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ABSTRACT

We generalize the non-negative matrix factorization (NMF) genera-
tive model to incorporate an explicit offset. Multiplicative estimation
algorithms are provided for the resulting sparse affine NMF model.
We show that the affine model has improved uniqueness properties
and leads to more accurate identification of mixing and sources.

Index Terms— Non-negative matrix factorization, NMF, BSS,
Sparse NMF

1. INTRODUCTION

Non-negative matrix factorization (NMF) has become a popular tool
for data analysis. An often stated reason for NMF is that it leads to
‘parts based’ representations, hence, facilitates data analytic inter-
pretation. However, uniqueness is important for the parts based rep-
resentations to be meaningful. The NMF generative model is based
on linear mixing of positive sources by positive coefficients. The
positive sources may have offsets which can lead to non-uniqueness,
we therefore here propose a model based on affine mixing, i.e., mix-
ing with an offset. The NMF learning algorithm is straightforwardly
generalized to handle the augmented model. We show that the affine
model indeed has improved uniqueness properties and thus leads to
more accurate identification of mixing and sources.

NMF algorithms are used to factorize a nonnegative matrix V ∈
R

N×M in two nonnegative matrices W ∈ R
N×D and H ∈ R

D×M

V ≈ R = WH; Vi,j ≈ Ri,j =
D

d=1

Wi,dHd,j (1)

Following the seminal papers by Lee and Seung [?, ?], a least squares
or a Kullback-Leibler inspired cost are used. Our observations in this
paper can be applied to both. For simplicity we will concentrate on
the Euclidian cost in the following,

E(W, H) = ‖V −WH‖2F , (2)

where ‖·‖F is the Frobenius norm. Lee and Seung[?] have shown
that the following update rule will decrease E(W, H):

H ← H ⊗ W T V

W T R
(3)

W ←W ⊗ V HT

RHT
, (4)
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where ⊗ and (·)
(·) are element wise multiplication and division. This

update rule is used as a reference and is shown in panel (B) of figures
1, 3, 4, 5 and 6.

2. SPARSE NMF

Hojer [?] introduced sparse NMF and Eggert[?] proposed the fol-
lowing cost function where only the normalized version of W has
impact on the cost:

E(W, H) =
1

2
V −WH

2

F
+ λ1T H1 (5)

W n =
Wn

‖Wn‖ , n ∈ {1, . . . , N} (6)

where Wn is the n’th column vectorin W and 1 is a column vector
where all elements are one. The length of 1 can be deduced by the
context. The scalar λ is a positive parameter that controls the tradeoff
between sparseness of H and approximation of V by the product
of W, H . Eggert[?] argues for using the following multiplicative
update:

H ← H ⊗ W T V

W T R + λ
(7)

Wn ←W n ⊗
M
m=1 Hm,n(Vn + W n(Rm)T W n)
M
m=1 Hm,n(Rn + W n(Vm)T W n)

(8)

These update rules are used in panel (C) of figures 1, 3, 4, 5 and 6.
The normalization of W and the sparse nature of H critically

constrains the solution and can improve uniqueness and lead to more
accurate estimates. However, the constraints may not be consistent
with the form of the mixing process and the statistics of the source
signals H . In particular offsets in one or more rows of V will coun-
teract the sparse model. If the generative model incorporates addi-
tive noise it is not clear that simple subtraction of the minimal value
of each row in V will lead to a correct recovery of the generating
W, H . If the noise is, e.g., Gaussian, V can be negative in the native
representation, hence, one cannot estimate the ‘true’ offset.

2.1. Affine Sparse NMF

The above sparse NMF methods do not handle offsets, however, it is
incorporated as follows with W0 ∈ R

N×1

V ≈ R = WH + W01
T . (9)
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Fig. 1. Simulated data where V ∈ R
2×2000 is generated according

to Equation 9. Each column of V is plotted as a dot. In (A) the
generating W and W0 are shown. In (B) and (C) the standard NMF
and sparse NMF each find three vectors that can describe the data.
Both algorithms find one vector that is a linear combination of the
true W0 and W1 and finds two vectors that are very close to the true
W0. In (D) the ‘Affine sparse NMF’ method correctly estimates the
structure of the W matrix.

Using this augmented signal model the sparse cost function in Equa-
tion 5 becomes

E(W, H, W0) =
1

2
V −WH −W01

T
2

F
+ λ1T H1 (10)

Using the same arguments as Eggert[?] the update rule for W and
H remains as given in Equation 7 and 8 using the new definition of
R. Since W0 is not normalized it is updated using the standart NMF
update rule (Equation 4) and not the sparse update rule (Equation 8):

W0 ←W0 ⊗ 1T V

1T R
(11)

The affine sparse NMF results are shown in panel (D) of figures 1,
3, 4, 5 and 6.

3. RESULTS

How does the augmented sparse affine NMF model data? To answer
this question we first visualize synthetic data as generated by the
proposed model, and we show existing methods fail to reconstruct
the correct parameters of the generative model. We then go on to
show that two commonly used data sets have the characteristics of
the proposed model and that the proposed algorithm performs bet-
ter than the existing algorithms on the data. In order to get a ‘fair’
comparison the standard NMF and sparse NMF both have one col-
umn more than the sparse affine NMF method. This ensures that the
maximum rank of R is the same for all methods.

Fig. 2. The variation of the relative least squares error of the NMF re-
construction of W . The error is plotted as a function of the amount of
data (M ). The simulated data was generated using D = 10 compo-
nents and an off set. The ‘zero offset’ methods are based on the sim-
ple heuristic that data is first preprocessed to have minimum value
zero in each row.

Simulated Data. In Figure 1 there are M = 2000 elements
in V . The data is generated as in Equation 9. The elements of R
are exponentially distributed. The true W vectors and the column
vectors of V are shown in Figure 1 panel (A). Figure 1 (B–D) shows
the three different algorithms estimate of W . The standard NMF (B)
finds W such that the data is in the positive span of W . The W
estimated by the sparse NMF algorithm (C) also spans data but the
column vectors of W point more directly towards data. Although
these methods estimated W can reproduce V , they do not find the
correct structure (W ). The proposed method (D) finds a W that is
close to the true W .

A quantitative evaluation of the different algorithms’ estimate is
presented in Figure 2. Data is generated as in Equation 9 where the
elements of W and W0 are uniform i.i.d. The elements of H are
first generated as exponential i.i.d. samples and then each column
is normalized to unit sum. In this way the elements in H describe
how much each column vector of W contribute towards V . In all
simulations N = 100, D = 10. We have run the simulation with
different amounts of data exampels (column in V ) M . In the evalu-
ation V is analysed as 11(=10 +1) outer product D

d=0 V (d) = V ,

where V
(d)

i,j = Wi,dHd,j . The error in the figure is the relative least

squares error of the V (d) estimate for each data set size

D
d=0 V (d) −R(d)

2

F
D
d=0 ‖V (d)‖2F

(12)

For completeness we have here included in the performance eval-
uation a modification of the standard method in which data is first



Fig. 3. Subset of A: The Swimmer database B: Basis pictures us-
ing standard NMF. C: Basis pictures using sparse NMF. D: Basis
pictures using sparse affine NMF.

subtracted with constant offsets to achieve zero minimum value in
each of the N variables of V . The simulation shows that the stan-
dard NMF and the sparse NMFs do not find the true W and H . The
constant offset subtraction improves the performans but is outper-
formed by the sparse affine NMF succeeds. Notis that the two latter
methods is favoured by knowing that (HT )0 = 1.

The Swimmer Database. The “Swimmer Database” was intro-
duced by Donoho and Stodden [?] to discuss the uniqueness issues
we have adressed in this presentation. The point was that even if
NMF can represent V it may not necessarily find the right W . The
database consist of 256 (32 × 32 pixel) black-and-white pictures of
a ‘stick-man’ with 4 limbs that can be in one of 4 positions. All pic-
tures have a ‘torso’ that represent an offset as discussed in this paper.
The pictures in the dataset can be constructed by 17 (= 4 × 4 + 1)
non-overlapping basis pictures. In Figure 3 (A) examples from the
database are shown. The algorithms described in section 2 are tested
on the data set and a subset of the 17 basis pictures are shown in
Figure 3(B–D). Only the proposed method is able to find the 17 non-
overlapping basis pictures, the standard NMF and Sparse NMF all
let the torso be a part of all basis pictures. The Swimmer simulation
are further analyzed in Figure 4. The 1024 (= 32× 32) dimensional
column vectors in V and W are mapped onto a two dimensional
subspace to show that the structure of the swimmer database is in
fact equivalent to that of Figure 1. In the plot it is seen that only the
affine sparse NMF finds the true basis vectors.

Business Card Data Set. Our final example is based on a set of
business card images of faculty of Aalborg University’s Department
of Electronic Systems. The photographer has manually centered and
scaled the pictures. The pictures are scaled to 30 × 40 pixel and
the color map is chosen such that white is zero and black is maxi-
mum. An ‘AAU watermark’ logo has been added to all pictures in
the database. A subset of the pictures are shown in Figure 5(A) and

Fig. 4. A two dimensional subspace of the column vectors in V
(dots) and W (vectors) are shown for the Swimmer database. The ‘x-
axis’ is a picture which is zero in the upper part and uniform random
values in the lower part. The ‘y-axis’ is constructed the same way
but with the zeros in the lower part.

a subset of the 25 basis pictures estimated by the three algorithms is
shown in Figure 5(B–D). In this simulation the sparse affine NMF al-
gorithm estimates more sparse basis pictures and most basis pictures
describe one physical object only.

A two dimensional subspace (axes formed by an picture with
‘hair’ and an picture with the AAU-logo) of the images in Figure 5
are shown in Figure 6. As above we find that none of the standard
NMF’s nor sparse NMF basis vectors describe the AAU logo without
also capturing ‘hair’. The basis pictures for the proposed method
however are found close to the axes meaning that they either capture
hair or the AAU’ logo.

4. DISCUSSION AND CONCLUSION

Non-negative matrix factorization is widely applied because of the
ability to create ‘parts based’ representations, hence, facilitating model
interpretation. However, uniqueness is important for the parts based
representations to be meaningful. Lack of uniqueness can happen
in several ways, e.g., due to an offset vector W0 as discussed here.
Another mechanism resulting in lack of uniqueness is if the support
of the process creating a row of H does not include H = 0, i.e., if
there is an offset in the row variable of H . The H0 offset can be seen
as a W0 offset with the constraint that W0 is in the positive span of
the column vectors in W :

R = W (H + H01
T ) = WH + W01

T , W0 = WH0 (13)

Hence, the H offset issue is a special case of the model we have
discussed here: If the resulting W0 is in the positive span of the
columns of W , they can be interpreted as H offsets



Fig. 5. (A): Subset of the Picture database with 197 pictures (B –
D): A subset of the basis pictures using standard NMF, sparse NMF
and sparse affine NMF. The standard NMF makes very noisy basis
pictures. The sparse NMF produce basis pictures where the ‘AAU
watermark’ is visible in around 50% of the pictures, and in addition
a lot of the pictures do not represent a single part of the picture. The
sparse affine NMF has only one picture with the watermark (W0)
and most pictures represent only one part of the picture.

In this work we have defined the augmented non-negative lin-
ear mixing model - the sparse affine NMF. While the most obvious
solution to an offset may appear to preprocess data such that the min-
imum value is zero, we have shown that there is straightforward data
driven way of optimizing such offset. We have presented three case
stories in which the new sparse affine NMF algorithm outperforms
the standard algorithms in the estimation of the underlying structure
of the data.

Fig. 6. The business card images plotted in two dimensions to show
that data and solutions have pattern like the ones in Figure 1. The
x–axis is the an image of the AAU logo, and the y–axis is an image
vector capturing the ‘hair’ region.


