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RELIABILITY CALCULATIONS

Improvements of methods intended for calculation of
reliability of structures and systems

Kurt E. Petersen

Abstract. Risk and reliability analysis is increasingly being
used in evaluations of plant safety and plant reliability. The
analvsis can be performed either during the design process or
during the operation time, with the purpose to improve the
safety or the reliability.

Due to plant complexity and safety and availability require-
ments, sophisticated tools, which are flexible and efficient,
are needed. Such tools have been developed in the last 20
years and they have to be continuously refined to meet the
growing requirements.,

I'wo different areas of application were analysed. In structural
reliability probabilistic approaches have been introduced in
some cases for the calculation of the reliability of structures
or components. A new computer program has been developed based
upon numerical integration in several variables.

In systems reliability Monte Carlo simulation programs are used
especially in analysis of very complex systems. In order to
increase the applicability of the programs variance reduction
techniques can be applied to speed up the calculation process.
Variance reduction techniques have been studied and procadures
for implementation of importance sampling are suggested.
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1. INTRODUCTION

During tris century the industrial world has developed rapidly
and a large number of new technologies have been employed. The
plants are large and centralized which calls for a high degree
of availability leading to complex systems supported by control
and regulation systems. This also lead to a higher degree of

automation.

in the recent years society are getting more concerned about
safety aspects of industrial plants. The society demand that
industrial plants are built and operated to a high level of
safety, diminishing the consequences of any major accident.
The requirements and the public debate on this subject imply
the necessity of the availability of analysis methods and tools
to be used in assessing the risks inherent in the industrial

plant. Such assessments are called risk analyses.

Similarly, the plants, which are complex and large, require
large investments which again call upon a high level of avail-
ability. This means that also in cases where events will not
lead to major accidents, it is important to limit the conse-
quences in order to minimize the shut down time and save mo-
ney. In such cases analysis methods and tools suited for assess-
ment of the reliability or the availability of the plant are
needed.

It is obvious that a large number of methods and tools are com-
mon to the two types of assessments described above. Several me-
thods have been developed during the last 20 years within these
areas. The aim of this study is to make a re -iew of available
methods in two specific areas in order to develop alternative
methods or to propose improvements of existing methods.

Chapter 3 deals with the development of a new method to be used
in structural reliability - or more specificly in probabilistic
fracture mechanics, where the probability of failure of a struc-
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ture or component is considered. In chapter 4 a review of avail-
able variance reduction techniques to be used in Monte Carlo
simulation for systems reliability is presented. Chapter 5
summarizes the results and discuss their applicabilities and

limitations.



2. RISK AND RELIABILITY ANALYSIS

To meet the requirements with respect to plant availability and
plant safety reliability and risk analysis tools have been
developed. The tools can be aprlied in an analysis of any com-
plex system, for instance in nuclear power industry, air trans-
port, space research, chemical industry, off-shore industry,
and traffic systems. The risk analysis does not replace other
safety investigations, but it is a supplement to safety codes

and standards, quality control and quality assurance, etc.
The following sections will describe the concept of risk and

the definitions used in risk and reliabkility analysis of com-~

ponents and systems.

2.1. Definitions and Descriptions

Risk 15 a concept used with a variety of meanings and several
definitions are given in the literature. In this study the fol-

.owing definition will be used:

The concept of risk includes both a hazard and its corre-

sponding probability.

A hazard is defined as a situation or a chemical that is
potentially harmful to humans or property.

This means that the risk includes an evaluation of unwanted
events, their consequences and their probabilities of occurrence:

Risk = F(A,C(A),P(A))
where
A = unwanted events
C(A) = consequences related to the events
P(A) = probabilities of the events

F = gome unknown function.



As an example the function F can be defined in the following

way:
N
Risk = ] Cj * P
i=1
where
N = The total number of accidents or situations taken
into consideration
Ci = The consequences related to the accident or situa-
tion number i
Pi = The probability of occurrence of the accident or

situation number i

This is a very simple definition of the function F, and its
limitations and areas of applications have been heavily debated.

The definition of reliability is the following:

The reliability of a system (device) or component is the pro-
bability that it is performing its purpose adequately for a
specified period of time, under the operating conditions
encountered.

As it is seen from the definitions of risk and reliability, the
analysis of the reliability of a system can be regarded as a
part of a risk analysis of the same system. The evaluation of
the probability of adequate performance is common to the two
types of analysis, whereas the evaluation of the consequences
to humans or property is unique in risk (or safety) analysis.

A risk analysis can be described as a set of systematic methods
to identify hazards and to quantify their probabilities of oc-
currence and their consequences. Risk analysis can be used in
a broad spectrum of applications with varying purposes, which
are shown on the next page. The structure of a risk analysis
is also shown.



RISK ANALYSIS

RELIABILITY ANALYSIS

approval by authorities

evaluation of safety measures

emergency planning

selection between alternatives

reduction of consequences of events

reduction of probabilities of events

improvement of availability

planning of operating procedures

planning of test and maintenance

Specification of the
system and its operating
conditions

Y

Hazard identification

\

Data

Fault identification ‘J

- Y

Model of fault combinations

Quantification -
Probability of occurrence

[Quantifications - |
Consequences of accidents

-
 Risk estimation -
Result evaluation

|

Purposes of risk and reliability analyses,

Reliability
Analysis

—

Risk
Analysis

The structure_ of a_reliability and risk analysis,
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2.2. Reliability and Unavailability of a System

The reliability of a system, which was defined in the previous
section, describes the probability that the system is function-

ing for a specified period of time.

As an example, let us assume a very simple system, consisting

of one pump pumping water from one place to another.

The pump has the following characteristics:
- in average constant number of failures per year
- in average one failure every three years
- the failures are detected immediately
- the repair time is five days
- after repair the pump is as good as before.

The system will fail if the pump fails. The reliability R of
the system over a year is equal to the probability that the

system is functioning adeguately over a period of one year.

e
n

P(functioning over 1 year)

1 = P (not functioning over 1 year)
1 - (1/3)
2/3

probability that the system is not function-

The unreliability
ing properly for a specified period of time

1 - reliability.

The steady state availability of a system is the probability
that the system is in an acceptakle state at any instant of time
t, given that the system was fully operative at time t = O.

If we again consider the example, let us calculate the avail-
ability A of the system at time t = 1 year, assuming that the
pump was running at time t = 0. The system will in average fail
once every three years and it will be down for repair for five
days. This means, that
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1 - (1/3) = (5/356)
1 - 0.005 = 0.995
The unavailability = 1 - availability.

o
"

These two characteristics are important when studying the avail-
ability of a system or a whole plant. Further, the characteri-
stics are needed in risk analysis when estimations of accident

probabilities are considered.

Tools for this type of calculations are the subject of chapter 4.

2.3. Reliability of a Component

The reliability of a component is in general estimated from ex-
perience or from test data describing the behaviour of the compo-
nent given the operating conditions. Statistical methods are

available for the estimation.

In some cases no prior knowledge of the reliability is avail-
able. This will be the case if the component is designed using
a new technology, new materials or sukbject to new environmental
loads. In such cases it is not possible to use experience and
data from components based on other technological design, other
materials and other loads. In case that the component in ques-
tion is a structure an alternative way of estimating its reli-
ability is to treat the component as a system (or a structure)
characterized by its strength and the i1ocads imposed. Based on
these properties it is possible to estimate the probability
that the component will function ~ the reliability of the com-

ponent.

Tools for calculation of the reliakility of components (struc-

tures) are discussed in chapter 3.
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3. STRUCTURAL RELIABILITY

This chapter focusses on the problems in structural reliability

as mentioned in section 2.3.

3.1. Beckground

The reliability of a structure can be assezsed by using histo-
rical data from past failures and non-failures. This is a very
simple approach given sufficient data, but it suffers in that
only specific structures are considered. The effect of a change
in one of the variabler which has an influence on the behaviour
of the structure, often cannot be predicted as the required

data probably do not exist.

An alternative approach is the development and application of
engineering models based on an understanding of the failure
models and statistical distributions of the variables which

have an influence on the behaviour of the structure.

3.2. Stress-Strength Models

One class of engineering models is the stress-strength models.
The models are based on the assumption that the structure has
a certain strength and that the structure is subject to certain
stresses or loads. The strength as well as the stress is defin-
ed by an expression in a number of variables. Each variable has
an associated distribution. As long as the strength is greater
than the stress the structure endures; otherwise the structure
fails.

Models of this kind have been applied in prohabilistic fracture
mechanics especially where high integrity is required, such as
pressure components of a nuclear power plant and offshore struc-
tures.
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Within the limits of application of linear elastic fracture me-
chanics the relevant quantity for the strength is the fracture
toughness, Kjc. The relevant quantity for the stress is the
stress intensity factor, Kj.

The models are illustrat2d below where the stress density and

the strength density are shown.

density

stress density strencth density

stress, strength

Stress-strength model

For a given value of the stress ,x, the problem is to evaluate

the probability that the strength is less than this value, inte-
grated over all values of x.
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3.3, Limitations and CTonditions

Below is shown a figure which illustrates the scheme for assess-
ment of the reliability of a structure using a stress-strength
model

stress-
physical strength
model model
failure
A probability
data
Modelling Evaluation

Assessment of the reliability of a structure

This study discusses the evaluation procedure given a stress-
strength model and the data for the variables involved.

This report does not discuss the modelling of some specific
structures, Neither does it discuss the problem of data which
is also a very important task, since the use of engineering
models introduces new errors because of the lack of data and
the complexity of the approach which requires more input vari-
ables to give a detailed description of the behaviour of the
structure.
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The probability of failure of a structure is calculated by the
probability that the stress 1is greater than the strength.

P(stress > strength)

The probability density functions associated with the stress
and the strength are given by fgtress (x) and fgerengtn (%)
respectively. The corresponding cumulative density functions

Fstress (%) and Fgirength (x) are given by

X
Fstress (x) J fstress (t) at

and

X
Fstrength (x) J fstrength (t) dt

Then

P(stress > strength)

X = ®

=JP(stress = x strength < x) dx

X = -®

If stress and strength are statisticaliy independent it follows
that

P(stress > strength)

X = @®
= J P(stress = x /™ strength < x) dx
x
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P(stress = x) * P(strength < x) dx

il

[x= =

= fetress (X) Fstrength (x) ax
x:-.
X = o y=x

= fstress (x) fstrength (y) dy ax
X = —e Y!—-

fstress (x) fstrength (Y) dy dx

Approximation of the p.d.f.'s - Unreliable structures

If the p.d.f.’'s for stress and strength can be approximated by
a simple probability density function, i.e. a normal distribu-

tion function, the integral can be easily calculated numerical-

1ly.

This can be utilized, if an unreliable s:ructure is considered.
This situation is illustrated below.



];ensity

stress

density
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strength density

~

| stress-"

strength

Stress-strength model for an unreliable structure

The areas A and B indicate the areas in which data are avail-

able.

In this case the approximation of the p.d.f. by a normal distri-

bution is simple and the values on which the integral is evalu-

ated are well described.

Approximation of the p.d.f.'s - reliable structures

In many cases considering nuclear components and off-shore com-
ponents, the structure is a highly reliable structure. This
situation is illustrated below.
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density

A

stress density strength density

~

T 2 T I R ~ |stress,
strencth

Stress-strength model for a reliable structure

Again the areas A and B indicate the arzas in which data are
available for approximations of p.d.f.'s for stress and strength.
The values on which the evaluation of the integral is based are
not well described as they belong to the tails of the distripu-
tions, where data are not availiable.

In this case the result is very sensitive to the tails of the
distributions. The following example shows the influence on the
result applying different distribution functions as approxima-
tions to the data available.

Bxamgle

Assume that the data for the stress are as shown in the follow-
ing figure. The data are fitted to an exponential, a log-normail,
and a gamma distribution which are also shown in the figure.
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frequency

1072
1074
lognormal
1()’6
gamma
-8
1 <
° exponential
-
A xp

Fitting of different p.d.f.’'s to data

In the area A where data are available the exponential, the
log-normal, and the gamma distribution fit quite well the data.
The tail where no data are available is dependent on the distri-
bution which is chosen. As it is seen the probability associated
with the value Xp differs by two or three orders of magnitude
depending on the type of the distribution.

The evaluation of the integral is based on a number of values
which all belong to the tail (i.e. the situation is similar
to that shown above considering the value Xp).

In case of highly reliable structures which are of interest ap-
proximations of the p.d.f.'s for a3tress and strength cannot
be used. It is therefore necessary to evaluate the integral
directly based on the distribution for each variable describ-

ing the stress and the strength.
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Agglication

Within the limits of application of linear elastic fracture me-
chanics a stress-strength model is described. The theory assumes
that the crack is starle, when the stress intensity factor K;
around a crack is smaller than the fracture toughness Kjc.

Ky < Kpc.
The stress intensity factor, Kj, is given by the relation

K2 = K*A-S2

where K is a correction factor
A is the crack depth

S is the applied nominal stress.
The fracture toughness, Kjc, is given by the relation

2 _ MrC - eq 2

where M is a correction factor
SY is the yield stress
Cy is the Charpy V notch energy.

A probability density function is associated with each parameter
in the expressions.

The probability of a failure is calculated by the probability
that the stress intensity factor is greater than the fracture
toughness:

P(KI > ch)

= P(K;? > Kyo?)
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3.4. Calculation Methods

During the last 10 years some calculation methods have been pu-
blished. Two of them have been developed and implemented at Risg
while the third one is developed at the Joint Pesearch Centre at
Ispra in Italy. A brief description of the main ide=as behind the
methods and the advantages ard disadvantages of the methods are

given below.

3.4.1. The PEP Code
The PEP706 computer program is described in detail in [2] .

The program is based upon Monte Carlo simulatiorn. A simple im-
plementation of the importance sampling technique {s available
too.

The program simply generates values for each variable involved
according to the distributions specified in the input. In each
case the quantities, stress and strength are calculated from
the actual values simulated and it is tested, if stress is
greater than strength. The process is carried out for a large
number of trials. The generation of values from each individual
distribution is based upon a random number generator which gen-
erates numbers uniformly distributed over the interval [C,1].

The number of trials required to obtain an acceptable accuracy
is extremely large, thus requiring a large amount of computer
time. Especially when the failure probability is very low as
in the case of highly reliable structures. A typical example in-
volving four parameters uses abcut 300 seconds computer time
to obtain 10% accuracy with a failure probability of 10-7.

The main advantage of the program is the great flexibility in
modelling, where a large number of models can be treated without
imposing approximations. Likewise it is not necessary to make
any approximations to the input distributions.
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The main disadvantage is the large amount of computer time re-
quired to obtain an acceptable accuracy.

3.4.2. The ANPEP Code

The ANPEP code is described in detail in [3]). In [4] the
ANPEP/V2 program is described. This is a further development of
the ANPEP code, but it is based upon the same basic idea.

The frogram is based upon a numerical method to coabine random
variables. Each distribution specified in the input is represen-
ted by a corresponding discrete distribution in the following

way:

‘?

probability density function (p.d.f.)

input variable
1!

ﬂmihlln,

correspondxng descreete p.d.f.

The values pj of the discrete density function at a given point
Xg is calculated in the following way:
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v
»

The discretization process is carried out for each distribu-
tion by dividing the axis into a number of intervals of equal
size or of a size which is specified by the user. Now the dis-
cretized distributions are combined and the failure criterion,
Stress greater than strength is checked for any combination.
An observed failure contributes to the total failure probabil-
ity by the product of the corresponding probabilities.

The main advantage, compared to Monte Carlo simulation is the
reduction in computer time for smaller problems, i.e. involv-
ing four or less variables. The ANPEP code requires approxi-
mately 20 seconds for a problem, where PEP706 requires appro-
ximately 300 seconds. Secondly, no statistical deviations are
introduced, since generation of random numbers is avoided.

The main disadvantages are the reduction in flexibility of the
models and the introduction of approximations to the input dis-
tributions., Fros this approximation two problems arise: i) the
choice of the number of intervals and ii) the determination of
the end point of an unlimited distribution. Both problems are
sclved empirically. Another problem is that the computer time
required is very sensitive to the number of input variables.
The problem mentioned above which requires 20 seconds involves
four input variables. A similar problem involving six vari-
ables requires approximately 2000 seconds.



3.4.3. The COVAL and SCORE Code
The SCORE computer program is developed and implemented at the

Joint Research Centre at Ispra in Italy. A description of the
prograr is given in [5] and [6]. This is a further development
of the COVAL code.

The program is based upon a numerical method to combine random
variables. Each distribution specified in the input is repre-
sented by a corresponding histogram of equal probability in-
tervals. Then the proyram systematically combines the intervals

of the random variables.

Let the area of interest for an input variable be divided into N
subintervals and let the cumulative density function be given
by

X
P(x) = j f(t)dac

Xo

then the endpoint X;,;; of subinterval no. i is calculated as
the solution t» the equation

Xi+1
f(t)at=

Z| -

xj
which is the same as

1
F(xj41) - P(x;) = §

The idea is very similar to that proposed in ANPEP/V2. The main
difference is in the approximation of the input distributions.
In ANPEP/V2 the intervals are chosen with respect to equal length.
In SCORE the intervals are chosen with respect to equal probabi-
lity.
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The advantages and disadvantages compared to Monte Carlo simula-
tion are very similar to those given for the ANPEP/V2 program.
The advantages compared to the ANPEP/V2 program are:

- the intervals into which a distribution is subdivided are
small, where the density is high and are large, where the den-
sity is low. Thus each distribution is rezsonably well ap-
proximated.

- combinations of equal probability intervals form again equal
probability intervals. This prevents the creation of inter-
vals from having probabilities very different one from the
other.

Still the problem remains to choose a reasonable number of sub-
intervals and the endpoint for unlimited probability density
functions.



3.5. Alternative Methods
In this section different approaches to the evaluation of inte-

grals in several variables are discussed. The general problem is

to approximate

J.n.J f(x"'o-o,Xn)dx"oo.dxn
Rn
by a sum

N
zAi L] f(Vi'1,...,Vi'n)
i=1

where

N is the number of points in the formula
Aj is the coefficient number i
Rp i¢ 2 n-dimensional region

(vi,1+++++,Vi,n) is integration point number i.

The region R, in this case is a parallelepiped which can be
transformed into the n-cube C; by an affine transformation.

Therefore, the discussion can be restricted to the region Cp.
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The approaches can be divided into four groups which are treated

separately:

product formulas

- non-product formulas

adaptive methods
Monte Carlo methods

3.5.1. Product Formulas

This topic is discussed in great detail in [8] and [9]. Some
of the interesting results from the viewpoint of application in
structural reliability are presented below.

Product formulas for C, are formulas which are constructed by
products, or combinations of formulas for regions Cp of lower
dimension, m<n. Especially, construction of formulas for C, by

products of n formulas for C4 is of interest.

The integral

J... J f(xq,...,xn)dxq...dxg
Cn
can be evaluated by a formula constructed in this way.

If a formula exists for a one-dimensional integral

N
J flx) dx = ] Ay » £(vy),
Cy i=1

¢y = [0,1]
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then

I s 0. f f(x’,o-o,Xn) dX1...d!n
Cn

Z Ai1. Aizo-oAinf(vi1,.o-.vin).

Formulas constructed in this way are very easy to handle and
simple to implement. The main drawback is that the number of
integration points increases rapidly with n, the number of di-
mensions. Suppose that a 8-points formula exists for a one-di-
mensional integral. The number of points in a formula for
a n-dimensional integral is shown for various values of n.

n number of Hoints
2 64
3 512
4 4.096
5 32.768
6 262.144
10 1.073.741.824

From this table it is obvious that using a 8-points formula for
the one~dimensional integral construction of formulas for inte-
grals of a dimension greater than 5 can he time consuming and
will therefore in some cases be impractical.
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Example

A two-points Causs formula of degree 3 over Cq; = [-1,1] is
[_le(ax = 1°£(43/3)41°£(-73/3)

This means, that the four-point product formula over the region
Cy = [-1,1] x [~1,1] based on the above formula is

I-}I_}f(x,y)dxdy = 1°£(/3/3, v3/3) + 1" £(-¥3/3, /3/3)
+ 1°£(v/3/3,-¥3/3) + 1-£(-/3/3,-/3/3)

3.5.2. Non-Product Formulas

In [9] and especially in [8] other types of formulas are dis-
cussed. This is a very difficult subject, since no general theo-
ry is available for construction of other types of formulas
than the product formulas mentioned above. An existence theorem
has been proved [8, page 54], but it includes no guidance for
constructing a formula with given characteristics. 1In [8] a
very comprehensive discussion on this subject is presented,

including a large collection of special results and formulas.

The main advantage of a non-product formula compared to a pro-
duct formula is that fewer integration points are needed for a
formula of a given degree. If a formula of degree 4 with m
points exists for a given region R, the product formula of de-
gree d over R" has mP points. In some cases it is possible to
construct a non-product formula of degree d with less than m?

points.

Examgle

The region is ¢, = [-1,1]"

The product Gauss formula of degree 5 has 3" points.
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A non-product formula has been constructed by Stroud and Hammer
with 2n2+ipoints

n 3n 2nZ+1 Reduction (in percent)
2 9 9 0
3 27 19 30
4 81 33 59
S 243 51 79

This table illustrates the advantage of an effective non-product
formula compared to a similar product formula. It is also known
that for a given degree 4, that reduction in the number of point
is increasing with the dimension. Unfortunrately, the difficulties
in constructing non-product formulas for higher degrees are also
increasing. Therefore, the reduction i the number of points
needed in a formula does not always comp .sate the difficulties
in the construction.

The difficulties arise from the lacking theory about orthogonal
polynomials in several variable:z. In one variable the theory is
fairly simple. Furtheyr, the zecoes of orthogonal polynomials
can be used in construction of formulas, The difficulties in
several variables are of two types:

- the one-dimensional space is very simple compared to higher-
dimensional spaces. Since all line segments are equivalent
under an affine transformation there is essentially only one
bounded connected region in the Euclidean space. In higher-
dimensional spaces these simple rules do not apply. For exam-
ple, the square, the circle, and the triangle are regions in
t* e two-dimensional space which are not equivalent under an
affine transformation.

- the theory of orthogonal polynomials is well-known in one
variable and simply related to integration formulas. In several
variables the theory is much more complicated and not com-
pletely described. Until now no formulas have been constructed
in n dimensions, n>2, using the theory of orthogonal polyno-
mials in n variables.
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In practice a couple of other difficulties in constructing non-
product formulas arise. The weights in the formuias are not al-
ways positive, which should be a natural property for a formula.
Furthermore, it is not certain that all integration points be-
long to the region, which also should be a natural property.

3.5.3. Adaptive Methods
Adaptive methods are methods where the calculation is per formed
with stepwise refinements within important subregions. In each

step the calculation is continued within the subregion, where
the highest benefit of a refined calculation is expected. The
idea can be illustrated in this way:

f(x) is to be integrated over [a,b]. We choose a formula
which is used over [a,c] and |c,b], where ¢ = (a+b)/2.

The calculated integrals are Iy and I3 respectively. Then the in-
tegrals Iyy, Iy2, I21., and I33 over [a,d]. [d.c], [c.e].

and [e,b] are cazlculated. The process is continued with refined
calculations within the subregion with the highest difference,
Dy or Dy, where Dy = I1~ (I17 + I42) and Dy = I3 - (I2y + I73).

It is very advantageous if the integration points already used
can be reused in all subsequent refinements. Pormulas exist with
this property, but in general this characteristic is not common.

3.5.4. Monte Carlo Methods
Other approaches to the problem of evaluating integrals in seve-

ral variables are the Monte Carlo method or number theoretical
methods. The Monte Carlo methods are very simple to construct,
but their main drawback is the large number of points needed
to achieve a reasonable accuracy.
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The Monte Carlo method for approximation of an integral in se-

veral variables is

!--.! f(x‘,"‘,‘r‘)dx1...dxn
Rn

N
= (V/N) ) £(vj)
i=1

where V is the volume of Rp
N the number of points
vj point number i in Rp

The points vj are chosen at randor uniformly distributed in
Rnp. In general the points are not generated randomly, but qua-
sirandomly, by a deterministic method. Some commor methods are

based on the linear congruential method

Xj=1 = a’x;+b, where a and b are fixed.
A measure of the error in the above formula is given by c/¥N,
and this quantity does not decrease very rapidly as N increases,

leading to very large computing times.
Other methods are known - number theoretical methods - where

the points are found, so that the error is decreased. Such me-

thods are discussed in [8].

3.5.5. Conclusions

Based on the study of the various methods of numerical inte-
oration in several variables, it is concluded that simple pro-
duct formulas constructed on the basis of simple Gauss formulas
in one dimension are recommended. The reason is that Gauss for-
mulas are effective formulas and formulas exist which are spe-

cialized for specific regions, such as [-1,1], [o,=[,]-=,=[.
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Secondly, the drawbacks of non-product formulas are too large
to be compensated by their reduction in the number of points.
In particular, the fact that several formulas have negative
weights and integration points outside the integration region

make them useless in practical applications.

Finally, it has been found that Monte Carlo methods are too
time consuming in practice. Ir [9] it is shown that Monte Carlo
methods are reasonable only in cases where the number of dimen-
sions is greater than 10. Furthermore, they introduce a stati-
stical error in the calculation by nature, which is avoided in

other types of approaches.

It is therefore decided to develope a tool to evaluate an inte-
gral in several variables using a product formula based upon

Gauss formulas in one variable.
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3.6. The NUMPEP Code
A computer program, NUMPEP, is developed based on numerical in-

tegration in several variables using product formulas.

The probability of failure is given by

fr2 0 - £ 2 (y) ay ax

lll
)
~
[
‘

2

where the probability density functions associated with K;¢ and

KIC2 are described.

The program is intended for the class of problems within proba-
bilistic fracture mechanics as described.

The program is prepared for other relationships between the va-
riables which means that it is possible to solve problems with-
in other fields of structural reliability.

Furthermore, the program is modularized, so it is easy to extend
the number of variables involved. This extention requires some

further work on programming.

The program is written in Fortran for the Burroughs B7800 com-

puter.

A detailed description of the principles is given and the input
and the output from the program are shown.
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3.6.1. Construction
The requirements for the method used for evaluation of the inte-

gral are the following:

- the formula should be simple

~ the method should be fast

- the accuracy of the result should be within the first two
digits

- the number of variables allowed should be at least six

- the program should be prepared for extension of the nuamber of
variables

- the program should be designed to solve the problem: calculate
the probability of failure within probabilistic fracture me-

chanics in two cases:

a. 6,2 =k .a - s?
where
K is the constant k
A is given by an exponential distribution with parameters

A and xq,
f£(x) = rA-e"2(x-Xp)

S is given by a normal distribution with parameters x, and
O,
)2

e —(x=

1
f(x) = P30 o

2
KIC = M o Cv e S
where

b 4

M is the constant m
Cy is given by a Weibull distribution with parameters Xg,
m and k,

£(x) =k * (x-x )® . e~ ki{x-x il
[o] nt+

Sy is given by a Weibull distribution with parameters X0,
m and k,
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x(x-x_)"*!

£(x) = k ° (x-xo)' . e '__ET?___'

b. This case is equivalent to case a except that sY is here
given by a normal distribution with parameters x, and o,

= 1 (x-x.)2
f(!) m— - e —E;T—

- the program should be flexible and extensible in order to take
into account:
- other distributions for the variables than those shown above

— the modelling of chz = M (C, - SY-O.OS . syz).

Integration limits

The limits of integration - and +» have no physical interpre-
tion. In each case it is possible to specify limits which are
meaningful, i.e. if we look at the crack depth, a value less
than zero or greater than the wall thickness is meaningless.

Th~ integral to be evaluated is therefore:

|
"
o
(>3
"
]

[ £y 2 (x) £y 2 (y) dy ax
t ) | IC
J

Using Dirichlet's formula, see [7], we find

B x x 1 B
! I f((x)axk*l= J (8-x)% £(x)ax
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For k = 1
B x P
£(x) dx2 = (p~x) £(x) ax
a a a
Therefore
b b ¢

£ 2 (x) ¢ £ 2 (y) dy ax
I IC

is equal to

b

(b-x) * £¢ 2 (x) £ 2 (x) ax
1 IC

Given p.d.f.'s for each variable in the expressions for Ky and
Kic it is possible to construct p.d.f.'s for K; and Kjc. These
are unfortunately not well-known p.d.f.’'s, so it is necessary
to construct the density functions explicitely using the theory
of transformation of variables.

Transformation of variables

In this section a short description of the formulas for trans-
formation of variables is given.

One variable

The formula for transformation of one variable is given:
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h(u) = 9% £{x(u))
du
where

x is the original variable

u is the transformed variable

f(x) is the probability density function of x
h{u) is the probability density function of u

x{u) is the expression relating x to u

dx is the absolute value of the derivative of x with
du respect to u
Example

Given X with p.d.f. f(x)

We want the p.d.f., h(u), related to the transformation

u=a+ x, where a¢R

X = u-a dx = 1
du
Then h(u) = 3} - £(x(u))
du
= f(u-a)

Several variables

The formula for changing several variables is given similarly
by

Y (u,v) = ¢ (x(u,v),y(u,v))|Det(J)|
0x dx
2u 3V

Det (J) =

2
2%
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where

x,y are the original variables

u,v are the transformed variables

¢(x,y) is the original joint density function of x and y
¥(u,v) is the transformed joint density function of

u and v

u{x,y) are the expressions relating u and v

vix,y) to x and y

Det (J) the determinant of the Jacobian

Normally u is the desired transformation and v a convenient
dummy variable. In this case we want the marginal density func-
tion for u associated with the joint density function ¥Y(u,v)

which is given by:

h(u) = [ ¥(u,v) dv.
v

If x and y are statistically independent the equation simpli-
fies to

¥(u,v) = f(x(u,v)) - g(y(u,v)) - |Det(J)]

If v(x,y) = x, which is often convenient, and correspondingly
x(u,v) = v, then

3x dx Y 1

du v F.)
Det(J) = - - 4

3y dy 2y oy du

du dv ou ov

The marginal density function, h(u), is then given by
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h(u) = ] lgﬁl.f(v) . gly(u,v)) dv.
v

Example

Civen x and y with p.d.f.'s f(x) and g(y). We want the p.d.f.,
h(u), related to the transformation given by

u=x+y
vV =X
Then
x = v oy
y:u-vn and au=1
h(u) = J1] o f(v) » ¢(u-v) av

Jv

"N

= f(v) ¢ g(u-v) av
v
»

{which is the well-known convolution integral).
Using these formulas for transformation of variables it is pos-
sible to express the p.d.f.'s related to the stress intensity

factor and the fracture toughness.

The stress intensgity factor

The stress intensity factor is given by
Ky%= K*A°S?

K is often specified by a constant. In other cases by a p.d.f.,
h{x).
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A is specified by a p.d.f., f(x) which is often an exponential

distribution.

S is specified by a p.d.f., g(x) which is often a normal distri-

bution.

Two variables

The most simple case is when K is given by a constant value.

Using the formulas of transformation of variables given above

we find h(u) associated with s2 as

1
h(u) = 375 (g(/8) + g(-/T))

Associated with A + S2 we get,

when U=A.» 582 A =V
vV =A 52=g
v
and 2
Lo s?) . |1y
] d U v

1 1 u u
h(u) = j ';‘ . f(V) . 273 . g( ﬁ) +g(-ﬁ)) dv
v

Associated with K*A*S2 we find (K takes the value k)

1 1 L u -
h(u) = kK Iv | © £(v) * 2707 (g(v¥RV) + g(-vKVv)) av.
v kv

Three variables

As in the case of two variables we find associated with A-s?

1
. . (g + g(-/Dy)) 4
vl DY AN gi="y v

v

1(u) = J -l— . f(v)

v
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The p.d.f. for K is given by h(x).

Associated with K*A-S2 we find, when

u=K-A* S K =
va. 52 A .52=v
and
sl I
ouU \Y%
m(u) =J I s niw) - 1) aw
w

- jw Jv =1 * h(w) * £(v) '571é;r3(g(/%5)+9('/-%w)) dvaw

The fracture toughness

The fracture toughness is given by

S.-0.05 * S.2).

Kig® =M (C, © 8y y

M is often specified by a constant. In other cases by a p.d.f.,
hix).

Cy is specified by a p.d.f., f(x) which is often a normal or a
Weibull distribution.
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Sy is specified by a p.d.f., g(x) which is often a Weibull di-

stribution.

In some cases the last term H'Syz'0.0S is negligible and the ex-

pression is

Using the formulas of transformation of variables given above

we find h(u) associated with CV°Sy as

h(u) = [ 111 - £(v) * g(¥) av
v

v
v

Two variables

I1f M is specified by a constant value m the p.d.f. associated

with M*C, 'S, is

h(u) = [ 1_11 . gv) - 9(_u_) qv.
v v'm v'm

Three variables

1f M is specified by a p.d.f., h(x), the p.d.f. associated with

M'Cv'sy is

J (11« h(w) I l
w

w v

1(u) [+ f(v) * g(_u ) dv dw

vV'w

<l -

=I I 1.V 01 - n(w) » £(v) * g(_ Y ) av aw.
w vV V.w vw
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Conclusion

We will evaluate an integral of the form

o
I (b-x)fq(x)fa(x)dx
a

where f;(x) and f5(x) are given by one of the following two

types:
v=e
f(x) = 1 g(x,v)dv
v=xq
or w=® v=wm
f(x) = f S g(x,v,w)dv dw.

WXy V=X1
A Causs-Legendre formula is well-suited for the integration

b
;S f(x)dx.
a

In principle is it possible to coastruct a product formula based
on this type of formula. It has teen found that in the cases
of interest both fq(x) and f3(x) can be rewritten using a simple

affine transformation.

Then
v'=o .
f4(x) = s e Vg'(x,v')dv'
v'=0
or
vizo w'=e
£i(x) = 1 s e VeV¥g'(x,v,w)dv'aw’

In evatuvation of integrals of this type Gauss-Laguerre formulas
are well-suited,

The difference between the application of a Causs-Legendre and
a Gauss-Laguerre formula is shown in the example below.
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Example
b
J f(x)ax
a

where

f(x) = e~%/(x+1), a =0, b=e ,x3

A Gauss-Laguerre formula is applied for evaluating the integral
of 1/(x+1) with the weighting function e~X,

A Gauss-Legendre formula is applied for evaluating the inteqral
of e X/(x+1) with the weighting function 1.

In the latter case the upper integration limit has been chosen
in the following way:

Since 1/(x+1) < 1 for x>0

then e~X/(x+1) < e~X for x>0

If the function is cut off at some value N

b N -
J e X/(x#1)dx = [ e X/(x+1)dx + [ e X/(x+1)dx
o o N
The last term
J eX/(x+1)dx < [ e Xdx = e~N
N N

Choose N, so that e-N < §.
In this example 6 = 10~% is chosen.

e-N = 104

or
N = 9.210340
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An upper limit N = 10 is chosen, which gives an error less than
e-10 = 4.54-10-5.

Another possibility would have been to transform the integral
over [0, »[ into an integral over [a,b].

Let y = 1/(x+1)

(1-y)/y

or x
then o<x<= or o<yc<1
and dx/dy = -1/y?

So
= 1
I e~X/(x+1)dx = I (e’("Y)/Y)/Y dy

[¢] (o]

A Gauss-Legendre formula can now be used directly without any

cutting on the new function.

Using a CGauss-Legendre formula on [0.10] and a Gauss-Laguerre
formula, the following results are obtained:

Number of points Gauss-Legendre Gauss-lLaguerre

2 0. 194292 0.571429
4 0.541168 0.593301
8 0.595932 0.595867

Using 30 points the result is 0.595278.
It is therefore decided, that the Gauss-Laguerre formulas shall
be used as the basis for constructing the product formulas in

combination with the Gauss-Legendre formula.

These formulas are described in [10].



_47..

3.6.2 Input and Output

The input as well as the output from the program are described
below including a check facility which is available.

Ingut

The input consists of five categories of data:

1. The type of the distributions

2. The value of the parameters in each distribution
3. The number of integration points

4. The integration limits

5. Indicator for the check facility

The functional relationship used in the model has to be express-
ed explicitly in the program.

Type

The following four types of distributions are allowed in the
program:

1. Constant value

2. Normal distribution

3. Exponential distribution

4. Weibull distribution

The sequence of indicators for the type of the six variables
used in the model defines the model in connection with the func-
tional relationship between the variables specified in the pro-
gram,

Example

The sequence 1-1-1-1-1-1 indicates a model, where all six vari-
ables are given by a constant value.

The sequence 1-3-2-1-4-4 indicates the model which is discussed
in the main example (see 3.6.3.).
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Parameter Values

The values of the parameters are specified, depending on the
type of the distritution, in the following form:

type = 1 (constant) : the value of the constant
type = 2 (normal distribution) : the mean value x, and the
standard deviation o
type = 3 (exponential distri- : the origin x, and the scale
bution) parameter A
type = 4 (Weibull distribution): the origin x,., the scale pa-

rameter k and the form para-

meter m

Number of integration points

Two values are required. The first one, Ni, defines the number
of points used in the Gauss-Legendre formula

b
2 2 N1 2 2
(b-x)f (x)f (x) dx = w; (b~x:)f (x;)f {x:)
KI KIC i=11 1 ll"I 1 KIC 1
a

where w; specifies the weight.

The other value, N5, defines the number of integration points

used in evaluation of f 2(x) and fg 2(x) by the Gauss~La-
I IC

guerre formula

L 4
£y 2 (xy) J e"""f1 (w,xk) dw
1 o
N2
Z f1 (wi,xk) * Vi
i=1

where v; is the weight,



And correspondingly

fr 2(x) = [  e™ £, (w.xy) aw
IC o

N2
g-fz ('i.xk) c vy

where vj is the weight.

The integration limits

The limits a and b in the formula

b Ni
2 2 = Vw:(b-x:)fy 2(x: 2(x.
[a (b-x)fxI (x)fKIC (x) dax iZ:l(b xl)fKI (xl)fKIc (x;)

should be specified.

Check facility

It is possible to print intermediate results from the integra-
tion process. For each integration point xj the following values
will be printecd

Xji (b‘xi)a fl( 2 (!i)' fl( 2 (Xi)-
I IC

Output

Execution of the rprogram will give the following output:

1. Identification of the computer run
2. Input for the program
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3. Intermediate check result (optional, see above)
4. The resulting probability of failure.

In section 3.6.3. two examples are shown with the corresponding

printer output in appendix 1.

3.6.3. Exarples

Two examples of the use of the program NUMPEP are given. In ap-

pendix 1 the output from the computer runs are given.
Example 1

The data originate from [1].

The model is

K;2 =K « A« g2

where

K is the constant 3.8

A is given by the exponential distribution
fa(x) = A » exp(-A(x-xg)) with A = 2.56 and x5 = 0.1

fA(x)

v
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S is given by the normal distribution

1 * expl(- (x—xm)z)
/2%0 202

£f (x) =
3

with xp = 26.0 and ¢ = 3.2

jh
0.150
fs(x)
0.100'L
0.050¢
18 22 26 30 34
2 = [ ] [ ]
Kic Me.cC, s,
where

M is the constant 5.0

Cy is given by the Weibull distribution

-k(x_x )ll'l+1

fo (x) = k .(x-xo)m expl — 71—

\Y

with k = 1.57 » 10"2, m = 8.2 and x,

= 35,0

v



- 52 -

M

60 70 1

Sy is given by the Weibull distribution

-k(x-xo)m'”
m+1 )

fsy (x) = x . (x-xo)m . exp(

with k = 2.53 ¢« 1076, m = 2.65, x_ = 60.0

o ¢
o
=
(]
o

-

v

35 40 50 60 70

Ny
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chz takes the minimum value
5.0 « 35.0 « 60.0 = 10500

and therefore the lower integration limit is 10500.
KIZ takes no upper limit value, but due to the physical existen-

ce of a maximum crack depth and a maximum value of the nominail

stress a maximum of 60000 is reasonable.
The probability of failure is in this case

60000
/ (60000-x) » £, 2 (x) « f 2 (x) dx
10500 I IC

This integral is evaluated by a Gauss-Legendre formula with 32

2

points. The evaluation of f, 2 and £y is performed by apply-

I IC

ing a 30 points Gauss-Laguerre formula.

The result is 0.2826 - 106,

With a 8 points Gauss-Legendre formula and a 8 points Gauss-

Laguerre formula for f, 2 and £y 2
1 I1C

the resulting probability
of failure would be
0.2678 + 1070

The latter result is obtained in 0.9 seconds CPU-time, while the

former requires 4.7 seconds in CPU-time.

Example 2

The data originate from the same reference as in example 1, ref.

(1].
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The model is similar to that in example 1
K2 =K+ a . s?
where
K is the constant 3.8
A is given by the exponential distribution

fal(x) = A ¢ exp(-A(x-x5)) with A = 2.56 and x5 = 0.1

S is given by the normal distribution

2
= 1 - Qx-xm )
fg(x)= —m—e— expl Snd-

with x5 = 26.0 and o =3.2

where

M is the constant 5.0
Cy is given by the normal distribution

fo (%) = _1__ exp(=(x-x)?) with x_ = 105.0 and o =15.0
v %0 252"

70 100 150 X
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Sy is given by the Weibull distribution

-k (x-x )m+1

k(x-xo)mexp(—_-ﬁ¢Tﬂ_———)

fsy(x)

with k = 2.53 « 1076, m = 2.65, = 60.0

Xo

Reasonable limits in this case are 10500 and 60000. Therefore,

the probability of failure is:

60000
/ (60000-x) + fx 2 (x) =+ £ 2 (x) dx
10500 1 I1c

This integral is evaluated by a Gauss-Legendre formula with 8

points and fy 2 and fp 2

I IC

are evaluated by a Gauss-Laguerre

formula with 8 points. The resulting probability of failure is
0.6360 » 107® using 1.0 second of CPU-time.

3.6.4. Experience and Application

Applications of the developed computer program show that a re-
sult is obtained within a very short time for the type of prob-
lem dealt with within probabilistic fracture mechanics. It is
possible to specify the number ~f integration points needed to
achieve a reasonable accuracy. As it was described in section
3.6.1. it is normally not needed to evaluate the integral with
a high accuracy due to the nature of the protlem.

In general relevant data are lacking which means that the un-
certainty inherent in the problem is large. This means, that in
stead of having a very accurate result of one calculation, it
is likely that several evaluations are needed with slightly
different data in a detailed sensitivity study. In this type of
application a fairly simple and fairly accurate evaluation is
important. It has been seen that the NUMPEP code can fuifill
these requirements.
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In order to check the validity of the result the program can be
applied by dividing the region into subregions with subsequent
calculation of the integral in each subregion succeeded by a
summation. If this refined calculation satisfies the requirement
to the accuracy, the execution of the program is stopped, other-

wise the procedure can be continued by further subdivision.

3.6.5. Error Analysis

The integral

In = I..'fw(x1'...lxn)f(x1l...lxn)dx“...xn

can be evaluated using a numerical integration formula

SN g 1Aif‘vi,1""' Vi,n)

e

The error E[f] is given by
In =8y + E[f].

Estimation of the error is in general a very difficult task.
In [8] a thorough discussion is presented, giving estimates
proposed by Sard and Barnhill, respectively.

In the first case the theory is based on a generazlization of
the Peano error estimates for one variable. The estimates are
given for functions f(x,y) which have a certair type of Taylior

series expansion.

In the second case the theory is based on a generalization of
the estimates of P.J. Davis for one variable. The estimates are
given for functions of two complex variables, which are analytic

for all points in a certain region containing R»>.



SARD-ESTIMATES

The derivatives of a function f(x,y) over [a,b]x[c,d] are

defined as

f(i,j)

pit]
(x,y) = pxiayd f(x.y) i>o, j>o

If the derivatives are defined and continuous, then f(x.y) has a

Taylor'

s expansion.

Bp,q is the set of all functions with the following properties:

1.
2.
3.
4.
5.

Kernel

£(P+9)(x,y) is Riemann integrable on R,

£(m=3,3)(x,c), j<q is Riemann integrable on a<x<b
f(ilm‘i)(a,y), i<p is Riemann integrable on c<y<d
£(i i) (a,c), i+j<m exists

Taylor expansion holds for f(x,y) for all (x,y) in Rj.

theorem, [8], states that if an integration formula

is exact, when f(x,y) is a polynomial of degree <m in x and y,

then there exist funrctions

Kp'q(XIy) (X,y) in R2
Kp-5, 5 (x) x in [a,b], j<q
Ki,m-i(y) y in [c,d], i<p
so that
b

E[£] =] Km.j,j(u)f(m-j’j)(u,c) du
a

j<q
d

+5 J Ki,m-i(V) glim=1) (a4, v) qv
i<p c¢

b 4
+ [ Kpy,q (wv) P ) (u,v) quav
a C
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whenever f(x,y) belongs to Bp q-

Furthermore,
(x-u)P~1(y-v1a-V
¥p,q(uv) = E[Tp=1IT (g-171
ag, 300 = E[{ERI rze]
i mi () = B[P

which are the errors using the formula on the expressions in the

brackets.

Several estimates are given of which the

IE[£]1 <] em-j,5:x Mm-§, jsx
Jj<q

+,Z ei,m-i:y Mi,m-i:y
i<p

* ep,q Mp,q

b
where ep_j, j:x = / IKp-3, j(u)l du
a

d
ei,m-izy = J IKi,p-i(v)] dv
[
b s |
ep'q = Ia IC le,q(ro)l dudv

M__: .. = SU 1£(m=3:3) (u,c )
m-j,3j:x uefa,b *Co

M. __._ . = sup If(i'm'i)(a V)
i,m=izy ve[e,d] o

Mp,q = Sup 1£(Pa) (y,v)]
’ R2

most common 1is:
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The first three e-values are only dependent on the formula,
while the three M-values depend on the integrand. The Kernel
functions K defined above are unfortunately not simple func-

tions, and this leads to calculational problems. Some examfples

of Kernel functions from [8] are shown on the next page.
Exanple 1
f(x,y) = /(3+x+y) is an element of B3, 4

The estimate for E[f] is

IE(£]1 < | ep—j,j:x Mm-j,j:x +

I ei,m-i:y Mi,m-i:y
1¢q 1<p

+ ep,q Mp,q

Here r =2, q =4, ptq = 6 = nm (ag,co) = (0,0)
(acb) = (cld) = (-1")

JE[£]1 < e6,0:x M6,0:x + €5, 1:x M5, 1:x + €4,2:x Mg, 2:x
+ e3,3:x M3,3:x *+ e0,6:y Mo,6:y + €1,5:y M1, 5.y
+ e2,4 M2,4

£01,0)(x,y) = 1/2 - (3+x+y)-1/2

£(2,0) (x,y) = -1/4 - (3+x+4y)—3/2

£(3,0) (x,y) = 3/8 + (3+x+y)=5/2

£(4,0) (x,y) = =15/16 - (3+x+y)=7/2

£05,0) (x,y) = 105/32 « (3+x+y)=-9/2

£(6,0) (x,y) = -945/64 - (3+x+y)-11/2

Mg 0:x = SUP | -945/64 (3+u)~11/2 |
’ u in [-1,1



(P.@)=(22)  Kuer = 0.178 (g =311 Kuyo = 057

(’- Q)= 2, 3) K-.. = 0.1 (P.Q) - (3,2) Knur ™ 0.7

(p.Q) = (2,.9) Kaox = 0337 (F) =030 Kmes = 0.121

09



maximum is reached for u = -1

M, 0:x= | - 945/64(2)711/2 | = 0.326

M5, 9:x = Mg,2:x = M3,3:x = M6,0:x

Mo,6:y = M1,5:y = Me,0:x

My 4 = sup lf(2'4)(u,v)l
(u,v)in [—1,1] x [-1,1]
= sup 1-945/64 (3+utv)~11/2)
(u,v) in [=1,1] x [-1,1]
maximum is reached for u = v = -1
My 4 = 1-945/64(1)"11/2 | = 14.8

Using the seven-point fifth-degree formula Cy:5-1 [8] the e-

values are tabulated:
e6,0:x = 0.000126
e4,2:x = 0.000302
ep,6:y = 0.0000377
e2,4 = 0.00246

€5,1:x = ©3,3:x T ©1,5;y T 0

Thus |E[£]] < (0.000126 + 0.326) + (0.000302 - 0.326)
+ (0.0000377 + 0.326) + (0.00246 - 14.8)

= 0,0356

To see how close the estimate of |E[f]| is to the actual

error a couple of examples are shown below.
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Example 2
Let f(x,y) = eX'¥

Integrate f(x,y) over [-1,1] x [-1,1 ] using two different
formulas C,:5-1 and C:5-2 from [8].

Estimated Actual
Formula Integral Error Error
Cy25-1 5.521576985 0.1948-10"' 0.281439583- 10~2
Cp:5-2 5+ 52275698 0.2765-10"' 0.211568298" 102

Exact 5.524:91381

The ratio between the estimated error and the actual error is

6.9
13.1

Co:5-1
Co: 5-2

which shows that the error is overestimated using SARC-estimates.
Example 3
Let f(x,y) = x4y2

Integrate f(x,y) over [-1,1] x [-1,1] using the two diffe-
rent formulas C:5-1 and C3:5-2 from [8].

Estimated Actual
Formula Integral Error Error
Cp:5-1 0.266666667 0.C145  0.363797881° 107 ']
Cps5-2 0.207407407 0.0593 0.592592593° 10~ !

Exact 0.266666667
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The ratio between the estimated error and the actual error is

C2=5-1 : 4.0'109
C2:5-2 : 1.0

This shows that using C3:5-1 the estimated error is useless.
Furthermore, the estimates frovided by SARD cannot in general
be improved, since the use of the formula C2:5-2 shows that the

error limits cannot be sharrened, since a function and a formula
exist where the error estimate is equal to the actual error.

BARNHILL~ESTIMATES

Barnhill error estimates are given in [8] for functions of
two complex variables, which are analytic for all points in a

certain region containing R3.

IE[£]1 < LIEL] - 11£])

where
I|E]| depends on the formula
JIf1] depends on the integrand
ez = Jfff I£(z,w)12 dxdudydv

EpxEp

where EpxEp are ellipses

11£112 < max [£(z,w)| - =ab

NENIZ =] I 1E [w* we*] 12
r=0 s=0
where wy* and wg* are Chebyshev polynomials. This means, that

IIEII2 expresses the error using the formula on the specified
Chebyshev polynomials.
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Example 1
Let f(x,y) = XY

Integrate f(x,y) over [-1,1] x [-1,1] using C3:5-1 from (8]
(see also example 2, SARD).

In [8] values for [I1E|] and [|fl| are given.

The error estimate is 0.3417, which can be compared with the

similar SARD-estimate.

Formula C,:5-1 f(x,y) = *¥Y
Errors/Ratio Sard Barnhill Actual
C2:5-1 0.01948 0.3417 0.002814396
Ratio between
errors €.¢ 121.4

The results of this example are typical for Barnhill-estimates.
They are very complex to calculate and they overestimate the

error dramatically.

It can be concluded that the error estimates in general are
useless for practical purposes. The reasons are that

1. the Kernel functions are very difficult to treat, even in

very simple cases

2. in most cases the estimated errors are much greater than

the actual error.

In stead it is proposed to use recalculation of the integral
ucing @ larger number of integration points and compare the
results. It the difference between subsequent calculations is
acceptable then the computation is stopped, otherwise it is con-
tinued with an increased number of points.
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3.6.6. Conclusions and Comparisons

The NUMPEP code has been thoroughly tested and the results of
the calculations from the examples given in section 3.6.3. have
been ccmpared to the results obtained by some of the codes de-

scribed in section 3.4.

Exangle 1

Using the NUMPEP code the probability of failure of the struc-
ture is 0.2226 - 1076, product formulas have been used based
upon a Gauss-Legendre and a Gauss-Lagquerre formula. The nusber
of points in each formula was 32 °* 30 = 960, and the CPU-time
was 4.7 seconds. A similar calculation gave the probability of
failure 0.2678 - 1076, using 8 - € = 64 points with a CPU~time

of 1.1 seconds.

The NUMPEP code is compared to the PEP code [2] and the ANPEP/V2
code [4] , which are described in section 3.4. The results are

given in the table below.

Code Probability CPU-time
of failure {seconds)
PEP 0.2867- 106 300.0
ANPEP/V2  0.2843-10-€ 12.5
NUMPEP 0.2826- 10~ 4.7

As it is seen there is an agreement between the results of all
three codes taking into account the requirements to the accuracy.
Purthermore, it is obvious that NUMPEP has obtained the result

using a shorter CPU-time than the other codes.

Exangle 2

Using the NUAPEP code the probability of failure of the struc-
ture is 0.6360-107%. Product formulas have been used based upon
a GCauss-Legendre and a Gauss-Laguerre formula. The number of
points in each formula was 8 . B = 64, while the CPU-time was
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1.0 second. The NUMPEP code is compared to the PEP code (2]
and the ANPEP/V2 code [4] . which are described in section
3.4. The results are given in the table below.

Code Probability CPU-time
of failure {seconds)
PEP 0.6257- 106 300.0
ANPEP/V2 0.6392- 10" 14.3
NUMPEP 0.6360- 10-6 1.0

Again, the results are in good agreement and the reduction in

computing time using the NUMPEF code is significant.

Number of points

As described in section 3.5.3. Monte Carlo methods are time
consuming, since the error in the formula is given by c//N,
where N is the number of points. This means, that an increase
in the numkter of points by a factor 100 will only reduce the
error by a factor 10. It is shown in [3] that the ANPEP code
is much more efficient than Monte Carlo methods.

In ANPEP and ANPEF/V2 each distribution is decretized and com-
bined subsequently. In general 100 points are recommended for
each decretization. In the examples discussed above this leads
to 2 - (100 + 100) = 20000 points.

The product formula in NUMPEP requires in total ¥ = Ny * 2N, =
2N1N> points, where N3 is the number of points in the Gauss-
Legendre formula and N5 is the number of points in the Gauss-
Laguerre formula.

In the examples above the following number of points were used:

example 1: N4 = 32, Ny = 30
N = 1920

8, Ny =8

128

example 2: Nj
N
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These differences between the number of points in the methods
explain the differences in the observed CPU-times.

On the contrary if the ANPEP/V2 ccde is used with 8 points in
each discretization, the same number of integration points are
needed as for the NUMPEP code in example 2. The result of the
calculation using ANPEP/V2 code is 0.4931 - 10-6, which shows,
not surprisingly, that the choice of integration points and
weights in the Gauss formulas are optimized compared to the
strategy used in the ANPEP/V2 code.
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4. SYSTEMS RELIABILITY

In order to optimize the design of industrial systems, analysis
of their performance with respect to safety, reliability and
availability is of increasing importance. Methods and tools
for sucn analyses have been developed during the past 20 years
using the power of computers to solve complex questions within

a reasonable time.

4.1. Background

A variety of computerized methods are available for reliability
and safety analysis of complex systems. A comprehensive presen-

tation of available methods and tools is given in [11].

Within the Nordic countries a couple of research projects have
been carried out with the aim to describe the state of the art
of the techniques in industrial applications. The SCRATCH pro-
ject was finished in 1982 issuing a summary report [12]. It
contains a description of the usefulness of risk and reliability
analysis techniques in any industrial application. In the period
1981-1985 a new Nordic project was carried out with the aim to
study probabilistic risk assessment (PRA) and licensing in nu-
clear applications. The main results are summarized in [13].
These results have subsequently been reviewed with respect to

non-nuclear applications [ 14].

One of the common results of the above rosearch projects is the
necessity of methods for detailed description of complex systems
with subsequent reliability or availability calculation. Fault
trees or reliability block diagrams are the most commonly used
methods for representation of specification of the failure con-
ditions of complex systems. They both allow a quantitative as-
sessment of system reliability and availability. Analytical zs
well as Monte Carlo simulation programs are available for this

part.
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One of the main drawkacks of Monte Carlo simulation programs is
the amount of CPU-time needed to perform a calculation with
reasonable accuracy on the results. This problem can in some
cases be overcome by applying a variance reduction technique.
In this study variance reduction techniques are analyzed with
respect to implementation in an existing Monte Carlo simulation

program.

Section 4.2.-4.4. describes the definitions and ideas behind
system representation methods and quantification methods. 1In
4.5. the existing Monte Carlo simulation program MOCARE is brief-
ly presented. Section 4.6. gives an outline of variance reduc-
tion techniques. The most commonly used and flexible method,
the importance sampling method, 1is analyzed in section 4.7,
Finally, section 4.8. and 4.9. present the proposal for the
implementation of importance sampling technique in the MOCARE

program.

4.2, Fault Trees and Block Diagrams

Fault trees and reliability block diagrams can be regarded as
dual methods. A fault tree represents all combinations of basic
events which lead to failure of the system. Basic events can be
either component failures, human errors or failure conditions.
A reliability block diagram cn the contrary represents all com-
binations of components which have to be functioning to assure
system functioning. The fault tree representation is most widely

used.

Fault Trees

The basic concepts and the techniques of fault tree analysis are
given in [15]. Furthermore, its advantages and limitations

are discussed in [11], [12] and [13].

A fault tree consists of basic events linked into a description
of the system using logical OR-gates and AND-gates.
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Examgle

Aqy-A5 are basic events, such as pump fails to start on demand.

The system will fail, if

- A7 occurs

- Ay and A3 occur simultaneously
- Ag and Ag occur simultaneously.

Fault trees are useful diagrams well-suited for presentation of
system failure conditions to be used in communication between
the designers and the operating staff and between the designers
and the authorities. Further, it is prepared for a subsequent

quantification.

Block Diagrams

Reliability block diagrams are discussed in [ 13] and a computer
program RELVEC appiying this methodology is described in [16].

The interpretation of a reliability block diagram, which fo-
cuses on success in stead of failure of the components, is: a
system is considered functioning if a path through the blocks
exists, that are functioning. If no such paths exists, the sy-
stem is failed.

Examgle

The reliability block diagram which represents the system given
by the fault tree above is:
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116
(A

I

Aq4-A5 are basic events, such as pump is running.

The system is functioning, if

- Ay, Ay and A4 are functioning
- Aq, A and Ag are functioning
~ Ay, A3 and A4 are functioning
- Aq, A3 and A5 are functioning.

Remarks

The two approaches will give identical system failure condi-
tions, but in practical use as an aid in the identification

process, some differences are found.

It has been argued, that reliability tlock diagrams are easier
to use than fault trees due to their close relationship to the
flow schemes of the systems. Furthermore, it is more natural to
plant personnel to think in terms of success than in terms of
failure, since they are responsible for a continuous operation

of the plant ~ also in cases of disturbances.

On the other hand, it has been found that the searching for
system failure conditions in practice assure a higher degree

of completeness than searching for system function conditions.



4.3. Cut Sets and Path Sets

Given a system of components, a cut set is a set of components,
which imply a system failure if all components in the set are

failed simultaneously. A minimal cut set is a cut set, where

any change of a component state from failed to nonfailed will
imply that the system is functioning. This means that all compo-
nents need to be failed simultaneously before a system failure
occurs. In the example in section 4.2. the minimal cut sets are:
A1, (A3, A3), (A4, As).

Similarly, given a system of components, a path set is a set of
components which assure the functioning of a system if all com-
ronents in the set are functioning. A minimal path set is a path

set, where any change of a component state from functioning to
failed will imply that the system fails.

4.4. Reliability and Availability Calculations

The definitions of the reliability and the availability of a
system are given in chapter 2. In general each component in a
system has a specific time-to-failure distribution, of which the
exponential distribution plays an important role.

f(x) = Aexp(-A(x-xp)) for x»>xg
X

F(x) = | rexp(-A(t-xp5)) dt
Xo

= 1- exp(-A(x-x5))

The hazard rate is defined as

hix) = £(x)/(1-F(x))

where 1-F(x) is called the reliability at time x. In case of
an exponential distribution the hazard rate



h(x) f(x)/(1-F(x))
Aexp(-A{x-x5))/(1-(1-exp(-A(x-x5)))

A

i.e. a constant hazard rate, independent of the time.

The reliability over time t given an exponential distribution is
R(t) = 1-F(t) = exp{-A(t-x4))

which is the probability that the component is functioning at

time t given it was functioning at time xg.

Parallel system

Given a parallel system, S, consisting of two components, Cj
and Cj, (which corresponds to an OR gate)

Rg(t) = Rq(t) + Ro(t) - Ry(t)Ry(t)

if Cqy and Cj are independent.

Series system

Given a series system, S, consisting of two components, Cy and Cj,

(which corresponds to an AND gate)

Rg(t) = Ry(t) * R,(t)
if C; and C» are independent.

Similar expressions can be derived taking into account maintained
components, where a repair time is specified. Such expressions*'
are given in [17].
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Availability

From [17] the availability of a repairable component at time

t is

A(t) = p/(A+p)
+(A/(A+p))exp(-(r+p)t)

given exponential failure distribution with failure rate A and

exponential repair distribution with repair rate p.

The average availability for a period of time [o,t] is the avar-

age uptime

t
(1/t) | A(s)ds
o

At)

n/( A+p)
A/ (A+p) 2t
(A/ (A+p)2t)exp(- (A+p)t)

+

If t »» the availability becomes p/(A+p), the steady-state
availability.

Expressions can be derived for series and parallel systems, but
the expressions are rather complex.

In order to achieve a result within a reasonable time, two diffe-
rent approaches have been applied

- approximate, analytical methods

- simulation methods.

4.4.1. Analytical Programs

Computer programs have been developed to calculate the system
reliability or system availability given component data and a
representation of the system failure conditions.
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One such program has been developed at Risg, FAUNET, [18],
using the fault tree representation. The program searches for
minimal sets (cut sets or path sets) utilizing advanced tech-
niques. Then the reliability or the availability is calculated
based on the minimal sets and component data. The program ac-
cepts components with either constant failure probabilities or
exponentially distributed failure times. Repair times are either
constant or exponentially distributed. Furthermore, constant
test intervals can be specified. The basic assumption 1is that

the components are statistically independent.

The well known expressions for the unavailability as a function

of time t are used (see [18]).

The program performs a calculation of the system unavailability

from the minimal cut sets, using the rules:

OR-gate: P P1+Po-P 1P
AND-gate: P = P,°'P,

Further, to calculate the probability of the union of the mini-
mal cut sets, only the first terms in the expansion is in-
cluded. It is possible to write the expression explicitly, but
due to calculational difficulties only the first terms are in-
cluded.

4.4.2. Monte Carlo Simulation

Several methods based on Monte C.rlo simulation have been de-
veloped. Cne such program is the MOCARE program [19] described

in section 4.5.

In this type of program each component is assigned a time where
it is faiiled based upon the input describing the p.d.f. for the
time-to-failure and repair. The assignment is performed using
a random number generator, which is available on any computer.
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In many cases, the random number generator is using the linear

congruential method:

Xn+1 (xn'a+b)MOD N, a, b fixed

R = xp+1/N

where N is the largest integer value.

The user specifies a start number x,5 and new numbers are gene-
rated successively using the formula. Using this method numbers
which are uniformly distributed are generated on [0, 1[.

Assume a component with specified time-to-failure distribution
F(x), with density function f(x). If R is a random number uni-
formly distributed over 0 to 1, the following equation gives a
value x, following the specified time-to-failure distribution:

R = F(x)
or
x = F-1(R)
Example

Assume an exponential density function
f(x) = rexp(-A(x-x5)) and F(x) = 1-exp{-A({x~xg))
R = 1-exp(-A(x-xg))
1-R = exp(=-A(x=-xg))
-A(x-x5) = 1ln(1-R)

x = x5-(1/2)*1n(1-R)

If R is uniformly distributed over 0 to 1, also 1-R will be

uniformly distributed over 0 to 1.
To save one algebraic operation x can be found from

x = xg=(1/)) *1n(R)
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The main advantages of Monte Carlo simulation programs are their
flexibility to model complex systems and the userfriendliuess.
The main drawback is the computing time required to obttain a

given accuracy of the result.

4.5. The MOCARE Code

The MOCARE program which is based on direct Monte Carlo simu-
lation, is developed at Risg [19].

4.5.1. Principles

The program accepts either a fault tree or a reliability block
diagram as the part of the input which contains the specifica-
tion of the system failure condistions. Furthermore, minimal
cut sets from a previous calculation by the FAUNET program are
also accepted as input. For each component five different p.d.f.
types for time-to-failure are available:

- exponential distribution

- Weibull distribution

- normal distribution

- log-normal distribution

- constant time

and similarly for the repair :imes.

The program carries out a number N of trials over a specified
period of time T. The process 1is illustrated in the example
below. The history of each fault is shown over the period [o,T].
The presence of a fault is symbolized by a hatched fielid on the
time axis. The status of the system is evaluated every time a
change in a component state occurs, i.e. if a failure occurs or
if a fault has been repaired. If the system has failed, it is
registered together with the duration of the system failure for

further treatment.

Finally, the mean reliability over the period [0,T] is cal-

culated using:



R = NS/N
where PES is the number of trials with no system failures

N is the number of trials

The mean unavailability is calculated using:

NF
UA =L D, /(N°T)
1=1

where NF is the number of trials with system failure (NF=N-NS)
N is the number of trials
T is the observation period

D;j is the system downtime for system failure no.i.

Example
2 4 7 8
Fault 1 — emroy — ALY 4
Fault 2 o © ,
Fault 3 — a2 ,
Fault 4 4
System » &3 - .

The status of the system is evaluated B times, and only in one
case, at time point 3, the system has failed. The downtime of
the system is from time point 3 to time point 4, where fault
no. 1 is repaired. Furthermore, it is seen that fault no. 4 does
not occur in this trial. The histories can be presented on gra-
phical displays which has been found very valuable btoth as a
check of the correctness of the model and as an illustration of

how the system performs.
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4.5.2. Example
Assume a simple system consisting of two identical pumps, P,

and Py, in parallel each with 100% capacity.

eQD _‘.’QD

One pump is running at a time with the other pump in stand-by
mode. The pumps are switched every one week. In case of a
failure of a running pump an attempt to start the other pump
is initiated. The pumps are assumed to fail either during oper-
ation or during stand-by following certain distributions. 1In
the latter case it is assumed that the failure occurred during

stand-by is detected only when a start is attempted.

A history of the faults might look like this:

Fault 1: | =
Fault 2: 3
Fault 3: g

Fault 4: - r—

Fault 5: =——— . [—— r—/™ —




where

Fault 1: failure of Py during operation

Fault 2: failure of P during operation

Fault 3: failure of P¢ during stand-by

Fault 4: failure of P> during stand-by

Fault 5: dummy fault specifying the scheduled operation times
for Py and Py - if fault no. 5 is in a failed state
P, is in operation, otherwise Py 1is in operation.

The pump which is not in operation, is in stand-by.

A failure of the system occurs in the situation where P4 is
running and P is in stand-by. A failure of Py occurs which has
no immediate effect, since P37 is running. Some time later a
failure of Py occurs. An attempt to start Fp is initiated, but

without success due to the failure.

4.5.3. Experience

The MOCARE program has been applied in several analyses of com-~
plex systems and has proved to be a very flexible tool. This
is accomplished by using a flexible input and by using subsys-
tems for the specification of conditions for the occurrence of
basic faults and system failures. Secondly, the large number
of special facilities that are available, makes a detailed ana~
lysis of the system possible. The program can handle a series
of different types of fault:
- faults with various probability density functions for the
time to failure and the repair
- faults having a constant probability of failure per period
of observation
- consequential faults, occurring with a specified prob-
ability of failure per event, that can be defined as the
failure of a specified subsystem
- faults which can only occur under certain circumstances,
that can be specified by means of subsystems.



The application of subsystems is very useful in specification
of different modes and in specification of the transition rules

between the states.

In analysis of very large and complex systems MOCARE has been
used and reasonable results have been obtained. One such ana-
lysis is performed within the Nordic research project on prob-
abilistic methods in nuclear applications [20]. A reliability
analysis of the feedwater systems ability to assure feedwater
to the reactor core in case of a loss of off-site power was
performed. In the analysis the normal feedwater system, the
auxiliary feedwater system and the electrical power supply
systems were taken into account. The analyzed system was fairly
large and very complex. The total number of cut sets was ap-
proximately 410 mill. Several methods were applied in the calc-
ulation of the unavailability of the feedwater system. MOCARE
was able to get a reasonable result using about 1/2 hour CPU-
time on a Burroughs B7800 computer. It was not possible to get
a result using the FAUNET code due to combinatorial problems.
Other methods applying cutting of the fault tree, if the prob-
abilities were below some specified value were also able to
give reasonable results. In this case one is never sure that

the cutting is allowable and that the results are correct.

The main drawbacks of the MOCARE program are the considerable
amount of computing time required to obtain reasonable results
and the statistical nature of the program which will give
answers with a related statistical uncertainty. This means
that there is a certain probability th2* you have obtained an

incorrect result.



While the latter problem is insolubly due to the nature of
the program, some proposals are given in order to overcome
the former drawback using variance reduction techniques.

4.6. Variance Reduction Techniques

A series of variance reduction techniques have been developed
mainly within queueing theory and radiation transport calcul-
ations. But some of them are also useful methods within rel-
iability calculations. A very comprehensive presentation of
the concepts of variance reduction and descriptions of the
various methods is given in [21]. Below is shortly sum-
marized some known results of variance reduction used in rel-
iability calculations and an outline of the methods available.

4.6.1. Experiences and Knowledge

Variance reduction is concerned with increasing the accuracy of
Monte Carlo estimates of parameters. In direct Monte Carlo simu-
lation you try to describe the performance of the system as
close to reality as possible. In case of simulation of rare
events as is the general case in reliability analysis, this lead
to long computing times. Variance reduction techniques attempt
to increase the effectiveness of the Monte Carlo method by:

- modifying the simulation process

- utilization of approximate information

- studying the system within a different context.

In reliability analysis it is the experience that the import-
ance sampling method in general is the mnost favorable method.
Some other methods have been applied, but with less effective
results with respect to variance reduction. Importance sampling

is studied in more detail below.
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Furthermore, it has been shown that unfortunately no single
method exists, that in general will lead to an optimal var-

iance reduction in an analysis of a system.

Finally, it has been emphasized [21], that any kind of prior
knowledge of the problem should be utilized in selection of
methods and parameters.

4.6.2. Outline of Methods
A comprehensive outline of methods for variance reduction is

rresented in [21]. The followi.ag clessification of available
methods is proposed:

- Modification of the simulation process
Importance sampling
Russian Roulette and splitting
Systematir sampling
Stratified sampling

- Use of approximate information
Expected values
Statistical estimation
Correlated sampling
History reanalysis
Control variates
Antithetic variates

Regression

~ Study of the system within a different context
Sequential sampling |
Adjoint formulation
Trans formations
Orthonormal functions
Conditional Monte Carlo.



The four methods classified as methods based on modification
of the simulation process are emphasizing the same strategy:
to select some areas of interest of each random variable and
concentrate the simulation process on these areas.

In iaportance sampling the simulation process is modified by
a choice of a more relevant density function f*(x) in stead
of f(x). To compensate for the modification the result is
weighted by f(x)/f*(x).

In Russian roulette a choice is made in each stage to evaluate
the importance of the state. If it is of interest the number
of simulations starting in this state is increased and if not
the simulation process is stopped with a certain probability.

In systematic sampling the sample space is divided into sub-
areas in the way that the generated uniformly distributed ran-
dom numbers are scaled into intervals., This means, that you are
sure that some of the simulations will treat the area of inter-
est. Stratified sampling is similar to systematic sampling where
the simulation is directed to regions of special interest. In
this sense stratified sampling combines systematic sampling and
importance sampling.

All four methods seek as the basic idea to concentrate the
sampling upon regions of interest. The importance sampling
ricthod is the most flexible and therefore this method has been
chosen in reliability analysis.

4.7. Importance Sampling

In this section the importance sampling technique is described
and the most important results concerning its characteristics
and applicability are outlined.
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4.7.1. Method
The importance sampling technique can be illustrated by con-
sidering a Monte Carlo estimate of a parameter I, where

I = E(g(x)) = [ g(x) f(x) dx
where E is the expectation.

The direct Monte Carlo simulation process would be:
- select a random sample X¢,...,Xy from the distribution

with probabtility density function f(x)

N

A

- estimate I as I = (1/N) ] g(X;)
121

The sample variance for the estimate is given by

4]
([

N A
2 1/(N-1)'Z1(g(xi)—1)2
1=

N
N/(N—1)((1/N).X192(Xi)—?2)
1=

If the sampling is from another probability distribution func-

tion f*(x), then
I = [ (g(x)f(x)/£*(x)) £*(x) dx

The modified procedure is now:
- select a random sample Xj,...,Xy from the distribution
with probability density function f*(x)

N
- estimate I as ?1 = (1/N) ] g(Xi)E(X;)/£%(X;)
i=1

This modification should be compensated. The result is we.ghted
by £(Xj)/£f*(X;) in the final calculation.

The sample variance for the new estimate is given by

2 g A2
S1 = 1/(N-1) X (g(xi)f(xi)/f*(xi)-11)
i=1
N
= N/(N-1) (1/:«,21(g(xi)f(xi)/f*(xi))2 - 12)
i=
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A
The difference between I and I4

N
E((1, - 1)?) = E(OI/N ] g(X)E(X) /84 (X;) - 1)?)
i=1

(/M) (] (g(x)E(x)/£*(x))2£*(x)ax - 12)

If £*(x) = g(x)£f(x)/1I then E((?1 - I)2) = 0. This means, that if
the answer is known, a sampling plan can be constructed with ex-
pected zero variance. This is of course of no practical interest,
but it illustrates that some function of the form g(x)f(x)/I
Wwill be preferable. Further, it is convenient that f*(x) is a
simple, well known function which is easy to use, which can be
a conflicting requirement to having f*(x) as close to f(x)g(x)/I

as possible. This situation is illustrated below:

f(x)

v

The variance reduction can be calculated by
E(s? - s2)

E(s?) - E(s?)

[ g2(x) (1-f(x)/£*(x))£(x) dx

This shows, that a careful selection of f*(x) is necessary to
avoid a worse result than by direct simulation, namely if the
contents of the parenthesis is negative.



Example
Assume that we shall throw two dice and estimate the probabil-

ity of getting a sum equal to 3, given
P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
for both dice.

We know that the correct result is 2/36 = 1/18.

This means, that using direct simulation the result of a simul-
ation will be of no interest in 17 out of 18 cases.

We can modify the sampling distribution in this way:

P(1) = P(2) = 1/2 P(3) = P(4) = P(5) = P(6) = O

Then we can estimate the probability of getting the sum equal
to 3 as 2/4 = 1/2. This must be modified in the final result by
f(x)/f*(x), which is (1/6)/(1/2) = 1/3. Both dice are modified

which lead to the following correction of the final result:

(1/2) (1/3) (1/3) = 1/18

which is the correct result.

In the latter case you will only get useless results in 2 out

of 4 simulations.

Further, to optimize the sampling plan, we car propose this
modification of the sampling distribution:

1. Throw the first die with density function
P(1) = P(2) = 1/2 P(3) = P(4) = P(5) = P(6) =0

2. If die number one becomes a 1, throw the second die with
density function
P(2) = 1 P(1) = P(3) = P(4) = P(5) = P(6) = O

I1f die number one becomes a 2, throw the second die with

density function

p(1) =1 P(2) = P(3) = P(4) = P(5) = P(6) = O



- 88 -

The estimate is then 1/1 = 1. The result must be modified by
f(x)/f*({x), which is

(1/6)/(1/2) = 1/3
(1/76)/(1 /1) = 1/6
The estimate is then 1 (1/3) (1/6) = 1/18 which again 1is the

correct result.

This simple example also shows the importance of utilization

of prior knowledge of the problem considered.

4.7.2. Examples and Applications

The method of importance sampling has been applied as a vari-
ance reduction technique in some Monte Carlo simulation pro-
grams. The first example was presented by P. Nagel, [22],
where the application of importance sampling yields a re-
duction in computing time by a factor of 10-100 depending on
the complexity of the system, the failure conditions and the

time of observation.

A thorough discussion of the application of importance sampling
to fault tree analysis is provided by Kamarinopoulos, [23] and
[24]. The results are discussed based on the following assump-

tions:

- only exponential probability density functions are con-
sidered
f(x) = A exp(=A(x-xg)) parameter 1\

- the importance functions f*(x) are exponential probability
density functions of the form
f*(x) = BA exp(-BA(x-xg)) parameter G5A
where B > 1

- the components are statistically independent.



- 89 -

In section 4.4.2. it is shown that the fictitious lifetimes
given an exponential probability density function can be cal-

culated using a random number generator, by
x = xg - 1,{A)1n(R)
where R is uniformly distributed over 0 to 1.
Sampling from f*(x) the lifetimes are calculated by
x = xg -~ (1/(AB)) 1n(R)

which shows that the lifetimes become shorter, since B > 1,
and the probability of system failure is artifically increased.
In the calculation of the system reliability, this modification

should be compensated by a weighting factor, which gives:

N M
S = (1/N) ] &k m &,i(filzx,i)/f8(zx,i)))
k=1 i=k

where

N is the numkber of simulation trials

M is the number of components

6k is an indicator with 6y = 1 if the system fails in trial
no. k, and 0 otherwise

bx,i 1s an indicator with 8y j = 1 if component i has failed
in trial k, and 0O otherwise

zx,i is the lifetime calculated using the random number gener-
ator
zx,i = %j,0 - (1/(7xiB)) 1n(R)
where xj, o0, Aj and B are the parameters of the exponential
distribution

f; is the original exponential distribution specified for
component i

ff is the importance function spe~ified for component i

S is the system unreliability.
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It has been shown, [23] and [24], that the estimation of S does
not converge to the true value of S in the case of OR-gates.
The contributions from unfailed components are missing. A cor-

rection shall be added:

N M
A
C = (1/N) ] & (0 (1-6xk, ;i) (f(ck)/E¥(ck))B)
k=1 i=1
where cx = max { 2g,j | component i has failed,i=1,...,M}

Similarly, in the expression of the variance a correction term

is needed. The variance is calculated by:

N M 5
(1/8) § 6 (I (&g 3 (£5(zy ;)/EF(zy 3)))° +
k=1 i=1
" 2 2
M ((1-6y, ) (£5(c)/E2(cy))B)?) - 5%

i=1

The main result is however, that no general rules about how to
choose B to make the variance as small as possible exists. The
first product decreases with increasing B, while the second
product increases at the same time. This means, that the vari-

ance exhibits a minimum.

It is found in [23] that choices of B with 1 < B < 5 may be
reasonable, but no general rules exist, which means that B has

to be found by trial and error.

If other importance functions and other probability density
functions are c¢hosen, no results or rules exist for the calcu-
lation of a proper importance sampling function. In this case

the importance function has to be found by trial and error.
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4.7.3. Conclusions

It has been generally agreed that importance sampling is the
most suitable method to be used as variance reduction tech-
nique within reliability analysis. Furthermore, it has been
verified, that in case of exponential probability density func-
tions the choice of an importance function of the same type
with parameter AB with 1 < B < 5 is reasonable. The choice

of B is to be made by trial and error.

The expressions for the variance taking into account the cor-
rection terms which compensate the modified sampling plans are

given in [23]. Cetailed descriptions are given regarding:

Non-Repairable systems
- one component
- parallel systems

- series systems

general systems with active components

Repairabie systems
- one component
- parallel systems

- general systems with active components.

It is recommended to use these rules in cases where the compo-
nents are specified by exponential probability density func-
tions. One of the advantages of the MOCARE code is its flexi-
bility with respect to the choice of probability density .unc-
tions. This means, that to preserve this advantage in a new
program utilizing importance sampling, other and perhaps less

effective implementations are needed.

It is worth mentioning, that in cases with other choices of the
importance function f*(x) similar expressions of the variance
as obtained in [23] are valid. Finally, the results are only
valid for systems with active components. In [26] it is shown
how to compensate in cases involving stand-by systems. The

compensation is much more comrlex and time consuming.
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4.8. Simulation using Importance Sampling

In this section the possible implementations of importance samp-

1ing using the MOCARE program is discussed.

As described in section 4.7. in case of an exponential prob-
ability density function the results obtained by Kamarinopoulos
are the best guidelines in constructing a modified density func-
tion and the corresponding correction terms are given to compen-
sate the modification. The main drawback is that only exponent-
ial density functions are allowed. This contradicts one of the
advantages of the MOCARE program, namely the flexibility in the
choice of probability density functions.

In the general case another implementation can be applied based
on the idea given below, which was presented in [25].

4.8.1. Method
Assume a probability density function f£(x)

»

Xo T time

You are only interested in lifetimes less than a given value T.
T can be either the observation time, the maximum lifetime of
the component or some other value based on knowledge to the
protlem. In stead another density function f*(x) emphasizing

the interval between x, and T is chosen.
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f(x)

¥

Xqo T time
In this case f*(x) can be constructed in this way:
af(x) Xo<x<T
let f*(x) =

bf(x) T<x

Find a and b, so you get more lifetimes between x5, and T than

using f(x).

As f*(x) is a probability density function

[ f*(x) dx = 1

Xo

@ T ®

] f*(x) dx = [ af(x) dx + [ bf(x) dx
X0 X0 T

Exponential distribution

If f(x) = A exp(-A(x-x5)), xp20, A>0

X
| » exp(-r(t-xg)) dt
Xo

F(x)

1 -~ exp(-A(x-x5))
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[ f*(x)
Xo
T @
= [ af(x) dx + [ bf(x) dx
Xo T

"

aF(T) + b (1-F(T))

a(1-exp(-A(T-xg))) + b(1-(1-exp(-A(T-x5))))

= a - aexp(-A(T-xg)) + bexp(~A(T-x4))

= a - (a-b)exp(-A(T-xg))
Now

a - (a-b)exp(-A(T-xg5)) = 1
or

b =a+ (1-a)/exp(-A(T-xg5))

If a 1is chosen, such that
(1-a)/exp(~A(T-x%5)) = -a

Then b = o.

It is not allowable to modify the function in the way that you
exclude some lifetimes, since f*(x) is then zero for x > T and
the modification factor f(x)/f*(x) is undefined. This is an

example of overbiasing.

An example is shown on the next page using a developed program,
EXTEP. This program will plot the results to give the user an
outline of the results of the biasing process.

In the example an exponential distribution with A = 0.5 and
Xo = 0.0 is chosen (curve 1) and lifetimes less than 0.5 are
emphasized. a is calculated using the above formula, giving
a= 4.5 and b = 5-10-3 (curve 2) to avoid overbiasing. The
lifetimes of interest are generated 4.5 times as frequent

using f*(x) than using f(x).
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In direct simulation you generate lifetimes using a random num-

ber generator
x = xo—(1/h)‘ln(R)

In the modified simulation you generate R as a random number

uni formly distrituted over O to 1.
If R < aF(T)

then the expression f*(x) = af(x) is used, otherwise f*(x) =
bf(x).

In the former case

o}
]

aF(x) Xo<X<T

a(1-exp(-A(x~xg5)))

which gives
x = xo - 1ln(1-R/a)/x

In the latter case
R = aF(T) + b(F(x)-F(T)) x>T
We know
aF(T) + b(1-F(T)) = 1
or
a(F(T))-b(F(T)) = 1-b
which means that

R = aF(T) + b(F(x)-F(T))
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1-b + bF(x)
1-b + b(1-exp(-A(x-xp5)))
1-bexp (- (x=-x5))

R = 1-bexp(-A(x-x5))
or
x = x5 - In((1-R)/b)/A

Weibull distribution

The Weibull distribution is given by

£(x) = k(x-x5)Pexp(-k/(m+1) (x~x,)™*1)
X

F(x) = [ f(t)at
Xo

]

1-exp(-k/(m+1)(x-xo)m+1)

Using direct simulation and a random number R, we find

R

1-exp(-k/(m+1) (x=x,)™*T)
The lifetime x is found by
x = x,+(-(m+1)/k 1n R)(1/(m+1))

If again

af(x) Xo<x<T
f*(x) =
bf (x) x>T

the lifetimes are found using the modified function.

1. xoixiT

X
R = af(t)dt
Xo
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or

x = x, + (-(=+1)/k 1n(1-R/a)) (1/(=+1))
2. x>7
R = aF(T) + b(F(x)-F(T))

We know that

a(F(T)) + b(1-F(T)) = 1

or
a(F(T)) - b(F(T)) = 1-b

Then
R = I-b + bF(x)

or
x = x5 + (-(m+1)/k in((1-R) /b)) (1/(m+1))

An example is shown on the next page using the EXTEP program.
A Weibull distribution with k = 1.57°107'2, m = 8.2 and x_ = 35
is chosen. Lifetimes Letween x, and 54. 12 are emphasized, giving
a= 1.6 and b = 1073, As in the example with the exponential
distribution the lifetimes of interest are emphasized. The value
of a depends on the length of the interval of interest. If the
interval is shorter than [35.0,54.12] higher values of a are

allowed.
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4.8.2. Modified Random Numbers
The methods of importance sampling described so far are based

on the idea, that a modified probability density function is
chosen, so that shorter lifetimes are generated. The modifi-
cation is compensated in the final results. The idea can be

illustrated this way:

—
[

t* t lifetime

The cumulative density function F is shown and a random number
R uniformly distributed over o to 1 is generated. The corre-
sponding lifetime is t. We choose another probability density
function with cumulative density function F*(x) assuring shorter
lifetimes. Given the same random number R, the lifetime t* is

used, where t¥*<t.

Another method to be used in importance sampling is based on a
modification of the random number generator and use of the ori-

ginal probability density function.

Choose random numbers which are distributed over o to 1 accord-
ing to some other distribution than the uniform distribution.
The choice should emphasize small values of random numbers. This

can be illustrated in the following way:
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Red. inan p

H A >
v L4

t> t lifetime

Again using direct simulation you generate R following a uniform
distribution with a corresponding 1 .etime t. If a large sample

is generated,
P(generated values between o and Rqy) = Ry
which corresponds to generation of lifetimes between o and t*.

A weighting is made by the function

2 O<x<Rjy, Rq < 0.5
glx) =
(1—2R1)/(1—R1) Rqp<x<1

1
where [ g(x)dx = 2°R; + ((1-2R,)/(1-R4)) (1-R1) = 1
(o)

This means, that lifetimes between o and t* are generated twice

as frequent as when using direct sampling.

No general results exists on how to find an optimal weighting

function. It has to be found by trial and error.

A computer program IMPSAMPLOT is developed which can treat this
type of importance sampling with plotting facilities available
to give the user an outline of the process. A series of examp-
les giving all details of the calculation are presented in ap-
pendix 2,
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Examgle A

A Weibull distribution is chosen with

k = 1.57-10-12
m = 8,2
Xo = 35.0

The lifetimes of interest are lifetimes between 35.0 and 54.12,
If direct simulation is used the probability of getting 1life-
times between 35.0 and 54.12 is 0.1. This means, that in a sam-
ple of size 9000 we would expect 900 lifetimes of interest. In
the example we actually found 893. In appendix 2, example A,
you will find the results of the calculation, together with a
table specifying the distribution of the random numbers, which

generated the lifetimes of interest.

An exponential weighting function is specified with parameter
£.1. In this case, you find 4995 lifetimes Lketween 35.0 and
54,12 in the sample of size 9000. These results are also shown in

appendix 2, example A.

Examgle B

The situation is similar to that given in example A. A sample
of size of 20.000 is generated using direct sampling, weighting
by a pointwise defined density function and weighting by the
exponential distribution specified in example A.

Example C

The situation is similar to that given in example A. A sample
size of 30.000 is generated using direct sampling and weighting
by the exponential distribution specified in example A. A plot
of the results is shown on the next page. On the upper part
you can see the difference without weighting (IS=0) and with
weighting (IS=2). On the lower part the difference is shown
when the functions are normalized, showing that the smaller

values are emphasized using weighting.
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'Example D

The situation is similar to that given in appendix A. A sample

of size 20.000 is generated using

The

f;

no weighting

weighting by a pointwise defined function (f4)

weighting by an exponential distribution with A = 8.1 (£3)

weighting by a Weibull distribution with (f3)
k = 17.0 m= 0.3 Xo = 0.0

three weighting functions are shown below.
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As it is seen they are very close to each other. The results of
the calculation show that the number of generated lifetimes of
interest were:

without weighting 3
pointwise defined distribution 11
exponential distribution 15
Weibull distribution 0

This shows, that even if the distributions are similar they do
not have similar effect on the results.

In general the use of Weibull distributions or other distribu-

tions with a zero is not recommended, since it is not possible
to emphasize values close to zero.

4.8.3. Possible Implementations

The two types of application of importance sampling discussed
above can be used in connection with the MOCARE program. The
problems are:

- which method to be used

- which type of weighting distribution to be used

- which parameters to be used.

Furthermore, another problem arise: time is lost on admini-
stration of the weighting process, if the number of components
is large.

To solve the problems, where no general rules exists, a pro-
cedure is proposed in two cases:

- some prior knowledge

- ro prior knowledge.

4.8.4. Prior Knowledge

If some knowledge is available about which of the components are
important with respect to system failure, only these components
are subject to weighting. The choice of method, weighting func-



- 1Ce -

tion and parameters of the function is decided on a trial and
error basis. Some guidelines based on the experience with the
EXTEP and IMPSAMPLOT programs can be given.

Using the method described in section 4.8.1. an exponential or
a Weibull distribution is preferable. The choice of parameters
is very difficult due to the problem of overbiasing. Overbias-
ing means, that you exclude important lifetimes by the modifi-
cation.

In the simple example with the two dice discussed in section
4.7. overbiasing is done in the following case:

Assume the first die is modified, so

P(1) = 1 P(2) = P(3) = P(4) = P(5) = P(6) = o
The second die is modified, so
P(2) = 1 P(1) = P(3) = P(4) = P(5) = P(6) = o

The probability that you get the sum equal to 3 is now 1
and the compensation factor is ((1/6)/(1/1))2 = 1/36. The
result 1/36 is wrong due to the fact, that the possibilities
that die 1 shows 2 and die 2 shows 1 are excluded.

One reasonable choice of the maximum lifetimes of interest might
be the total observation time or a time based on some knowledge
of the system.

4.8.5. Adaptive Methods
If no prior knowledge exists another procedure is proposed:

1. Use direct simulation and stop after N system failures

2. Select the most important components contained in the cut
sets generated
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3. Use a weighting function for each of the selected components

after the principles discussed in section 4.8.4.
4, Continue the simulation and stop after N system failures
5. Continue with item 2.

One way to make the selection of the most importart components
under item 2 could be to select those which are in cut sets

with the largest contribution to the system unreliability.

However, it must be emphasized that using this procedure there
is another risk of overbiasing, namely that some components and
hereby some cut sets are generated more and more frequently,
excluding the appearance of other cut sets, which might be im-

rportant.

4.9. Conclusions

The application of importance sampling as a variance reduction
technique in Monte Carlo simulation programs is very limited
due to lack of rules for constructing the weighting functions.
Mostly, use of the trial and error method is recommended. Even
in simple cases as discussed by Kamarinopoulos, with exponential
distributions and weighting functions of the same type, the
selection of parameters must be based on trial and error.
Furthermore, for systems with stand~-by components the simple
modification factors are not valid. Much more complicated modi-
fication factors are needed, see [26].

However, the two developed programs, EXTEP and IMPSAMPLOT, have
shown to be very flexible tools for the trial and error pro-
cess. They can treat the same density functions as accepted by
MOCARE and in this respect they are very useful in the prep~
aration of relevant weighting functions.



- 108 -

5.SUMMARY OF CONCLUSIONS

In this chapter the purpose of the project and a summary of the

main results are summarized.

5.1. General

In risk and reliability analysis several methods are available.
They can be applied in the various disciplines within risk and

reliability analysis.

One class is the methods within structural reliability, where
the probability of failure of a structure or a componert is
calculated. In linear fracture mechanics some probabilistic
methods have been developed. One purpose of the project was to
review existing methods and to make proposals for refinements

or new methods.

Fault tree methods have been very extensively used and very
fast methods for gquantification are available. OCne class of
methods is the Monte Carlo simulation methods of which MOCARE
is one program. The other purpose of the project was to review
existing methods for variance reduction with respect to im-

plementation within the MOCARE program.

5.2. Structural Reliability

In probabilistic linear fracture mechanics methods exist based
on
- Monte Carlo simulation (PEP 706)
- integration using discretized probability density functions
(ANPEP, ANPEP/V2)
- combination of discretized probability density functions
(COVAL, SCORE).
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A review of the methods and some comparisons between the methods
show, that the Monte Carlo approach is a very flexible tool, but
unfortunately the computing time required to obtain a reasonable

accuracy is large.

ANPEP, ANPEP/V2, COVAL and SCORE require less computing time to
obtain the same accuracy as the Monte Carlo program. The main
limitation of the programs is that increasing the number of
variables will dramatically increase the computing time. It has
been shown, that in cases of up to 4 variables, the programs
are well functioning, while an increase to 6 variables lead to

unsatisfactory computing times.

A new prcgram, NUMPEP, based on numerical integration in several
variables using product formulas of Gauss-Legendre and Gauss-
Laguerre type has been developed and compared to the other pro-
grams. It has been found that NUMPEP is faster than the other
programs for problems involving up to 6 variables. It is fair
to mention that it is possible to increase the number of vari-
ables, but it is expected that if it exeeds 10, the computing

time will exceed a reasonable value.

The program can also be used within other areas than linear
fracture mechanics, if the protlem can be formulated in terms
of multidimensi»nal integrals using probability density func-
tions. Furthermore, it is modularly constructed which means

that it can be easily extended to more that 6 variables.

Finally, to prepare the program for a new combination of the
variables more effort is required than to prepare the Monte
Carlo program, due to the favorable flexibility of the latter
program. Since the results are promising it is recommended to
apply the NUMPEP program.

5.3. Systems Reliability

The MOCARE program which utilizes direct Monte Carlo simulation,
is a very flexible tool in quantification of fault trees. The
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flexibilities are with respect to

- choice of probability density functions

- modelling the system taking into account complex test and
maintenance schedules, specification of switches between
redundant equipment, detailed description of component or

subsystem performance.

In some cases a considerable amount of computing time is re-
quired to get a reasonable estimate of the reliability of a

highly reliable systenm.

A review of existing variance reduction techniques in Monte
Carlo simulation programs for reliability analysis has been
performed. It is found that the importance sampling method is
useful in these applications. Furthermore, it is found that no
general results exists for constructing an optimal weighting

function.

For special cases ‘here all distributions are exponential, some
results are available, if the weighting function or importance
function is chosen as an exponential distribution with a para-
meter which is multiplied by B, B>1. The corresponding correc-
tion terms are specified for a general system, but the choice

of B has to be based on trial and error.

In the general case no results is available, but importance
sampling can be used with advantage. Two implementations have
been proposed and studied. A very simple modification of the
original probability density function and a modification of the
random number generator, so that some skewed distribution is
used in stead of the uniform distribtution. The correction terms
are of course similar to those given in the exponential case,
but the specifications of which method, which weighting distri-
bution and which parameters to be used nust be based on trial
and error and knowledge of the problem considered. Two computer
programs are developed which can be used with the purpose of

guidance in selection of weighting function and parameters.



As no general results is derived for constructing the weighting
function the large computing time to run the MOCARE program

remains a problenm.

Therefore, in general other programs such as FAUNET, is recom-
mended in reliability analysis. They are faster and they do not
introduce a statistically uncertainty as in MOCARE. Further-
more, it is recommended to use MOCARE in special cases where

FAUNET does not apply:

- systems where time dependencies are important
- systems with suktsystems, where detailed modelling of a

complex performance is required.

In these cases MOCARE is an efficient supplement to the FAURET
progranm.

It is also recommended to use the developed importance sampling
methods within the MOCARE prcgram in order to speed up the cal-
culations. Even if an optimal weighting function is not con-
structed, a less efficient choice of function can be of import-
ance., It is important to emphasize that the application of the
importance sampling methods must be controlled very carefully
by the user due to the risk of overbiasing, which will lead to

incorrect results, and due to the lack of general results.

5.4. Applications

The NUMPEP program is applicable within probabilistic fracture
mechanics. It can be used to determine the failure probability
of the pressure vessel in nuclear power plants. It has also
been suggested to apply this approach to estimate the probabil-
ity of failure of the pipework in nuclear power plants. Obvious-
ly, also non-nuclear problems are within the range of applica-~
tions of the progranm.

The MOCARE program has been used :in particular within nuclear
applications in calculating the reliability or the unavailabil-
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ity of complex systems. Worldwide this type of approach has been
substituted fully or partly by other methods, such as the FAUNET
program. Its advantage is its flexibility which makes it a very
useful tool for some parts of an analysis requiring very de-
tailed modelling of the performance of complex systems. Obvi-
ously, it can be applied as well on non-nuclear problems. I
expect, that detailed modelling of non-nuclear system will also

be required in the future, as the systems get morz coumplex.

5.5. Future Areas of Development

The developed programs NUMPEP, EXTEP and IMPSAMPLOT can be fur-
ther developed.

Structural Reliability

The NUMPEP code should be extended to take into account

other combinations of variables

- other probability density functions
more than six variablex

- dependencies between the variables.

Such developments will increase the area of applicability.

Systems Reliability

The EXTEP and IMPSAMPLOT programs can be further developed, if
other probability density functions are allowed. The most essen-
tial continuation will be to use the programs within a large
number of analyses to get experience with various choices of
weighting function, since the selection is based on trial and

error.
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DANSK RESUME
PALIDELIGHEDSBEREGN INGER

Forbedringer af metoder til beregring af pdlideligheden af

strukturer og systemer.

Risiko- og pdlidelighedsanalyse anvendes i stigende grad ved
evalueringer af anlagssikkerhed og anlagspdlidelighed. Analy-
ser kan udfgres enten i desijnfasen eller efter idrifttagning,
men de foresldede designandringer eller modforanstaltninger
mod designsvagheder er selvfglgelig forskellige i de to til-
fzlde. Analyserne kan udfgres som en del af den dokumentation,
der er ngdvendiqg for myndighedsgodkendelse, eller med det for-
md]l at forbedre sikkerheden eller pdlideligheden af anlagget.

Anlag, som anvendes i dag, er komplekse pd grund af krav til
sikkerhed og tilgangelighed. Dette medfgrer behov for avance-
rede analysevarktgjer, som er fleksible og effektive, tii brug
i evalueringer af sikkerheden eller p&lideligheden af anlagget.
Sddanne varktgjer er blevet udviklet i de seneste 20 &r, og de
mnd lgbende forbedres, for at kunne mgde de ggede krav med hen-
syn til kompleksitet, fuldstandighed og n¢jagtighed.

To forskellige anvendelsesomrdder er blevet analyseret i dette
projekt. I strukturel pdlidelighed er sandsynlighedsbaserede
metoder tlevet anvendt i visse beregninger af pdlideligheden
af strukturer eller Kkomponenter. Lt regnemaskineprogyram er
blevet udvikliet og sammenlignet med eksisterende programmer.
Dette program, som er baseret p& numerisk integration i flere
variable, har vist sig at vare meget hurtigt sammenlignet med
eksisterende programmer. Lette er vigtigt, da mangel p& data
og usikkerhederre relateret til problemet kraver omfattende
brug af fglsomhedsanalyser, der medfgrer en mangde gennemreg-

ninger,
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1 systempdlidelighed er Monte Carlo programmer brugt specielt
ved analyse af meget komplekse systemer, der bestdr af flere
redundante delsystemer, procedurer for skift mellem delsyste-
merne og komplekse test- og vedligeholdsprocedurer. I sadanne
tilfalde er simuleringsprogrammer meget fleksitle, hvilket mu-
ligg¢r denne type af vanskelige og detaljerede modelleringer.
For at g¢ge anvendeligheden af programmerne, kan variansreduk-

tionsmetoder anvendes til at hurtiggg¢re beregningsprocessen.

Variansreduktionsmetoder er blevet analyseret, og procedurer
for implementering af "importance sampling” er foresldet, bidde
i tilfzlde med et vist forh3ndskendskab til problemstillingen,
og 1 tilfalde uden et s&dant forhdndskendskab. Det er konklu-
deret, at selv med brug af variansreduktionsmetoder arbefales
brug af analytiske programmer i forhold til simuleringsprogram-
mer, mens variansreduktionsteknikker kan fortedre anvendelig-
heden af simuleringsprogrammer i de specielle situationer, der

er beskrevet ovenfor.
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APPENDIX 1

PROGRAY EXAMPLWS

STRUCTURAL RELIABILITY
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PROPASILITY UF FAILLRE = «2828E-058
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APPENDIX 2

PROGRAM EYAMPLES

SYSTEMS RELIABILITY
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