
Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3

Encoded Music

Sigurdur Sigurdsson, Kaare Brandt Petersen and Tue Lehn-Schiøler
Informatics and Mathematical Modelling

Technical University of Denmark

Richard Petersens Plads - Building 321

DK-2800 Kgs. Lyngby - Denmark

{siggi,kbp}@imm.dtu.dk

Abstract
In large MP3 databases, files are typically generated with

different parameter settings, i.e., bit rate and sampling rates.

This is of concern for MIR applications, as encoding dif-

ference can potentially confound meta-data estimation and

similarity evaluation. In this paper we will discuss the in-

fluence of MP3 coding for the Mel frequency cepstral coe-

ficients (MFCCs). The main result is that the widely used

subset of the MFCCs is robust at bit rates equal or higher

than 128 kbits/s, for the implementations we have investi-

gated. However, for lower bit rates, e.g., 64 kbits/s, the im-

plementation of the Mel filter bank becomes an issue.

Keywords: Mel frequency cepstral coefficients, MFCC, ro-

bustness, MP3.

1. Introduction

The use of Mel frequency cepstral coefficients (MFCCs) for

music information retrieval has become standard since the

seminal paper [4] in 1997. But only little effort has been put

into investigating the applicability of the MFCC’s as fea-

tures for music, with [6] as a rare exception. In this paper

we investigate how MP3 encoding of music files is influenc-

ing the signal information content of the MFCC’s.

2. Mel Frequency Cepstral Coefficients

We will use the Intelligent sound implementation (ISP) to

explain the computation of MFCCs. First the music signal

is divided into short time windows, where we compute the

discrete Fourier transform (DFT) of each time window for

the discrete-time signal x(n) with length N , given by

X(k) =

N−1
∑

n=0

w(n)x(n) exp(−j2πkn/N) (1)

for k = 0, 1, . . . , N − 1, where k corresponds to the fre-

quency f(k) = kfs/N , fs is the sampling frequency in
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Hertz and w(n) is a time-window. Here, we chose the popu-

lar Hamming window as a time window, given by

w(n) = 0.54 − 0.46 cos(πn/N), due to computational sim-

plicity.

The magnitude spectrum |X(k)| is now scaled in both

frequency and magnitude. First, the frequency is scaled log-

arithmically using the so-called Mel filter bank H(k,m) and

then the logarithm is taken, giving

X ′(m) = ln

(

N−1
∑

k=0

|X(k)| · H(k,m)

)

(2)

for m = 1, 2, . . . ,M , where M is the number of filter banks
and M ≪ N . The Mel filter bank is a collection of triangu-
lar filters defined by the center frequencies fc(m), written
as

H(k, m) =

8>>><>>>: 0 for f(k) < fc(m − 1)
f(k)−fc(m−1)

fc(m)−fc(m−1)
for fc(m − 1) ≤ f(k) < fc(m)

f(k)−fc(m+1)
fc(m)−fc(m+1)

for fc(m) ≤ f(k) < fc(m + 1)

0 for f(k) ≥ fc(m + 1).
(3)

The center frequencies of the filter bank are computed by

approximating the Mel scale with

φ = 2595 log10(
f

700 + 1), (4)

which is a common approximation. Note that this equation

is non-linear for all frequencies. Then a fixed frequency res-

olution in the Mel scale is computed, corresponding to a log-

arithmic scaling of the repetition frequency, using

∆φ = (φmax − φmin)/(M + 1) where φmax is the highest

frequency of the filter bank on the Mel scale, computed from

fmax using equation (4), φmin is the lowest frequency in

Mel scale, having a corresponding fmin, and M is the num-

ber of filter banks. The values for the ISP implementation is

fmax = 11.025 kHz, fmin = 0 Hz, and M = 30. The center

frequencies on the Mel scale are given by φc(m) = m · ∆φ
for m = 1, 2, . . . ,M . To obtain the center frequencies

in Hertz, we apply the inverse of equation (4), given by

fc(m) = 700(10φc(m)/2595 − 1), which are inserted into

equation (3) to give the Mel filter bank. Finally, the MFCCs

are obtained by computing the DCT of X ′(m) using

c(l) =

M
∑

m=1

X ′(m) cos(l π
M (m − 1

2 )) (5)
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Figure 1. The figure shows 4 different implementations of the

Mel filter bank. Note the different scaling of the frequency axes

in the plots.

for l = 1, 2, . . . ,M , where c(l) is the lth MFCC.

In this paper we will focus on 4 different implementa-

tions of the MFCCs; the algorithm due to Davis [2], the Au-

ditory toolbox [8], the hidden Markov model toolkit (HTK)

[9], and the ISP implementation given above. The imple-

mentations have different Mel filter banks, shown in Fig-

ure 1. Note the different characteristics of the filter banks.

Davis’ implementation has linear spacing up to 1 kHz and

then logarithmic spacing, where the filter amplitude is con-

stant. HTK has logarithmic spacing and constant amplitude.

The Auditory toolbox suppresses frequencies below approx-

imately 133 Hz, has linear spacing up to 1 kHz and then

logarithmic spacing, where the energy in all filters is fixed

to unity. The ISP implementation is similar to HTK, us-

ing the same definition of the Mel filter bank with different

number of filters and filter center frequencies. Also, the ISP

implementation does not use liftering.

3. MP3 Encoding

The compression used for MP3 files is based on perceptual

encoding, where the goal is to apply efficient coding while,

at the same time, obtaining a perceptually good coding of

the signal. The main building blocks of an MP3 encoder

are: An analysis filter bank which decomposes the signal

into subsampled spectral bands, a perceptual model which

controls the quantization and coding scheme for the decom-

posed signal, and finally a bitstream coding. It is the per-

ceptual model that determines the quality of the signal, as

compression is obtained by adapting the amount of quanti-

zation noise, based on the amplitude and frequency content

of the signal. Despite of this advanced scheme for coding

the music signals, some artifacts are encountered. The most

common is pre-echo where a noise signal is observed be-

fore the music signal that actually causes the noise. This

is due to the temporal resolution of the decoder, given by

the synthesis window length, where the quantization error

is distributed over the full window. Thus, a sudden signal

attack increases the quantization error, which includes the

music signal before the attack. Another artifact is the loss

of signal bandwidth when the encoder runs out of bits for

a given quality of the signal. For an introduction to MP3

coding, see e.g. [1].

In this paper we have used the LAME 3.96.1 encoder,

which is very popular and often acclaimed being the best en-

coder for bit rates at 128 kbit/s or higher. We have used the

popular Madplay 0.15.0 (beta) for decoding the MP3 files.

The choice of encoder/decoder were based on their popular-

ity and that they are freely available. The encoder specifi-

cations for the experiments were; stereo mode, variable bit

rates at 64, 128 and 320 kbit/s, sampling rate of 44.1 and

22.05 kHz. The most commonly used bit rate is 128 kbit/s,

where both good compression and reasonable sound quality

may be obtained. The 64 and 320 kbit/s are used to show

results at very low and good quality. The reason to use a

lower sampling rate than 44.1 kHz is to show improvement

in quality at low bit rate.

4. Evaluating Robustness with Correlation

In order to evaluate the effect of different MFCC approaches

and different MP3 encodings, we need a measure of dif-

ference. We have chosen the so-called Pearson’s correla-

tion coefficient to compare MFCCs. By using this sim-

ple scheme, we avoid selecting a classifier for a specific

MIR task and choosing a temporal coding scheme for the

MFCCs, e.g. Gaussian mixture model.

The Pearson’s correlation coefficient rxy for two vari-

ables x and y, is a measure of the correlation between them

given a linear model and Gaussian noise [3]. Here we will

use the squared correlation r2
xy , which indicates the percent-

age of variation in the data that can be explained with the

linear model. For r2
xy = 1 the relation is exact, and as r2

xy

becomes smaller, the relation becomes weaker.

It is well known that Pearson’s correlation coefficient

should be used as a measure of regression rather than corre-

lation, and in the case of the MFCCs we are doing exactly

that: Estimating the noise variance under the linear assump-

tion. To be sure that the assumption about the linear rela-

tion and Gaussian noise is not too restrictive, we conduct a

Kolmogorov-Smirnov test (KS-test) on the noise residuals,

see e.g. [7] for details.

5. Experiments

All experiments were conducted using a data set of 46 songs

from 46 different rock and pop artists. WAV files were gen-

erated from compact disks using CDex 1.51. MP3 files were

generated from the WAV files using the LAME encoder. To

avoid noise due to time difference between the WAV and
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Figure 2. The figure shows the squared Pearson’s correlation

coefficient (r2) between single MFCCs for the 4 selected im-

plementations, where the values on the axes indicates MFCC

number. Note that the images are different in size, due to dif-

ferent number of MFCCs for each implementation.

MP3 files, the signals were aligned in time prior to MFCC

computation. Various window sizes are suggested to com-

pute MFCCs, ranging from 5-100 ms and often around 20

ms, with overlap 30-50 %. On the basis of this, the MFCCs

for the songs were computed using a fixed window size of 20

ms with 50 % overlap. As the music files contain stereo mu-

sic, we generate a single channel signal by averaging over

both channels prior to MFCC computation.

5.1. MFCC Implementations

The implementation comparison used only WAV files for

evaluation. MFCCs were computed for each song for all 4

implementations. The squared Pearson’s correlation coeffi-

cient r2 was computed between all MFCCs for all methods

and for each song. The result shown in figure 2 is the aver-

age over all songs. From the figure we observe that approxi-

mately the first 15 MFCCs are quite correlated between im-

plementations. This varies somewhat between implemen-

tations, e.g. the HTK and ISP are very correlated as they

are based on the same implementation of the Mel filter bank

with different specifications. In practical applications only

the first 5-15 MFCCs are in general used, which could ex-

plain similar performances using different implementations.

For instance, investigations of different MFCC implementa-
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Figure 3. The figure shows the squared Pearson’s correlation

coefficient (r2) where each MFCC of one implementation (title

of plot) is conditioned on all the MFCCs for the other imple-

mentations (legend of plot).

tion schemes for speaker verification have shown very sim-

ilar results [5]. The MFCCs above approximately 15, have

lower r2 and become more diffused, as information spreads

out to neighboring MFCCs.

It should be noted that the assumption of the relation be-

tween MFCCs from different implementations are modeled

linearly with Gaussian noise is highly unlikely. This is due

to the fact that each MFCC implementation is a highly non-

linear process. On the other hand, high r2 means that much

of relation may be explained with the linear model, while

the noise is not Gaussian distributed. This was confirmed

with the KS-test.

The results shown in figure 2 may be confirmed by com-

puting the r2 between a single MFCC conditioned on all

MFCCs from other implementations. Figure 3 shows the re-

sults for all implementations. The figure shows that the r2

is approximately 0.8 or higher for MFCCs up to 15 for all

implementations. Again it should be noted that the KS-test

rejects in many cases the hypothesis of a linear model with

Gaussian noise, although the r2 is high.

5.2. MFCC Robustness to MP3 Coding

The influence of MP3 coding was evaluated by computing

the MFCCs for WAV and MP3 files at different bit rates and

sample rates, and then evaluating the squared Pearson’s cor-

relation coefficient r2 between the WAV generated MFCCs

and the MP3 generated MFCCs. The KS-test accepted in al-

most all cases the hypothesis of a linear relation with Gaussian

noise. The results are shown in figure 4. At a fixed sam-

pling rate of 44.1 kHz and bit rate of 320 kbits/s the r2

between WAV and MP3 MFCCs are approximately 1, in-

dicating little or no loss. At 128 kbits/s, r2 drops similarly
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Figure 4. The squared Pearson’s correlation coefficient (r2) as

a function of MFCC number for the 4 MFCC implementations,

using different sampling rate and bit rate.

for all implementations, but is higher than approximately

0.95 for the first 15 MFCCs. Interestingly, r2 is dependent

on the MFCC number, showing that higher MFCCs have

lower sample correlation, indicating that they are less robust

to MP3 encoding of music. At 64 kbits/s the sample corre-

lation has decreased significantly and is now dependent on

implementations. The largest single factor is the highest fre-

quency included in the Mel filter bank. The most robust im-

plementation is Davis’ with the highest frequency 4.6 kHz,

while the least robust is the ISP implementation with high-

est frequency 11.025 kHz. The HTK and Auditory toolbox

implementations are in between the other two, having the

highest included frequency of 8 kHz and 6.9 kHz.

Figure 4 shows also that it is possible to improve the ro-

bustness by reducing the sample rate from 44.1 kHz to 22.05

kHz. This is due to the MP3 encoding, where higher fre-

quencies are more expensive to code and deviate more from

the original. Thus, by disregarding higher frequencies, both

by removing higher frequencies in the Mel filter bank im-

plementation and reducing the sampling rate, more robust

MFCCs are obtained.

6. Conclusion

In this paper we have evaluated the robustness of MFCCs

with the squared Pearson’s correlation coefficient. The re-

sults show that the different MFCC implementations are very

correlated for approximately the first 15 MFCCs. This sup-

ports experiments for speaker verification [5], showing sim-

ilar performance for different MFCC implementations and

settings.

MFCCs were shown to be very robust at bit rates of 320

and 128 kbit/s for all implementations at a fixed sampling

rate of 44.1 kHz. At 64 kbits/s, using the same sampling

rate, the implementations are less robust and the robustness

is dependent on implementation. The robustness decayed

more rapidly for implementations that included higher fre-

quencies in the Mel filter bank. Also, we showed that the ro-

bustness at lower bit rates, e.g. 64 kbits/s, may be improved

by reducing the sampling rate, especially for implementa-

tions that included higher frequencies in the Mel filter bank.

Finally, we illustrated that higher order MFCCs are less ro-

bust than lower order for MP3 encoding.

This paper shows that MFCC features are very robust to

MP3 encoding and thus applicable in MIR tasks. However,

the MFCC implementation should take into account the en-

coding distortion in MP3 files at low bit rates.
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