .structure oJE'_..a reliability and risk analysis. 
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2.2. Reliability and Unavailability of a System 

The reliability of a system, which was defined in the previous 

section, describes the probability that the system is function­

ing for a specified period of time. 

As an example, let us assume a very simple system, consisting 

of one pump pumping water from one place to another. 

The pump has the following characteristics: 

- in average constant number of failures per year 

- in average one failure every three years 

- the failures are detected immediately 

- the repair time is five days 

- after repair the pump is as good as before. 

The system will fail if the pump fails. The reliability R of 

the system over a year is equal to the probability that the 

system is functioning adequately over a period of one year. 

R = P(functioning over 1 year) 

= 1 - P (not functioning over 1 year) 

= 1 - (1/3) 

- 2/3 

The unreliability = probability that the system is not function­

ing properly for a specified period of time 

= 1 - reliability. 

The steady state availability of a system is the probability 

that the system is in an acceptable state at any instant of time 

t, given that the system was fully operative at time t = 0. 

If we again consider the example, let us calculate the avail­

ability A of the system at time t = 1 year, assuming that the 

pump was running at time t - 0. The system will in average fail 

once every three years and it will be down for repair for five 

days. This means, that 
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A = 1 - (1/3) • (5/356) 

= 1 - 0.005 = 0.995 

The unavailability - 1 - availability. 

These two characteristics are important when studying the avail­

ability of a system or a whole plant. Further, the characteri­

stics are needed in risk analysis when estimations of accident 

probabilities are considered. 

Tools for this type of calculations are the subject of chapter 4. 

2.3. Reliability of a Component 

The reliability of a component is in general estimated from ex­

perience or from test data describing the behaviour of the compo­

nent given the operating conditions. Statistical methods are 

available for the estimation. 

In some cases no prior knowledge of the reliability is avail­

able. This will be the case if the component is designed using 

a new technology, new materials or subject to new environmental 

loads. In such cases it is not possible to use experience and 

data from components based on other technological design, other 

materials and other loads. In case that the component in ques­

tion is a structure an alternative way of estimating its reli­

ability is to treat the component as a system (or a structure) 

characterized by its strength and the loads imposed. Based on 

these properties it is possible to estimate the probability 

that the component will function - the reliability of the com­

ponent . 

Tools for calculation of the reliability of components (struc­

tures) are discussed in chapter 3. 
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3. STRUCTURAL RELIABILITY 

This chapter focusses on the problems in structural reliability 

as mentioned in section 2.3. 

3.1. Beckground 

The reliability of a structure can be assessed by using histo­

rical data from past failures and non-failures. This is a very 

simple approach given sufficient data, but it suffers in that 

only specific structures are considered. The effect of a change 

in one of the variabler which has an influence on the behaviour 

of the structure, often cannot be predicted as the required 

data probably do not exist. 

An alternative approach is the development and application of 

engineering models based on an understanding of the failure 

models and statistical distributions of the variables which 

have an influence on the behaviour of the structure. 

3.2. Stress-Strength Models 

One class of engineering models is the stress-strength models. 

The models are based on the assumption that the structure has 

a certain strength and that the structure is subject to certain 

stresses or loads. The strength as well as the stress is defin­

ed by an expression in a number of variables. Each variable has 

an associated distribution. As long as the strength is greater 

than the stress the structure endures; otherwise the structure 

fails. 

Models of this kind have been applied in probabilistic fracture 

mechanics especially where high integrity is required, such as 

pressure components of a nuclear power plant and offshore struc­

tures. 
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Within the limits of application of linear elastic fracture me­

chanics the relevant quantity for the strength is the fracture 

toughness, KIC. The relevant quantity for the stress is the 

stress intensity factor, Kj. 

The models are illustrated below where the stress density and 

the strength density are shown. 

density 
A 

stress density strength density 

Stress-strength model 

For a given value of the stress , x, the problem is to evaluate 

the probability that the strength is less than this value, inte­

grated over all values of x. 
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3.3. Limitations and Conditions 

Below is shown a figure which illustrates the scheme for assess­

ment of the reliability of a structure using a stress-strength 

model 

stress-
strength 

model 

data 

failure 

/K probability 

Modelling Evaluation 

Assessment of the reliability of a structure 

This study discusses the evaluation procedure given a stress-

strength model and the data for the variables involved. 

This report does not discuss the modelling of some specific 

structures. Neither does it discuss the problem of data which 

is also a very important task, since the use of engineering 

models introduces new errors because of the lack of data and 

the complexity of the approach which requires more input vari­

ables to give a detailed description of the behaviour of the 

structure. 
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The probability of failure of a structure is calculated by the 

probability that the stress is greater than the strength. 

P(stress > strength) 

The probability density functions associated with the stress 

and the strength are given by fstress ^x) and fstrength 
(x) 

respectively. The corresponding cumulative density functions 
'stress 

(x) and F s t r e n g t h (x) are given by 

stress (x) 
fstress (O d t 

and 

Fstrength (x) = fstrength (*) d t 

Then 

P(stress > strength) 

x = » 

P(stress = x ^ strength < x) dx 

x = -» 

If stress and strength are statistically independent it follows 

that 

P(stress > strength) 

|0C » • 

P(stress * x ^ strength < x) dx 

X x -o> 
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rx = -
P(s tress = x) • P(strength < x) dx 

x = — 

rx = -
fstress tx) ̂ strength tx) dx 

x = -• 

Px = -

x = -« 

:stress (x) 
y = x 

fstrength <y> dY d x 

fx = -

x -

fstress (*) fstrength ty) dy dx 

y = -

Approximation of the p.d.f.'s - Unreliable structures 

If the p.d.f.'s for stress and strength can be approximated by 

a simple probability density function, i.e. a normal distribu­

tion function, the integral can be easily calculated numerical­

ly. 

This can be utilized, if an unreliable structure is considered. 

This situation is illustrated below. 
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strength density 

stress-
strength 

Stress-strength aodel for an unreliable structure 

The areas A and B indicate the areas in which data are avail­

able. 

In this case the approximation of the p.d.f. by a normal distri­

bution is simple and the values on which the integral is evalu­

ated are well described. 

Approximation of the p.d.f.'s - reliable structures 

In many cases considering nuclear components and off-shore com­

ponents, the structure is a highly reliable structure. This 

situation is illustrated below. 
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density 

strength density 

stress, 
streneth 

Stress-strength model for a reliable structure 

Again the areas A and B indicate the ar-as in which data are 

available for approximations of p.d.f.'s for stress and strength. 

The values on which the evaluation of the integral is based are 

not well described as they belong to the tails of the distribu­

tions, where data are not available. 

In this case the result is very sensitive to the tails of the 

distributions. The following example shows the influence on the 

result applying different distribution functions as approxima­

tions to the data available. 

Example 

Assume that the data for the stress are as shown in the follow­

ing figure. The data are fitted to an exponential, a log-normal, 

and a gamma distribution which are also shown in the figure. 
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lognormal 

Pitting of different p.d.f.'s to data 

In the area A where data are available the exponential, the 

log-normal, and the gamma distribution fit quite well the data. 

The tail where no data are available is dependent on the distri­

bution which is chosen. As it is seen the probability associated 

with the value Xp differs by two or three orders of magnitude 

depending on the type of the distribution. 

The evaluation of the integral is based on a number of values 

which all belong to the tail (i.e. the situation is similar 

to that shown above considering the value X p ) . 

In case of highly reliable structures which are of interest ap­

proximations of the p.d.f.'s for 3tress and strength cannot 

be used. It is therefore necessary to evaluate the integral 

directly based on the distribution for each variable describ­

ing the stress and the strength. 
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Application 

Within the limits of application of linear elastic fracture me­

chanics a stress-strength model is described. The theory assumes 

that the crack is stable. When the stress intensity factor Kj 

around a crack is smaller than the fracture toughness Kic 

Kj < Kj£. 

The stress intensity factor, Kj, is given by the relation 

Kj2 = K'A'S2 

where K is a correction factor 

A is the crack depth 

S is the applied nominal stress. 

The fracture toughness, KJQ, is given by the relation 

K I C
2 = M'Sy'Cv - 0.05'Sy

2 

where M is a correction factor 

Sy is the yield stress 

Cv is the Charpy V notch energy. 

A probability density function is associated with each parameter 

in the expressions. 

The probability of a failure is calculated by the probability 

that the stress intensity factor is greater than the fracture 

toughness: 

P(K! > K I C) 

- p< Ki 2 > Kic*> 
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3.4. Calculation Methods 

During the last 10 years some calculation methods have been pu­

blished. Two of the« have been developed and implemented at Risø 

while the third one is developed at the Joint Research Centre at 

Ispra in Italy. A brief description of the main ideas behind the 

methods and the advantages and disadvantages of the methods are 

given below. 

3.4.1. The PEP Code 

The PEP706 computer program is described in detail in [2] . 

The program is based upon Monte Carlo simulation. A simple im­

plementation of the importance sampling technique is available 

too. 

The program simply generates values for each variable involved 

according to the distributions specified in the input. In each 

case the quantities, stress and strength are calculated from 

the actual values simulated and it is tested, if stress is 

greater than strength. The process is carried out for a large 

number of trials. The generation of values from each individual 

distribution is based upon a random number generator which gen­

erates numbers uniformly distributed over the interval [C-, ij. 

The number of trials required to obtain an acceptable accuracy 

is extremely large, thus requiring a large amount of computer 

time. Especially when the failure probability is very low as 

in the case of highly reliable structures. A typical example in­

volving four parameters uses about 300 seconds computer time 

to obtain 10% accuracy with a failure probability of 10~7. 

The main advantage of the program is the great flexibility in 

modelling, where a large number of models can be treated without 

imposing approximations. Likewise it is not necessary to make 

any approximations to the input distributions. 
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The sain disadvantage is the large aaount of coaputer time re­

quired to obtain an acceptable accuracy. 

3.4.2. The AKPEP Code 

The ANPEP code is described in detail in [3l. In [4] the 

ANPEP/V2 prograB is described. This is a further development of 

the ANPEP code, but it is based upon the sane basic idea. 

The prograa is based upon a nuaerical aethod to coabine random 

variables. Each distribution specified in the input is represen­

ted by a corresponding discrete distribution in the following 

way: 

probability density function (p.d.f.) 

input variable 

A. 
! I 

l l , I I ' 

corresponding descreete p .d . f . 

The values Pi of the d i scre te dens i ty function at a given point 

XB i s ca lculated in the following way: 
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fUm) 

•PI 

xi xm xi+l *m 

xn = iiiJ UHi. Pi " (xi+l "
 x i > - f { V 

The discretization process is carried out for each distribu­

tion by dividing the axis into a nuaber of intervals of equal 

size or of a size which is specified by the user. Now the dis-

cretized distributions are combined and the failure criterion, 

stress greater than strength is checked for any combination. 

An observed failure contributes to the total failure probabil­

ity by the product of the corresponding probabilities. 

The aain advantage, compared to Monte Carlo simulation is the 

reduction in computer time for smaller problems, i.e. involv­

ing four or less variables. The AMPBP code requires approxi­

mately 20 seconds for a problem, where PEP706 requires appro­

ximately 300 seconds. Secondly, no statistical deviations are 

introduced, since generation of random numbers is avoided. 

The main disadvantages are the reduction in flexibility of the 

models and the introduction of approximations to the input dis­

tributions. From this approximation two problems arise: i) the 

choice of the number of intervals and ii) the determination of 

the end point of an unlimited distribution. Both problems are 

solved empirically. Another problem is that the computer time 

required is very sensitive to the number of input variables. 

The problem mentioned above which requires 20 seconds involves 

four input variables. A similar problem involving six vari­

ables requires approximately 2000 seconds. 
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3.4.3. The COVAL and SCORE Code 

The SCORE computer program is developed and implemented at the 

Joint Research Centre at Ispra in Italy. A description of the 

program is given in [5] and [6], This is a further development 

of the COVAL code. 

The program is based upon a numerical method to combine random 

variables. Each distribution specified in the input is repre­

sented by a corresponding histogram of equal probability in­

tervals. Then the program systematically combines the intervals 

of the random variables. 

Let the area of interest for an input variable be divided into N 

subintexvals and let the cumulative density function be given 

by 

F(x) = f(t)dt 

J*o 

then the endpoint Xj + 1 of subinterval no. i is calculated as 

the solution to the equation 

f*i+1 

f(t)dt= g 

*i 

which is the same as 

F(xi+1) - FCxj) = g 

The idea is very similar to that proposed in ANPEP/V2. The main 

difference is in the approximation of the input distributions. 

In ANPEP/V2 the intervals are chosen with respect to equal length. 

In SCORE the intervals are chosen with respect to equal probabi­

lity. 
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The advantages and disadvantages compared to Monte Carlo simula­

tion are very similar to those given for the ANPEP/V2 program. 

The advantages compared to the ANPEP/V2 program are: 

- the intervals into which a distribution is subdivided are 

small, where the density is high and are large, where the den­

sity is low. Thus each distribution is reasonably well ap-

prox imated. 

- combinations of equal probability intervals form again equal 

probability intervals. This prevents the creation of inter­

vals from having probabilities very different one from the 

other. 

Still the problem remains to choose a reasonable number of sub-

intervals and the endpoint for unlimited probability density 

functions. 
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3.5. Alternative Methods 

In this section different approaches to the evaluation of inte­

grals in several variables are discussed. The general problem is 

to approximate 

... f (x-|, .. ., xn)dx-|.. .dxn 

Rn 

by a sum 

N 

I Ai • f(viti,...,vitn) 

i = 1 

where 

N is the number of points in the formula 

Aj is the coefficient number i 

Rn is, 5 n-dimensional region 

(vi, 1' • • •»vi,n) i-s integration point number i. 

The region Rn in this case is a parallelepiped which can be 

transformed into the n-cube C^ by an affine transformation. 

Therefore, the discussion can be restricted to the region Cn. 
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The approaches can be divided into four groups which are treated 

separately: 

- product formulas 

- non-product formulas 

- adaptive methods 

- Monte Carlo methods 

3.5.1. Product Formulas 

This topic is discussed in great detail in [8] and [9]. Some 

of the interesting results from the viewpoint of application in 

structural reliability are presented below. 

Product formulas for Cn are formulas which are constructed by 

products, or combinations of formulas for regions Cm of lower 

dimension, m<n. Especially, construction of formulas for Cn by 

products of n formulas for C-j is of interest. 

The integral 

f (xj, .. ,,xn)dx-|.. .dxn 

0 o 

Cn 

can be evaluated by a formula constructed in this way. 

If a formula exists for a one-dimensional integral 

N 

f(x) dx = I Ai • f( V i), 

C! i«=1 

Ci = [0,1] 
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then 

/ ... / f(x-|,...,xn) dx-|...dxn 

C„ 

I H,' Ai2...Ainf(vii,....vin), 

1 < i]5 < K 
k = 1, 2, .. . ,n 

Formulas constructed in this way are very easy to handle and 

simple to implement. The main drawback is that the number of 

integration points increases rapidly with n, the number of di­

mensions. Suppose that a 8-points formula exists for a one-di­

mensional integral. The number of points in a formula for 

a n-dimensional integral is shown for various values of n. 

n number of points 

2 64 

3 512 

4 4.096 
5 32.768 

6 262.144 

10 1 .073 .741 .824 

From this table it is obvious that using a 8-points formula for 

the one-dimensional integral construction of formulas for inte­

grals of a dimension greater than 5 can he time consuming and 

will therefore in some cases be impractical. 
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Example 

A two-points Gauss formula of degree 3 over Cj = [-1,1] i s 

/_ ] f (x )dx « 1 ' f ( / 3 / 3 ) + 1 ' f ( - / 3 / 3 ) 

This neans, that the four-point product formula over the region 
c2 = [-1»1] * t"1«1] cased on the above formula is 

J_lJ-1f<x'v>dxdy = 1*f(^3/3, /3/3) + 1'f(-/3/3. /3/3) 

+ 1-f{/3/3,-/3/3) + Tf(-/3/3,-/3/3) 

3.5.2. Non-Product Formulas 

In [9] and especially in [8] other types of formulas are dis­

cussed. This is a very difficult subject, since no general theo­

ry is available for construction of other types of formulas 

than the product formulas mentioned above. An existence theorem 

has been proved [8, page 54], but it includes no guidance for 

constructing a formula with given characteristics. In [8] a 

very comprehensive discussion on this subject is presented, 

including a large collection of special results and formulas. 

The main advantage of a non-product formula compared to a pro­

duct formula is that fewer integration points are needed for a 

formula of a given degree. If a formula of degree d with m 

points exists for a given region R, the product formula of de­

gree d over Rn has mn points. In some cases it is possible to 

construct a non-product formula of degree d with less than mn 

points. 

Example 

The region is Cn = [-1»l]
n 

The product Gauss formula of degree 5 has 3n points. 
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A non-product formula has been constructed by Stroud and Hammer 

with 2n 2+lpoints 

n 3Ĵ  2n 2+1 Reduction (in percent) 

2 9 9 0 

3 27 19 30 

4 81 33 59 

5 243 51 79 

This table illustrates the advantage of an effective non-product 

formula compared to a similar product formula. It is also known 

that for a given degree dr that reduction in the number of point 

is increasing with the dimension. Unfortunately, the difficulties 

in constructing non-product formulas for higher degrees are also 

increasing. Therefore, the reduction i' the number of points 

needed in a formula does not always com? »sate the difficulties 

in the construction. 

The difficulties arise from the lacking theory about orthogonal 

polynomials in several variables. In one variable the theory is 

fairly simple. Purthec, the zeroes of orthogonal polynomials 

can be used in construction of formulas. The difficulties in 

several variables are of two types: 

- the one-dimensional space is very simple compared to higher-

dimensional spaces. Since all line segments are equivalent 

under an affine transformation there is essentially only one 

bounded connected region in the Euclidean space. In higher-

dimensional spaces these simple rules do not apply. For exam­

ple, the square, the circle, and the triangle are regions in 

*•' e two-dimensional space which are not equivalent under an 

affine transformation. 

- the theory of orthogonal polynomials is well-known in one 

variable and simply related to integration formulas. In several 

variables the theory is much more complicated and not com­

pletely described. Until now no formulas have been constructed 

in n dimensions, n>2, using the theory of orthogonal polyno­

mials in n variables. 
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In practice a couple of other difficulties in constructing non-

product formulas arise. The weights in the formulas are not al­

ways positive, which should be a natural property for a formula. 

Furthermore, it is not certain that all integration points be­

long to the region, which also should be a natural property. 

3.5.3. Adaptive Methods 

Adaptive methods are methods where the calculation is performed 

with stepwise refinements within important subregions. In each 

step the calculation is continued within the subregion, where 

the highest benefit of a refined calculation is expected. The 

idea can be illustrated in this way: 

f(x) is to be integrated over [a,b]. We choose a formula 

which is used over [a,c] and [c,b], where c = (a+b)/2. 

a d c e b 

The calculated integrals are Ij and 12 respectively. Then the in­

tegrals In« Il2« *21» and *22 over [a.dj, [d,c], [c,e], 

and [e,b] are calculated. The process is continued with refined 

calculations within the subregion with the highest difference, 

Dj or D2, where D1 = 11- (111 + I 12)
 a n d D2 s l2 ~ (*21 + I22)« 

It is very advantageous if the integration points already used 

can be reused in all subsequent refinements. Formulas exist with 

this property, but In general this characteristic is not common. 

3.5.4. Monte Carlo Methods 

Other approaches to the problem of evaluating integrals in seve­

ral variables are the Monte Carlo method or number theoretical 

methods. The Monte Carlo methods are very simple to construct, 

but their main drawback is the large number of points needed 

to achieve a reasonable accuracy. 
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The Monte Carlo method for approximation of an integral in se­

veral variables is 

/•••/ f(x1,---»xn)dx1-'-dxn 

Rn 

N 
* (V/N) i f(vi) 

i = 1 

where V is the volume of Rn 

N the number of points 

VJ point number i in Rn 

The points vj are chosen at random uniformly distributed in 

Rn. In general the points are not generated randomly, but qua-

sirandomly, by a deterministic method. Some common methods are 

based on the linear congruential method 

XJ_J = a'x^+b, where a and b are fixed. 

A measure of the error in the above formula is given by c//N, 

and this quantity does not decrease very rapidly as N increases, 

leading to very large computing times. 

Other methods are known - number theoretical methods - where 

the points are found, so that the error is decreased. Such me­

thods are discussed in [8]. 

3.5.5. Conclusions 

Based on the study of the various methods of numerical inte­

gration in several variables, it is concluded that simple pro­

duct formulas constructed on the basis of simple Gauss formulas 

in one dimension are recommended. The reason is that Gauss for­

mulas are effective formulas and formulas exist which are spe­

cialized for specific regions, such as [-1,1], [o,•[,]-»,»[. 
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Secondly, the drawbacks of non-product formulas are too large 

to be compensated by their reduction in the number of points. 

In particular, the fact that several formulas have negative 

weights and integration points outside the integration region 

make them useless in practical applications. 

Finally, it has been found that Monte Carlo methods are too 

time consuming in practice. In [9] it is shown that Monte Carlo 

methods are reasonable only in cases where the number of dimen­

sions is greater than 10. Furthermore, they introduce a stati­

stical error in the calculation by nature, which is avoided in 

other types of approaches. 

It is therefore decided to develope a tool to evaluate an inte­

gral in several variables using a product formula based upon 

Gauss formulas in one variable. 
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3.6. The MUMPEP Code 

A computer program, NUMPEP, is developed based on numerical in­

tegration in several variables using product formulas. 

The probability of failure is given by 

y = x 

fK
 2 (x) ' fR

 2 (y) dy dx 

where the probability density functions associated with K.^ and 

Kj C
2 are described. 

The program is intended for the class of problems within proba­

bilistic fracture mechanics as described. 

The program is prepared for other relationships between the va­

riables which means that it is possible to solve problems with­

in other fields of structural reliability. 

Furthermore, the program is modularized, so it is easy to extend 

the nunber of variables involved. This extention requires some 

further work on programming. 

The program is written in Fortran for the Burroughs B7800 com­

puter. 

A detailed description of the principles is given and the input 

and the output from the program are shown. 

*x = 

x = - • 



- 35 -

3.6.1. Construction 

The requirements for the method used for evaluation of the inte­

gral are the following: 

- the formula should be simple 

- the method should be fast 

- the accuracy of the result should be within the first two 

digits 

- the number of variables allowed should be at least six 

- the program should be prepared for extension of the number of 

variables 

- the program should be designed to solve the problem: calculate 

the probability of failure within probabilistic fracture me­

chanics in two cases: 

a. Kj 2 « F • A • S 2 

where 

K is the constant k 

A is given by an exponential distribution with parameters 

X and x0, 

f(x) = X-e-x(*-*0
) 

S is given by a normal distribution with parameters xB and 

a. 

ff*l « 1 » -(x-xm) 

KIC
2 » M • Cv • Sy 

where 

M is the constant m 

Cv is given by a Weibull distribution with parameters x0, 

m and k. 

f(x) - k ' (x-x ) • . e~ *(x-x9)"+ 
o m+T 

Sy is given by a Weibull distribution with parameters x0, 

m and k. 
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f(x) = k * U - * 0 ) ' r *(x-x ) 1+1 

b. This case is equivalent to case a except that Sy is here 

given by a noraal distribution with parameters xB and a, 

f(x) 1 
To 2a* 

the program should be flexible and extensible in order to take 

into account: 

- other distributions for the variables than those shown above 

- the modelling of RjC^ <CV - Sy-0.05 • Sy*) 

Integration limits 

The limits of integration -• and +• have no physical interpre-

tion. In each case it is possible to specify limits which are 

meaningful, i.e. if we look at the crack depth, a value less 

than zero or greater than the wall thickness is meaningless. 

Tnt integral to be evaluated is therefore: 

x - b y = x 

fK
 2 (x) fK

 2 (y) dy dx 
*I IC 

x « a y = a 

Using Dirichlet's formula, see [7], we find 

f(x)dxk+1= kJ (p-x)k f(x)dx 
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9 
(ø-x) f(x) dx 

dx 

" a 

Given p.d.f.'s for each variable in the expressions for Kj and 

KIC it is possible to construct p.d.f.'s for Kj and KIC. These 

are unfortunately not well-known p.d.f.'s, so it is necessary 

to construct the density functions explicitely using the theory 

of transformation of variables. 

Transformation of variables 

In this section a short description of the formulas for trans­

formation of variables is given. 

One variable 

The formula for transformation of one variable is given: 

r r "•• dx" 

Therefore 

I IC 

a a 

is equal to 

(b-x) * fK
 2 (x) fK

 2 (x) dx 
I IC 
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h(u) idxi 

I d u I 
f(x(u)) 

where 

x is the original variable 

u is the transformed variable 

f(x) is the probability density function of x 

h(u) is the probability density function of u 

x(u) is the expression relating x to u 

Idxl is the absolute value of the derivative of x with 

du respect to u 

Example 

Given X with p.d.f. f(x) 

We want the p.d.f., h(u), related to the transformation 

u = a + x, where atR 

x = u-a dx s 1 
du 

Then h(u) = |fj*| • f(x(u)) 
|du| 

= f(u-a) 

Several variables 

The formula for changing several variables is given similarly 

by 

¥ (u,v) = $ (x(u,v),y(u,v))|Det(J)| 

Det(J) = 

&x 
du 

fil 
du 

dx 
dv 

fix 
8v 
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where 

x,y are the original variables 

u,v are the transformed variables 

+(x,y) is the original joint density function of x and y 

f(u,v) is the transformed joint density function of 

u and v 

u(x,y) are the expressions relating u and v 

v(x,y) to x and y 

Det(J) the determinant of the Jacobian 

Normally u is the desired transformation and v a convenient 

dummy variable. In this case we want the marginal density func­

tion for u associated with the joint density function T(u,v) 

which is given by; 

h(u) = / *(u,v) dv. 

v 

If x and y are statistically independent the equation simpli­

fies to 

¥(u,v) = f(x(u,v)) • g(y(u,v)) • |Det(J)| 

If v(x,y) = x, which is often convenient, and correspondingly 

x(u,v) = v, then 

Det(J) = 

ax ax 
du dv 
dy dy 
du dv 

$£ &Y. 
du dv 

ay 
au 

The marginal density function, h(u), is then given by 
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h(u) = 
dy! 

dtl -f(v) 
g(y(u,v)) dv. 

Example 

Given x and y with p.d.f.'s f(x) and g(y). We want the p.d.f., 

h(u), related to the transformation given by 

u = x + y 

v = x 

Then 

x = v 
y = u-v 

h(u) = 

and 

|1| • f(v) • g(u-v) dv 

f(v) • g(u-v) dv 

5u _1 

(which is the well-known convolution integral). 

Using these formulas for transformation of variables it is pos­

sible to express the p.d.f.'s related to the stress intensity 

factor and the fracture toughness. 

The stress intensity factor 

The stress intensity factor is given by 

Kj2= K'A'S2 

K is often specified by a constant. In other cases by a p.d.f., 

h(x). 
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A is specified by a p.d.f., f(x) which is often an exponential 

distribution. 

S is specified by a p.d.f., g(x) which is often a normal distri­

bution. 

Two variables 

The most simple case is when K is given by a constant value. 

Using the formulas of transformation of variables given above 

we find h(u) associated with S2 as 

h(u) - 2"7u (g(/u) + g(-/TT)) 

Associated with A • S 2 we get, 

when U = A • S 2 A = V 
V = A s2 = U 

V 
and 

.2, ,. I a s' 
l a u v 

, , I 1 1 1 , . 1 u . u , v 
h(u) = |v| • f(v> . 77u • g< /v) +g<-/T)) dv 

Associated with K'A'S2 we find (K takes the value k) / 

h I' j. M I _1 u u 

k • |v I • f(v) • 77y? (g(/W) + g{-/TTV)) dv. 
v kv 

Three variables 

As in the case of two variables we find associated with A #S 2 

l(u) = 
f> 1 

|v| 
f(v) ---Lr-- (g(^) + g(-^J) dv 
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The p . d . f . for K i s g i v e n by h ( x ) . 

A s s o c i a t e d with K'A'S2 we f i n d , when 

U = K • A * S' K = U 
~V 

and 

V = A • SJ S 2 = V 

8K 

au 
= 2 

V 

m(u) = I 4l * M") ' K-£) <3w 
w 

w 

l-fcl • h(w) • f(v) • 1__-(g(/SZ)+g(_/3I)) dvdw 
2 / T w 

The fracture toughness 

The fracture toughness is given by 

KIC
2 = M ' (Cv • Sy-0.05 ' S y

2), 

M is often specified by a constant. In other cases by a p.d.f., 

h(x). 

Cv is specified by a p.d.f., f(x) which is often a normal or a 

Weibull distribution. 
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S« is specified by a p.d.f., g(x) which is often a Weibull di­

stribution. 

In some cases the last term M * S * *0.05 is negligible and the ex­

pression is 

KIC = M* Cv" Sy 

Using the formulas of transformation of variables given above 

we find h(u) associated with CV*S as 

h(u) = / Ml • f(v) • g(«) dv 
v v 

V 

Two variables 

If M is specified by a constant value m the p.d.f. associated 

with M*Cv*Sy is 

h(u) = / | 1 | 
v vm 

f(v) • g(_u_) dv. 
vm 

Three variables 

If M is specified by a p.d.f., h(x), the p.d.f. associated with 

M'Cv-Sy is 

Ku) = Ml ' h(w) • w J 
W V 

2 I ' f(v) • g(_u__) dv dw 
v v* w 

w 
I 1 I ' h(w) 

V V.W 

f(v) • g(_"_) dv dw. 
vw 
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Conclusion 

We will evaluate an integral of the for« 

b 
/ (b-x)f1(x}f2(x)dx 
a 

where f-|(x) and f2(x) are given by one of the following two 

types: 

v=« 
f(x) = / g(x,v)dv 

v=x0 

or w=» v=» 
f(x) = / / g(x,v,w)dv dw. 

w=x0 v=x-| 

A Gauss-Legendre formula is well-suited for the integration 

b 
/ f(x)dx. 
a 

In principle is it possible to construct a product formula based 

on this type of formula. It has been found that in the cases 

of interest both fi(x) and f2(x) can be rewritten using a simple 

affine transformation. 

/ e^'g'tx.v'Jdv* 
v'=o 

/ / e"v e"w g'U.v'.w'Jdv'dw' 
v*=o w'=o 

In evaluation of integrals of this type Gauss-Laguerre formulas 

are well-suited. 

The difference between the application of a Gauss-Legendre and 

a Gauss-Laguerre formula is shown in the example below. 

Then 

f^x) = 

or 

f^x) = 
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Exanple 

b 
/ f(x)dx 
a 

where 
f(x) = e~V(x+1). a = o, b = • ,x>o 

A Gauss-Laguerre formula is applied for evaluating the integral 

of 1/(x+1) with the weighting function e~x. 

A Gauss-Legendre fornula is applied for evaluating the integral 

of e~x/(x+1) with the weighting function 1. 

In the latter case the upper integration linit has been chosen 

in the following way: 

Since 1/(x+1) <_ 1 for x>o 

then e~x/(x+1) _< e-* for x>o 

If the function is cut off at sone value N 

N • 
/ e-*/(x+1)dx = / e-*/(x+1)dx + / e_x/(x+1)dx 
o o N 

The last tern 

am m 

J e-x/(x+1)dx f / e~*dx = e~N 

N N 

Choose N, so that e"N < 6. 

In this example 6 = 10 ~* is chosen. 

e-N = 10-4 

or 

N = 9.210340 
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An upper limit N = 10 is chosen, which gives an error less than 

e - 1 0 = 4.54-10"5. 

Another possibility would have been to transform the integral 

over [o, «•[ into an integral over [a,b]. 

Let y = 1/(X+1) 

or x = (1-y)/y 

then q£x<» or o<y^1 

and dx/dy = -1/y^ 

So 

/ e-*/U+1)dx = / (e-d-y)/y)/ydy 
o o 

A Gauss-Legendre formula can now be used directly without any 

cutting on the new function. 

Using a Gauss-Legendre formula on [0. 10] and a Gauss-Laguerre 

formula, the following results are obtained: 

Number of points Gauss-Legendre Gauss-Laguerre 

2 0.194292 0.571429 

4 0.541168 0.593301 

8 0.595932 0.595867 

Using 30 points the result is 0.595278. 

It i s therefore decided, that the Gauss-Laguerre formulas sha l l 

be used as the basis for constructing the product formulas in 

combination with the Gauss-Legendre formula. 

These formulas are described in [ 1 0 ] . 



- 47 -

3.6.2 Input and Output 

The input as well as the output from the program are described 

below including a check facility which is available. 

Input 

The input consists of five categories of data: 

1. The type of the distributions 

2. The value of the parameters in each distribution 

3. The number of integration points 

4. The integration limits 

5. Indicator for the check facility 

The functional relationship used in the model has to be express­

ed explicitly in the program. 

Type 

The following four types of distributions are allowed in the 

program: 

1. Constant value 

2. Normal distribution 

3. Exponential distribution 

4. Weibull distribution 

The sequence of indicators for the type of the six variables 

used in the model defines the model in connection with the func­

tional relationship between the variables specified in the pro­

gram. 

Example 

The sequence 1-1-1-1-1-1 indicates a model, where all six vari­

ables are given by a constant value. 

The sequence 1-3-2-1-4-4 indicates the model which is discussed 

in the main example (see 3.6.3.). 
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Parameter Values 

The values of the parameters are specified, depending on the 

type of the distribution, in the following form: 

type - 1 (constant) 

type = 2 (normal distribution) 

type = 3 (exponential distri­

bution) 

type = 4 (Weibull distribution): 

the value of the constant 

the mean value xm and the 

standard deviation a 

the origin x 0 and the scale 

parameter X 

the origin xQ, the scale pa­

rameter k and the form para­

meter m 

Number of integration points 

Two values are required. The first one, N-j, defines the number 

of points used in the Gauss-Legendre formula 

(b-x)fR
 2(x)f,, 2(x) dx 

IC 
^(b-X^ijr 2(Xi)fK

 2(Xj) 
i = 1 I IC 

where WJ specifies the weight 

The other value, N2, defines the number of integration points 

I IC 

2 2 
used in evaluation of fK (x) and fK (x) by the Gauss-La-

guerre formula 

f K / <*k> •I: e~ w , f 1 (w ,x k ) dw 

N2 

I f, ( w i # x k ) ' vi 

i = 1 

where VJ i s the w e i g h t . 
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And correspondingly 

fK
 2 (Xfc) = / «~"'*2 (w'xk> d w 

IC o 

- I f2 ("i.*kJ *
 vi 

1 = 1 

where VJ is the weight. 

The integration limits 

The l i m i t s a and fo in the formula 

i: b »1 
(b-x)fK

 2 (x) f K
 2<x) dx = JwiCb-xj )^ 2 ( x i ) f K

 2 ( X i ) 
R j K j C . ^ 1 1 Kj 1 K j c 1 

should be specified. 

Check facility 

It is possible to print intermediate results from the integra­

tion process. For each integration point xj the following values 

will be printed 

xj. (b-xj), fK
 2 (x^, fK

 2 (xj). 
I IC 

Output 

Execution of the program will give the following output: 

1. Identification of the computer run 

2. Input for the program 
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3. Intermediate check result (optional, see above) 

4. The resulting probability of failure. 

In section 3.6.3. two examples are shown with the corresponding 

printer output in appendix 1. 

3.6.3. Examples 

Two examples of the use of the program NUMPEP are given. In ap­

pendix 1 the output from the computer runs are given. 

Example 1 

The data originate from [1] 

The model is 

Kj 2 = K • A • S2 

where 

K is the constant 3.8 

A is given by the exponential distribution 

fft(x) = X. • exp(-\(x-x0)) with \ = 2.56 and xQ = 0. 1 

fA(x) 

2.54 

2.0 

1.0 

0.0 
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S is given by the normal distribution 

1 • exp(- (x-V2) 

S /2*a 2a' 

with xm = 26.0 and o = 3.2 lm 

~18 22 26 3̂3 34* 

K I C
2 = M - Cv • Sy 

where 

M is the constant 5.0 

C v is given by the Weibull distribution 

m •k(x-x,J m*1 
fc (x) - k .(x-x0) .exp( '""n+1c' * 

v 

with k = 1.57 • 10~12, HI = 8.2 and xQ » 35.0 
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f (x) 
V 

0.15 + 

0.10 

60 70 100 150 

Sy is given by the Weibull distribution 

/ v / \m ,-k(x-x̂ ,) x fs (x) = k . (x-x ) . exp( j^y° ) 
y 

with k = 2.53 • 10-6, m = 2.65, xQ = 60.0 

0.3 f 
fg (X) 

35 40 50 60 70 
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Kjc takes the minimum value 

5.0 • 35.0 • 60.0 = 10500 

and therefore the lower integration limit is 10500. 

Kj 2 takes no upper limit value, but due to the physical existen­

ce of a maximum crack depth and a maximum value of the nominal 

stress a maximum of 60000 is reasonable. 

The probability of failure is in this case 

60000 

/ (60000-x) • fK
 2 (x) • fK

 2 (x) dx 

10500 J I C 

This integral is evaluated by a Gauss-Legendre formula with 32 
2 2 

points. The evaluation of fR and fR is performed by apply-

I IC 

ing a 30 points Gauss-Laguerre formula. 

The result is 0.2826 • 10-6. 

With a 8 points Gauss-Legendre formula and a 8 points Gauss-
2 

IC 

2 2 
Laguerre formula for fK and fK the resulting probability 

of failure would be 

0.2678 • 10"6 

The latter result is obtained in 0.9 seconds CPU-time, while the 

former requires 4.7 seconds in CPU-time. 

Example 2 

The data originate from the same reference as in example 1, ref. 

[1]. 
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The model is similar to that in example 1 

Kj2 = K • A • S2 

where 

K is the constant 3.8 

A is given by the exponential distribution 

fA(x) = A. • exp(-\(x-x0)) with X = 2.56 and xQ 

S is given by the normal distribution 

= 0. 1 

f (x) = 1 
S /2%a 

exp(- fo'foJP 
2.a 

with xm = 26.0 and o =3.2 

KIC2 = M * Cv ' Sy 

where 

M is the constant 5.0 

Cv is given by the normal distribution 

fc (x) = 
*-v 

J exp(-(x-xm)_f) with xm = 105.0 and a =15.0 
2a2 

fr (x) 
*-v 
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Sy is given by the Weibull distribution 

-k(x-x ) m + 1 

fs (x) = k(x-x0)
mexp( iTT° ) 

with k = 2.53 • 10"6, m = 2.65, xQ = 60.0 

Reasonable limits in this case are 10500 and 60000. Therefore, 

the probability of failure is: 

60000 

/ (60000-x) • fK 2 (x) • fK
 2 (x) dx 

10500 J I C 

This integral is evaluated by a Gauss-Legendre formula with 8 

points and fK ' and fK are evaluated by a Gauss-Laguerre 
I IC 

formula with 8 points. The resulting probability of failure is 

0.6360 • 10~6 using 1.0 second of CPU-time. 

3.6.4. Experience and Application 

Applications of the developed computer program show that a re­

sult is obtained within a very short time for the type of prob­

lem dealt with within probabilistic fracture mechanics. It is 

possible to specify the number of integration points needed to 

achieve a reasonable accuracy. As it was described in section 

3.6.1. it is normally not needed to evaluate the integral with 

a high accuracy due to the nature of the problem. 

In general relevant data are lacking which means that the un­

certainty inherent in the problem is large. This means, that in 

stead of having a very accurate result of one calculation, it 

is likely that several evaluations are needed with slightly 

different data in a detailed sensitivity study. In this type of 

application a fairly simple and fairly accurate evaluation is 

important. It has been seen that the NUMPEP code can fulfill 

these requirements. 
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In order to check the validity of the result the program can be 

applied by dividing the region into subregions with subsequent 

calculation of the integral in each subregion succeeded by a 

summation. If this refined calculation satisfies the requirement 

to the accuracy, the execution of the program is stopped, other­

wise the procedure can be continued by further subdivision. 

3.6.5. Error Analysis 

The integral 

In = /•••/w(x1,--*.xn)f<x1,"-,xn)dx1---xn 

can be evaluated using a numerical integration formula 

N 
SN *.S A.f(Vi ,.-••, vi#n) 

1 = 1 

The error E[f] is given by 

In = SN + E[f]. 

Estimation of the error is in general a very difficult task. 

In \8] a thorough discussion is presented, giving estimates 

proposed by Sard and Barnhill, respectively. 

In the first case the theory is based on a generalization of 

the Peano error estimates for one variable. The estimates are 

given for functions f(x,y) which have a certain type of Taylor 

series expansion. 

In the second case the theory is based on a generalization of 

the estimates of P.J. Davis for one variable. The estimates are 

given for functions of two complex variables, which are analytic 

for all points in a certain region containing R2> 
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SARD-ESTIMATES 

The derivatives of a function f(x,y) over [a,b]x[c,d] are 

defined as 

( i , j ) , x a^J . ft , 
f (x,y) = axi5y] f(x,y) i^0f j>_0 

If the derivatives are defined and continuous, then f(x.y) has a 

Taylor's expansion. 

Bpjq is the set of all functions with the following properties: 

1. f'P'^'fx.y) is Riemann integrable on R2 

2. f (m~3« J) (x,c), j<q is Riemann integrable on a_<x_<b 

3. f (i'm~i)(a,y), i<p is Riemann integrable on ĉ yjcd 

4. f(i»J)(a,c), i+j<m exists 

5. Taylor expansion holds for f(x,y) for all (x,y) in R2. 

Kernel theorem, [8], states that if an integration formula 

is exact, when f(x,y) is a polynomial of degree <m in x and y, 

then there exist functions 

Kp,q(x#y) (x,y) in R2 

Km-j,j(x) x in [a,h], j<q 

Ki,m-i(y) y in [c,d], i<p 

so that 

b # • •» 
E[f] = I J KB.i A(u)flm-3'lUu.c) du 

j<q a 

d 
+ I I Ki m-i(v) f(i'm"i)(a,v) dv 
i<p c ' 

b d 
+ / / K (urv)f

lP'<!Mu,v) dudv 
a c 
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whenever f(x,y) belongs to Bp#q. 

Furthermore, 

Kp,q(u,v) = E^p.!), (q_Dj J 

, , Rx-u)m-J-1(y-c)Jl 
Km_jf j(u) = E[(m_j_1)I *yr-J 

, x r(x-a)i(y-v)m-i-r] 
Ki,m-i<v) - EL~~il (m-i-l)l J 

which are the errors using the formula on the expressions in 

brackets. 

Several estimates are given of which the most common 

l£[f]l 1 I em-j,j!X Mm_j#jsx 

j<q 

+ 1 ei,m-i:y Mi#n,_i.y 
i<p 

+ eP»q MP.q 

b 
where e m_ j f j : x = / |K m. j # j(u)| du 

a 

d 
ei,m-i:y = / IKi,m_i(v)| dv 

c 

b d 
ep,q " / / lKp,q(u,v)| dudv 

a c 

Mm-j,j:x = SUP w, lf
(m-j'j) (u,c0)| J J ut[a,bj 

Mi,n,-i:y = 8UP „, If (i'm"i) (ac, v) | 
* vfc[c,d] 

Mp#q = sup |f
(P'<3)(u,v)| 

R2 
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The first three e-values are only dependent on the formula, 

while the three M-values depend on the integrand. The Kernel 

functions K defined above are unfortunately not sinple func­

tions, and this leads to calculational problems. Some examples 

of Kernel functions from [8] are shown on the next page. 

Example 1 

f(x,y) = /(3+x+y) is an element of B2,4 

The estimate for E[f] is 

|E[f]l 1 I e B_j. j : X Ma-j.j., + £ ei,B_i:y Mi,B_i:y 

j<q i<p 

+ ep,q Mp/q 

Here p = 2, q = 4, p+q = 6 = n l^o,c0) = (0,0) 

(a,b) = (c,d) = (-1.1) 

| E [ f ] | jc e 6 , 0 : x M6,0:x + «5, 1:x ^S. 1:x + e 4 , 2 : x **4,2:: 

+ e 3 , 3 : x M 3 # 3 : x + e 0 , 6 : y Mo,6:y + « 1 , 5 : y M1 #5 : 3 

+ e 2 , 4 " 2 , 4 

f(1.0) 

f(2,0) 

f(3,0) 

f(4,0) 

f(5,0) 

f(6,0) 

x,y) = 1/2 • (3+x+y)-»/2 

x,y) = -1/4 • (3+x+y)"3/2 

x,y) = 3/8 • (3+x+y)-5/2 

x,y) = -15/16 • (3+x+y)-7/2 

x,y) = 105/32 • (3+x+y)-9/2 

x,y) = -945/64 • (3+x+y)-11/2 

M6,0:x -' SUP I "945/64 (3+u)"11/2 | 
u in [-1,1] 



S5> 

[p.g) - (2,2) X « . -0.171 <*«) - O. I) * » , , - 0.576 

o 

(/«.«) = (2. 3) * „ , - 0 . 1 4 4 < p , « ) - ( 3 . 2 > * . . . - O . I 7 k 

( P . « ) - ( 2 . 4 ) * • „ - 0 . 3 3 7 < * • « ) - ( 3 . 3 ) * » • • - 0 . 1 2 1 
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maximum is reached for u = -1 

M6,0:x= ' " 945/64(2)_11/2 | = 0.326 

M5,1:x = M4,2:x = M3,3:x = M6,0:x 

M0,6:y = M1,5:y = M6,0:x 

M2>4 = sup |f(2'4)(u,v)| 

(u,v)in [-1,1] x [-1, 1] 

= sup |-945/64(3+u+v)_11/2| 

(u,v) in [-1,1] x [-1,1] 

maximum is reached for u = v = -1 

M2 4 = |-945/64(1)"
11/2 | = 14.8 

Using the seven-point f i f t h -deg ree formula C2:5-1 [8] the e -

values are t a b u l a t e d : 

e 6 , 0 : x = 0 .000126 

e 4 , 2 : x = 0 .000302 

e 0 , 6 : y ~ 0.0000377 

e 2 , 4 ~ 0.00246 

e 5 , 1 : x • e 3 , 3 : x " e 1 , 5 : y " ° 

Thus |E[f]| _< (0.000126 • 0.326) + (0.000302 • 0.326) 

+ (0.0000377 • 0.326) + (0.00246 • 14.8) 

= 0.0356 

To see how close the estimate of |E[f]| is to the actual 

error a couple of examples are shown below. 
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Example 2 

Let f(x.y) = ex+y 

Integrate f(x,y) over [-l.l] x [-1,1 ] using two different 

formulas C2:5-1 and C2:5-2 from [8]. 

Formula Integral 

Estimated 

Error 

Actual 

Error 

C2:5-1 

C2:5-2 

5.521576985 0.1948' 10"1 0.281439583' 10"2 

5'52275698 0.2765"10"1 0.211568298"10"2 

Exact 5.524:91381 

The ratio between the estimated error and the actual error is 

C2:5-1 : 6.9 

C2:5-2 : 13. 1 

which shows that the error is overestimated using SARC-estimates. 

Example 3 

Let f(x,y) = x4y2 

Integrate f(x,y) over [-1,1] x [-1,1] using the two diffe­

rent formulas C2s5-1 and C2:5-2 from [8]. 

Formula Integral 

Estimated 

Error 

Actual 

Error 

C2 :5-1 0.266666667 0 .0145 0 .36379788V 1 0 ~ n 

C2:5-2 0.207407407 0.0593 0.592592593*10" 1 

Exact 0.266666667 
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The ratio between the estimated error and the actual error is 

C2:5-l : 4.0-109 

C2:5-2 : 1.0 

This shows that using C2:S-1 the estimated error is useless. 

Furthermore, the estiaates provided by SARD cannot in general 

be improved, since the use of the formula C2=5-2 shows that the 

error limits cannot be sharpened, since a function and a formula 

exist where the error estimate is equal to the actual error. 

BARNHILL-ESTIKATES 

Barnhill error estiaates are given in [8] for functions of 

two complex variables. Which are analytic for all points in a 

certain region containing R2« 

|E[f]| < H E M • llfll 

where 

I | E | | depends on the formula 

l l f l l depends on the integrand 

l l f l l 2 = / / / / | f ( z . w ) | 2 dxdudydv 
EpxEp 

where EpxEp are e l l i p s e s 

| | f | I 2 <, «ax | f ( z , w ) | • nab 

MEM2 = 1 I IE [wr* w8*] | 2 

r=0 s*0 

where wr* and w s* are Chebyshev p o l y n o m i a l s . This neann, that 

| | E | | e x p r e s s e s the error using the formula on the s p e c i f i e d 

Chebyshev p o l y n o m i a l s . 
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Example 1 

Let f<x.y) = ex+y 

Integrate £(x.y) over [-1.1] x [-1.1] using C2:5-1 fro« [8] 

(see also exaaple 2, SARD). 

In [8] values for I I Ell and ||f|| are given. 

The error estimate is 0.3417, which can be coapared with the 

similar SARD-estiaate. 

Foraula C2:5-1 f(x,y) = e x + y 

Errors/Ratio Sard Barnhill Actual 

C2:5-1 0.01948 0.3417 0.002814396 

Ratio between 

errors 6.9 121.4 

The results of this exaaple are typical for Barnhill-estiaates. 

They are very complex to calculate and they overestimate the 

error dramatically. 

It can be concluded that the error estiaates in general are 

useless for practical purposes. The reasons are that 

1. the Kernel functions are very difficult to treat, even in 

very simple cases 

2. in aost cases the estimated errors are much greater than 

the actual error. 

In stead it is proposed to use recalculation of the integral 

using a larger nuaber of integration points and compare the 

results. If the difference between subsequent calculations is 

acceptable then the computation is stopped, otherwise it is con­

tinued with an increased nuaber of points. 
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3.6.6. Conclusions and Coaparisons 

The NUMPEP code has been thoroughly tested and the results of 

the calculations from the examples given in section 3.6.3. have 

been compared to the results obtained by sow of the codes de­

scribed in section 3.4. 

Example 1 

Using the NUMPEP code the probability of failure of the struc­

ture is 0.2626 * 10""*. Product formulas have been used based 

upon a Gauss-Legendre and a Gauss-Laguerre formula. The number 

of points in each formula Mas 32 * 30 - 960, and the CPU-time 

was 4.7 seconds. A siailar calculation gave the probability of 

failure 0.2678 • 10"*, using 8 • 8 = 64 points with a CPU-time 

of 1.1 seconds. 

The NUMPEP code is compared to the PEP code [2] and the ANPEP/V2 

code [4] . which are described in section 3.4. The results are 

given in the table below. 

Code Probability CPU-tine 

of failure (seconds) 

PEP 0.2867-10-6 300.0 

ANPEP/V2 0.2843-10-6 12.5 

NUMPEP 0.2826-10-6 4.7 

As it is seen there is an agreement between the results of all 

three codes taking into account the requirements to the accuracy. 

Furthermore, it is obvious that NUMPEP has obtained the result 

using a shorter CPU-time than the other codes. 

Example 2 

Using the NC.4PEP code the probabi l i ty of fa i lure of the s t ruc ­

ture i s 0.6360*10"6 . Product formulas have been used based upon 

a Causs-Legendre and a Gauss-Laguerre formula. The number of 

points in each formula was 8 . 8 * 64, while the CPU-time was 
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1.0 second. The NUMPEP code is compared to the PEP code [2] 

and the ANPEP/V2 code [4] . which are described in section 

3.4. The results are given in the table below. 

Code Probability CPU-time 

of failure (seconds) 

PEP 0.6257-10"6 300.0 

AKPEP/V2 0.6392-10-6 14.3 

NUMPEP 0.6360-10-6 1.0 

Again, the results are in good agreement and the reduction in 

computing time using the MUMPEP code is significant. 

number of points 

As described in section 3.5.3. Monte Carlo methods are time 

consuming, since the error in the formula is given by c//N, 

where K is the number of points. This means, that an increase 

in the number of points by a factor 100 will only reduce the 

error by a factor 10. It is shown in [3] that the ANPEP code 

is much more efficient than Monte Carlo methods. 

In ANPEP and ANPEP/V2 each distribution is decretized and com­

bined subsequently. In general 100 points are recommended for 

each decretization. In the examples discussed above this leads 

to 2 • (100 • 100) = 20000 points. 

The product formula in HUMPEP requires in total N = N1 * 2N2 = 

2N1K2 points, where l?i is the number of points in the Gauss-

Legendre formula and N2 is the number of points in the Gauss-

Laguerre formula. 

In the examples above the following number of points were used: 

example 1: t^ = 32, N2 = 30 

N =1920 

example 2: Ni = 8, N2 *° 8 

N * 128 
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These differences between the number of points in the methods 

explain the differences in the observed CPU-times. 

On the contrary if the ANPEP/V2 code is used with 8 points in 

each discretization, the same number of integration points are 

needed as for the NUMPEP code in example 2. The result of the 

calculation using ANPEP/V2 code is 0.4931 • 10~6, which shows, 

not surprisingly, that the choice of integration points and 

weights in the Gauss formulas are optimized compared to the 

strategy used in the ANPEP/V2 code. 
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4. SYSTEMS RELIABILITY 

In order to optimize the design of industrial systems, analysis 

of their performance with respect to safety, reliability and 

availability is of increasing importance. Methods and tools 

for such analyses have been developed during the past 20 years 

using the power of computers to solve complex questions within 

a reasonable time. 

4.1. Background 

A variety of computerized methods are available for reliability 

and safety analysis of complex systems. A comprehensive presen­

tation of available methods and tools is given in [11]. 

Within the Nordic countries a couple of research projects have 

been carried out with the aim to describe the state of the art 

of the techniques in industrial applications. The SCRATCH pro­

ject was finished in 1982 issuing a summary report [12]. It 

contains a description of the usefulness of risk and reliability 

analysis techniques in any industrial application. In the period 

1981-1985 a new Nordic project was carried out with the aim to 

study probabilistic risk assessment (PRA) and licensing in nu­

clear applications. The main results are summarized in [13]. 

These results have subsequently been reviewed with respect to 

non-nuclear applications [14], 

One of the common results of the above research projects is the 

necessity of methods for detailed description of complex systems 

with subsequent reliability or availability calculation. Fault 

trees or reliability block diagrams are the most commonly used 

methods for representation of specification of the failure con­

ditions of complex systems. They both allow a quantitative as­

sessment of system reliability and availability. Analytical us 

well as Monte Carlo simulation programs are available for this 

part. 
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One of the main drawbacks of Monte Carlo simulation programs is 

the amount of CPU-time needed to perform a calculation with 

reasonable accuracy on the results. This problem can in some 

cases be overcome by applying a variance reduction technique. 

In this study variance reduction techniques are analyzed with 

respect to implementation in an existing Monte Carlo simulation 

program. 

Section 4.2.-4.4. describes the definitions and ideas behind 

system representation methods and quantification methods. In 

4.5. the existing Monte Carlo simulation program MOCARE is brief­

ly presented. Section 4.6. gives an outline of variance reduc­

tion techniques. The most commonly used and flexible method, 

the importance sampling method, is analyzed in section 4.7. 

Finally, section 4.8. and 4.9. present the proposal for the 

implementation of importance sampling technique in the MOCARE 

program. 

4.2. Fault Trees and Block Diagrams 

Fault trees and reliability block diagrams can be regarded as 

dual methods. A fault tree represents all combinations of basic 

events which lead to failure of the system. Basic events can be 

either component failures, human errors or failure conditions. 

A reliability block diagram en the contrary represents all com­

binations of components which have to be functioning to assure 

system functioning. The fault tree representation is most widely 

used. 

Fault Trees 

The basic concepts and the techniques of fault tree analysis are 

given in [15]. Furthermore, its advantages and limitations 

are discussed in [ll], [12] and [13]. 

A fault tree consists of basic events linked into a description 

of the system using logical OR-gates and AND-gates. 
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Example 

0 6) A3 

A1-A5 are basic events, such as pump fails to start on demand. 

The system will fail, if 

- Aj occurs 

- A2 and A3 occur simultaneously 

- A4 and A5 occur simultaneously. 

Fault trees are useful diagrams well-suited for presentation of 

system failure conditions to be used in communication between 

the designers and the operating staff and between the designers 

and the authorities. Further, it is prepared for a subsequent 

quantification. 

Block Diagrams 

Reliability block diagrams are discussed in [13] and a computer 

program RELVEC applying this methodology is described in [16]. 

The interpretation of a reliability block diagram, which fo­

cuses on success in stead of failure of the components, is: a 

system is considered functioning if a path through the blocks 

exists, that are functioning. If no such paths exists, the sy­

stem is failed. 

Example 

The reliability block diagram which represents the system given 

by the fault tree above is: 
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A 4) (A5 

I 

A1-A5 are basic events, such as pump is running. 

The system is functioning, if 

- A-j, A2 and A4 are functioning 

- A-|, A2 and A5 are functioning 

- A-|, A3 and A4 are functioning 

- A1, A3 and A5 are functioning. 

Remarks 

The two approaches will give identical system failure condi­

tions, but in practical use as an aid in the identification 

process, some differences are found. 

It has been argued, that reliability block diagrams are easier 

to use than fault trees due to their close relationship to the 

flow schemes of the systems. Furthermore, it is more natural to 

plant personnel to think in terms of success than in terms of 

failure, since they are responsible for a continuous operation 

of the plant - also in cases of disturbances. 

On the other hand, it has been found that the searching for 

system failure conditions in practice assure a higher degree 

of completeness than searching for system function conditions. 
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4.3. Cut Sets and Path Sets 

Given a system of components, a cut set is a set of components, 

which imply a system failure if all components in the set are 

failed simultaneously. A minimal cut set is a cut set, where 

any change of a component state from failed to nonfailed will 

imply that the system is functioning. This means that all compo­

nents need to be failed simultaneously before a system failure 

occurs. In the example in section 4.2. the minimal cut sets are: 

Ai, (A2# A3), (A4, A5). 

Similarly, given a system of components, a path set is a set of 

components which assure the functioning of a system if all com­

ponents in the set are functioning. A minimal path set is a path 

set, where any change of a component state from functioning to 

failed will imply that the system fails. 

4.4. Reliability and Availability Calculations 

The definitions of the reliability and the availability of a 

system are given in chapter 2. In general each component in a 

system has a specific time-to-failure distribution, of which the 

exponential distribution plays an important role. 

f(x) = \exp(-\(x-x0)) for x>x0 

x 
F(x) = / \exp(-\(t-x0)) dt 

xo 

= 1- exp(-\(x-x0)) 

The hazard rate is defined as 

h(x) = f(x)/(1-F(x)) 

where 1-F(x) is called the reliability at time x. In case of 

an exponential distribution the hazard rate 
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h(x) = f(x)/(1-F(x)) 

= \exp(-X(x-x0))/(1-(1-exp(-X(x-x0))) 

= X. 

i.e. a constant hazard rate, independent of the time. 

The reliability over time t given an exponential distribution is 

R(t) = 1-F(t) = exp(-X(t-x0)) 

which is the probability that the component is functioning at 

time t given it was functioning at time x0. 

Parallel system 

Given a parallel system, S, consisting of two components, C-| 

and C2, (which corresponds to an OR gate) 

Rs(t) = R^t) + R2(t) - R1(t)R2(t) 

if C-j and C2 are independent. 

Series system 

Given a series system, S, consisting of two components, C^ and C2, 

(which corresponds to an AND gate) 

Rs(t) = R.,(t) ' R2(t) 

if C-j and C2 are independent. 

Similar expressions can be derived taking into account maintained 

components, where a repair time is specified. Such expressions'^ 

are given in [17]. 
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Availability 

From [17] the availability of a repairable component at time 

t is 

A(t) = ji/U+n) 

+ (X/(X+n))exp(-(X+ii)t) 

given exponential failure distribution with failure rate X and 

exponential repair distribution with repair rate \i. 

The average availability for a period of time [o.t] is the avar-

age uptime 

_ t 
A(t) = (1/t) / A(s)ds 

o 

= ii/( X+u) 

+ X/(X+n)2t 

- (X/(X+|L)2t)exp(-U+|i)t) 

If t •• the availability becomes \i/{\+\i.), the steady-state 

availability. 

Expressions can be derived for series and parallel systems, but 

the expressions are rather complex. 

In order to achieve a result within a reasonable time, two diffe­

rent approaches have been applied 

- approximate, analytical methods 

- simulation methods. 

4.4.1. Analytical Programs 

Computer programs have been developed to calculate the system 

reliability or system availability given component data and a 

representation of the system failure conditions. 



- 75 -

One such program has been developed at Risø, FAUNET, [18], 

using the fault tree representation. The program searches for 

minimal sets (cut sets or path sets) utilizing advanced tech­

niques. Then the reliability or the availability is calculated 

based on the minimal sets and component data. The program ac­

cepts components with either constant failure probabilities or 

exponentially distributed failure times. Repair times are either 

constant or exponentially distributed. Furthermore, constant 

test intervals can be specified. The basic assumption is that 

the components are statistically independent. 

The well known expressions for the unavailability as a function 

of time t are used (see [18]). 

The program performs a calculation of the system unavailability 

from the minimal cut sets, using the rules: 

OR-gate: P = P1+P2-P1P2 

AND-gate: P = P1 'P 2 

Further, to calculate the probability of the union of the mini­

mal cut sets, only the first terms in the expansion is in­

cluded. It is possible to write the expression explicitly, but 

due to calculational difficulties only the first terms are in­

cluded. 

4.4.2. Monte Carlo Simulation 

Several methods based on Monte C~rlo simulation have been de­

veloped. One such program is the MOCARE program [19] described 

in section 4.5. 

In this type of program each component is assigned a time where 

it is failed based upon the input describing the p.d.f. for the 

time-to-failure and repair. The assignment is performed using 

a random number generator, which is available on any computer. 
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In many cases, the random number generator is using the linear 

congruential method: 

xn+1 = (*n'a
+t>)MOD N, a, b fixed 

R = Xn+l/N 

where N is the largest integer value. 

The user specifies a start number x 0 and new numbers are gene­

rated successively using the formula. Using this method numbers 

which are uniformly distributed are generated on [0, l[. 

Assume a component with specified time-to-failure distribution 

F(x), with density function f(x). If R is a random number uni­

formly distributed over 0 to 1, the following equation gives a 

value x, following the specified time-to-failure distribution: 

R = F(x) 

or 

x = F"1(R) 

Example 

Assume an exponent ia l d e n s i t y funct ion 

f ( x ) = Xexp( -X(x -x 0 ) ) and F(x) = 1 - e x p ( - \ ( x - x 0 ) ) 

R = 1 - e x p ( - \ ( x - x 0 ) ) 

1-R = e x p ( - X ( x - x 0 ) ) 

- M x - x 0 ) = ln(1-R) 

x = x 0 - ( l / \ ) * l n ( 1 - R ) 

If R is uniformly distributed over 0 to 1, also 1-R will be 

uniformly distributed over 0 to 1. 

To save one algebraic operation x can be found from 

x = x0-dA)'ln(R) 
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The aain advantages of Monte Carlo simulation programs are their 

flexibility to model complex systems and the userfriendliness. 

The main drawback is the computing time required to obtain a 

given accuracy of the result. 

4.5. The MOCARE Code 

The MOCARE program Which is based on direct Monte Carlo simu­

lation, is developed at Risø [19]. 

4.5.1. Principles 

The program accepts either a fault tree or a reliability block 

diagram as the part of the input which contains the specifica­

tion of the system failure condistions. Furthermore, minimal 

cut sets from a previous calculation by the PAUNET program are 

also accepted as input. For each component five different p.d.f. 

types for time-to-failure are available: 

- exponential distribution 

- Weibull distribution 

- normal distribution 

- log-normal distribution 

- constant time 

and similarly for the repair cimes. 

The program carries out a number N of trials over a specified 

period of time T. The process is illustrated in the example 

below. The history of each fault is shown over the period [o,T]. 

The presence of a fault is symbolized by a hatched field on the 

time axis. The status of the system is evaluated every time a 

change in a component state occurs, i.e. if a failure occurs or 

if a fault has been repaired. If the system has failed, it is 

registered together with the duration of the system failure for 

further treatment. 

Finally, the mean reliability over the period [0,T] is cal­

culated using: 
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R = KS/K 

where KS is the number of trials with no system failures 

N is the number of trials 

The mean unavailability is calculated using: 

KF 
UA = £ Di/(M*T) 

i = 1 

where NP is the number of trials with system failure (NF=N-NS) 

N is the number of trials 

T is the observation period 

Dj is the system downtime for system failure no.i. 

Example 

2 4 7 8 
i IU/H/& MiMMi 1 

, 1 * , 

Sys tem • gg)— < 

0 

The status of the system is evaluated 8 times, and only in one 

case, at time point 3, the system has failed. The downtime of 

the system is from time point 3 to time point 4, where fault 

no. 1 is repaired. Furthermore, it is seen that fault no. 4 does 

not occur in this trial. The histories can be presented on gra­

phical displays which has been found very valuable both as a 

check of the correctness of the model and as an illustration of 

how the system perforins. 

Fault 1 

Fault 2 

Fault 3 

Fault 4 
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4.5.2. Example 
Assume a simple system consisting of two identical pumps, P-\ 

and P2, in parallel each with 1001 capacity. 

I © 1 
P1 __ 

© 
P2 

One pump is running at a time with the other pump in stand-by 

mode. The pumps are switched every one week. In case of a 

failure of a running pump an attempt to start the other pump 

is initiated. The pumps are assumed to fail either during oper­

ation or during stand-by following certain distributions. In 

the latter case it is assumed that the failure occurred during 

stand-by is detected only when a start is attempted. 

A history of the faults might look like this: 

Fault 1: n n 

Fault 2: • 

Fault 3: J T 3 

Fault 4: .... _ _ T Z H 

Fault 5: ; i _ J ± t l t 

System : . . n . 
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where 

Fault 1: failure of P-| during operation 

Fault 2: failure of P2 during operation 

Fault 3: failure of P-j during stand-by 

Fault 4: failure of P2 during stand-by 

Fault 5: dummy fault specifying the scheduled operation times 

for P-) and P2 - if fault no. 5 is in a failed state 

Pi is in operation, otherwise P2 is in operation. 

The pump which is not in operation, is in stand-by. 

A failure of the system occurs in the situation where P-j is 

running and P2 is in stand-by. A failure of P2 occurs which has 

no immediate effect, since P-| is running. Some time later a 

failure of Pj occurs. An attempt to start F2 is initiated, but 

without success due to the failure. 

4.5.3. Experience 

The MOCARE program has been applied in several analyses of com­

plex systems and has proved to be a very flexible tool. This 

is accomplished by using a flexible input and by using subsys­

tems for the specification of conditions for the occurrence of 

basic faults and system failures. Secondly, the large number 

of special facilities that are available, makes a detailed ana­

lysis of the system possible. The program can handle a series 

of different types of fault: 

- faults with various probability density functions for the 

time to failure and the repair 

- faults having a constant probability of failure per period 

of observation 

- consequential faults, occurring with a specified prob­

ability of failure per event, that can be defined as the 

failure of a specified subsystem 

- faults which can only occur under certain circumstances, 

that can be specified by means of subsystems. 
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The application of subsystems is very useful in specification 

of different modes and in specification of the transition rules 

between the states. 

In analysis of very large and complex systems MOCARE has been 

used and reasonable results have been obtained. One such ana­

lysis is performed within the Nordic research project on prob­

abilistic methods in nuclear applications [20]. A reliability 

analysis of the feedwater systems ability to assure feedwater 

to the reactor core in case of a loss of off-site power was 

performed. In the analysis the normal feedwater system, the 

auxiliary feedwater system and the electrical power supply 

systems were taken into account. The analyzed system was fairly 

large and very complex. The total number of cut sets was ap­

proximately 410 mill. Several methods were applied in the calc­

ulation of the unavailability of the feedwater system. MOCARE 

was able to get a reasonable result using about 1/2 hour CPU-

time on a Burroughs B7800 computer. It was not possible to get 

a result using the FAUNET code due to combinatorial problems. 

Other methods applying cutting of the fault tree, if the prob­

abilities were below some specified value were also able to 

give reasonable results. In this case one is never sure that 

the cutting is allowable and that the results are correct. 

The main drawbacks of the MOCARE program are the considerable 

amount of computing time required to obtain reasonable results 

and the statistical nature of the program which will give 

answers with a related statistical uncertainty. This means 

that there is a certain probability th?.*- you have obtained an 

incorrect result. 



- 82 -

While the latter problem is insolubiy due to the nature of 

the program, some proposals are given in order to overcome 

the former drawback using variance reduction techniques. 

4.6. Variance Reduction Techniques 

A series of variance reduction techniques have been developed 

mainly within queueing theory and radiation transport calcul­

ations. But some of them are also useful methods within rel­

iability calculations. A very comprehensive presentation of 

the concepts of variance reduction and descriptions of the 

various methods is given in [21]. Below is shortly sum­

marized some known results of variance reduction used in rel­

iability calculations and an outline of the methods available. 

4.6.1. Experiences and Knowledge 

Variance reduction is concerned with increasing the accuracy of 

Monte Carlo estimates of parameters. In direct Monte Carlo simu­

lation you try to describe the performance of the system as 

close to reality as possible. In case of simulation of rare 

events as is the general case in reliability analysis, this lead 

to long computing times. Variance reduction techniques attempt 

to increase the effectiveness of the Monte Carlo method by: 

- modifying the simulation process 

- utilization of approximate information 

- studying the system within a different context. 

In reliability analysis it is the experience that the import­

ance sampling method in general is the most favorable method. 

Some other methods have been applied, but with less effective 

results with respect to variance reduction. Importance sampling 

is studied in more detail below. 
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Furthermore, it has been shown that unfortunately no single 

method exists, that in general will lead to an optimal var­

iance reduction in an analysis of a system. 

Finally, it has been emphasized [21], that any kind of prior 

knowledge of the problem should be utilized in selection of 

methods and parameters. 

4.6.2. Outline of Methods 

A comprehensive outline of methods for variance reduction is 

presented in [21]. The following classification of available 

methods is proposed: 

- Modification of the simulation process 

Importance sampling 

Russian Roulette and splitting 

Systematir sampling 

Stratified sampling 

- Use of approximate information 

Expected values 

Statistical estimation 

Correlated sampling 

History reanalysis 

Control variates 

Antithetic variates 

Regression 

- Study of the system within a different context 

Sequential sampling 

Adjoint formulation 

Trans formations 

Orthonormal functions 

Conditional Monte Carlo. 
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The four methods classified as methods based on modification 

of the simulation process are emphasizing the same strategy: 

to select some areas of interest of each random variable and 

concentrate the simulation process on these areas. 

In importance sampling the simulation process is modified by 

a choice of a more relevant density function f*(x) in stead 

of f(x). To compensate for the modification the result is 

weighted by f(x)/f*(x). 

In Russian roulette a choice is made in each stage to evaluate 

the importance of the state. If it is of interest the number 

of simulations starting in this state is increased and if not 

the simulation process is stopped with a certiin probability. 

In systematic sampling the sample space is divided into sub-

areas in the way that the generated uniformly distributed ran­

dom numbers are scaled into intervals. This means, that you are 

sure that some of the simulations will treat the area of inter­

est. Stratified sampling is similar to systematic sampling where 

the simulation is directed to regions of special interest. In 

this sense stratified sampling combines systematic sampling and 

importance sampling. 

All four methods seek as the basic idea to concentrate the 

sampling upon regions of interest. The importance sampling 

ir.tthod is the most flexible and therefore this method has been 

chosen in reliability analysis. 

4.7. Importance Sampling 

In this section the importance sampling technique is described 

and the most important results concerning its characteristics 

and applicability are outlined. 
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4.7.1. Method 

The importance sampling technique can be illustrated by con­

sidering a Monte Carlo estimate of a parameter I, where 

I = E(g(x)) = / g(x) f(x) dx 

where E is the expectation. 

The direct Monte Carlo simulation process would be: 

- select a random sample Xj,...,XN from the distribution 

with probability density function f(x) 

? 
- estimate I as I = (1/N) I gU-jJ 

i = 1 

The sample variance for the estimate is given by 
S 2 = 1/(N-1) l ( g U ^ - l ) 2 

i = 1 

N 
= N/(N-1)((1/N) I g2(Xi)-I

2) 
i = 1 

If the sampling is from another probability distribution func­

tion f(x), then 

I = / (g(x)f(x)/f*(x)) f*(x) dx 

The modified procedure is now: 

- select a random sample X-|,...,XJJ from the distribution 

with probability density function f*(x) 

A N 

- estimate I as I , = (1/N) J g(Xi ) f (Xj )/f *(Xj_ ) 
i = 1 

This modification should be compensated. The result is weighted 

by f(Xi)/f*(Xi) in the final calculation. 

The sample variance for the new estimate is given by 

S 2 = 1/(N-1) I (glXjJflXiJ/fMXi)-!,)2 

i = 1 

- N/(N-1) (1/NJ (g(Xi)f(Xi)/f*(Xi))
2 - }2) 
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A 
The difference between I and 11 

A -> N O 

Effl, - I)2) = E((1/N I g(Xi)f(Xi)/f*(Xi) - I)
2) 

i = 1 

= (1/N)(/ (g(x)f(x)/f*(x))2f*(x)dx - I2) 

If f*(x) = g(x)f(x)/l then E((I1 - I)
2) = 0. This means, that if 

the answer is known, a sampling plan can be constructed with ex­

pected zero variance. This is of course of no practical interest, 

but it illustrates that some function of the form g(x)f(x)/I 

will be preferable. Further, it is convenient that f*(x) is a 

simple, well known function which is easy to use, which can be 

a conflicting requirement to having f*(x) as close to f(x)g(x)/I 

as possible. This situation is illustrated below: 

The variance reduction can be calculated by 

E(S2 - S2,) 

= E(S2) - E(S2) 

= / g2(x) (1-£(x)/f*(x))£(x) dx 

This shows, that a careful selection of f*(x) is necessary to 

avoid a worse result than by direct simulation, namely if the 

contents of the parenthesis is negative. 
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Example 

Assume that we shall throw two dice and estimate the probabil­

ity of getting a sum equal to 3, given 

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6 

for both dice. 

We know that the correct result is 2/36 = 1/18. 

This means, that using direct simulation the result of a simul­

ation will be of no interest in 17 out of 18 cases. 

We can modify the sampling distribution in this way: 

P(1) = p(2) = 1/2 P(3) = P(4) = P(5) = P(6) = 0 

Then we can estimate the probability of getting the sum equal 

to 3 as 2/4 = 1/2. This must be modified in the final result by 

f(x)/f*(x), which is (l/6)/(l/2) = 1/3. Both dice are modified 

which lead to the following correction of the final result: 

(1/2) (1/3) (1/3) = 1/18 

which is the correct result. 

In the latter case you will only get useless results in 2 out 

of 4 simulations. 

Further, to optimize the sampling plan, we can propose this 

modification of the sampling distribution: 

1. Throw the first die with density function 

P(1) = P(2) = 1/2 P(3) = P(4) = P(5) = P(6) = 0 

2. If die number one becomes a 1, throw the second die with 

density function 

P(2) = 1 P(1) =* P(3) = P(4) - P(5) = P(6) = 0 

If die number one becomes a 2, throw the second die with 

density function 

P(D • 1 P(2) * P(3) » P(4) = P(5) = P(6) = 0 



- 88 -

The estimate is then 1/1 = 1. The result must be modified by 

f(x)/f*(x), which is 

(l/6)/(1/2) = 1/3 

(l/6)/(l/D = 1/6 

The estimate is then 1 (1/3) (1/6) = 1/18 which again is the 

correct result. 

This simple example also shows the importance of utilization 

of prior knowledge of the problem considered. 

4.7.2. Examples and Applications 

The method of importance sampling has been applied as a vari­

ance reduction technique in some Monte Carlo simulation pro­

grams. The first example was presented by P. Nagel, [22], 

where the application of importance sampling yields a re­

duction in computing time by a factor of 10-100 depending on 

the complexity of the system, the failure conditions and the 

time of observation. 

A thorough discussion of the application of importance sampling 

to fault tree analysis is provided by Kamarinopoulos, [23] and 

[24]. The results are discussed based on the following assump­

tions: 

- only exponential probability density functions are con­

sidered 

f(x) = X. exp(-X(x-xn)) parameter \ 

- the importance functions f*(x) are exponential probability 

density functions of the form 

f*(x) = BX exp(-BX(x-XQ)) parameter ZK 

where B > 1 

- the components are statistically independent. 
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In section 4.4.2. it is shown that the fictitious lifetimes 

given an exponential probability density function can be cal­

culated using a random number generator, by 

x = x0 - 1/(\)ln(R) 

where R is uniformly distributed over 0 to 1. 

Sampling from f*(x) the lifetimes are calculated by 

x = x0 - (1/(XB)) ln(R) 

which shows that the lifetimes become shorter, since B > l, 

and the probability of system failure is artifically increased. 

In the calculation of the system reliability, this modification 

should be compensated by a weighting factor, which gives: 

N M 
S = (1/N) I 6k( n 6k/i(fi(zk,i)/fJ(zk,i))) 

k=1 i=k 

where 

M is the number of simulation trials 

M is the number of components 

6k is an indicator with 6k = 1 if the system fails in trial 

no. k, and 0 otherwise 

6k J is an indicator with 6k ^ = 1 if component i has failed 

in trial k, and 0 otherwise 

zkfi is the lifetime calculated using the random number gener­

ator 
zk,i = *i,0 " O/UiB)) ln(R) 

where XJ^Q« ^i a n d B a r e fc^e parameters of the exponential 

distribution 

fj is the original exponential distribution specified for 

component i 

ff is the importance function specified for component i 

S is the system unreliability. 
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It has been shown, [23] and [24], that the estimation of S does 

not converge to the true value of S in the case of OR-gates. 

The contributions from unfailed components are missing. A cor­

rection shall be added: 

A N M 
c = ci/») I 6k (n (i-6k#i)(f(ck)/fj(ck))B) 

k=1 i=1 

where ck = max { zkfi | component i has failed, i = 1,... ,M} 

Similarly, in the expression of the variance a correction term 

is needed. The variance is calculated by: 

(i/H) I 6k ( n (6k/i(fi(Zk#i)/f*(Zkfi)))
2 + 

k=1 i=1 

M 
n (d-5k j) {fi{ck)/f*(ck))B)2) - s2. 
i = 1 ' 

The main result is however, that no general rules about how to 

choose B to make the variance as small as possible exists. The 

first product decreases with increasing B, while the second 

product increases at the same time. This means, that the vari­

ance exhibits a minimum. 

It is found in [23] that choices of B with 1 < B < 5 may be 

reasonable, but no general rules exist, which means that B has 

to be found by trial and error. 

If other importance functions and other probability density 

functions are chosen, no results or rules exist for the calcu­

lation of a proper importance sampling function. In this case 

the importance function has to be found by trial and error. 
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4.7.3. Conclusions 

It has been generally agreed that importance sampling is the 

most suitable method to be used as variance reduction tech­

nique within reliability analysis. Furthermore, it has been 

verified, that in case of exponential probability density func­

tions the choice of an importance function of the same type 

with parameter \B with 1 < B < 5 is reasonable. The choice 

of B is to be made by trial and error. 

The expressions for the variance taking into account the cor­

rection terms which compensate the modified sampling plans are 

given in [23]. Detailed descriptions are given regarding: 

Non-Repairable systems 

- one component 

- parallel systems 

- series systems 

- general systems with active components 

Pepairabie systems 

- one component 

- parallel systems 

- general systems with active components. 

It is recommended to use these rules in cases where the compo­

nents are specified by exponential probability density func­

tions. One of the advantages of the MOCARE code is its flexi­

bility with respect to the choice of probability density junc­

tions. This means, that to preserve this advantage in a new 

program utilizing importance sampling, other and perhaps less 

effective implementations are needed. 

It is worth mentioning, that in cases with other choices of the 

importance function f*(x) similar expressions of the variance 

as obtained in [23] are valid. Finally, the results are only 

valid for systems with active components. In [26] it is shown 

how to compensate in cases involving stand-by systems. The 

compensation is much more complex and time consuming. 
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4.8. Simulation using Importance Sampling 

In this section the possible implementations of importance samp­

ling using the MOCARE program is discussed. 

As described in section 4.7. in case of an exponential prob­

ability density function the results obtained by Kamarinopoulos 

are the best guidelines in constructing a modified density func­

tion and the corresponding correction terms are given to compen­

sate the modification. The main drawback is that only exponent­

ial density functions are allowed. This contradicts one of the 

advantages of the MOCARE program, namely the flexibility in the 

choice of probability density functions. 

In the general case another implementation can be applied based 

on the idea given below, which was presented in [25]. 

4.8.1. Method 

Assume a probability density function f(x) 

— | , » 

x 0 T time 

You are only interested in lifetimes less than a given value T. 

T can be either the observation time, the maximum lifetime of 

the component or some other value based on knowledge to the 

problem. In stead another density function f*(x) emphasizing 

the interval between x0 and T is chosen. 
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time 

In this case f*(x) can be constructed in this way: 

let f*(x) = 

af(x) x0<.xi.T 

bf(x) T<x 

Find a and b, so you get more lifetimes between x0 and T than 

using f(x). 

As f*(x) is a probability density function 

æ 

J f*(x) dx = 1 
xo 
OB IJI as 

/ f*(x) dx = J a f (x) dx + J bf(x) dx 

Exponential distribution 

If f(x) = X exp(-\(x-x0)), x0>o, X>o 

F(x) = J X exp(-X(t-x0)) dt 

= 1 - exp(-X(x-x0)) 
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/ f*(x) 
x0 

T » 
/ af(x) dx + J bf(x) dx 
xQ T 

aF(T) + b (1-F(T)) 

a(1-exp(-X(T-x0))) + b{1-(1-exp(-\(T-x0)))) 

a - aexp(-\(T-x0)) + bexp(-\(T-x0)) 

a - (a-b)exp(-\(T-x0)) 

Now 

a - (a-b)exp(-X(T-x0)) = 1 

or 

b = a + (1-a)/exp(-\(T-x0)) 

If a is chosen, such that 

(1-a)/exp(-\(T-x0)) = -a 

Then b = o. 

It is not allowable to modify the function in the way that you 

exclude some lifetimes, since f*(x) is then zero for x > T and 

the modification factor f(x)/f*(x) is undefined. This is an 

example of overbiasing. 

An example is shown on the next page using a developed program, 

EXTEP. This program will plot the results to give the user an 

outline of the results of the biasing process. 

In the example an exponential distribution with X. = 0.5 and 

x0 - 0.0 is chosen (curve 1) and lifetimes less than 0.5 are 

emphasized, a is calculated using the above formula, giving 

a = 4.5 and b = 5'10"^ (curve 2) to avoid overbiasing. The 

lifetimes of interest are generated 4.5 times as frequent 

using f*(x) than using f(x). 



EXPONENTIAL 

xio* 
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In direct simulation you generate lifetimes using a random num­

ber generator 

x = x0-(l/\)-ln(R) 

In the modified simulation you generate R as a random number 

uniformly distributed over 0 to 1. 

If R < aF(T) 

then the expression f*(x) = af(x) is used, otherwise f*(x) = 

bf(x). 

In the former case 

R = aF(x) xolxlT 

= a(1-exp(-\(x-x0))) 

which gives 

x = x0 - ln(1-R/a)/X 

In the latter case 

R = aF(T) + b(F(x)-F(T)) x>T 

We know 

aF(T) + b(1-F(T)) = 1 

or 

a(F(T))-b(F(T)) = 1-b 

which means that 

R = aF(T) + b(F(x)-F(T)) 
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= 1-b + bF(x) 

= 1-b + b(1-exp(-X(x-x0))) 

= 1-bexp(-X(x-x0)) 

R = 1-bexp(-\(x-x0)) 

or 

x = x0 - ln((1-R)/b)/X 

Weibull distribution 

The Weibull distribution is given by 

f(x) = k(x-x0)
n,exp(-k/(m+l)(x-x0)

,n+1) 

x 
F(x) = / f(t)dt 

= 1-exp(-k/(r.+ 1)(x-x0)
m+1) 

Using direct simulation and a random number P., we find 

m+1 R = 1-exp(-k/(m+1)(x-x0)
,n-M) 

rhe lifetime x is found by 

x = x_+(-(m+1)/k in R)0/(m+1)) 

If again 

f*(x) = 
af(x) 

bf(x) 

x0̂ x_<T 

x>T 

the lifetimes are found using the modified function. 

1. x0L*±'r 

R = / af(t)dt 
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or 

x = x0 + (-(rn+U/k ln(1-R/a))
{1/(B+1)) 

2. x>T 

R = aF(T) + b(P(x)-F(T)) 

We know that 

a(F(T)) + b(1-P(T)) = 1 

or 

a(F(T)) - b(F(T)J = 1-b 

Then 

R = l-b + bF(x) 

or 

x = x0 + (-(m+1)/k ln((1-R)/b))(1/(m+1)) 

An example is shown on the next page using the EXTEP program. 

A Weibull distribution with k = 1.57*10~12, m = 8.2 and xQ = 35 

is chosen. Lifetimes between x0 and 54.12 are emphasized, giving 

a * 1.6 and b = 10"^. As in the example with the exponential 

distribution the lifetimes of interest are emphasized. The value 

of a depends on the length of the interval of interest. If the 

interval is shorter than [35.0,54.12] higher values of a are 

allowed. 



- OQ _ S9 
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4•8.2. Modified Random Numbers 

The methods of importance sampling described so far are based 

on the idea, that a modified probability density function is 

chosen, so that shorter lifetimes are generated. The modifi­

cation is compensated in the final results. The idea can be 

illustrated this way: 

1 

R 

o 
t* t lifetime 

The cumulative density function P is shown and a random number 

R uniformly distributed over o to 1 is generated. The corre­

sponding lifetime is t. We choose another probability density 

function with cumulative density function F*(x) assuring shorter 

lifetimes. Given the same random number R, the lifetime t* is 

used, where t*<t. 

Another method to be used in importance sampling is based on a 

modification of the random number generator and use of the ori­

ginal probability density function. 

Choose random numbers which are distributed over o to 1 accord­

ing to some other distribution than the uniform distribution. 

The choice should emphasize small values of random numbers. This 

can be illustrated in the following way: 
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t* t lifetime 

Again using direct simulation you generate R following a uniform 

distribution with a corresponding 1 ,etime t. If a large sample 

is generated, 

P(generated values between o and R-|) = R-j 

which corresponds to generation of lifetimes between o and t*. 

A weighting is made by the function 

2 o<x<JR-\, R-j < 0.5 
g(x) = 

1 

(1-2R1)/(1-R1) R-|<xn 

where / g(x)dx - 2'R1 + ((1-2R1)/(1-R1))(1-R1) = 1 
o 

This means, that lifetimes between o and t* are generated twice 

as frequent as when using direct sampling. 

No general results exists on how to find an optimal weighting 

function. It has to be found by trial and error. 

A computer program IMPSAMPLOT is developed which can treat this 

type of importance sampling with plotting facilities available 

to give the user an outline of the process. A series of examp­

les giving all details of the calculation are presented in ap­

pendix 2. 
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Example A 

A Weibull distribution is chosen with 

K = 1.57-10"12 

m = 8.2 

x0 = 35.0 

The lifetimes of interest are lifetimes between 35.0 and 54.12. 

If direct simulation is used the probability of getting life­

times between 35.0 and 54.12 is 0.1. This means, that in a sam­

ple of size 9000 we would expect 900 lifetimes of interest. In 

the example we actually found 893. In appendix 2, example A, 

you will find the results of the calculation, together with a 

table specifying the distribution of the random numbers, which 

generated the lifetimes of interest. 

An exponential weighting function is specified with parameter 

8.1. In this case, you find 4995 lifetimes between 35.0 and 

54.12 in the sample of size 9000. These results are also shown in 

appendix 2, example A. 

Example B 

The situation is similar to that given in example A. A sample 

of size of 20.000 is generated using direct sampling, weighting 

by a pointwise defined density function and weighting by the 

exponential distribution specified in example A. 

Example C 

The situation is similar to that given in example A. A sample 

size of 30.000 is generated using direct sampling and weighting 

by the exponential distribution specified in example A. A plot 

of the results is shown on the next page. On the upper part 

you can see the difference without weighting (IS=0) and with 

weighting (IS=2). On the lower part the difference is shown 

when the functions are normalized, showing that the smaller 

values are emphasized using weighting. 
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Example D 

The situation is similar to that given in appendix A. A sample 

of size 20.000 is generated using 

- no weighting 

- weighting by a pointwise defined function (f-|) 

- weighting by an exponential distribution with \ = 8.1 (f2) 

- weighting by a Weibull distribution with (f3) 

k = 17.0 m = 0.3 x0 = 0.0 

The three weighting functions are shown below. 

-t > 
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As it is seen they are very close to each other. The results of 

the calculation show that the number of generated lifetimes of 

interest were: 

without weighting 3 

pointwise defined distribution 11 

exponential distribution 15 

Weibull distribution 0 

This shows, that even if the distributions are similar they do 

not have similar effect on the results. 

In general the use of Weibull distributions or other distribu­

tions with a zero is not recommended, since it is not possible 

to emphasize values close to zero. 

4.8.3. Possible Implementations 

The two types of application of importance sampling discussed 

above can be used in connection with the MOCARE program. The 

problems are: 

- which method to be used 

- which type of weighting distribution to be used 

- which parameters to be used. 

Furthermore, another problem arise: time is lost on admini­

stration of the weighting process, if the number of components 

is large. 

To solve the problems, where no general rules exists, a pro­

cedure is proposed in two cases: 

- some prior knowledge 

- no prior knowledge. 

4.8.4. Prior Knowledge 

If some knowledge is available about which of the components are 

important with respect to system failure, only these components 

are subject to weighting. The choice of method, weighting func-
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tion and parameters of the function is decided on a trial and 

error basis. Some guidelines based on the experience with the 

EXTEP and IMPSAMPLOT programs can be given. 

Using the method described in section 4.8.1. an exponential or 

a Weibull distribution is preferable. The choice of parameters 

is very difficult due to the problem of overbiasing. Overbias-

ing means, that you exclude important lifetimes by the modifi­

cation. 

In the simple example with the two dice discussed in section 

4.7. overbiasing is done in the following case: 

Assume the first die is modified, so 

P(1) = 1 P(2) = P(3) = P(4) = P(5) = P(6) = o 

The second die is modified, so 

P{2) = 1 P(1) = P(3) = P(4) = P(5) = P(6) = o 

The probability that you get the sum equal to 3 is now 1 

and the compensation factor is ((1/6)/(1/1))2 = 1/36. The 

result 1/36 is wrong due to the fact, that the possibilities 

that die 1 shows 2 and die 2 shows 1 are excluded. 

One reasonable choice of the maximum lifetimes of interest might 

be the total observation time or a time based on some knowledge 

of the system. 

4.8.5. Adaptive Methods 

If no prior knowledge exists another procedure is proposed: 

1. Use direct simulation and stop after N system failures 

2. Select the most important components contained in the cut 

sets generated 
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3. Use a weighting function for each of the selected components 

after the principles discussed in section 4.8.4. 

4. Continue the simulation and stop after N system failures 

5. Continue with item 2. 

One way to make the selection of the most important components 

under item 2 could be to select those which are in cut sets 

with the largest contribution to the system unreliability. 

However, it must be emphasized that using this procedure there 

is another risk of overbiasing, namely that some components and 

hereby some cut sets are generated more and more frequently, 

excluding the appearance of other cut sets, which might be im­

portant. 

4.9. Conclusions 

The application of importance sampling as a variance reduction 

technique in Monte Carlo simulation programs is very limited 

due to lack of rules for constructing the weighting functions. 

Mostly, use of the trial and error method is recommended. Even 

in simple cases as discussed by Kamarinopoulos, with exponential 

distributions and weighting functions of the same type, the 

selection of parameters must be based on trial and error. 

Furthermore, for systems with stand-by components the simple 

modification factors are not valid. Much more complicated modi­

fication factors are needed, see [26]. 

However, the two developed programs, EXTEP and IMPSAMPLOT, have 

shown to be very flexible tools for the trial and error pro­

cess. They can treat the same density functions as accepted by 

MOCARE and in this respect they are very useful in the prep­

aration of relevant weighting functions. 
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5.SUMMARY OF CONCLUSIONS 

In this chapter the purpose of the project and a summary of the 

main results are summarized. 

5.1. General 

In risk and reliability analysis several methods are available. 

They can be applied in the various disciplines within risk and 

reliability analysis. 

One class is the methods within structural reliability, where 

the probability of failure of a structure or a component is 

calculated. In linear fracture mechanics some probabilistic 

methods have been developed. One purpose of the project was to 

review existing methods and to make proposals for refinements 

or new methods. 

Fault tree methods have been very extensively used and very 

fast methods for quantification are available. One class of 

methods is the Monte Carlo simulation methods of which MOCARE 

is one program. The other purpose of the project was to review 

existing methods for variance reduction with respect to im­

plementation within the MOCARE program. 

5.2. Structural Reliability 

In probabilistic linear fracture mechanics methods exist based 

on 

- Monte Carlo simulation (PEP 706) 

- integration using discretized probability density functions 

(ANPEP, ANPEP/V2) 

- combination of discretized probability density functions 

(COVAL, SCORE). 
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A review of the methods and some comparisons between the methods 

show, that the Monte Carlo approach is a very flexible tool, but 

unfortunately the computing time required to obtain a reasonable 

accuracy is large. 

ANPEP, ANPEP/V2, COVAL and SCORE require less computing time to 

obtain the same accuracy as the Monte Carlo program. The main 

limitation of the programs is that increasing the number of 

variables will dramatically increase the computing time. It has 

been shown, that in cases of up to 4 variables, the programs 

are well functioning, while an increase to 6 variables lead to 

unsatisfactory computing times. 

A new program, NUMPEP, based on numerical integration in several 

variables using product formulas of Gauss-Legendre and Gauss-

Lag uer re type has been developed and compared to the other pro­

grams. It has been found that NUMPEP is faster than the other 

programs for problems involving up to 6 variables. It is fair 

to mention that it is possible to increase the number of vari­

ables, but it is expected that if it exeeds 10, the computing 

time will exceed a reasonable value. 

The program can also be used within other areas than linear 

fracture mechanics, if the problem can be formulated in terms 

of multidimensional integrals using probability density func­

tions. Furthermore, it is modularly constructed which means 

that it can be easily extended to more that 6 variables. 

Finally, to prepare the program for a new combination of the 

variables more effort is required than to prepare the Monte 

Carlo program, due to the favorable flexibility of the latter 

program. Since the results are promising it is recommended to 

apply t'ne NUMPEP program. 

5.3. Systems Reliability 

The MOCARE program which utilizes direct Monte Carlo simulation, 

is a very flexible tool in quantification of fault trees. The 
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flexibilities are with respect to 

- choice of probability density functions 

- modelling the system taking into account complex test and 

maintenance schedules, specification of switches between 

redundant equipment, detailed description of component or 

subsystem performance. 

In some cases a considerable amount of computing time is re­

quired to get a reasonable estimate of the reliability of a 

highly reliable system. 

A review of existing variance reduction techniques in Monte 

Carlo simulation programs for reliability analysis has been 

performed. It is found that the importance sampling method is 

useful in these applications. Furthermore, it is found that no 

general results exists for constructing an optimal weighting 

function. 

For special cases where all distributions are exponential, some 

results are available, if the weighting function or importance 

function is chosen as an exponential distribution with a para­

meter which is multiplied by B, B>1. The corresponding correc­

tion terms are specified for a general system, but the choice 

of B has to be based on trial and error. 

In the general case no results is available, but importance 

sampling can be used with advantage. Two implementations have 

been proposed and studied. A very simple modification of the 

original probability density function and a modification of the 

random number generator, so that some skewed distribution is 

used in stead of the uniform distribution. The correction terms 

are of course similar to those given in the exponential case, 

but the specifications of which method, which weighting distri­

bution and which parameters to be used must be based on trial 

and error and knowledge of the problem considered. Two computer 

programs are developed which can be used with the purpose of 

guidance in selection of weighting function and parameters. 
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As no general results is derived for constructing the weighting 

function the large computing time to run the MOCARE program 

remains a problem. 

Therefore, in general other programs such as FAUNET, is recom­

mended in reliability analysis. They are faster and they do not 

introduce a statistically uncertainty as in MOCARE. Further­

more, it is recommended to use MOCARE in special cases where 

FAUNET does not apply: 

- systems where time dependencies are important 

- systems with subsystems, where detailed modelling of a 

complex performance is required. 

In these cases MOCARE is an efficient supplement to the FAUNET 

program. 

It is also recommended to use the developed importance sampling 

methods within the MOCARE program in order to speed up the cal­

culations. Even if an optimal weighting function is not con­

structed, a less efficient choice of function can be of import­

ance. It is important to emphasize that the application of the 

importance sampling methods must be controlled very carefully 

by the user due to the risk of overbiasing, which will lead to 

incorrect results, and due to the lack of general results. 

5.4. Applications 

The NUMPEP program is applicable within probabilistic fracture 

mechanics. It can be used to determine the failure probability 

of the pressure vessel in nuclear power plants. It has also 

been suggested to apply this approach to estimate the probabil­

ity of failure of the pipework in nuclear power plants. Obvious­

ly, also non-nuclear problems are within the range of applica­

tions of the program. 

The MOCARE program has been used :n particular within nuclear 

applications in calculating the reliability or the unavailabil-
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ity of complex systems. Worldwide this type of approach has been 

substituted fully or partly by other Methods, such as the FAUNET 

program. Its advantage is its flexibility which makes it a very 

useful tool for some parts of an analysis requiring very de­

tailed modelling of the performance of complex systems. Obvi­

ously, it can be applied as well on non-nuclear problems. I 

expect, that detailed modelling of non-nuclear system will also 

be required in the future, as the systems get mors complex. 

5.5. Future Areas of Development 

The developed programs NUMPEP, EXTEP and IMPSAMPLOT can be fur­

ther developed. 

Structural Reliability 

The NUMPEP code should be extended to take into account 

- other combinations of variables 

- other probability density functions 

- more than six variable«, 

- dependencies between the variables. 

Such developments will increase the area of applicability. 

Systems Reliability 

The EXTEP and IMPSAMPLOT programs can be further developed, if 

other probability density functions are allowed. The most essen­

tial continuation will be to use the programs within a large 

number of analyses to get experience with various choices of 

weighting function, since the selection is based on trial and 

error. 
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DANSK RESUME 

PALIDELIGHEDSBEREGNINGER 

Forbedringer af »etoder til beregring af pålideligheden af 

strukturer og systemer. 

Risiko- og pålidelighedsanalyse anvendes i stigende grad ved 

evalueringer af anlægssikkerhed og anlægspålidelighed. Analy­

ser kan udføres enten i designfasen eller efter idrifttagning, 

men de foreslåede designændringer eller modforanstaltninger 

mod designsvagheder er selvfølgelig forskellige i de to til­

fælde. Analyserne kan udføres som en del af den dokumentation, 

der er nødvendig for myndighedsgodkendelse, eller med det for­

mål at forbedre sikkerheden eller pålideligheden af anlægget. 

Anlæg, som anvendes i dag, er komplekse på grund af krav til 

sikkerhed og tilgængelighed. Dette medfører behov for avance­

rede analyseværktøjer, som er fleksible og effektive, tii brug 

i evalueringer af sikkerheden eller pålideligheden af anlægget. 

Sådanne værktøjer er blevet udviklet i de seneste 20 år, og de 

må løbende forbedres, for at kunne møde de Øgede krav med hen­

syn til kompleksitet, fuldstændighed og nøjagtighed. 

To forskellige anvendelsesområder er blevet analyseret i dette 

projekt. I strukturel pålidelighed er sandsynlighedsbaserede 

metoder blevet anvendt i visse beregninger af pålideligheden 

af strukturer eller komponenter. Et regnemaskineprogram er 

blevet udviklet og sammenlignet med eksisterende programmer. 

Dette program, som er baseret på numerisk integration i flere 

variable, har vist sig at være meget hurtigt sammenlignet med 

eksisterende programmer. Dette er vigtigt, da mangel på data 

og usikkerhederne relateret til problemet kræver omfattende 

brug af følsomhedsanalyser, der medfører en mængde gennemreg-

ninger. 



- 113 -

I systenpålidelighed er Monte Carlo progranner brugt specielt 

ved analyse af neget konplekse systener, der består af flere 

redundante delsystener, procedurer for skift nellen delsyste­

merne og konplekse test- og vediigeholdsprocedurer. I sådanne 

tilfælde er sinuleringsprogranner neget fleksible, hvilket nu-

liggør denne type af vanskelige og detaljerede modelleringer. 

For at øge anvendeligheden af programmerne, kan variansreduk­

tionsnetoder anvendes til at hurtiggøre beregningsprocessen. 

Variansreduktionsnetoder er blevet analyseret, og procedurer 

for inplenentering af "importance sanpling" er foreslået, både 

i tilfælde ned et vist forhåndskendskab til problemstillingen, 

og i tilfælde uden et sådant forhåndskendskab. Det er konklu­

deret, at selv ned brug af variansreduktionsnetoder anbefales 

brug af analytiske progranner i forhold til sinuleringsprogran­

ner, nens variansreduktionsteknikker kan forbedre anvendelig­

heden af sinuleringsprogranner i de specielle situationer, der 

er beskrevet ovenfor. 
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APFBIDIX 1 

PROCRAK EXAMPLES 

STRUCTURAL RELIABILITY 
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APPENDIX 2 

PROSRAM •EXAMPLE 

SYSTEMS RELIABILITY 
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HIN* 
HAX* 
NlKT« 

C. 0000050 2 3 
C.099937093 

11 (NUMBER CF INTERVALS) 

SU8INTERVALS__ M _^ 

0 .009989757 

0 .0363*3956 
.0*5*28(91 
15*513*25 
»63398159 
! 7 2 6 8 2 > 9 2 

C . 0 3 1 7 6 7 6 2 6 
C . C 9 0 S 5 2 3 5 9 

NUMBER 

0 .090005023 -

t-mmiu • 
0 . 0 2 7 2 5 9 2 2 * -
0 .0363*3956 -
P .0*5*28691 -

0.072o82tt9<! 
C.0317676^fc 
C .09095235* 

9 -

0.099937C93 

167 

Hl 
17* 
19* 
17* 
Uf 
183 
18* 
136 
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DATE CF EXECUTICN: •7. !.> 

SAMPLING FUNCTIOK 

SAMPLING 
I TIP 
H 
N 
XJ 

= 
= 
= 
= 

FROM HEI3ULL 
1 

. I 5 7 E -
e . 2 0 

3 5 . 0 3 

CISTRIBUIION 

11 

SPECIFIC NUMBERS 

NUMBER OF TRIALS - 20000 
RANOOH INITIAL VALUE* 504711 

NEIGHTING FUNCTIONS 

IMPORTANCE SAMPLING 

POtNTtflSE OEFXKED FUNCTIONS 

XF •F>F NUMBER 

0.000000 

o.tooooo 
0.ZOO000 
0.300000 

0.100000 
0.200000 
0.300000 
0.400000 

5.333333 
2.666667 
1.233355 
0.666667 

10704 
0 
0 
0 

xc FXC 

0.000000 
0.100000 
0.200000 
0.300000 
0.400005 

o.ooooco 
0.533333 
0.6004CO 
l! 000-0 C 5 

CHECKPOINT 

CHECK « .54124199600£-»02 

F° = 
F91 = 
STO* 
STOSUH-
S05UM2= 

J. i or 3500T: 

C.C02124616 
C.Q0C661268 

( mat.) (CCHREC^O FAILURE PRGEA61U1Y) 

( ^ h c ? v ; C I I ? N G FP1 - SCRTCP*C/i> I 3 
(ST.OEV. USING FP - SOFT(P«a/NJ) 
(ST .OtV . USING DIRECT CALCILJTICM 

P l M 

Mi-
C O 00000942 
C.099997978 ' (NUH6ER CF INTERVALS) 

SU8INTERVALS NUM3ER 

wmmti - mmiw 
0.014286233 
(!. 021428876 
0.028571524 
5.03571416$ 
0.042856814 
C.04999946C 
0.057142105 
6.0&4284731 
C. 07I427396 
0.078570041 
0.095712687 
*.092855332 

I 
.321 

0.042 
0.049 
0.057 
0.064 

l-Ml 
0.035 
C.092 
0.099 

42S?7e 
571524 
'14169 
^15681* 
999*60 
142115 
284751 
427J96 

712697 
*55?32 
997978 

m 
756 
818 
802 
719 
749 
772 
755 
737 
815 
75J 
77C 
774 
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OATE Or EXECUTICN: 7 . 3 . f O , 

SAMPLING FUNCTION 

SAMPLING ff-On k£I8ULL CISTRIBUTION 
ITYP = I 
R = . 1 5 7 5 > U 
H * 8.29 
XO = 35.00 

SPECIFIC NUMBERS 

NUNBCR OF TRIALS = 20000 
RANDOM IN IT IAL VALUE= 504711 

NEIGHTING FUNCTIONS 

IMPORTANCE SAHFLING 
IS 2 
EXPONENTIAL 0ISTRI8UTICN 
LANROA= 8.10 

CHECKPOINT 

CHECK - .54124199600C«02 

1 1 , 6 5 1 {5NC^B?C?E6MLU5EPfi0fieUI1YJ 
(ST.OEV. USING F P l - SCRT<F«t/N 
CST.CEV. USING FP - SOF-TC •»•0/N J 

SDSUH2« C;0<5C672735 CST.DEV. USING DIRECT CALClL /T IO») 

Mi. 
STC= t . 603511293 t S I « ? E V . USING F P l -_SCRTCF?C/» ) ) 

M M 0.000000620 
!!5J.- ,{.099999031 ^ ^ ^ i m R y U $ | 

SU9INTERVALS NUMBER 

0.030303620 - 0.0<>7U336* HOC 
0 .0371*336* - C.Cl*2361'>7 1038 
C.CU286107 - C.021*28851 1072 

i-Mimm - i-mim m 
C.U357 l *33e - 0.0%233>*d2 87?! 
0 .0*2357t*32 - 0 .0*9999826 766 
0 .0 *9999826 - S»?571*2569 7kQ 
0 .0571*2569 - 0.064?8$?13 728 
C.£5*285313 - 2 .071*28057 697 
(J .07U23C57 - 0 . 0 7 8 5 7 ' M c 6*3 
0.07857380C - C .0857135** 591 
0 . 0 8 5 7 1 3 5 * * - 0.092356Z5« 552 
0 .092d56208 - C.09999-9M1 566 

TOTAL CPU-T IM= 59 .8 S£C 

TIME PR. TRIAL* 5 . * MSEC 



- 1 3 5 -

KXAMPLT? C 

HEIGHTING FUHCTIONS 

NO IMPORTANCE SAMPLING 
IS s O 

.£3f£S£Si4I. 
CHECK « . 5 *12419>600 !>02 

Ff»* 0 .098466667 i 295*> (FAILURE PROBABILITY! 
src= o .oolr?oi8* (STANOARO ocviATi r "-ON) 

HIN = • w .000016*70 
HAX = • w . f l 999* *400 
NlNT = 1 * (NUMBER CF INTERVALS) 

,.5!!2!!!!I!5¥*:£ 2!JU!!I-. 
"é:8»«Jjir: 8:tti:jii?*> \%%' 
8:SitiHm : 8:8ii*fM« IH 
0.028571595 - 0 . 0 3 5 7 1 * 3 3 8 229 
0.Q357143J« - 0 .0 *2 857082 195 
0 .0 *2857042 - 0 . 0 * 9 9 9 9 * 2 6 211 
0 . 0 * 9 9 9 9 8 ^ 6 - 0.057 1*?569 2 2 * 
0 .0571*2569 - 0 . 0 U 2 8 5 U 3 196 
0 . 0 & * 2 « 5 3 U - C . 0 r i . * 2 8 f 5 7 225 
0.071*2505; - o.ore.570eoc 217 
0.O7657080A - 0 . Q J 5 7 1 3 5 * * 215 
C . 0 8 5 ^ 1 3 5 * * - 0 .0?2856?88 13* 
0 .092056288 - 0 .0?999-9f31 213 

TOTAL C P U - T I K = 41 .2 SEC 

1IMt PR. TRIAL= 1 . * HSEC 
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DATE CF EXECUTION: 2 . ?.*o. 

.li !£kI£!S-££SSIi 2H— 
SARPLiIAG FROM UEIIULL DISTRIBUTION 
ITYP » 1 _ 

R • . l i / E - i i 
XO - 35 .1 

SPECIF IC NUMBERS 

NUMBER OF ^TRIALS - 30000 
RANDOM INITIAL VALUE* 3 0 4 7 1 1 

IHPQRJ AMC E SAMPLING 

CHECK . 5 4 1 ; 2 4 1 9 V 6 0 0 E * 0 2 

FP = 
FP1 = 
STO = 
STOSU*= 
S35UM*= 

i-.mmtp 
v . 0 0 2 9 6 0 4 1 5 
* . C 0 i r j 3 5 7 9 
C . 0 0 0 5 4 8 1 9 8 

! b « 8 6 ) tCQRfiECTEO 
(UNCORRECTED 
CST.DEV. 
C 5 T . 0 E V . 
( S T . O E V . 

FAILURE P R O B A B I L I T Y ) 
) 

FP1 - S C R T ( F * ( / * ) ) 
FP - SQFT< P « Q / N ) ) 
DIRECT CALCULATION) 

USING 
USING 
USING 

HIR = 
MAX* 
M N T = 

• *.9OO»OO620 
• i . C 9 9 ? 9 9 0 3 1 

<NUMBER CF INTERVALS) 

SUBINTERVA.& NU18ER 

i-.mnmi • Miimw 
•MlftVA: l:UMtt 
.050571595 - O.OiSrU! O.0357l43i8 

0.0.42857042 
O.&499990^fa 
0 . 0 5 7 1 4 2 5 6 9 
0 . 0 S 4 Z 8 5 3 1 3 
0 . 0 7 1 4 2 0 0 ? / 

8:tSt?n«SS 
<) .092856208 

29051 
- - ^ 9 5 

0 . 0 » 2 8 5 7 C 92 
0 . 0 4 9 9 9 9 ? ?6 
0 .0>7 142569 
0 . 0 » 4 2 8 5 ] 1 3 
0 . 0 r i . 4 ? 9 ? 5 7 
0 . 0 r « 5 7 0 C 0 C 

0'GMs56?')e 
0 . 0 ? V 9 9 9 C 31 

l|!8 
311 

1294 
1 1 &5 
1154 

i o n 
1032 

9<.0 
868 
8 5 1 
014 

T ) T M C P l j - T i r r = 

U«r_ * H . TIT 1 At. = 

67. J J E C 

? . 9 MSEC 
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EXAMPLE D 

SAMPLING FUNCTION 

SAHPLING FROH fcEIBULL CISTRIGUTION 
HYP = 1 
* = . 1 5 7 E - 1 1 
M = 8 . 2 0 
XO = 3 5 . 0 0 

DATE CF EXECUTICN: T. i . t J . 

SPECIFIC NUMBERS 

NUMBER OF TRIALS = A0009 
RANOON IN IT IAL VALUE= 50*711 

WEIGHTING FUNCTIONS 

NO INPGRTANCE SAHPLING 
IS 0 

CHECKPOINT 

CHECK = . *397*964020E«02 

FP = 
S T D = 

C . C O .COiilSOCDO 
.0J0086396 

5) tFAILURE PROBABILITY) 
(STANDARD DEVIATION) 

Mlh = 
MX = 
MNT* 

C.000Q05023 
C.COC094881 
i. <NUH6ER CF INTERVALS) 

. . . . . . . S y g I J J T E R V * L S M M M - - M M N y H B E H 4 

wimHin tisnmiii \" 
TOTAL C r , t - T I f ^ = 39 .9 SEC 

T I T C H . THI AL= 9955 .6 MSEC 
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D*T4c Cr EX tCOl XtM: b. i . t ) . 
SAMPLING FUNCTION 

SAMPLING FPOH *EI9ULL ClSTRlEUllON 
I T t P = 1 
R = . 1 5 7 E - U 
M = 8 .20 
XO = 3 5 . 0 3 

S P E C I F I C NUH6ERS 

WEIGHTING FUKCTICNS 

IMPORTANCE SAMPLING 
IS = 1 
POINTWISC DEF.XftED FUKCTICNS 

o.ooooyo*- 'o l ioodoo 5.331333 11 
O.100000 - 0*200000 2.(66667 O 
0.2(>0000 - O•300003 1.2 33333 Q 
O.JØOOOO - 0.400005 0.666667 O 

0.000300 " " 0.0300C0 

Ol 200000 o!800000 
O.300000 0.933333 
0.400000 l.OOOOCO 

CHECKPOINT 
CHECK = . 4 3 9 7 4 9 8 4 0 2 0 r « 0 2 

:.00C1657< 
(.000071 fl{ 
i.0000310; 

STO= C.00C165786 CST.DEY. USING FP1 - S C R T ( P * ( i / M ) 
STOSUH= 0 .000071803 IST .OEV. USING FP - S0FT<P*0>NJ) 
£0£UM2= 0 .000031035 CST.DEV. USING DIRECT CALCl'LJTIQM 

M M C.G0C0O0942 
P*t= (J.00C080668 
K W * 4 (NUMBER CF INTERVALS) 

SU31NTERVALS NUMBER 

0 . O 3 0 J O 0 9 4 2 • 0 .C00O2O873 3 

; . c ; p ; < - 0 8 0 5 - C . G O O 5 6 1 M 6 2 
0 . C 5 O t 0 7 3t - tf.03o')8166P <• 
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SAMPLING FUNCTION 
J * I C C« A i . t , v l <>• J . t , * « 

?! 
H 
XJ 

AMPLING FROM WE IBULL CISTRIBUtION 
YP 

.157E-U 
8.23 
35.09 

S°?:CIFIC NUMBERS 

._ , OF TRIALS = 2 0 0 0 0 
RANDOM I N I T I A L VALUE- 5 0 * 7 1 1 
NUMBER 

WEIGHTING^FUACTICNS 

IMPORTANCE SAMPLING 
I S 2 
EXPONENTIAL O I S T R I B J T I C N 
LAMBDA? 6 . 1 0 

CHECKPOINT 

CHECH = . * 3 9 r * 9 8 4 0 2 0 E « 0 2 

ST0 = 
ST0SUM= 
S3SUM2' 

0 . 0 0 0 1 9 3 5 7 7 
C . 0 0 0 0 6 6 0 * 0 
C . 0 0 0 3 2 3 8 9 9 

7 < 15) 
CST.OEV. USING 
CST.OEV. USING 
CST.CEV. USING 

p » ; & E A 6 r i n y j 

F P l - SCRT<F«C/f t>] 
FP - S 8 F T < P « « / N ) ) 
OIRECT CALCULJT ICM 

HIN = 
N*X = 
HINT« 

C . 0 0 0 3 0 0 6 2 0 
6 . O 0 C 3 8 6 2 0 0 
* (NUMBER CF INTERVALS) 

SUB INTERVALS NUMBER 

0.030300620 -
0.030022015 -
o.oJootstio -
0 . 0 ) 0 3 6 * 8 0 5 * 

0.000922C15 
0.000.** 3*10 
0 . 0 0 0 , 5 * 6 0 5 
O.C0O0d6?OC 

* 
* 
3 
* 
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SAMPLING FROM MEIBULL CISTRIBUIION 
I T T P * 1 
* = . 157E-11 
H - 8 .20 
JO = 55.00 

SPfC i r iC NUMBERS 

mm K I W M ALUt = MVI 

»•riGHrlMG FUNCTIONS 

IMPORTANCE SAMPLING 
IS = S 
bEIBULL DISTRIBUTION 

S : »1:9 

CHECKPOINT 

CHEC* * . *J9r4904020E«02 

STØ* 
STDSU1= 
S0SUM?= 

i-.mmm 
C.00C9OO000 

05 iS8?e^Ec?E6AILU5E P«s*eui iYj 
IST.QEV. USING FP l - S C R T ( F * C / M ) 
<ST.DEV. USING FP • SafiTCP«Q/N>> 
CST.OEV. USING DIRECT CALCtlLfTICM 
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