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1 Introduction

In the signal separation technique called Independent Component Analysis (ICA),
one refers to a problem as being ”square” if the there is as many measurements
as sources to separate and ”overcomplete” or ”under-determined” if there is
more sources than measurements. While square ICA is thoroughly investigated
through many different approaches with well understood differences and simi-
larities, the overcomplete case is still posing a difficult problem. Below is a short
overview of some of the more interesting or illustrative of the approaches.

In 1999, Hagai Attias presented in [1] a Maximum Likelihood approach as-
suming the generative model x = As+ ε. In this approach a model distribution
is constructed and using Mixture of Gaussians as priors makes it possible to
complete the relevant integrals and obtain a closed form expression for the
distribution over x. The model distribution is approximated to the data dis-
tribution through the Kullback Leibler divergence. This approach is extremely
flexible while still having appealing analytical properties and the only real draw-
back is the bad scaling behavior: A sum over KD must be computed, which can
be rather larger for e.g. image data.

In 2000, Lewicki and Sejnowksi presented in [5] a Maximum Likelihood ap-
proach assuming the generative model x = As + ε. In this approach, the log
likelihood of A is Taylor expanded to second order around the maximum a
posteriori estimate of the sources, i.e. one approximate the likelihood with a
gaussian, and the sources are in turn are estimated using the updated estimate
of A. In this approach we see the difficulty that most overcomplete techniques
is trying to work around: The likelihood, or some other suitable cost-function,
contains some integral involving the source prior and is therefore in general hard
to solve. The approach of Lewicki and Sejnowski from 2000 substitutes the in-
tegral with a second order expansion and we shall see other possibilities in the
following.

In 2001, Girolami presented in [2] a Maximum Likelihood approach assum-
ing the generative model x = As + ε. In this approach, Girloami assumes
Laplacian priors and the integral associated with the log likelihood is approxi-
mated through a variational scheme: The laplacian priors are reformulated in
dual space which provides a lower bound of the likelihood to be optimized. The
drawback of this approach is that the trick only works for laplacian priors and
that the algorithm optimizes a lower boudn in stead of the log likelihood it self.
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In 2002, Hojen-Soerensen, Winther and Hansen presented in [4], the so-
called ”Mean Field Approach” assuming the generative model x = As + ε.
The parameters A and possibly the noise covariance W are estimated through
maximum likelihood assuming knowledge of the mean values of the sources
and vice versa. That is, the integral of the log likelihood, translates into mean
values of the sources, which are approximated with estimates of the mean values
obtained from Mean Field theory. The nice feature of this approach is that we
substitute a very complicated integral with an easier non-linear equation and
that one can do this for any prior. The problem, of course is that al though
Mean Field estimates are fairly accurate they are still approximations.

Also in 2002, Shriki, Sampolinski and Lee presented in [7] an interesting
variant of Infomax on the filtering model ŝ = Wx. In the setup y = g(Wx),
Shriki et. al. obtains a relation between p(x) and p(y) by assuming a noisy
relation y = g(Wx) + ε and letting the noise go to zero. The main problem is
that the limit is not taken properly care of and that the certainty of the result
therefore is doubtful.

And finally in 2003, Teh, Welling, Osindero and Hinton presented in [8] the
Energy Based Model on the filtering model ŝ = Wx. Through a setup using
inspiration from physics, a model distribution for x is constructed and adjusted
to be as close to the data distribution as possible through a Kullback Leibler
divergence. Again the authors are faced with an intractable integral and this
time it is approximated with the so-called ”n-step Learning” which is a Hybrid
Monte Carlo technique using n steps in the estimation of the integral. The
remarkable claim of the paper is that very few steps such as n = 1, or n = 3
often will be sufficient to obtain overall convergence of the algorithm.

A common feature for most of the approaches is that they assume a noisy
model and obtain a likelihood which involves a difficult integral which is then
approximated in some way or another. The exception from this is the approach
of Hagai Attias, but one can then argue that assuming priors to be mixtures of
gaussians either is a restriction or an approximation.

1.1 This Paper

Thus, Independent Component Analysis (ICA) can be performed by a vast range
of different methods. These can differ from each other by assumed properties
such as noise or time-correlation, but also by the fundamental issue on whether
they attempt to estimate the generative mixing matrix, denoted A, or a filtering
matrix denoted W. In case of the same number of observations and sources,
the square case, most if not all of these methods can be proven to be equivalent.
But in the overcomplete case, where the number of observations are smaller
than the number of sources, their differences becomes apparent and it is not
easy to compare the results of generative and filtering approaches.

This paper makes an attempt to compare the result of two different methods
in the overcomplete case: The Maximum Likelihood (ML), which estimates the
generative A, and the Energy Based Models (EBM) which seek to estimate a
filtering matrix W. This is done by assuming the priors to be centered mixtures
of gaussians which makes it possible to compare the optimization schemes. This
approach, with respect to ML, is closely related to the work of Hagai Attias in
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Figure 1: Contour plot of probability densities in 2D source space. and this is
the only of the the three which in fact is independent in its variables, i.e. a
Independent Mixture of Gaussians, IMoG.

[1], but where Attias is assuming completely general mixtures of gaussians and
a noisy mixture model, the mixtures of gaussians in this paper are assumed
centered for simplicity and, more importantly, the limit of zero noise is derived
to be able to compare with the noiseless EBM.

The structure of the paper is as follows: In Sec 2, we introduce the reader
to the mixture of gaussians to be used, and in Sec 3 we apply the mixtures of
gaussians to the EBM and the ML. In Sec 4 we compare the results found and
finally in Sec 5, we make a short summary.

2 Mixture of Gaussians

In this paper we make extensive use of the family of distributions known as
mixtures of gaussians (MoG). To clear up some common misconceptions about
MoG we introduce the general MoG and then discuss two important subsets of
distributions. The density of a D-dimensional centered MoG is

p(s) =
∑

κ

ρκ√
|2πDκ|

exp
[
− 1

2
sT D−1

κ s
]

(1)

where the weights ρκ sum to one. The matrix Dκ can be any positive definite
matrix, but in this context often assumed diagonal, Dκ = diag(σ2

1κ, σ2
2κ, ..., σ2

Dκ).
The marginal distribution for each si is itself a mixture of gaussians, si ∼∑

κ ρκN (0, σ2
iκ), but note about the joint distribution that even if the coordi-

nates si in each component are independent, i.e. if Dκ all are diagonal, the
coordinates si are not in general independent in the bigger joint distribution
p(s).

One subset of interest is the MoG constructed as a product of D 1-dimensional
mixtures of gaussians, and therefore independent by construction. Since the
variables are independent we call this kind of MoG for Independent Mixtures of
Gaussians (IMoG). Denoting the parameters of i′th marginal by

∑
κ ρiκN (0, σ2

iκ),
the density of the joint distribution is given by

p(s) =
∑

{k}

ρ̃k√
|2πDk|

exp
[
− 1

2
sT D−1

k s
]

(2)
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The symbol {k} denotes all combinations of the vector k having length D,
consisting of integers from 1 to K, Dk = diag(σ2

1k1
, σ2

2k2
, ..., σ2

DkD
), and ρ̃k is

defined by ρ̃k =
∏D

i=1 ρiki .
Another subset of interest is the MoG, where the matrices are not only

diagonal, but all some constant times the identity Dκ = σ2
κI. In this case the

density is spherical symmetric and we call this kind of distributions for Spherical
Mixtures of Gaussians (SMoG).

Obvious from Eq. 2, IMoG is itself a MoG, but the reverse is not true in
general. As visualized on Figure 1, the density contour of a MoG with diagonal
covariances is some weighted sum of axis-aligned ellipsoids. The length of axis of
the ellipsoids corresponds to variances of gaussian components, i.e. the diagonal
elements of the covariance matrices. This is also true for the product of 1-
dimensional MoG, but in this case all combinations of the marginal variances
are present as sets of axis of some ellipsoid. Thus knowing the density of a
MoG with diagonal covariances, its variables are independent if and only if all
combinations of axis lengths are present. Therefore, since this by definition is
not the case for SMoG, SMoG and IMoG must be disjoint subsets of MoG.

3 Models and Derivation

We now use the MoG as source priors for two different approaches to ICA:
Energy Based Models (EBM) and Maximum Likelihood (ML).

We consider a situation in which D sources st are mixed into a set of M
measurements xt, expressed by the equation xt = Ast. The signals are N time
steps long and can be arranged into the matrices S and X, such that mixing of
all N vectors can be expressed in one equation X = AS. The sources are white
and since EBM is restricted to square and overcomplete mixing, we assume
M ≤ D.

3.1 Energy Based Models

The EBM method, presented in [8], aim at demixing the measurements X by a
filtering with W in the traditional way Ŝ = WX. That this, in the overcomplete
case, is not producing independent estimated sources, is discussed in more detail
in Sec 4. The filtering coefficients is determined through a construction of a
model distribution pW(x) which is approximated to the data distribution

p0(x) =
1
N

N∑
t=1

δ(x− xt) (3)

through the Kullback-Leibler divergence. The model distribution is constructed
in the following way: An energy is defined by E(x;W) = − ln ps(Wx), which
ensures the property that choosing W such that the resulting estimated sources
are not too unlikely, is rewarded through low energy levels and unlikely source
values penalized with high energy levels. Other definitions of energy could be
made, but this is especially appealing due to its calculational properties. The
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energy E is used in a Gibbs distribution, i.e.

pW(x) =
e−E(x;W)

Z(W)
=

ps(Wx)∫
ps(Wx)dx

(4)

which is chosen as our model distribution. In [8], Teh et. al. make no assump-
tion on the prior, which makes the normalization part more difficult. To deal
with this they use so-called n-step learning, a variant of a hybrid monte carlo
approach, do approximately estimate the normalization part of the optimiza-
tion. In this paper we in stead choose the prior to be a MoG, which enables us
to calculate the integral of Eq. 4 and obtain an closed form expression for the
model distribution. The result is

pW(x) =
∑

κ

γκ

exp(− 1
2x

T WT D−1
κ Wx)√

|2π(WT D−1
κ W)−1|

(5)

where γκ in general is dependent on W and Dκ′ for all κ′ through the following
relation: Setting ξκ = (|2π(WT D−1

κ W)−1|/|2πDκ|)1/2, we can write γκ =
ρκξκ/

∑
κ′ ρκ′ξκ′ . Note that in the square case ξκ = 1 and therefore γκ = ρκ

and in the case of SMoG priors we obtain ξκ = (2π/σ2
κ)(D−M)/2. The estimated

optimal filtering matrix Ŵ is determined by

Ŵ = minW

[
KL(pW||p0)

]

in which the gradient of the KL-divergence can be calculated analytically when
the prior is chosen to be mixtures of gaussians or some other analytically ap-
pealing distribution.

3.2 Maximum Likelihood

In the ML setup presented here we assume a generative model X = AS + Γ,
where we, in order to be able to deal with the overcomplete case, have added
white gaussian noise, Γ. In the end we let the noise variance go to zero to obtain
the noiseless result.

Assuming white gaussian noise and the prior on the sources ps(s) to be a
MoG with covariance matrices Dκ and weights ρκ, we can complete the inte-
gration and write the distribution over x as

p(x) =
∫

p(x|s)p(s)ds =
∑

κ

ρκ

√
|2πΦ−1

κ | exp(− 1
2x

T Ψκx)
√
|2πΣ|

√
|2πDκ|

where Σ = σ2I is the noise covariance matrix, Φκ = AT Σ−1A+D−1
κ and Ψκ =

Σ−1 − Σ−1AΦ−1
κ AT Σ−1. We now want to consider the limit of σ2 → 0, but

we need to do this with great care, since otherwise crucial details will vanish in
the approximation. Using the Woodbury identity, singular value decomposition
and some very good approximations (see the appendix for details), we obtain
the following limits

Ψκ → (ADκAT )−1

√
|2πΦ−1

κ |/
√
|2πΣ| → wκ/

√
|AAT |
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Here wκ is a constant with respect to σ2, but depends on Dκ and on A through
the unique orthogonal matrix V. V which fulfills the eigen value equation
AT AV = VΛ, such that the eigen values in Λ are decreasing in size down the
diagonal. The expression for wκ is wκ =

∏D
i=M+1(2π/(VT D−1

κ V)ii)1/2. With
this limit taken care of, we can write the maximum likelihood expression for
p(x) as

pA(x) =
∑

κ

ρκ

exp(− 1
2x

T (ADκAT )−1x)√
|2πADκAT | (6)

where the weights somewhat surprisingly turns out to be same as those of the
prior (see the appendix for details). The estimated generative mixing matrix Â
is the matrix maximizing the log likelihood

Â = maxA

[
ln P (X|A)

]

Note that we have not estimated the sources in this process, only the generative
mixing matrix.

4 Comparing EBM and ML

Now we compare the EBM and ML approaches derived in the previous section
and discuss the significance of the differences and similarities. In the square
case, we obtain total equivalence of all expressions setting W = A−1 and thus
not surprisingly we can conclude, as Teh et .al. does in [8], that the two ap-
proaches are equivalent when the number of observations equal the number of
sources. Therefore the discussion and comparison in this sections is almost
entirely concerned with the overcomplete case.

In the overcomplete case it is not obvious how one should compare results
on the generative A and the filtering matrix W. The filtering approach does
not retrieve the original sources, since for any matrix W we have WAg 6= I
because of the dimensionality: It is impossible to construct D M -dimensional
orthogonal matrices when D > M . And we cannot in general compare the filter
matrix W with the pseudo-inverse of A, since this is not the optimal solution in
all cases [5]. But using MoG as prior, both the model distribution pW(x) of the
EBM and the loglikelihood pA(x) of the ML becomes MoG’s with parameters
which must be estimated to fit a common data set X. In fact we end up with
two optimizations which look rather similar

0 =
∂

∂W

N∑
t=1

ln pW(xt) 0 =
∂

∂A

N∑
t=1

ln pA(xt)

The similarity is to some extend both genuine and deceptive: Both distributions
are MoG, but the dependency of the weights and covariances on W and A are
different. In this section we compare EBM and ML by comparing the covariances
and weights of their MoG’s.
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Figure 2: The Weights for EBM and ML. The plot demonstrates for SMoG
priors that the differences in weights increase dramatically when the settings
gets strongly overcomplete. (See the text for details on the plots)

4.1 Spherical MoG

We now consider the special case when the priors are SMoG, i.e. the variances
are given as Dκ = σ2

κI. In this case the sources are not assumed to be indepen-
dent, which is interesting in its on right, but it also serves as a clear example of
properties which holds for the more general cases as well. When we assume the
priors to be SMoG, the model distribution simplifies significantly,

pW(x) =
∑

κ

γκ

exp(− 1
2x

T WT D−1
κ Wx)√

|2π(WT D−1
κ W)−1|

, γκ =
ρκ(1/σ2

κ)d

∑
κ′ ρκ′(1/σ2

κ′)d
(7)

where d = (D −M)/2.

The Covariances

The covariances of EBM and ML respectively can in fact become equal in the
case of SMoG. The equation setting the covariances equal

(WT D−1
κ W)−1 = ADκAT ∀κ (8)

translates into WT WAAT = I, which is fulfilled for W = A+, where A+

denotes the pseudo inverse (Moore-Penrose) of the matrix A. When A has full
rank, the pseudo-inverse is given by A+ = AT (AAT )−1. But the equation is
also fulfilled for any matrix W = UA+, where U is orthogonal and thus, there
is an entire family of matrices which would make the covariances of the EBM
equal to the covariances of the ML for a given A. Conversely for any W we
can choose A = W+ to obtain the same covariances and and in this sense the
two approaches have equal flexibility with respect to adjusting the covariances
to the data. This is evident in the 4× 2 example in Fig 3 a) and b).

7



Gen Ag Ps-inv A+
g Est A (ML) Est W (EBM)

−8 −4 0 4 8

−8

−4

0

4

8

−8 −4 0 4 8

−8

−4

0

4

8

−8 −4 0 4 8

−8

−4

0

4

8

−8 −4 0 4 8

−8

−4

0

4

8

Figure 3: The covariances in case of SMoG priors for different settings. Plot a)
Generative A. Plot b) Pseudo-inverse of the generative A. Plot c) Estimated
A. Plot d) Estimated W.

The Weights

The weights can be compared by examining the ratio γκ/ρκ and as we shall see,
this ratio differs strongly from 1 in most cases. From the expression of γκ in
Eq. 7, we see that the constrain making the weights of ML and EBM equal is

(1/σ2
κ)d

∑
κ′ ρκ′(1/σ2

κ′)d

?= 1 ∀κ

which is clearly impossible when the weights σ2
κ must be different for different

κ. Thus, in the SMoG case, the weights of EBM and ML cannot be equal and
furthermore the ratio γκ/ρκ becomes relatively large for those κ where σ2

κ is
very small and vice versa.

Fig 2 is a general illustration of this. Here we assume a SMoG prior with
two components which has σ2

1 = 1 and ρ1 = ρ2 = 0.5 and let σ2
2 vary between 0

and 2. The resulting ratio γ2/ρ2 is shown in Fig 2: The x-axis is σ2
2 , the y-axis

is γ2/ρ2 and the 4 curves are plottet for different degrees of overcompleteness
d=0 (Square) and d = 1, 2, 10 (Overcomplete). Clearly only in the square case
and for σ2

2 values close to 1, is the ratio reasonably close to 1.
Another more specific example is shown in Fig 3 c) and d), which is the

estimated covariances for ML and EBM in a 4 × 2 case. In this example the
effect of the enhanced weight on smaller covariances is clear: When the weights
of the smaller covariance is strong, the points far from origin is considered
extreme, and the covariances are expanded accordingly. Thus, for this reason,
EBM seem to favor larger covariances compared to ML.

5 Summary and Acknowledgements

Conclusively the use of Mixtures of Gaussians made it possible to compare
Maximum Likelihood with Energy Based Models. The results show that in the
overcomplete case with Spherical Mixtures of Gaussians as priors, the Energy
Based Model is biased toward larger covariances compared to the Maximum
Likelihood. One can show that this effect is also present for IMoG priors,
though not at all as strong.
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Finally I need to give due credit: This paper is closely related to the result
of earlier work together with Jiucang Hao and Te-Won Lee from University of
California San Diego (UCSD).

A Details of the Calculations

When calculating the limit of Ψκ, we first set in the definition Σ = σ2I and
simplify the expression into

Ψκ =
1
σ2

{
I−A(AT A + σ2D−1

κ )AT
}

Now defining Q = ADκAT /σ2 we can use Woodburys identity for inverse
matrices and obtain

A(AT A + σ2D−1
κ )AT = Q−Q(I + Q)−1Q

Since Q is symmetric and very large compared to I, the right hand side can be
approximated by I−Q−1. To see this, write Q as Q = VΛVT , for an orthogonal
V and diagonal Λ and remember the identity x− x2/(1 + x) = 1− 1/(1 + x) to
obtain I −Vdiag(1/(1 + Λii/σ2))VT ∼= I −Vdiag(1/(Λii/σ2))VT = I −Q−1.
Inserting this into the equation containing Ψκ, gives the desired result.

When calculating the limit of the fraction containing the determinant |2πΦ−1
κ |,

we use the fact that since AT A is symmetric there exists an orthogonal V such
that AT A = VΛVT . Since |V| = 1 we get

|2πΦ−1
κ |/|2πΣ| = (2πσ2)(D−M)/|Λ + σ2VT D−1V|

Since σ2 are assumed arbitrary small, only the diagonal of the sum of matrices
will contributed significantly to the determinant. And since further more AT A
has rank M , the M first elements of the diagonal matrix will dominate together
with the remaining M −D factors

|Λ + σ2VT D−1V| ∼=
M∏

i=1

Λii

D∏

j=M+1

(σ2VT D−1V)jj

inserting this into the fraction above gives the desired result.
The coefficients ακ has the structure ρκwκ

√
|2πADκAT |/

√
|AAT | · |2πDκ|.

In the square case much of the difficulties of taking the noiseless limit disappears,
wκ = 1 and we easily obtain ακ = ρκ. In the case of SMoG, setting Dκ = σ2

κI,
we obtain wκ = (2πσ2

κ)(D−M)/2 and therefore ακ = ρκ. Supported by numerical
results we conjecture that this is also the case for the general overcomplete case.
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